JPH1137401A - Method for operating exhaust heat recovery boiler and controller - Google Patents

Method for operating exhaust heat recovery boiler and controller

Info

Publication number
JPH1137401A
JPH1137401A JP18998297A JP18998297A JPH1137401A JP H1137401 A JPH1137401 A JP H1137401A JP 18998297 A JP18998297 A JP 18998297A JP 18998297 A JP18998297 A JP 18998297A JP H1137401 A JPH1137401 A JP H1137401A
Authority
JP
Japan
Prior art keywords
heat recovery
pressure
recovery boiler
temperature
duct
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP18998297A
Other languages
Japanese (ja)
Inventor
Koichi Toyoshima
耕一 豊嶋
Atsuo Kawahara
淳夫 河原
Toshinori Shigenaka
利則 重中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP18998297A priority Critical patent/JPH1137401A/en
Publication of JPH1137401A publication Critical patent/JPH1137401A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To prevent the output of a gas turbine from being lowered and a stopping exhaust heat recovery boiler from being broken owing to the backflow of hot air even when it is necessary to additionally start or forcedly cool the exhaust heat recovery boiler whose operation stops during the increase of load the boiler. SOLUTION: A plurality of exhaust heat recovery boilers 2 which have groups of heat transfer pipes for recovering the heat of exhaust gas exhausted from a gas turbine are arranged in parallel. When a stopping boiler 2 as well as an operating boiler 2 is additionally started or forcedly cooled, water supplied to the operating boiler 2 is temporarily heated by an economizer 15 and then the heated water is mixed again with water supplied to the inlet of the economizer 15 or an on/off valve of a steam line at the outlet of a steam drum 19 is controlled to open/close. Thus, the pressure of the drum 19 is raised higher than that during an ordinary operation to raise the gas temperature of outlet ducts 9 of the operating boiler 2 and a combined flow duct 10. Accordingly, the buoyancy of gas (chimney effect) due to the specific volume difference generated from the temperature difference between the atmospheric temperature of the top part of a chimney 11 and the gas temperature is increased, so that the pressure of the combined flow duct 10 is more negative than that of the ducts 9 in the vicinity of the duct 10.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、排熱回収ボイラの
運転方法とその制御装置に関するものであり、特に複数
の排熱回収ボイラ出口の排ガスダクトを合流ダクトに合
流させた形式の複合発電(コンバインドサイクル)プラ
ントに適用される排熱回収ボイラの運転方法とその制御
装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for operating an exhaust heat recovery boiler and a control device therefor, and more particularly to a combined power generation system in which exhaust gas ducts at a plurality of exhaust heat recovery boiler outlets are joined to a merging duct. The present invention relates to an operation method of a waste heat recovery boiler applied to a plant and a control device thereof.

【0002】[0002]

【従来の技術】発電プラントにおいては急速に変化する
電力需要に対応すべく各種の方策が考えられている。例
えば原子力発電がベースロード化している現在、火力発
電所の大型ボイラにおいても中間負荷運用が定着し、か
なりの負荷変動が伴う運転が日常化している。しかしな
がらこの大型のボイラにおいては急速起動を行ったり、
急激な負荷変動に対応するには限界があり、より柔軟な
対応が可能な発電プラントが望まれている。
2. Description of the Related Art In a power plant, various measures have been considered to respond to a rapidly changing power demand. For example, at present, when nuclear power generation is being used as a base load, intermediate load operation has become established even in large-scale boilers of thermal power plants, and operation accompanied by considerable load fluctuations has become routine. However, in this large boiler, a quick start is performed,
There is a limit in responding to a sudden load change, and a power plant that can respond more flexibly is desired.

【0003】また、火力発電所の場合、最新鋭のプラン
トであっても、その熱効率は40%程度となっており、
最近の燃料事情を考慮すれば更に高い熱効率を得ること
が望まれている。しかしながら基本的には単一の熱サイ
クルとなっている現在の個々の火力発電所では、これ以
上の熱効率の向上は事実上困難であり、より熱効率の高
いプラントが要望されている。その要望を実現する方法
のひとつとしてガスタービンを使用する発電方法が実用
化されている。ガスタービンは急速起動や急激な負荷変
化が可能なため負荷変動が特に大きい分野において利用
されている。このガスタービン発電プラントの場合、ガ
スタービンを出た大量の排気ガスはかなり高温であるた
め、このガス流中に伝熱面を有する排熱ボイラ(排熱回
収ボイラ)を設置し、これにより熱回収を行うと共に発
生した蒸気により蒸気タービンを駆動させて更に発電を
行う高効率複合発電(コンバインドサイクル)プラント
が提案され、実用化されている。この高効率複合発電プ
ラントにより発電端熱効率が44%程度のプラントの実
現も可能となっている。
In the case of a thermal power plant, even a state-of-the-art plant has a thermal efficiency of about 40%.
In view of the recent fuel situation, it is desired to obtain higher thermal efficiency. However, it is practically difficult to further improve the thermal efficiency of the present individual thermal power plants that basically have a single heat cycle, and a plant with higher thermal efficiency is demanded. A power generation method using a gas turbine has been put to practical use as one of the methods for achieving the demand. Gas turbines are used in fields where load fluctuations are particularly large because rapid startup and rapid load changes are possible. In the case of this gas turbine power plant, since a large amount of exhaust gas exiting the gas turbine is quite hot, an exhaust heat boiler (exhaust heat recovery boiler) having a heat transfer surface is installed in this gas flow, and thereby the heat is discharged. A high-efficiency combined cycle (combined cycle) plant for recovering and driving a steam turbine with the generated steam to further generate power has been proposed and put into practical use. With this high-efficiency combined cycle power plant, it is possible to realize a plant having a power generation end thermal efficiency of about 44%.

【0004】しかも、図11に示すように、複数基のガ
スタービンと各ガスタービンの排ガスを導入した排熱回
収ボイラを一つの単位としてこれを複数備えた複合発電
プラントの場合、ボイラ負荷に応じてガスタービンの運
転台数を変えながら、前記高い熱効率を達成することが
できる。
In addition, as shown in FIG. 11, in the case of a combined cycle power plant having a plurality of gas turbines and a plurality of exhaust heat recovery boilers into which the exhaust gas of each gas turbine is introduced as one unit, the combined power generation plant has a plurality of gas turbines according to the boiler load. Thus, the high thermal efficiency can be achieved while changing the number of operating gas turbines.

【0005】図9には、この複合発電プラントの一例を
示す。図9に示す構成は多軸型プラントと通称される構
成であり、複数のガスタービン1とこのガスタービン1
のガス流中に各々配置した排熱回収ボイラ2とからな
り、各排熱回収ボイラ2から排出された蒸気により一基
の蒸気タービン3を駆動するよう構成したプラントであ
る。なお各排熱回収ボイラ2から排出された蒸気のうち
で、高圧蒸気HPSと低圧蒸気LPSはそれぞれ蒸気タ
ービン3の高圧側および低圧側に各々供給され、該蒸気
タービン3により発電機5が駆動される。蒸気タービン
3で仕事をした後の蒸気は復水器6で復水され、復水ポ
ンプ7により再び排熱回収ボイラ2に供給される。また
各ガスタービン1によっても同軸に設けられた発電機5
が駆動される。
FIG. 9 shows an example of this combined cycle power plant. The configuration shown in FIG. 9 is a configuration commonly referred to as a multi-shaft plant, and includes a plurality of gas turbines 1 and the gas turbines 1.
And a steam turbine 3 driven by the steam discharged from each heat recovery steam generator 2. Among the steam discharged from each exhaust heat recovery boiler 2, the high-pressure steam HPS and the low-pressure steam LPS are respectively supplied to the high-pressure side and the low-pressure side of the steam turbine 3, and the generator 5 is driven by the steam turbine 3. You. The steam after working in the steam turbine 3 is condensed in the condenser 6 and is supplied again to the exhaust heat recovery boiler 2 by the condensate pump 7. A generator 5 coaxially provided by each gas turbine 1
Is driven.

【0006】そして、各排熱回収ボイラ2から排出した
低温排ガスは各々の開閉ダンパ13を備えた低温ダクト
9から一つの合流ダクト10に送られ、合流した排ガス
は煙突11から大気中に排出される。
The low-temperature exhaust gas discharged from each exhaust heat recovery boiler 2 is sent from the low-temperature duct 9 provided with each opening / closing damper 13 to one joining duct 10, and the combined exhaust gas is exhausted from the chimney 11 to the atmosphere. You.

【0007】また、図10には多数の蒸気タービン3と
ガスタービン1からなるが、それぞれ一基の蒸気タービ
ン3が一基のガスタービン1と同軸に配置され、各々の
ガスタービン1からの排熱により各々の排ガス路に設け
られた排熱回収ボイラ2で蒸気を発生する形式の一軸型
の複合発電プラントである。各排熱回収ボイラ2で生成
した蒸気はそれぞれの蒸気タービン3の駆動に用いられ
る。
FIG. 10 includes a large number of steam turbines 3 and gas turbines 1. One steam turbine 3 is disposed coaxially with one gas turbine 1, and exhaust gas from each gas turbine 1 is provided. This is a single-shaft type combined cycle power plant in which steam is generated by an exhaust heat recovery boiler 2 provided in each exhaust gas path by heat. The steam generated by each exhaust heat recovery boiler 2 is used to drive each steam turbine 3.

【0008】図10に示す場合も、各排熱回収ボイラ2
から排出した排ガスは開閉ダンパ13を備えた低温ダク
ト9を経由して合流ダクト10に接続され、煙突11か
ら大気中に排出される。
[0008] In the case shown in FIG.
The exhaust gas discharged from the air conditioner is connected to a merging duct 10 via a low-temperature duct 9 provided with an opening / closing damper 13, and is discharged from the chimney 11 to the atmosphere.

【0009】このような複合発電プラントの各排熱回収
ボイラ2の排ガスダクト9は合流ダクト10を介して、
一つの煙突11へ接続されている。
The exhaust gas duct 9 of each exhaust heat recovery boiler 2 of such a combined cycle power plant is connected via a merging duct 10.
It is connected to one chimney 11.

【0010】[0010]

【発明が解決しようとする課題】前述のように、図9、
図10に示す複合発電プラントでは、ボイラ負荷に応じ
て複数の並列配置された排熱回収ボイラ2の中から必要
な数だけの運転すべきボイラを選択することができる。
このとき、運転停止中の排熱回収ボイラ2を追加起動も
しくは強制冷却する際には、運転停止中のガスタービン
1を起動する前に当該停止中の排熱回収ボイラ2出口に
接続した排ガスダクト9内のダンパ13を開とする必要
がある。この時、停止中の排熱回収ボイラ2およびガス
タービン1内に滞留している数百度のガス(この複合発
電プラントは発電量の需要の日変化、週変化に合わせて
DSS、WSS(昼夜起動停止、週末起動停止)を行う
のが通常であり、ホットバンキングが行われているた
め、停止中の排熱回収ボイラ2およびガスタービン1内
に滞留しているガスの温度は数百度である。)によっ
て、ガスタービン1の空気取り込み装置等が焼損するこ
とを防止するため、運転中の排熱回収ボイラ2からの排
ガスが合流ダクト10を経由して停止中の排熱回収ボイ
ラ2およびガスタービン1に逆流することを防止する必
要がある。
As described above, FIG.
In the combined cycle power plant shown in FIG. 10, a required number of boilers to be operated can be selected from a plurality of exhaust heat recovery boilers 2 arranged in parallel according to the boiler load.
At this time, when additionally starting or forcibly cooling the suspended heat recovery boiler 2 during operation, the exhaust gas duct connected to the exit of the suspended waste heat recovery boiler 2 before starting the gas turbine 1 during operation is stopped. It is necessary to open the damper 13 in 9. At this time, several hundred degrees of gas stagnating in the stopped exhaust heat recovery boiler 2 and the gas turbine 1 (in this combined cycle power plant, DSS, WSS (day and night start-up) (Halt, weekend start-up), and hot banking is performed, so that the temperature of the gas remaining in the exhaust heat recovery boiler 2 and the gas turbine 1 during stoppage is several hundred degrees. ), The exhaust gas from the exhaust heat recovery boiler 2 during operation is stopped via the merging duct 10 in order to prevent the air intake device and the like of the gas turbine 1 from burning. It is necessary to prevent backflow to 1.

