JPH113699A - Negative electrode for lithium ion secondary battery - Google Patents

Negative electrode for lithium ion secondary battery

Info

Publication number
JPH113699A
JPH113699A JP9166524A JP16652497A JPH113699A JP H113699 A JPH113699 A JP H113699A JP 9166524 A JP9166524 A JP 9166524A JP 16652497 A JP16652497 A JP 16652497A JP H113699 A JPH113699 A JP H113699A
Authority
JP
Japan
Prior art keywords
carbon material
layer
negative electrode
coating
binder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9166524A
Other languages
Japanese (ja)
Inventor
Hiroaki Yoshida
吉田  浩明
Takahiro Shizuki
隆弘 志筑
Masanao Terasaki
正直 寺崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP9166524A priority Critical patent/JPH113699A/en
Publication of JPH113699A publication Critical patent/JPH113699A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a negative electrode for secondary battery having excellent adhesiveness of a collector and the carbon material by forming a coating layer, which contacts with a negative electrode collector, of two layers or more, and coating a lower layer with the carbon material having a small specific surface area. and forming the thickness in a specified range. SOLUTION: As a carbon material to be coated on a surface of a negative electrode collector 20 for lithium ion secondary battery, the carbon material having a low specific surface area at 2 m<2> /g or less, especially the fiber-like carbon having a specific surface area at 1-2 m<2> /g is used for a lower layer, and thickness of the coating layer is set at 20-100 μm. An upper layer is coated with the carbon material having a large specific surface area and a high discharging capacity. In comparison with one-layer coating of a collector surface, besides the binder already exists in the lower layer, since the coating layer of the lower surface has a larger contact area in comparison with the surface area of the collector, quantity of the binder to be required for coating of the upper layer is little, and quantity of the binder for all coating layers can be reduced than that of the one-layer coating, and quantity of the binder can be set at 10 wt.% or less in relation to the total weight of the all coating layer, and in this condition, adhesiveness and discharging capacity are improved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、リチウムイオンを挿入
・脱離することが可能な炭素材料を負極に用いた非水電
解液リチウムイオン二次電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a nonaqueous electrolyte lithium ion secondary battery using a carbon material capable of inserting and removing lithium ions for a negative electrode.

【0002】[0002]

【従来の技術】従来リチウム二次電池用負極板は、銅箔
等の集電体表面に炭素材料とバインダと溶剤の混合ペー
ストを一層塗工することにより製造されている。この炭
素材料としては、熱分解炭素を用いたものが優れている
ことが知られており、例えば、特開平3−95857号
公報には、負極を鉄元素を含有しない炭素層(上層)と
鉄元素を含有した炭素層(下層)とからなる2層とし、
鉄元素を含有した高容量の炭素と自己放電の小さい鉄元
素を含有しない炭素とを2層塗工することで、高容量で
自己放電の少ない負極とすることが記載されている。ま
た、特開平6−163030号公報には、炭素材料の粒
子と結着剤とからなる炭素粒子層を集電体上に設けてな
る負極において、集電体と炭素粒子層との間に平均粒径
が5μm以下の炭素微粒子層と結着剤とからなる5μm
程度の薄い炭素微粒子層を設けて集電体表面を炭素微粒
子で埋めることによって、CuまたはNiからなる集電
体の表面上にLiが微粉として析出する現象を防止し、
充放電サイクルによる容量劣化を改善することが記載さ
れている。
2. Description of the Related Art Conventionally, a negative electrode plate for a lithium secondary battery is manufactured by applying a mixed paste of a carbon material, a binder, and a solvent on a surface of a current collector such as a copper foil. As this carbon material, a material using pyrolytic carbon is known to be excellent. For example, JP-A-3-95857 discloses that a negative electrode is made of a carbon layer (upper layer) containing no iron element and an iron layer. A carbon layer (lower layer) containing the element,
It describes that a negative electrode having high capacity and low self-discharge is formed by applying two layers of high-capacity carbon containing iron element and carbon not containing iron element having low self-discharge. Japanese Patent Application Laid-Open No. 6-163030 discloses that, in a negative electrode having a carbon particle layer composed of particles of a carbon material and a binder provided on a current collector, the average between the current collector and the carbon particle layer is reduced. 5 μm comprising a carbon fine particle layer having a particle size of 5 μm or less and a binder
By providing a thin carbon fine particle layer to fill the current collector surface with carbon fine particles, to prevent the phenomenon that Li is deposited as fine powder on the surface of the current collector made of Cu or Ni,
It describes that capacity deterioration due to charge / discharge cycles is improved.