【0011】また、運転停止中の排熱回収ボイラ2出口
の排ガスダクト9内の圧力より合流ダクト10内の圧力
が高くなっていることが、特に複数の排熱回収ボイラ2
を含む複合発電プラントを運転している場合には起こり
得る。この場合も、運転停止中の排熱回収ボイラ2の出
口の排ガスダクト9内のダンパ13を開とすると、運転
中の排熱回収ボイラ2の出口の排ガスダクト9からの熱
風が合流ダクト10を経て停止中の排熱回収ボイラ2内
に逆流して入り込むおそれがある。
In addition, the fact that the pressure in the merging duct 10 is higher than the pressure in the exhaust gas duct 9 at the exit of the exhaust heat recovery boiler 2 during the operation is stopped, especially when the plurality of exhaust heat recovery boilers 2
This can occur when operating a combined cycle power plant including. Also in this case, when the damper 13 in the exhaust gas duct 9 at the exit of the exhaust heat recovery boiler 2 during operation is opened, the hot air from the exhaust gas duct 9 at the exit of the exhaust heat recovery boiler 2 during operation flows through the merging duct 10. There is a possibility that the gas will flow back into the exhaust heat recovery boiler 2 that is stopped.

【0012】この問題に対する対策の一つは合流ダクト
10部分が常に周辺の排ガスダクト9部分より負圧にな
るように設計することであるが、このためには低圧力損
失構造の大型のダクトを採用する必要がある。しかし、
大型ダクト構造物からなる合流ダクト10を煙突11に
接続するためには、煙突11の基部に大きなダクト接続
用の開口を設ける必要があり、煙突の強度不足と言う新
たな問題が発生する。
One of the measures against this problem is to design the merging duct 10 so that it always has a lower pressure than the surrounding exhaust gas duct 9. For this purpose, a large duct having a low pressure loss structure is used. It needs to be adopted. But,
In order to connect the merging duct 10 composed of a large duct structure to the chimney 11, it is necessary to provide a large duct connection opening at the base of the chimney 11, which causes a new problem of insufficient strength of the chimney.

【0013】また、煙突11の本来の機能の一つである
煙突11内のガスと周囲の大気との密度差を利用して通
風力(圧力差)を増強させ、合流ダクト10部分におけ
る圧力をその周辺のダクト9内より負圧状態にすること
も可能である。
Further, by utilizing the density difference between the gas in the chimney 11 and the surrounding atmosphere, which is one of the original functions of the chimney 11, the wind power (pressure difference) is increased, and the pressure in the junction duct 10 is reduced. It is also possible to make a negative pressure state from inside the duct 9 around it.

【0014】しかし、前記通風力(圧力差)△Pは式 △P=(ρ0-ρ)gH ρ0:大気の密度、ρ:煙突11内のガス密度、g:重
力加速度、H:煙突11の高さ で表されるように煙突11の高さHに比例するので、煙
突11を高くすれば良いが、建設コスト、環境規制など
を無視して煙突11の高さHを必要以上に高くすること
はできなく、煙突11の高さHにより通風力△Pを無制
限に増加させることはできない。
However, the passing wind (pressure difference) ΔP is expressed by the formula ΔP = (ρ 0 −ρ) gH ρ 0 : density of atmosphere, ρ: gas density in chimney 11, g: gravitational acceleration, H: chimney Since the height of the chimney 11 is proportional to the height H of the chimney 11 as represented by the height of the chimney 11, the height H of the chimney 11 may be increased more than necessary, ignoring construction costs and environmental regulations. It cannot be increased, and the wind power ΔP cannot be increased without limit by the height H of the chimney 11.

【0015】その他に、誘引通風機を合流ダクト10付
近に設置して、合流ダクト10内をその周辺のダクト9
内より負圧にすることもできるが、この誘引通風機を合
流ダクト10内に設置することで、設備費用、メンテナ
ンスコストがかさむことになる。
In addition, an induction draft fan is installed in the vicinity of the merging duct 10 so that the inside of the merging duct 10 is surrounded by the surrounding duct 9.
Although a negative pressure can be applied from the inside, installation of the induced draft fan in the merging duct 10 increases equipment costs and maintenance costs.

【0016】さらに、合流ダクト10を設けるのではな
くて、各々の排熱回収ボイラ2からの排ガスダクト9を
煙突11の基部に直接接続し、煙突11の基部内に各排
ガスダクト9の合流部を設けることも可能である。
Further, instead of providing the merging duct 10, the flue gas duct 9 from each exhaust heat recovery boiler 2 is directly connected to the base of the chimney 11, and the merging portion of each flue gas duct 9 is provided in the base of the chimney 11. It is also possible to provide.

【0017】しかし、この場合も煙突11の基部に排ガ
スダクト9接続用の開口を複数設ける必要があるため、
煙突11の強度が不足することになるだけでなく、各々
の排ガスダクト9を煙突11まで接続するために、その
ダクト長を長くする必要性も生じてくる。
However, also in this case, since it is necessary to provide a plurality of openings for connecting the exhaust gas duct 9 at the base of the chimney 11,
Not only does the chimney 11 have insufficient strength, but it also becomes necessary to increase the length of each exhaust gas duct 9 to connect it to the chimney 11.

【0018】以上のような対策では不十分であるため、
もっとも経済的な方法は、運転停止中の排熱回収ボイラ
2の出口排ガスダクト9に設けられるダンパ13を開放
する前にのみ合流ダクト10部をその周辺の排ガスダク
ト9より負圧にすることである。
Since the above measures are not enough,
The most economical method is to reduce the pressure of the merging duct 10 from that of the surrounding exhaust gas duct 9 only before opening the damper 13 provided in the exhaust gas duct 9 of the exhaust heat recovery boiler 2 during shutdown. is there.

【0019】図9または図10に示すような複合発電プ
ラントの運転停止中の排熱回収ボイラ2出口ダクト9の
ダンパ13を開放する前にのみ合流ダクト10をその周
辺の排ガスダクト9より負圧にする従来法による給水温
度制御方法について、図7を参照しながら説明する。図
7には一つの排熱回収ボイラ2の最下流段部分を用いて
従来技術の給水制御方法の説明をする。
During the shutdown of the combined cycle power plant as shown in FIG. 9 or FIG. 10, only before the damper 13 of the exhaust heat recovery boiler 2 outlet duct 9 is opened, the merging duct 10 is subjected to a negative pressure from the surrounding exhaust gas duct 9. A conventional method for controlling the temperature of feed water will be described with reference to FIG. FIG. 7 illustrates a conventional water supply control method using the most downstream stage portion of one waste heat recovery boiler 2.

【0020】各排熱回収ボイラ2内に設置される節炭器
15に供給される水の給水ライン16に設けられた給水
ポンプ17からの給水が節炭器15で加熱され、排熱回
収ボイラ2の排ガス流路となるケーシングの外に配置さ
れる蒸気ドラム19または給水ライン24から他の圧力
段へ給水するためのボイラ給水ポンプ20へ送られる。
また、排熱回収ボイラ2の運転中に節炭器15に排ガス
中の水分が結露して腐食することを防止する目的で、節
炭器15の管外表面温度を結露温度以上に維持するため
に、節炭器15の出口給水ライン22に設けられた開閉
弁23の前流側から給水ライン24が設けられ、該給水
ライン24はボイラ給水ポンプ20の中間段から節炭器
15入口の給水ライン16に合流するための循環ライン
26に接続し、該循環ライン26には給水温度調節弁2
7を設置している。
Water supplied from a water supply pump 17 provided in a water supply line 16 for water supplied to a economizer 15 installed in each exhaust heat recovery boiler 2 is heated by the economizer 15, and the exhaust heat recovery boiler is used. The water is sent from a steam drum 19 or a water supply line 24 disposed outside a casing serving as an exhaust gas passage to a boiler water supply pump 20 for supplying water to another pressure stage.
In order to prevent the water in the exhaust gas from condensing on the economizer 15 during operation of the exhaust heat recovery boiler 2 and corrode it, the outer surface temperature of the economizer 15 is maintained at a dew condensation temperature or higher. In addition, a water supply line 24 is provided from the upstream side of an on-off valve 23 provided in an outlet water supply line 22 of the economizer 15, and the water supply line 24 is provided at an inlet of the economizer 15 from an intermediate stage of the boiler water supply pump 20. The water supply temperature control valve 2 is connected to a circulation line 26 for merging with the line 16.
7 are installed.

【0021】なお、節炭器15の出口側の給水ライン2
2は開閉弁23を介して蒸気ドラム19に接続されてい
て、該蒸気ドラム19には蒸発器28からの蒸気と水の
混合流体が供給されるようになっている。
The water supply line 2 on the outlet side of the economizer 15
Numeral 2 is connected to a steam drum 19 via an on-off valve 23, and a mixed fluid of steam and water from an evaporator 28 is supplied to the steam drum 19.

【0022】また、循環ライン26と合流点以後の節炭
器15入口側の給水ライン16には温度計30を設け、
また給水温度調節弁27の開閉制御用の節炭器入口温度
コントローラ31が設けられ、該コントローラ31には
節炭器15の結露腐食防止温度を設定するための温度設
定器32から信号が入力される。こうして、節炭器15
の入口側の給水ライン16に設けた温度計30からの実
測給水温度と温度設定器からの給水設定温度との偏差に
応じて節炭器入口温度コントローラ31は給水温度調節
弁27の開度を制御し、循環ライン26からの給水循環
量により、節炭器15へ供給する給水温度を制御する。
A thermometer 30 is provided in the water supply line 16 on the inlet side of the economizer 15 after the junction with the circulation line 26,
In addition, an economizer inlet temperature controller 31 for controlling the opening and closing of the feedwater temperature control valve 27 is provided, and a signal is input to the controller 31 from a thermosetting device 32 for setting the dew condensation prevention temperature of the economizer 15. You. Thus, the economizer 15
The economizer inlet temperature controller 31 adjusts the opening of the feedwater temperature control valve 27 in accordance with the deviation between the actually measured feedwater temperature from the thermometer 30 provided on the feedwater line 16 on the inlet side of the water heater and the set feedwater temperature from the temperature setter. The temperature of the feedwater supplied to the economizer 15 is controlled by controlling the feedwater circulation amount from the circulation line 26.

【0023】上記構成からなる複合発電プラントにおい
て、従来の技術では、停止中の排熱回収ボイラ2を追加
起動する際、図8の運転缶(運転中の排熱回収ボイラ
2)にかかる一部点線で示すグラフのように運転中のガ
スタービン1の出力を低下させ、排ガス量を低下させる
ことにより、図7に示す合流ダクト10の圧力をその周
辺ダクト9部分のそれより負圧の状態とし、停止中の排
熱回収ボイラ2およびガスタービン1へ運転中の排熱回
収ボイラ2出口からの排ガスが逆流することを防止して
いる。
In the combined cycle power plant having the above-described configuration, in the related art, when the waste heat recovery boiler 2 that is stopped is additionally started, a part related to the operation can (the waste heat recovery boiler 2 during operation) shown in FIG. By reducing the output of the gas turbine 1 during operation and reducing the amount of exhaust gas as shown by the graph shown by the dotted line, the pressure of the merging duct 10 shown in FIG. In addition, the exhaust gas from the exhaust heat recovery boiler 2 during operation is prevented from flowing back to the stopped exhaust heat recovery boiler 2 and the gas turbine 1.

【0024】ここで、運転中のガスタービン1の出力を
低下させる時には当該ガスタービン1の下流側の排熱回
収ボイラ2内の節炭器15への給水循環量も下げる必要
があり、また、このとき、停止中の排熱回収ボイラ2出
口の排ガスダクト9開閉用のダンパ13は合流ダクト1
0内の圧力がその周辺部の排ガスダクト9内の圧力より
負圧になった後に開放し、停止中のガスタービン1を1
00%出力に向けて出力を上げて行く。
Here, when reducing the output of the gas turbine 1 during operation, it is necessary to reduce the amount of water supply circulation to the economizer 15 in the exhaust heat recovery boiler 2 downstream of the gas turbine 1. At this time, the damper 13 for opening and closing the exhaust gas duct 9 at the exit of the stopped exhaust heat recovery boiler 2 is connected to the merging duct 1
After the pressure in the gas turbine 1 becomes negative pressure than the pressure in the exhaust gas duct 9 in the peripheral portion, the gas turbine 1 is opened and the stopped gas turbine 1 is set to 1
Increase the output toward 00% output.

【0025】複数の排熱回収ボイラ系から構成される複
合発電プラントでは、電力需要が高まり、発電量の増加
が必要となる時に、停止中の排熱回収ボイラ2を追加起
動する必要があるが、上記図7に示す合流ダクト10部
をその周辺の排ガスダクト9より負圧にする従来法によ
る給水温度制御方法では、発電量の増加が必要な状況
で、一旦、運転中のガスタービン1の出力を低下させる
必要があり、発電量の需要に応じて直ちに増加させるこ
とができないという問題があった。
In a combined cycle power plant comprising a plurality of waste heat recovery boiler systems, it is necessary to additionally start the stopped waste heat recovery boiler 2 when the power demand increases and the amount of power generation needs to be increased. According to the conventional method for controlling the feedwater temperature in which the merging duct 10 shown in FIG. 7 is set to a negative pressure from the surrounding exhaust gas duct 9 in a situation where the amount of power generation needs to be increased, There is a problem that it is necessary to reduce the output, and it is not possible to immediately increase the output according to the demand of the power generation amount.

【0026】そこで、本発明の課題は、運転停止中の排
熱回収ボイラの追加起動または強制冷却の際に、複数の
排熱回収ボイラからなる複合発電プラントの効率を低下
させることがないようにすることである。
Therefore, an object of the present invention is to prevent the efficiency of a combined cycle power plant including a plurality of exhaust heat recovery boilers from being reduced during additional startup or forced cooling of the exhaust heat recovery boiler during shutdown. It is to be.

【0027】また、本発明の課題は、運転停止中の排熱
回収ボイラの追加起動の際または強制冷却の際に、ガス
タービン負荷降下による複合発電プラントの効率が低下
することを防ぎ、複雑な運転操作の必要がなく、制御が
容易な排熱回収ボイラを提供することである。
Another object of the present invention is to prevent the efficiency of a combined cycle power plant from being reduced due to a load drop of a gas turbine at the time of additional start-up or forced cooling of an exhaust heat recovery boiler during operation stoppage, and a complicated structure. An object of the present invention is to provide an exhaust heat recovery boiler that requires no driving operation and is easy to control.

【0028】さらに、本発明の課題は、負荷増加時に運
転停止中の排熱回収ボイラを追加起動または強制冷却す
る必要がある場合でも、ガスタービン出力を低下させる
ことなく、しかも停止中の排熱回収ボイラに損傷を与え
ることがない排熱回収ボイラを提供することである。
Still another object of the present invention is to provide an exhaust heat recovery boiler whose operation is stopped when the load is increased, even when it is necessary to additionally start up or forcibly cool the exhaust heat recovery boiler, without reducing the output of the gas turbine and stopping the exhaust heat recovery. An object of the present invention is to provide an exhaust heat recovery boiler that does not damage the recovery boiler.

【0029】[0029]

【課題を解決するための手段】本発明の上記課題は次の
ような構成によって解決される。すなわち、ガスタービ
ンから排出する排ガスの熱を回収するための伝熱管群
(節炭器、蒸発器、過熱器等)と該伝熱管群に水を供給
するための給水系と排ガスの熱を回収して発生させた蒸
気を需要側に供給する気液分離ドラムを有する蒸気系と
を備えた排熱回収ボイラを複数並列配置し、各排熱回収
ボイラ出口の排ガスダクトを合流ダクトに合流させて煙
突に接続した排熱回収ボイラ装置において、運転中の排
熱回収ボイラの他に、運転停止中の排熱回収ボイラを追
加起動する際または強制冷却する際に、運転中の排熱回
収ボイラの中の少なくとも1つの排熱回収ボイラの出口
ガス温度を通常運転時より上昇させる排熱回収ボイラ装
置の運転方法である。
The above object of the present invention is attained by the following constitution. That is, a heat transfer tube group (e.g., a economizer, an evaporator, and a superheater) for recovering heat of exhaust gas discharged from the gas turbine, a water supply system for supplying water to the heat transfer tube group, and recovering heat of the exhaust gas. A plurality of heat recovery steam generators having a steam system having a gas-liquid separation drum for supplying the generated steam to the demand side are arranged in parallel, and the exhaust gas ducts at the outlets of the respective heat recovery steam generators are merged into a merging duct. In the exhaust heat recovery boiler device connected to the chimney, in addition to the operating exhaust heat recovery boiler, the additional operation of the suspended exhaust heat recovery boiler or the forced exhaust cooling of the operating exhaust heat recovery boiler This is an operation method of the exhaust heat recovery boiler device in which the outlet gas temperature of at least one of the exhaust heat recovery boilers is increased from that in the normal operation.

【0030】前記排熱回収ボイラの出口ガス温度を通常
運転より上昇させるためには、次のような方法がある。 伝熱管群に水を供給するための給水系の中で、伝熱管
群に供給する給水を伝熱管群(例えば、節炭器)にて一
旦加熱した該伝熱管群(節炭器等)の出口給水を再び前
記伝熱管群(節炭器等)入口給水へ混合することで、前
記伝熱管群(節炭器等)入口の給水温度を上昇させる方
法。 前記給水系の中で、伝熱管群入口給水温度を加熱器に
より加熱することで、排熱回収ボイラ出口ガス温度を上
昇させる方法。 運転中の排熱回収ボイラの中で少なくとも1つの排熱
回収ボイラの少なくとも1つの気液分離ドラム内の圧力
を通常運転状態から更に上昇させることにより、当該排
熱回収ボイラ出口ガス温度を上昇させる方法。 前記との方法を組み合わせる方法。
In order to raise the outlet gas temperature of the exhaust heat recovery boiler from normal operation, there are the following methods. In a water supply system for supplying water to the heat transfer tube group, the water supplied to the heat transfer tube group is heated by a heat transfer tube group (for example, a economizer). A method of raising the feedwater temperature at the inlet of the heat transfer tube group (e.g., a economizer) by mixing the outlet feedwater again with the inlet water supply of the heat transfer tube group (e.g., a economizer). In the above-mentioned water supply system, a method of raising the exhaust gas heat recovery boiler outlet gas temperature by heating a heat transfer tube group inlet water supply temperature by a heater. In the exhaust heat recovery boiler in operation, the pressure in at least one gas-liquid separation drum of at least one exhaust heat recovery boiler is further increased from the normal operation state, so that the outlet gas temperature of the exhaust heat recovery boiler is increased. Method. A method combining the above methods.

【0031】こうして、運転停止中の排熱回収ボイラを
追加起動する際または強制冷却する際に、まず、運転中
の排熱回収ボイラの少なくとも1つの伝熱管群入口給水
温度を上昇させ、当該運転中の排熱回収ボイラの出口ガ
ス温度を通常運転時より上昇させ、合流ダクト内の圧力
をその周辺部の排ガスダクト内の圧力より負圧とした
後、停止中の排熱回収ボイラ出口側の排ガスダクトに設
けられたダンパを開き、当該停止中の排熱回収ボイラの
ガスタービンを起動させることで停止中の排熱回収ボイ
ラ側へ運転中の排熱回収ボイラからの高温のガスが合流
ダクトを経由して逆流することを防止できる。
In this way, when additionally starting or forcibly cooling the waste heat recovery boiler during operation stop, first, the temperature of the feed water at the inlet of at least one heat transfer tube group of the operating waste heat recovery boiler is raised, and After raising the outlet gas temperature of the exhaust heat recovery boiler during normal operation and setting the pressure in the merging duct to a negative pressure from the pressure in the exhaust gas duct around it, the By opening the damper provided in the exhaust gas duct and activating the gas turbine of the stopped exhaust heat recovery boiler, the high-temperature gas from the operating exhaust heat recovery boiler to the stopped exhaust heat recovery boiler joins the duct. It can be prevented from flowing backward through the.

【0032】ここで、前記「通常運転時」または「通常
運転状態」とは停止中の排熱回収ボイラが運転を開始し
て、安定な状態で運転が行われている時または状態を言
う。前記〜に示した方法を実際に具体化する装置は
図1〜図4に示す。
Here, the above-mentioned "during normal operation" or "normal operation state" refers to a state or a state in which the stopped heat recovery steam generator starts operation and is operating in a stable state. An apparatus for actually implementing the above-described method is shown in FIGS.

【0033】また本発明において、各排熱回収ボイラ出
口の排ガスダクトを全て合流ダクトに合流させる必要は
なく、またその合流ダクトを1本だけの煙突に接続する
必要もない。
Further, in the present invention, it is not necessary to join all the exhaust gas ducts at the outlet of each exhaust heat recovery boiler to the merging duct, and it is not necessary to connect the merging duct to only one chimney.

【0034】[0034]

【作用】本発明によれば、運転中の排熱回収ボイラ出口
の排ガスダクト内の排ガス温度が通常運転時より上昇す
ること、すなわち合流ダクトのガス温度が通常運転時よ
り上昇することによって、合流ダクト後流側の煙突の頂
部の大気温度とガス温度との温度差から発生する比容積
差浮力(煙突効果)が大きくなり、合流ダクトの圧力を
その周辺付近の排ガスダクト内の圧力より負圧に保持す
ることができる。また、これによって停止中の排熱回収
ボイラへ運転中の排熱回収ボイラ出口排ガスが逆流する
ことを防止することができる。
According to the present invention, when the exhaust gas temperature in the exhaust gas duct at the outlet of the exhaust heat recovery boiler during operation rises more than during normal operation, that is, when the gas temperature in the junction duct rises more than during normal operation, The specific volume difference buoyancy (chimney effect) generated from the temperature difference between the atmospheric temperature and the gas temperature at the top of the chimney on the downstream side of the duct increases, and the pressure of the confluence duct is set to a negative pressure from the pressure in the exhaust gas duct near the surrounding area. Can be held. In addition, it is possible to prevent the exhaust gas from the exhaust heat recovery boiler that is operating from flowing back to the stopped exhaust heat recovery boiler.