【0003】[0003]

【発明が解決しようとする課題】リチウムイオン電池の
負極は、従来種々の炭素材料を用いて、銅箔、ニッケル
箔等の集電体表面に炭素材料とバインダと溶剤の混合ペ
ーストを一層塗工することによって製造されているが、
この一層塗工によって負極を製造した場合、高容量の炭
素材料は、集電体との密着性に劣るため多量のバインダ
を要し、電極の容量密度が低下することが判明した。集
電体との密着性に劣る原因を調べた結果、高容量の炭素
材料は、比表面積が3〜50m2 /gと大きいために、
バインダが炭素材料の表面に吸着されてしまい、炭素材
料と集電体との接着に有効なバインダが表面吸着の程度
に応じて減少するためであることを本発明者らは見い出
した。一方、2m2 /g以下の低比表面積の炭素材料
は、集電体との密着性に優れるものの、放電容量が小さ
く、リチウムイオン二次電池の負極材料としては不適当
なものと従来認識されていた。本発明は、負極材料とし
て高容量の負極材料を使用する際の上記問題点を解決す
ることを目的になされたものであり、集電体と炭素材料
との密着性に優れた高容量のリチウムイオン二次電池用
負極を提供するものである。
In the negative electrode of a lithium ion battery, conventionally, a mixed paste of a carbon material, a binder and a solvent is applied to the surface of a current collector such as a copper foil or a nickel foil using various carbon materials. Is manufactured by
When a negative electrode was manufactured by this one-layer coating, it was found that a high-capacity carbon material required a large amount of binder because of poor adhesion to the current collector, and the capacity density of the electrode was reduced. As a result of examining the cause of poor adhesion to the current collector, a high-capacity carbon material has a large specific surface area of 3 to 50 m 2 / g.
The present inventors have found that the binder is adsorbed on the surface of the carbon material, and the amount of the binder effective for adhesion between the carbon material and the current collector decreases in accordance with the degree of surface adsorption. On the other hand, a carbon material having a low specific surface area of 2 m 2 / g or less has been conventionally recognized as being unsuitable as a negative electrode material of a lithium ion secondary battery, although it has excellent adhesion to a current collector, but has a small discharge capacity. Was. The present invention has been made in order to solve the above problems when using a high-capacity negative electrode material as a negative electrode material, and has a high capacity lithium having excellent adhesion between a current collector and a carbon material. An object of the present invention is to provide a negative electrode for an ion secondary battery.

【0004】[0004]

【課題を解決するための手段】本発明は、集電体表面に
炭素材料からなる塗布層を有するリチウムイオン二次電
池用の負極において、炭素材料からなる塗布層を二層以
上とし、集電体に接する塗布層の炭素材料として比表面
積が2m2 /g以下の炭素材料を用い、かつ該塗布層の
厚みを20〜100μmの範囲としたことを特徴とする
リチウムイオン二次電池用の負極を提供する。塗布層の
厚みが20μmより薄いと黒鉛の平均粒径を下回ってし
まい均一な塗工が困難となり、集電体との結着性が低下
してしまうので好ましくなく、100μmを上回ると放
電容量の改善効果が得られない。
SUMMARY OF THE INVENTION The present invention relates to a negative electrode for a lithium ion secondary battery having a coating layer made of a carbon material on the surface of a current collector, comprising two or more coating layers made of a carbon material. A negative electrode for a lithium ion secondary battery, wherein a carbon material having a specific surface area of 2 m <2> / g or less is used as a carbon material of a coating layer in contact with the body, and the thickness of the coating layer is in a range of 20 to 100 [mu] m. provide. If the thickness of the coating layer is less than 20 μm, the average particle size of the graphite falls below the average particle size of the graphite, making uniform coating difficult, and the binding property with the current collector is unfavorably reduced. No improvement effect is obtained.

【0005】炭素材料としては、熱分解炭素類、コーク
ス類、黒鉛類、ガラス状炭素類、有機高分子化合物焼成
体、活性炭等が、一般に負極材料として使用され、また
炭素材料の形状としては、鱗片状、塊状、球状、繊維状
等がある。一般に、黒鉛の形状と比表面積との間には相
関関係が見られ、一般的な鱗片状黒鉛の比表面積は5〜
100m2 /g、一般的な塊状黒鉛の比表面積は2.5
〜5m2 /g、一般的な繊維状黒鉛の比表面積は1〜2
m2 /g、一般的な球状黒鉛の比表面積は0.5〜2m
2 /gであることが知られている。本発明は、比表面積
が小さく2m2/g以下である球状炭素や繊維状炭素、
特に繊維状黒鉛を下層として用いることにより放電容量
の顕著な改善がもたらされることを見いだした。
[0005] As the carbon material, pyrolytic carbons, cokes, graphites, glassy carbons, organic polymer compound fired bodies, activated carbon, and the like are generally used as negative electrode materials. There are scaly, massive, spherical, fibrous, etc. In general, a correlation is found between the shape of graphite and the specific surface area, and the specific surface area of general flaky graphite is 5 to 5.
100 m 2 / g, the specific surface area of general massive graphite is 2.5
55 m 2 / g, specific surface area of general fibrous graphite is 1-2
m 2 / g, the specific surface area of general spheroidal graphite is 0.5 to 2 m
It is known to be 2 / g. The present invention provides a spherical carbon or a fibrous carbon having a small specific surface area of 2 m 2 / g or less,
In particular, it has been found that the use of fibrous graphite as the lower layer results in a significant improvement in discharge capacity.