【0035】[0035]

【発明の実施の形態】本発明の実施の形態について、以
下説明する。図1には図9または図10に示す複合発電
プラントの中の一つの排熱回収ボイラ系の部分を代表し
て給水制御系統図を示す。
Embodiments of the present invention will be described below. FIG. 1 shows a feedwater control system diagram representing a part of one exhaust heat recovery boiler system in the combined cycle power plant shown in FIG. 9 or FIG.

【0036】各排熱回収ボイラ2に供給される給水路に
設けられた給水ポンプ16からの給水が節炭器15で加
熱され、排熱回収ボイラ2を構成する煙道の外に配置さ
れる蒸気ドラム19または給水ライン24から他の圧力
段へ給水するためのボイラ給水ポンプ20へ送られる。
また、排熱回収ボイラ2の運転中に節炭器15に排ガス
中の水分が結露して腐食することを防止する目的で、節
炭器15の管外表面温度を結露温度以上に維持するため
に、節炭器15の出口給水ライン22に設けられた開閉
弁23の前流側から給水ライン24が設けられ、該給水
ライン24は節炭器15入口の給水ライン16に合流す
るための循環ライン26に接続し、該循環ライン26に
は給水温度調節弁27を設置している。また、節炭器1
5の出口給水ライン22は開閉弁23を介して蒸気ドラ
ム19に接続されていて、該蒸気ドラム19には蒸発器
28からの蒸気と水の混合流体が供給されるようになっ
ている。
Water supplied from a water supply pump 16 provided in a water supply passage supplied to each exhaust heat recovery boiler 2 is heated by a economizer 15 and disposed outside a flue constituting the exhaust heat recovery boiler 2. The steam is supplied from a steam drum 19 or a water supply line 24 to a boiler water supply pump 20 for supplying water to another pressure stage.
In order to prevent the water in the exhaust gas from condensing on the economizer 15 during operation of the exhaust heat recovery boiler 2 and corrode it, the outer surface temperature of the economizer 15 is maintained at a dew condensation temperature or higher. In addition, a water supply line 24 is provided from the upstream side of an on-off valve 23 provided in an outlet water supply line 22 of the economizer 15, and the water supply line 24 circulates to join a water supply line 16 at the inlet of the economizer 15. The circulation line 26 is connected to a feed water temperature control valve 27. In addition, economizer 1
The outlet water supply line 22 of 5 is connected to a steam drum 19 via an on-off valve 23, and a mixed fluid of steam and water from an evaporator 28 is supplied to the steam drum 19.

【0037】合流ダクト10には該合流ダクト10部分
の圧力を検出する圧力検出器40が設けられている。ま
た、該圧力検出器40から出力された圧力信号は圧力温
度変換器41に入力される。
The merging duct 10 is provided with a pressure detector 40 for detecting the pressure of the merging duct 10. The pressure signal output from the pressure detector 40 is input to the pressure-temperature converter 41.

【0038】また、節炭器15への給水ライン16の循
環ライン26との合流点下流側には温度計30を設け、
また給水温度調節弁27の開閉制御用の節炭器入口温度
コントローラ31を設け、該節炭器入口温度コントロー
ラ31には温度計30からの実測給水温度と予め設定さ
れた節炭器15の結露防止設定温度を設定する温度設定
器32からの設定温度と圧力温度変換器41からの入力
がなされるようになっている。
Further, a thermometer 30 is provided downstream of the junction of the water supply line 16 to the economizer 15 with the circulation line 26,
Further, an economizer inlet temperature controller 31 for controlling the opening and closing of the feedwater temperature control valve 27 is provided. The economizer inlet temperature controller 31 has an actually measured feedwater temperature from the thermometer 30 and a preset condensation of the economizer 15. The set temperature from the temperature setting device 32 for setting the prevention set temperature and the input from the pressure temperature converter 41 are made.

【0039】こうして、圧力検出器40で得られた合流
ダクト10部分の圧力信号は圧力温度変換器41により
対応する温度に変換された後、節炭器入口温度コントロ
ーラ31に入力されるが、同時に給水ライン16に設け
た温度計30からの実測給水温度と温度設定器32から
の結露防止設定温度(給水温度が50〜60℃の場合結
露が生じる。)も加算して、節炭器入口給水温度コント
ローラ31は給水温度調節弁27の開度を制御し、循環
ライン26からの節炭器給水循環量を制御する。
In this manner, the pressure signal of the part of the merging duct 10 obtained by the pressure detector 40 is converted into a corresponding temperature by the pressure-temperature converter 41, and then input to the economizer inlet temperature controller 31. The measured water supply temperature from the thermometer 30 provided in the water supply line 16 and the dew-prevention set temperature from the temperature setting device 32 (condensation occurs when the water supply temperature is 50 to 60 ° C.) are added, and the water is supplied to the inlet of the economizer. The temperature controller 31 controls the opening of the feedwater temperature control valve 27 and controls the amount of the economizer feedwater circulation from the circulation line 26.

【0040】したがって、運転停止中の排熱回収ボイラ
2を追加起動するときまたは強制冷却するときは節炭器
給水循環量を増加させることができ、節炭器入口給水温
度を通常運転時より上昇させ、排熱回収ボイラ出口ガス
温度、すなわち、合流ダクト10のガス温度を上昇させ
るようにしている。
Therefore, when the exhaust heat recovery boiler 2 during operation is additionally started or when forced cooling is performed, the amount of circulation of the water-saving unit water supply can be increased, and the temperature of the water-supply unit inlet water supply temperature is raised from that in the normal operation. As a result, the gas temperature at the exhaust heat recovery boiler outlet, that is, the gas temperature of the junction duct 10 is raised.

【0041】図1に示した構成で、通常運転時から停止
中の排熱回収ボイラ2を起動させた場合の節炭器給水循
環量の制御の結果を図5と図6に示す。図5には節炭器
給水循環流量と合流ダクト内ガス温度の関係を示し、図
6には合流ダクト内温度と合流ダクト内圧力の関係を示
す。図6の点Aで示すように、通常運転時の合流ダクト
内ガス温度は96℃で合流ダクト内圧力は3mmAqの
正圧であり、停止中の排熱回収ボイラ2を追加起動する
際、点Bで示すように合流ダクト内ガス温度を約10℃
上昇させることにより、合流ダクト内圧力は4mmAq
程度低下し、−1mmAqの負圧を保持することができ
る。
FIGS. 5 and 6 show the results of controlling the amount of water conveyed by the economizer when the exhaust heat recovery boiler 2 is started from the normal operation and stopped during the operation shown in FIG. FIG. 5 shows a relationship between the flow rate of the water-saving circulation of the economizer and the gas temperature in the junction duct, and FIG. 6 shows a relationship between the temperature in the junction duct and the pressure in the junction duct. As shown by point A in FIG. 6, the gas temperature in the merging duct during normal operation is 96 ° C. and the pressure in the merging duct is a positive pressure of 3 mmAq. As shown by B, the gas temperature in the merging duct is about 10 ° C.
By raising the pressure, the pressure in the merging duct becomes 4mmAq
The pressure is reduced to a degree, and a negative pressure of -1 mmAq can be maintained.

【0042】図8に運転中の排熱回収ボイラ2がある時
に停止中の排熱回収ボイラ2を追加起動する際のタイム
チャートを実線で示す。停止中の排熱回収ボイラの追加
起動時には、まず、運転中のガスタービン1の出力は1
00%のままで、運転中の排熱回収ボイラ2の節炭器給
水循環量を増加し、排熱回収ボイラ出口ガス温度(合流
ダクト内ガス温度)を上昇させることで、合流ダクト内
圧力をその周辺の排ガスダクト9内の圧力より負圧にす
る。次に、停止中の排熱回収ボイラ出口排ガスダクト9
のダンパ13を開き、停止中のガスタービン1を起動す
る。これにより図8の点線で示す従来技術のように、運
転中のガスタービン1の排ガス量を低減させるために運
転中のガスタービン1の出力を低下させることなく、合
流ダクト10の圧力を負圧に保持することができる。
FIG. 8 is a solid line showing a time chart when the exhaust heat recovery boiler 2 which is in operation is additionally started when the exhaust heat recovery boiler 2 in operation is present. At the time of additional startup of the stopped heat recovery steam generator, first, the output of the operating gas turbine 1 becomes 1
While maintaining the pressure at 00%, the amount of circulation of the water-saving device of the exhaust heat recovery boiler 2 during operation is increased, and the temperature of the exhaust heat recovery boiler outlet gas (the temperature of the gas in the junction duct) is increased. The pressure in the surrounding exhaust gas duct 9 is set to a negative pressure. Next, the exhaust heat recovery boiler outlet exhaust gas duct 9 that is stopped
Is opened, and the stopped gas turbine 1 is started. As a result, the pressure of the merging duct 10 is reduced to a negative pressure without reducing the output of the operating gas turbine 1 in order to reduce the amount of exhaust gas of the operating gas turbine 1 as in the prior art shown by the dotted line in FIG. Can be held.

【0043】また、本発明は図1に示す合流ダクト10
の圧力検出器40の圧力信号による制御のみならず、ガ
スタービン運転台数、排熱回収ボイラ出口および/また
は合流ダクト内ガス温度の検出信号による制御において
も適用できる。
The present invention also relates to a merging duct 10 shown in FIG.
Not only the control by the pressure signal of the pressure detector 40 described above, but also the control by the detection signal of the gas temperature in the number of operating gas turbines, the exhaust heat recovery boiler outlet and / or the gas temperature in the merging duct.

【0044】なお、図1はガス流の最下流に設置される
蒸発器28および節炭器15を示したものであるが、ガ
ス上流に設置される複数の圧力段数の蒸発器や節炭器の
いずれかまたは複数の熱交換器に供給される給水温度ま
たは蒸気温度の制御によって合流ダクト内圧力をその周
辺の排ガスダクト内圧力より負圧にする制御を行っても
良い。
FIG. 1 shows the evaporator 28 and the economizer 15 installed at the most downstream of the gas flow, but the evaporator or the economizer having a plurality of pressure stages installed upstream of the gas. The pressure in the junction duct may be controlled to be lower than the pressure in the surrounding exhaust gas duct by controlling the temperature of feed water or steam supplied to any one or a plurality of heat exchangers.

【0045】図2には本発明の他の実施の形態を示す。
なお、図2も図1の例と同様に図9または図10に示す
複合発電プラントの中の一つの排熱回収ボイラ系の最下
流側の部分を代表して給水制御系統図を示すものであ
る。
FIG. 2 shows another embodiment of the present invention.
FIG. 2 also shows a water supply control system diagram as a representative of the most downstream portion of one exhaust heat recovery boiler system in the combined cycle power plant shown in FIG. 9 or FIG. 10, similarly to the example of FIG. is there.

【0046】排熱回収ボイラ2に供給される給水ライン
16に設けられた給水ポンプ17からの給水が節炭器1
5で加熱される構成になっており、排熱回収ボイラ2の
ケーシングの外に配置される蒸気ドラム19または節炭
器15の出口から前記蒸気ドラム19への給水ライン2
2に設けられた開閉弁23の前流側から分岐する給水ラ
イン24が設けられ、該給水ライン24からは他の圧力
段へ給水するための給水ポンプ20が設けられている。
Water supplied from a water supply pump 17 provided in a water supply line 16 supplied to the exhaust heat recovery boiler 2 is supplied to the economizer 1.
5, a water supply line 2 from the outlet of the steam drum 19 or the economizer 15 disposed outside the casing of the exhaust heat recovery boiler 2 to the steam drum 19.
2 is provided with a water supply line 24 branching from the upstream side of the on-off valve 23 provided with the water supply pump 20 for supplying water to another pressure stage from the water supply line 24.

【0047】また、節炭器15の出口給水ライン22は
開閉弁23を介して蒸気ドラム19に接続されていて、
該蒸気ドラム19には蒸発器28からの蒸気と水の混合
流体が供給されるようになっている。また、図2に示す
例は図1の給水ライン24から節炭器15入口の給水ラ
イン16に接続した循環ライン26と該ライン26に設
けられる給水温度調節弁27などは設置していない。そ
れに代えて、蒸気ドラム19の出口の蒸気ライン43に
は圧力制御弁44が設けられていて、該圧力制御弁44
制御用の蒸気ドラム圧力コントローラ45には蒸気ドラ
ム圧力検出器46と通常運転状態でのドラム圧力を設定
する圧力設定器47からの信号が入力する構成になって
いるので、制御弁44の開閉制御で蒸気ドラム19内の
圧力が制御される。合流ダクト10には該合流ダクト部
分の圧力を検出する圧力検出器40が設けられている
が、該圧力検出器40から出力された圧力信号は蒸気ド
ラム圧力コントローラ45に入力される。
The outlet water supply line 22 of the economizer 15 is connected to a steam drum 19 via an on-off valve 23.
The steam drum 19 is supplied with a mixed fluid of steam and water from an evaporator 28. In the example shown in FIG. 2, a circulation line 26 connected from the water supply line 24 to the water supply line 16 at the inlet of the economizer 15 in FIG. 1 and a water supply temperature control valve 27 provided in the line 26 are not installed. Instead, a pressure control valve 44 is provided in the steam line 43 at the outlet of the steam drum 19, and the pressure control valve 44
Since a signal from a steam drum pressure detector 46 and a pressure setting device 47 for setting the drum pressure in a normal operation state is input to the control steam drum pressure controller 45, the opening and closing control of the control valve 44 is performed. Controls the pressure in the steam drum 19. The merging duct 10 is provided with a pressure detector 40 for detecting the pressure of the merging duct portion. A pressure signal output from the pressure detector 40 is input to a steam drum pressure controller 45.

【0048】こうして、合流ダクト10内の圧力検出器
40の信号により、ドラム圧力コントローラ45にて蒸
気ドラム19内の蒸気圧力を制御する。蒸気ドラム16
内の圧力を上昇させることにより、蒸発器28内の飽和
水および蒸気の温度は高くなり、結果的に蒸発器28を
通過したガスの温度は上昇する。従って、排熱回収ボイ
ラ出口ガス温度、すなわち合流ダクト10内のガス温度
は通常運転時より上昇するため、図1に示す例と同様の
効果が得られ、従来技術のように運転中のガスタービン
排ガス量を低減させるためにガスタービン出力を低下さ
せることなく、合流ダクト10内の圧力を負圧に保持す
ることができる。
In this way, the steam pressure in the steam drum 19 is controlled by the drum pressure controller 45 according to the signal of the pressure detector 40 in the junction duct 10. Steam drum 16
By increasing the pressure in the evaporator 28, the temperature of the saturated water and steam in the evaporator 28 increases, and as a result, the temperature of the gas passing through the evaporator 28 increases. Therefore, the gas temperature at the exhaust heat recovery boiler outlet, that is, the gas temperature in the merging duct 10 is higher than that during normal operation, so that the same effect as the example shown in FIG. 1 is obtained. The pressure in the junction duct 10 can be maintained at a negative pressure without lowering the gas turbine output in order to reduce the amount of exhaust gas.

【0049】また、本発明は図2に示す合流ダクト10
の圧力検出器40の圧力信号による制御のみならず、ガ
スタービン運転台数、排熱回収ボイラ出口および/また
は合流ダクト内ガス温度等の信号による制御においても
適用できる。
The present invention also relates to a merging duct 10 shown in FIG.
Not only the control by the pressure signal of the pressure detector 40 described above, but also the control by the signal such as the number of operating gas turbines, the gas temperature in the exhaust heat recovery boiler outlet and / or the junction duct, etc. can be applied.

【0050】また、図2はガス流の最下流に設置される
蒸発器28および節炭器15に接続した蒸気ドラム19
のみならず、排熱回収ボイラ2の上流側に設置される複
数の圧力段数の蒸発器や節炭器のいずれかまたは複数の
熱交換器に接続した蒸気ドラムの圧力制御によって合流
ダクト内圧力を負圧にする制御を行っても良い。
FIG. 2 shows a steam drum 19 connected to an evaporator 28 and a economizer 15 installed at the most downstream of the gas flow.
In addition, the pressure in the merging duct is controlled by controlling the pressure of a steam drum connected to any one of a plurality of evaporators or a plurality of heat exchangers or a plurality of heat exchangers installed at an upstream side of the exhaust heat recovery boiler 2. Control to make negative pressure may be performed.

【0051】また、蒸気ドラム19の圧力を制御するた
めの制御弁44は蒸気ドラム出口のみならず、蒸気ター
ビン入口や過熱器(図示せず)出口等の蒸気ドラム19
の出口より後流側に設置した場合にも、同様に有効に適
用可能であり、更に複数の圧力段数を有する排熱回収ボ
イラ2の場合では、全てもしくは一部の圧力段に対し圧
力の制御を適用することも可能である。
The control valve 44 for controlling the pressure of the steam drum 19 is provided not only at the steam drum outlet but also at the steam turbine inlet and the superheater (not shown) outlet.
In the case of an exhaust heat recovery boiler 2 having a plurality of pressure stages, the pressure control can be applied to all or some of the pressure stages. It is also possible to apply

【0052】また図3に示したように、上記図1と図2
に示す実施の形態を併用した構成にしても良い。なお、
図3も図1、図2の例と同様に図9または図10に示す
複合発電プラントの中の一つの排熱回収ボイラ系の最下
流段の伝熱缶群の部分を代表して給水制御系統図を示す
ものである。
Also, as shown in FIG. 3, FIG.
Alternatively, a configuration using the embodiment shown in FIG. In addition,
FIG. 3 also shows the water supply control on behalf of the heat transfer can group at the lowest stage of one exhaust heat recovery boiler system in the combined cycle power plant shown in FIG. 9 or FIG. It shows a system diagram.

【0053】すなわち、図3の排熱回収ボイラ給水制御
系統図には節炭器15、給水ライン16、給水ポンプ1
7、蒸気ドラム19、開閉弁23、給水ライン24、循
環ライン26、給水温度調節弁27、蒸発器28、温度
計30、節炭器入口給水温度コントローラ31、温度設
定器32、圧力温度変換器41、圧力制御弁44、蒸気
ドラム圧力コントローラ45、蒸気ドラム圧力検出器4
6及び圧力設定器47が設けられている。
That is, in the exhaust heat recovery boiler water supply control system diagram of FIG. 3, the economizer 15, the water supply line 16, the water supply pump 1
7, steam drum 19, on-off valve 23, water supply line 24, circulation line 26, water supply temperature control valve 27, evaporator 28, thermometer 30, economizer inlet water supply temperature controller 31, temperature setting device 32, pressure temperature converter 41, pressure control valve 44, steam drum pressure controller 45, steam drum pressure detector 4
6 and a pressure setting device 47 are provided.

【0054】図3に示す例では合流ダクト10内の圧力
を圧力検出器40で検出し、該検出圧力信号は圧力温度
変換器41および蒸気ドラム圧力コントローラ45に入
力される。その結果、節炭器入口給水温度コントローラ
31は給水温度調節弁27の開度を制御し、循環ライン
26からの節炭器給水循環量を制御(増加)し、節炭器
入口給水温度を上昇させ、排熱回収ボイラ出口ガス温
度、すなわち、合流ダクト10のガス温度を上昇させる
ようにしている。これと同時に、圧力検出器40の出力
信号により、ドラム圧力コントローラ45にて蒸気ドラ
ム19内の蒸気圧力を制御して、蒸気ドラム圧力を上昇
させることにより、蒸発器28内の飽和水および蒸気の
温度を上昇させて、蒸発器28を通過したガスの温度を
上昇させる。
In the example shown in FIG. 3, the pressure in the merging duct 10 is detected by the pressure detector 40, and the detected pressure signal is input to the pressure-temperature converter 41 and the steam drum pressure controller 45. As a result, the economizer inlet feedwater temperature controller 31 controls the opening degree of the ecosystem feedwater temperature control valve 27, controls (increases) the economizer feedwater circulation amount from the circulation line 26, and raises the economizer inlet feedwater temperature. As a result, the gas temperature at the exhaust heat recovery boiler outlet, that is, the gas temperature of the junction duct 10 is raised. At the same time, the steam pressure in the steam drum 19 is controlled by the drum pressure controller 45 based on the output signal of the pressure detector 40 to increase the steam drum pressure, so that the saturated water and steam in the evaporator 28 are increased. By raising the temperature, the temperature of the gas passing through the evaporator 28 is raised.

【0055】このように、節炭器15の給水温度の上昇
と蒸発器28内の飽和水および蒸気の温度の上昇によ
り、排熱回収ボイラ出口ガス温度すなわち合流ダクト1
0内のガス温度を通常運転時より上昇させることによ
り、合流ダクト10内のガス温度をその周辺部の排ガス
ダクト9内の圧力より負圧にすることができる。
As described above, the rise in the feedwater temperature of the economizer 15 and the rise in the temperature of the saturated water and steam in the evaporator 28 increase the temperature of the exhaust heat recovery boiler outlet gas, that is, the merging duct 1.
By raising the gas temperature in 0 from the time of normal operation, the gas temperature in the junction duct 10 can be made to be a negative pressure more than the pressure in the exhaust gas duct 9 in the peripheral part.

【0056】また、本発明は図3に示す合流ダクト10
の圧力検出器40の圧力信号による制御のみならず、ガ
スタービン運転台数、排熱回収ボイラ出口および/また
は合流ダクト内ガス温度等の信号による制御においても
適用できる。
The present invention also relates to a merging duct 10 shown in FIG.
Not only the control by the pressure signal of the pressure detector 40 described above, but also the control by the signal such as the number of operating gas turbines, the gas temperature in the exhaust heat recovery boiler outlet and / or the junction duct, etc. can be applied.

【0057】また、図3に示すガス流の最下流に設置さ
れる蒸発器28および節炭器15およびこれに接続した
蒸気ドラム19のみならず、排熱回収ボイラ2の上流側
に設置される複数の圧力段数の蒸発器や節炭器のいずれ
かまたは複数の伝熱管群の給水温度または蒸気温度ある
いはこれらの伝熱管群に接続した蒸気ドラムの圧力制御
によって合流ダクト内圧力を負圧にする制御を行っても
良い。
In addition to the evaporator 28 and the economizer 15 installed at the most downstream of the gas flow shown in FIG. 3 and the steam drum 19 connected to the evaporator 28, the evaporator 28 is installed upstream of the exhaust heat recovery boiler 2. Negative pressure in the merging duct is achieved by controlling the feedwater temperature or steam temperature of any of the evaporators or economizers with multiple pressure stages or multiple heat transfer tube groups or the pressure of the steam drum connected to these heat transfer tube groups Control may be performed.

【0058】さらに図4に示すように、節炭器給水ライ
ン16に給水加熱器48を設置し、該給水加熱器48の
加熱温度コントローラ49に合流ダクト10内の圧力検
出器40の出力信号が入力される構成を採用しても良
い。図4には給水加熱用の加熱器48の他に、節炭器1
5入口への給水ライン16に設けた給水温度計30と、
合流ダクト10に設けられた合流ダクト圧力検出器40
と、予め設定された圧力と温度の関係式に基づき、前記
圧力検出器40により検出された合流ダクト10内の圧
力に応じた温度を算出する圧力温度変換器41と、該圧
力温度変換器41で算出された合流ダクト10内の圧力
に対応した温度と前記給水温度測定器32により検出し
た伝熱管群入口給水温度に基づき前記加熱器48による
給水ライン16中の給水温度を制御する節炭器入口給水
温度コントローラ31を設けている。
Further, as shown in FIG. 4, a feed water heater 48 is installed in the economizer feed water line 16, and the output signal of the pressure detector 40 in the junction duct 10 is sent to the heating temperature controller 49 of the feed water heater 48. An input configuration may be adopted. FIG. 4 shows, in addition to the heater 48 for feed water heating, the economizer 1
A feed water thermometer 30 provided in a feed line 16 to the 5 inlets,
Merging duct pressure detector 40 provided in merging duct 10
A pressure-temperature converter 41 for calculating a temperature corresponding to the pressure in the merging duct 10 detected by the pressure detector 40 based on a preset pressure-temperature relational expression; The economizer that controls the temperature of the water supply in the water supply line 16 by the heater 48 based on the temperature corresponding to the pressure in the merging duct 10 calculated by the above and the water supply temperature at the inlet of the heat transfer tube group detected by the water supply temperature measuring device 32. An inlet water temperature controller 31 is provided.

【0059】[0059]

【発明の効果】本発明によれば、複数缶の排熱回収ボイ
ラが1つの煙突に接続される複合発電(コンバインドサ
イクル)プラントにおいて、排熱回収ボイラ出口ガス温
度を制御することにより、合流ダクト内圧力をその周辺
部の排ガスダクト内の圧力より負圧に保持することがで
き、ガスタービンの出力を低下させることなく、安全に
停止中のガスタービンおよび排熱回収ボイラを追加起動
することができる。また、容易に合流ダクト部を負圧に
保持することが可能であるため、従来200m程度必要
であった煙突高を120m程度まで低くでき、更に合流
ダクト断面積を低減できるため、土木工事費や設備費を
低減できる利点がある。
According to the present invention, in a combined cycle (combined cycle) plant in which a plurality of canned heat recovery boilers are connected to one chimney, the merging duct is controlled by controlling the gas temperature at the exhaust heat recovery boiler outlet. The internal pressure can be maintained at a lower pressure than the pressure in the exhaust gas duct around it, and the additional shutdown of the gas turbine and the exhaust heat recovery boiler that are safely stopped without lowering the output of the gas turbine can be performed. it can. In addition, since the merging duct can be easily maintained at a negative pressure, the height of the chimney, which was conventionally required about 200 m, can be reduced to about 120 m, and the cross-sectional area of the merging duct can be further reduced. There is an advantage that equipment costs can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明になる排熱回収ボイラの合流ダクト内
の圧力制御装置を示す図である。
FIG. 1 is a diagram showing a pressure control device in a merging duct of an exhaust heat recovery boiler according to the present invention.

【図2】 本発明になる排熱回収ボイラの合流ダクト内
の圧力制御装置を示す図である。
FIG. 2 is a diagram showing a pressure control device in a merging duct of the exhaust heat recovery boiler according to the present invention.

【図3】 本発明になる排熱回収ボイラの合流ダクト内
の圧力制御装置を示す図である。
FIG. 3 is a diagram showing a pressure control device in a merging duct of the exhaust heat recovery boiler according to the present invention.

【図4】 本発明になる排熱回収ボイラの合流ダクト内
の圧力制御装置を示す図である。
FIG. 4 is a view showing a pressure control device in a merging duct of the exhaust heat recovery boiler according to the present invention.

【図5】 図1の制御装置により得られる結果を説明す
る図である。
FIG. 5 is a diagram illustrating a result obtained by the control device of FIG. 1;

【図6】 図1の制御装置により得られる結果を説明す
る図である。
FIG. 6 is a diagram illustrating a result obtained by the control device of FIG. 1;

【図7】 従来技術の排熱回収ボイラの合流ダクト内の
圧力制御装置を示す図である。
FIG. 7 is a diagram showing a pressure control device in a merging duct of a conventional heat recovery steam generator.

【図8】 図1の制御装置と従来技術の制御装置で得ら
れる結果を比較して説明する図である。
FIG. 8 is a diagram for comparing and explaining results obtained by the control device of FIG. 1 and a control device of the related art.

【図9】 多軸型コンバインドサイクルプラントの構成
概略図である。
FIG. 9 is a schematic configuration diagram of a multi-shaft combined cycle plant.

【図10】 1軸型コンバインドサイクルプラントの構
成概略図である。
FIG. 10 is a schematic configuration diagram of a single-shaft combined cycle plant.

【図11】 複数基のガスタービンと排熱回収ボイラを
並列配置したコンバインドサイクルプラントのボイラ負
荷と熱効率の関係を説明する図である。
FIG. 11 is a diagram illustrating a relationship between a boiler load and a thermal efficiency of a combined cycle plant in which a plurality of gas turbines and an exhaust heat recovery boiler are arranged in parallel.

【符号の説明】[Explanation of symbols]

2 排熱回収ボイラ 9 排ガスダクト 10 合流ダクト 11 煙突 13 ダンパ 15 節炭器 16 給水ライン 17 給水ポンプ 19 蒸気ドラム 20 ボイラ給水
ポンプ 22 出口給水ライン 23 開閉弁 24 給水ライン 28 蒸発器 30 温度計 31 節炭器入口給水温度コントローラ 32 温度設定器 40 圧力検出器 41 圧力温度変換器 48 給水加熱器 49 加熱温度コントローラ
2 Exhaust heat recovery boiler 9 Exhaust gas duct 10 Merging duct 11 Chimney 13 Damper 15 Energy saving device 16 Water supply line 17 Water supply pump 19 Steam drum 20 Boiler water supply pump 22 Outlet water supply line 23 Open / close valve 24 Water supply line 28 Evaporator 30 Thermometer 31 Section Coal appliance inlet feed water temperature controller 32 Temperature setter 40 Pressure detector 41 Pressure temperature converter 48 Feed water heater 49 Heating temperature controller

Claims (16)

【特許請求の範囲】[Claims] 【請求項1】 ガスタービンから排出する排ガスの熱を
回収するための伝熱管群と該伝熱管群に水を供給するた
めの給水系と排ガスの熱を回収して発生させた蒸気を需
要側に供給する気液分離ドラムを有する蒸気系とを備え
た排熱回収ボイラを複数並列配置し、各排熱回収ボイラ
出口の排ガスダクトを合流ダクトに合流させて煙突に接
続した排熱回収ボイラ装置において、 運転中の排熱回収ボイラの他に、運転停止中の排熱回収
ボイラを追加起動する際または強制冷却する際に、運転
中の排熱回収ボイラの中の少なくとも1つの排熱回収ボ
イラの出口ガス温度を通常運転時より上昇させることを
特徴とする排熱回収ボイラ装置の運転方法。
1. A heat transfer tube group for recovering heat of exhaust gas discharged from a gas turbine, a water supply system for supplying water to the heat transfer tube group, and a steam generated by recovering heat of the exhaust gas on a demand side. Heat recovery boiler with a plurality of exhaust heat recovery boilers equipped with a steam system having a gas-liquid separation drum for supplying to the stack, and an exhaust gas duct at each exhaust heat recovery boiler outlet joined to a merging duct and connected to a chimney In addition to the waste heat recovery boiler in operation, at the time of additionally starting or forcibly cooling the waste heat recovery boiler in operation, at least one of the waste heat recovery boilers in operation is operated. A method of operating the exhaust heat recovery boiler device, wherein the temperature of the outlet gas is increased from that in the normal operation.
【請求項2】 前記給水系の中で、伝熱管群に供給する
給水を伝熱管群にて一旦加熱した該伝熱管群の出口給水
を再び前記伝熱管群入口給水へ混合することで、前記伝
熱管群入口の給水温度を上昇させることにより、排熱回
収ボイラ出口ガス温度を通常運転時より上昇させること
を特徴とする請求項1記載の排熱回収ボイラ装置の運転
方法。
2. In the water supply system, the supply water supplied to the heat transfer tube group is heated by the heat transfer tube group once, and the outlet supply water of the heat transfer tube group is mixed again with the heat transfer tube group inlet supply water to thereby provide the heat transfer tube group. The method for operating an exhaust heat recovery boiler device according to claim 1, wherein the temperature of the exhaust heat recovery boiler outlet gas is increased by increasing the feedwater temperature at the inlet of the heat transfer tube group from that during normal operation.
【請求項3】 前記給水系の中で、伝熱管群入口給水温
度を加熱器により加熱することで、排熱回収ボイラ出口
ガス温度を通常運転時より上昇させることを特徴とする
請求項1記載の排熱回収ボイラ装置の運転方法。
3. The exhaust gas heat recovery boiler outlet gas temperature is raised from that during normal operation by heating a heat transfer tube group inlet feed water temperature by a heater in the water supply system. Method of operating the waste heat recovery boiler device.
【請求項4】 運転停止中の排熱回収ボイラを追加起動
する際または強制冷却する際に、まず、運転中の排熱回
収ボイラの少なくとも1つの排熱回収ボイラの伝熱管群
入口給水温度を上昇させ、当該運転中の排熱回収ボイラ
の出口ガス温度を通常運転時より上昇させ、合流ダクト
内の圧力をその周辺部の排ガスダクト内の圧力より負圧
とした後、停止中の排熱回収ボイラ出口側の排ガスダク
トに設けられたダンパを開き、当該停止中の排熱回収ボ
イラのガスタービンを起動させることを特徴とする請求
項1記載の排熱回収ボイラ運転方法。
4. When additionally starting up or forcibly cooling a waste heat recovery boiler that has been shut down, first, the water supply temperature at the inlet of the heat transfer tube group of at least one waste heat recovery boiler of the operating waste heat recovery boiler is determined. After raising the temperature of the outlet gas of the exhaust heat recovery boiler during the operation from that in the normal operation, and setting the pressure in the merging duct to be lower than the pressure in the exhaust gas duct around it, the exhaust heat 2. The exhaust heat recovery boiler operating method according to claim 1, wherein a damper provided in the exhaust gas duct on the recovery boiler outlet side is opened to start the gas turbine of the stopped exhaust heat recovery boiler.
【請求項5】 運転中の排熱回収ボイラの他に、運転停
止中の排熱回収ボイラを追加起動する際または強制冷却
する際に、運転中の排熱回収ボイラの中で少なくとも1
つの排熱回収ボイラの少なくとも1つの気液分離ドラム
内の圧力を通常運転状態の圧力より上昇させることによ
り、当該排熱回収ボイラ出口ガス温度を通常運転時より
上昇させることを特徴とする請求項1記載の排熱回収ボ
イラ装置の運転方法。
5. In addition to the waste heat recovery boiler in operation, at the time of additionally starting or forcibly cooling the waste heat recovery boiler in operation, at least one of the waste heat recovery boilers in operation is used.
The exhaust gas temperature at the exhaust heat recovery boiler outlet is raised from that in normal operation by increasing the pressure in at least one gas-liquid separation drum of the two exhaust heat recovery boilers from the pressure in a normal operation state. An operation method of the exhaust heat recovery boiler device according to 1.
【請求項6】 運転停止中の排熱回収ボイラを追加起動
する際または強制冷却する際に、まず、運転中の排熱回
収ボイラの中で少なくとも1つの排熱回収ボイラの少な
くとも1つの気液分離ドラムの圧力を上昇させ、当該運
転中の排熱回収ボイラの出口ガス温度を通常運転時より
上昇させ、合流ダクト内の圧力をその周辺部の排ガスダ
クト内の圧力より負圧とした後、停止中の排熱回収ボイ
ラ出口側の排ガスダクトに設けられたダンパを開き、ガ
スタービンを起動させることを特徴とする請求項5記載
の排熱回収ボイラ運転方法。
6. When additionally starting up or forcibly cooling a waste heat recovery boiler that has been stopped, first, at least one gas-liquid of at least one waste heat recovery boiler among the operating waste heat recovery boilers. After increasing the pressure of the separation drum, increasing the outlet gas temperature of the exhaust heat recovery boiler during the operation from that during the normal operation, and setting the pressure in the merging duct to be a negative pressure from the pressure in the exhaust gas duct in the surrounding area, 6. The exhaust heat recovery boiler operating method according to claim 5, wherein a damper provided in the exhaust gas duct on the exit side of the exhaust heat recovery boiler that is stopped is opened to start the gas turbine.
【請求項7】 運転停止中の排熱回収ボイラを追加起動
する際または強制冷却する際に、前記給水系の中で、伝
熱管群に供給する給水を伝熱管群により加熱して、該伝
熱管群の出口給水を再び前記伝熱管群入口給水へ混合す
ること、及び、運転中の排熱回収ボイラの中で少なくと
も1つの排熱回収ボイラの少なくとも1つの気液分離ド
ラム内の圧力を通常運転状態から更に上昇させることに
より、当該排熱回収ボイラ出口ガス温度を通常運転時よ
り上昇させることを特徴とする請求項1記載の排熱回収
ボイラ装置の運転方法。
7. When the exhaust heat recovery boiler during operation is additionally started or forcibly cooled, water supplied to the heat transfer tube group is heated by the heat transfer tube group in the water supply system, and Mixing the outlet feed water of the heat tube group with the inlet feed water of the heat transfer tube group again, and normalizing the pressure in at least one gas-liquid separation drum of at least one waste heat recovery boiler among the operating waste heat recovery boilers. 2. The operating method of an exhaust heat recovery boiler device according to claim 1, wherein the exhaust gas temperature at the exhaust heat recovery boiler outlet is further raised from that in the normal operation by further increasing the operating state.
【請求項8】 運転停止中の排熱回収ボイラを追加起動
する際または強制冷却する際に、まず、1つの運転中の
排熱回収ボイラの中で少なくとも1つの排熱回収ボイラ
の出口ガス温度を通常運転時より上昇させ、合流ダクト
内の圧力をその周辺部の排ガスダクト内の圧力より負圧
とした後、停止中の排熱回収ボイラ出口側の排ガスダク
トに設けられたダンパを開き、ガスタービンを起動させ
ることを特徴とする請求項7記載の排熱回収ボイラ運転
方法。
8. When the exhaust heat recovery boiler during operation is additionally started up or forcibly cooled, first, the outlet gas temperature of at least one exhaust heat recovery boiler in one operating waste heat recovery boiler. After the normal operation, the pressure in the merging duct is set to a negative pressure than the pressure in the surrounding exhaust gas duct, and then the damper provided in the exhaust gas duct on the exit side of the exhaust heat recovery boiler that is stopped is opened. The method for operating an exhaust heat recovery boiler according to claim 7, wherein the gas turbine is started.
【請求項9】 ガスタービンから排出する排ガスの熱を
回収するための伝熱管群と該伝熱管群に水を供給するた
めの給水系と排ガスの熱を回収して発生させた蒸気を需
要側に供給する蒸気系とを備えた排熱回収ボイラを複数
並列配置し、各排熱回収ボイラ出口の排ガスダクトを合
流ダクトに合流させて煙突に接続した排熱回収ボイラ装
置において、各排熱回収ボイラの少なくとも一つの伝熱
管群への給水系には、該伝熱管群出口の給水ラインと、
該給水ラインから分岐して前記伝熱管群入口への給水ラ
インに接続する分岐ラインと、該分岐ラインに設けられ
た給水ライン開閉用の開閉弁と、前記伝熱管群入口への
給水ラインの分岐ラインとの合流点より下流側の給水ラ
インに設けた給水温度測定器と、合流ダクトに設けられ
た合流ダクト圧力検出器と、予め設定された圧力と温度
の関係式に基づき、前記合流ダクト圧力検出器により検
出された合流ダクト内の圧力に応じた温度を算出する圧
力温度変換器と、該圧力温度変換器で算出された合流ダ
クト内の圧力に対応した温度と前記給水温度測定器によ
り検出した伝熱管群入口給水温度に基づき前記分岐ライ
ンに設けた開閉弁の開閉制御を行うための伝熱管群入口
温度コントローラを設けたことを特徴とする排熱回収ボ
イラの制御装置。
9. A heat transfer tube group for collecting heat of exhaust gas discharged from a gas turbine, a water supply system for supplying water to the heat transfer tube group, and a steam generated by collecting heat of the exhaust gas on a demand side. A plurality of exhaust heat recovery boilers equipped with a steam system for supplying heat to the exhaust heat recovery boilers are connected in parallel to the exhaust heat ducts at the outlets of the exhaust heat recovery boilers. In the water supply system to at least one heat transfer tube group of the boiler, a water supply line at the heat transfer tube group outlet,
A branch line that branches from the water supply line and connects to a water supply line to the heat transfer tube group inlet, an on-off valve for opening and closing the water supply line provided in the branch line, and a branch of the water supply line to the heat transfer tube group inlet A feedwater temperature measuring device provided in the water supply line downstream from the junction with the line, a merging duct pressure detector provided in the merging duct, and the merging duct pressure based on a preset pressure-temperature relational expression. A pressure-temperature converter for calculating a temperature corresponding to the pressure in the merging duct detected by the detector, and a temperature corresponding to the pressure in the merging duct calculated by the pressure-temperature converter and detected by the feedwater temperature measuring device An exhaust heat recovery boiler control device, further comprising a heat transfer tube group inlet temperature controller for controlling the opening and closing of an on-off valve provided in the branch line based on the heat transfer tube group inlet feed water temperature.
【請求項10】 合流ダクトに設けられた合流ダクト圧
力検出器の代わりまたは該合流ダクト圧力検出器に加え
て、ガスタービン運転台数、排熱回収ボイラ出口および
/または合流ダクト内ガス温度の検出器を設けて、予め
設定されたこれらの検出値と温度の関係式に基づき、こ
れらの検出器の検出値に対応した温度と給水温度測定器
により検出した伝熱管群入口給水温度に基づき前記分岐
ラインに設けた開閉弁の開閉制御を行うための伝熱管群
入口温度コントローラを設けたことを特徴とする請求項
9記載の排熱回収ボイラの制御装置。
10. A detector for the number of operating gas turbines, an exhaust heat recovery boiler outlet, and / or a gas temperature in a merging duct, instead of or in addition to the merging duct pressure detector provided in the merging duct. The branch line is based on a preset relational expression between the detected value and the temperature, and based on the temperature corresponding to the detected value of these detectors and the heat transfer tube group inlet feed water temperature detected by the feed water temperature measuring device. 10. The exhaust heat recovery boiler control device according to claim 9, further comprising a heat transfer tube group inlet temperature controller for performing opening / closing control of the opening / closing valve provided in the apparatus.
【請求項11】 ガスタービンから排出する排ガスの熱
を回収するための伝熱管群と該伝熱管群に水を供給する
ための給水系と排ガスの熱を回収して発生させた蒸気を
需要側に供給する気液分離用の蒸気ドラムを有する蒸気
系とを備えた排熱回収ボイラを複数並列配置し、各排熱
回収ボイラ出口の排ガスダクトを合流ダクトに合流させ
て煙突に接続した排熱回収ボイラ装置において、 各排熱回収ボイラの排ガスの熱を回収して発生させた蒸
気を需要側に供給する蒸気系には、少なくとも1つの蒸
気ドラム内の圧力を測定する蒸気ドラム内圧力測定器
と、該蒸気ドラム出口に設けた蒸気ラインと、該蒸気ラ
インに設けられた蒸気ライン開閉用の開閉弁と、合流ダ
クトに設けられた合流ダクト圧力検出器と、該合流ダク
ト圧力検出器により検出した合流ダクト内の圧力と前記
蒸気ドラム内圧力測定器により検出した前記蒸気ドラム
内圧力に基づき前記蒸気ラインに設けた開閉弁の開閉制
御を行うための蒸気ドラム圧力コントローラを設けたこ
とを特徴とする排熱回収ボイラの制御装置。
11. A heat transfer tube group for collecting heat of exhaust gas discharged from a gas turbine, a water supply system for supplying water to the heat transfer tube group, and a steam generated by collecting heat of the exhaust gas on a demand side. Heat recovery boilers equipped with a steam system having a steam drum for gas-liquid separation to be supplied to a stack, and exhaust heat ducts at the outlet of each heat recovery boiler are merged with a merging duct and connected to a chimney In a recovery boiler device, a steam system for measuring pressure in at least one steam drum is provided in a steam system for recovering heat of exhaust gas of each exhaust heat recovery boiler and supplying steam generated to a demand side. A steam line provided at the outlet of the steam drum, an on-off valve for opening and closing the steam line provided on the steam line, a merging duct pressure detector provided on the merging duct, and detection by the merging duct pressure detector. I A steam drum pressure controller for controlling the opening and closing of an on-off valve provided in the steam line based on the pressure in the junction duct and the steam drum pressure detected by the steam drum pressure gauge is provided. Exhaust heat recovery boiler control unit.
【請求項12】 合流ダクトに設けられた合流ダクト圧
力検出器の代わりまたは該合流ダクト圧力検出器に加え
て、ガスタービン運転台数、排熱回収ボイラ出口および
/または合流ダクト内ガス温度の検出器を設けて、予め
設定されたこれらの検出値と圧力の関係式に基づき、こ
れらの検出器の検出値に対応した圧力と蒸気ドラム内圧
力測定器により検出した前記蒸気ドラム内圧力に基づき
前記蒸気ラインに設けた開閉弁の開閉制御を行うための
蒸気ドラム圧力コントローラを設けたことを特徴とする
請求項11記載の排熱回収ボイラの制御装置。
12. A detector for the number of operating gas turbines, an exhaust heat recovery boiler outlet, and / or a gas temperature in the junction duct, instead of or in addition to the junction duct pressure detector provided in the junction duct. The steam based on the pressure corresponding to the detected values of these detectors and the steam drum pressure detected by the steam drum pressure measuring device based on a preset relational expression between the detected values and the pressure. The control device for an exhaust heat recovery boiler according to claim 11, further comprising a steam drum pressure controller for performing opening / closing control of an on-off valve provided on the line.
【請求項13】 ガスタービンから排出する排ガスの熱
を回収するための伝熱管群と該伝熱管群に水を供給する
ための給水系と排ガスの熱を回収して発生させた蒸気を
需要側に供給する気液分離用の蒸気ドラムを有する蒸気
系とを備えた排熱回収ボイラを複数並列配置し、各排熱
回収ボイラ出口の排ガスダクトを合流ダクトに合流させ
て煙突に接続した排熱回収ボイラ装置において、 各排熱回収ボイラの少なくとも1つの伝熱管群への給水
系には、該伝熱管群出口の給水ラインと、該給水ライン
から分岐して前記伝熱管群入口への給水ラインに接続す
る分岐ラインと、該分岐ラインに設けられた給水ライン
開閉用の開閉弁と、前記伝熱管群入口への給水ラインに
設けた給水温度測定器と、合流ダクトに設けられた合流
ダクト圧力検出器と、予め設定された圧力と温度の関係
式に基づき、前記合流ダクト圧力検出器により検出され
た合流ダクト内の圧力に応じた温度を算出する圧力温度
変換器と、該圧力温度変換器で算出された合流ダクト内
の圧力に対応した温度と前記給水温度測定器により検出
した伝熱管群入口給水温度に基づき前記分岐ラインに設
けた開閉弁の開閉制御を行うための伝熱管群入口温度コ
ントローラを設け、 さらに、各排熱回収ボイラの排ガスの熱を回収して発生
させた蒸気を需要側に供給する蒸気系には、少なくとも
1つの蒸気ドラム内の圧力を測定する蒸気ドラム内圧力
測定器と、前記蒸気ドラム出口に設けた蒸気ラインと、
該蒸気ラインに設けられた蒸気ライン開閉用の開閉弁
と、合流ダクトに設けられた合流ダクト圧力検出器と、
該合流ダクト圧力検出器により検出した合流ダクト内の
圧力と前記蒸気ドラム内圧力測定器により検出した蒸気
ドラム内圧力に基づき前記蒸気ラインに設けた開閉弁の
開閉制御を行うための蒸気ドラム圧力コントローラを設
けたことを特徴とする排熱回収ボイラの制御装置。
13. A heat transfer tube group for recovering heat of exhaust gas discharged from a gas turbine, a water supply system for supplying water to the heat transfer tube group, and a steam generated by recovering heat of the exhaust gas on a demand side. Heat recovery boilers equipped with a steam system having a steam drum for gas-liquid separation to be supplied to a stack, and exhaust heat ducts at the outlet of each heat recovery boiler are merged with a merging duct and connected to a chimney In the recovery boiler device, a water supply system to at least one heat transfer tube group of each exhaust heat recovery boiler includes a water supply line at an outlet of the heat transfer tube group, and a water supply line branched from the water supply line to an inlet of the heat transfer tube group. A branch line connected to the branch line, a water supply line opening / closing valve provided in the branch line, a water supply temperature measuring device provided in a water supply line to the heat transfer tube group inlet, and a merging duct pressure provided in a merging duct. Detector and A pressure-temperature converter that calculates a temperature corresponding to the pressure in the merging duct detected by the merging duct pressure detector based on the set pressure-temperature relational expression, and a merging calculated by the pressure-temperature converter. A heat transfer tube group inlet temperature controller for performing opening / closing control of an open / close valve provided in the branch line based on a temperature corresponding to the pressure in the duct and a heat transfer tube group inlet feed water temperature detected by the feed water temperature measuring device; A steam system for measuring the pressure in at least one steam drum; a steam system for measuring the pressure in at least one steam drum; A steam line provided at the drum outlet,
An on-off valve for opening and closing the steam line provided in the steam line, a merging duct pressure detector provided in the merging duct,
A steam drum pressure controller for controlling the opening and closing of an on-off valve provided in the steam line based on the pressure in the joining duct detected by the merging duct pressure sensor and the steam drum pressure detected by the steam drum pressure measuring device. A control device for an exhaust heat recovery boiler, comprising:
【請求項14】 合流ダクトに設けられた合流ダクト圧
力検出器の代わりまたは該合流ダクト圧力検出器に加え
て、ガスタービン運転台数、排熱回収ボイラ出口および
/または合流ダクト内ガス温度の検出器を設けて、予め
設定されたこれらの検出値と温度の関係式に基づき、こ
れらの検出器の検出値に対応した温度と給水温度測定器
により検出した伝熱管群入口給水温度に基づき前記分岐
ラインに設けた開閉弁の開閉制御を行うための伝熱管群
入口温度コントローラを設け、さらに、ガスタービン運
転台数、排熱回収ボイラ出口および/または合流ダクト
内ガス温度の検出器の検出値と、予め設定されたこれら
の検出値と圧力の関係式に基づき、これらの検出器の検
出値に対応した圧力と蒸気ドラム内圧力測定器により検
出した前記蒸気ドラム内圧力に基づき前記蒸気ラインに
設けた開閉弁の開閉制御を行うための蒸気ドラム圧力コ
ントローラを設けたことを特徴とする請求項13記載の
排熱回収ボイラの制御装置。
14. A detector for the number of operating gas turbines, an exhaust heat recovery boiler outlet, and / or a gas temperature in a merging duct, instead of or in addition to the merging duct pressure detector provided in the merging duct. The branch line is based on a preset relational expression between the detected value and the temperature, and based on the temperature corresponding to the detected value of these detectors and the heat transfer tube group inlet feed water temperature detected by the feed water temperature measuring device. A heat transfer tube group inlet temperature controller for controlling the opening and closing of the open / close valve provided in the gas turbine is further provided. Further, a gas turbine operating number, an exhaust heat recovery boiler outlet and / or a gas temperature detected by a detector of a merging duct, and Based on the set relational expression between the detected value and the pressure, the pressure corresponding to the detected value of these detectors and the steam drum detected by the pressure measuring device in the steam drum are used. 14. The control device for an exhaust heat recovery boiler according to claim 13, further comprising a steam drum pressure controller for controlling the opening and closing of an on-off valve provided in the steam line based on the pressure in the steam.
【請求項15】 ガスタービンから排出する排ガスの熱
を回収するための伝熱管群と該伝熱管群に水を供給する
ための給水系と排ガスの熱を回収して発生させた蒸気を
需要側に供給する蒸気系とを備えた排熱回収ボイラを複
数並列配置し、各排熱回収ボイラ出口の排ガスダクトを
合流ダクトに合流させて煙突に接続した排熱回収ボイラ
装置において、 各排熱回収ボイラの伝熱管群への給水系には、少なくと
も1つの伝熱管群入口への給水ラインに配置した給水加
熱用の加熱器と、前記伝熱管群入口への給水ラインに設
けた給水温度測定器と、合流ダクトに設けられた合流ダ
クト圧力検出器と、予め設定された圧力と温度の関係式
に基づき、前記合流ダクト圧力検出器により検出された
合流ダクト内の圧力に応じた温度を算出する圧力温度変
換器と、該圧力温度変換器で算出された合流ダクト内の
圧力に対応した温度と前記給水温度測定器により検出し
た伝熱管群入口給水温度に基づき前記加熱器による給水
ライン中の給水温度を制御する伝熱管群入口温度コント
ローラを設けたことを特徴とする排熱回収ボイラの制御
装置。
15. A heat transfer tube group for collecting heat of exhaust gas discharged from a gas turbine, a water supply system for supplying water to the heat transfer tube group, and a steam generated by collecting heat of the exhaust gas on a demand side. A plurality of exhaust heat recovery boilers equipped with a steam system to be supplied to the exhaust heat recovery boiler unit connected in parallel with the exhaust gas duct at the outlet of each exhaust heat recovery boiler, and connected to the stack In a water supply system to the heat transfer tube group of the boiler, a heater for heating water supply arranged in a water supply line to at least one heat transfer tube group inlet, and a water supply temperature measuring device provided in a water supply line to the heat transfer tube group inlet And a merging duct pressure detector provided in the merging duct, and calculating a temperature corresponding to the pressure in the merging duct detected by the merging duct pressure detector based on a preset pressure-temperature relational expression. Pressure temperature conversion And controlling the feedwater temperature in the feedwater line by the heater based on the temperature corresponding to the pressure in the merging duct calculated by the pressure / temperature converter and the feedwater temperature at the inlet of the heat transfer tube group detected by the feedwater temperature measuring device. A control device for an exhaust heat recovery boiler, comprising a heat transfer tube group inlet temperature controller.
【請求項16】 合流ダクトに設けられた合流ダクト圧
力検出器の代わりまたは合流ダクトに設けられた合流ダ
クト圧力検出器に加えて、ガスタービン運転台数、排熱
回収ボイラ出口および/または合流ダクト内ガス温度の
検出器を設け、予め設定されたこれらの検出値と温度の
関係式に基づき、これらの検出器の検出値に対応した温
度と給水温度測定器により検出した伝熱管群入口給水温
度に基づき前記加熱器による給水ライン中の給水温度を
制御する伝熱管群入口温度コントローラを設けたことを
特徴とする請求項15記載の排熱回収ボイラの制御装
置。
16. The number of operating gas turbines, the exhaust heat recovery boiler outlet and / or the inside of the merging duct, instead of the merging duct pressure detector provided in the merging duct or in addition to the merging duct pressure detector provided in the merging duct. A gas temperature detector is provided, and based on a preset relational expression between the detected value and the temperature, the temperature corresponding to the detected value of these detectors and the water supply temperature at the inlet of the heat transfer tube group detected by the water supply temperature measuring device are determined. The control apparatus for an exhaust heat recovery boiler according to claim 15, further comprising a heat transfer tube group inlet temperature controller for controlling a feed water temperature in a feed water line by the heater.
JP18998297A 1997-07-15 1997-07-15 Method for operating exhaust heat recovery boiler and controller Withdrawn JPH1137401A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18998297A JPH1137401A (en) 1997-07-15 1997-07-15 Method for operating exhaust heat recovery boiler and controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18998297A JPH1137401A (en) 1997-07-15 1997-07-15 Method for operating exhaust heat recovery boiler and controller

Publications (1)

Publication Number Publication Date
JPH1137401A true JPH1137401A (en) 1999-02-12

Family

ID=16250430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18998297A Withdrawn JPH1137401A (en) 1997-07-15 1997-07-15 Method for operating exhaust heat recovery boiler and controller

Country Status (1)

Country Link
JP (1) JPH1137401A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111810978A (en) * 2020-07-20 2020-10-23 山东博然电力科技有限公司 Flue gas heat exchanger switching device of two boilers based on heat self-adjustment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111810978A (en) * 2020-07-20 2020-10-23 山东博然电力科技有限公司 Flue gas heat exchanger switching device of two boilers based on heat self-adjustment
CN111810978B (en) * 2020-07-20 2022-09-13 山东博然电力科技有限公司 Flue gas heat exchanger switching device of two boilers based on heat self-adjustment

Similar Documents

Publication Publication Date Title
US4841722A (en) Dual fuel, pressure combined cycle
RU2124672C1 (en) Waste-heat boiler and method of its operation
JP4540472B2 (en) Waste heat steam generator
EP0900921A2 (en) Hydrogen burning turbine plant
US20110023487A1 (en) Method for controlling a steam generator and control circuit for a steam generator
JPH06229209A (en) Gas-steam turbine composite equipment and operating method thereof
JP6261956B2 (en) High humidity gas turbine system
GB2099558A (en) Heat recovery steam generator
JP3431435B2 (en) Combined power plant and closed air-cooled gas turbine system
JP2003161164A (en) Combined-cycle power generation plant
US6128901A (en) Pressure control system to improve power plant efficiency
JP4373420B2 (en) Combined power plant and closed air cooled gas turbine system
US3485048A (en) Increased vapor generator output feature
JPS5925853B2 (en) Power plant operation control method and device for implementing this method
JPH1137401A (en) Method for operating exhaust heat recovery boiler and controller
CN212157107U (en) Take heat supply function's once-through boiler to start hydrophobic waste heat utilization equipment
JPS61108814A (en) Gas-steam turbine composite facility
RU2144994C1 (en) Combined-cycle plant
JPH10266812A (en) Electric power control method of steam supply power generating gas turbine combined plant
JPH0445301A (en) Natural circulation waste heat recovery heat exchanger
JP3872407B2 (en) Combined power plant and closed air cooled gas turbine system
JPS60206909A (en) Exhaust heat recovery gas turbine power generating facility
JP2949287B2 (en) Auxiliary steam extraction method for waste heat recovery boiler
KR100446991B1 (en) The Back-Pressure Control Equipment of Steam Turbine in the Combined Heat Power Plant of District heating
JPH0610619A (en) Supply water heating device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040628

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20060522