【0006】また、本発明は、このように比表面積の小
さい炭素材料を用いることによって二層以上の塗布層形
成に必要なトータルのバインダ量を塗布層の炭素材料+
バインダの合計重量に対し従来技術の必要量より少ない
10wt%以下とすることができ、放電容量の改善効果
が得られるものである。
Further, the present invention uses the carbon material having a small specific surface area to reduce the total amount of binder necessary for forming two or more coating layers by using the carbon material of the coating layer.
The amount can be reduced to 10 wt% or less, which is smaller than the required amount in the related art, based on the total weight of the binder, and the effect of improving the discharge capacity can be obtained.

【0007】[0007]

【作用】本発明では、比表面積が2m2 /g以下の低比
表面積の炭素材料を下層に用いることにより、炭素材料
の表面に吸着されるバインダ量が最小限に抑制できる。
ゆえに、炭素材料と集電体との接着に有効なバインダが
十分に存在するために、集電体と炭素材料との密着性に
優れた負極板を提供できる。そして上層に、高放電容量
の炭素材料を塗工する。この場合、集電体表面に一層で
塗工するのに比較して、下層にバインダがすでに存在す
る上に、集電体の表面積に比べて下層の塗布層の方が接
触面積が大きいために上層の塗工に要するバインダ量も
削減することが可能となる。さらに、下層の低比表面積
の炭素材料は、それ自体では放電容量が高放電容量の炭
素材料より小さいにもかかわらず、一層塗工により製造
した高放電容量の負極と比較して放電容量が向上する。
この放電容量向上の原因となる機構は明らかではない
が、バインダ量が削減されることで極板内の電子伝導性
が向上し、リチウムイオンの挿人・脱離がスムーズに行
われるためと推定される。下層の塗布層の厚みが薄いほ
ど上層に用いる高容量の炭素材料の比率が増大するの
で、負極材料トータルの容量は増大するが、その厚みが
20μmより薄いと集電体との結着性が低下してしま
い、好ましくなく、その最適値は、20〜100μmの
範囲にある。さらに、下層に用いる炭素材料として、種
々の形状の炭素材料を検討した結果、繊維状炭素材料が
集電体との密着性に最も優れることが判った。この原因
は、球状、塊状の炭素材料が集電体とバインダに対して
点接触であるのに対して、繊維状炭素材料は線接触であ
るために、炭素材料とバインダとの接触面積が大きくな
り、炭素材料とバインダとの間の接合および集電体とバ
インダとの間の接合が強固になるためであると考えられ
る。
According to the present invention, the amount of the binder adsorbed on the surface of the carbon material can be suppressed to a minimum by using a carbon material having a low specific surface area of 2 m 2 / g or less for the lower layer.
Therefore, since a binder effective for bonding the carbon material and the current collector is sufficiently present, a negative electrode plate having excellent adhesion between the current collector and the carbon material can be provided. Then, a carbon material having a high discharge capacity is applied to the upper layer. In this case, the binder is already present in the lower layer, compared to coating the current collector surface with a single layer, and the contact area of the lower coating layer is larger than the surface area of the current collector. It is also possible to reduce the amount of binder required for coating the upper layer. In addition, the lower-layer carbon material with a low specific surface area has an improved discharge capacity compared to a high-discharge capacity negative electrode manufactured by coating even though the discharge capacity itself is smaller than the high-discharge capacity carbon material. I do.
Although the mechanism that causes the improvement in the discharge capacity is not clear, it is estimated that the reduction in the amount of binder improves the electron conductivity in the electrode plate and facilitates the insertion and removal of lithium ions. Is done. As the thickness of the lower coating layer becomes thinner, the ratio of the high-capacity carbon material used for the upper layer increases, so that the total capacity of the negative electrode material increases. However, if the thickness is less than 20 μm, the binding property with the current collector becomes poor. The optimum value is in the range of 20 to 100 μm. Furthermore, as a result of examining carbon materials of various shapes as the carbon material used for the lower layer, it was found that the fibrous carbon material had the best adhesion to the current collector. The cause is that the spherical and massive carbon material is in point contact with the current collector and the binder, whereas the fibrous carbon material is in linear contact, so the contact area between the carbon material and the binder is large. This is considered to be because bonding between the carbon material and the binder and bonding between the current collector and the binder are strengthened.

【0008】[0008]

【実施例】比較実験のために、粒子形状および比表面積
の異なる炭素材料と、バインダであるポリフッ化ビニリ
デンと、溶剤であるN−メチル−2−ピロリドンとを混
合し、厚み20μmの銅箔上に均一に塗工し、溶剤を乾
燥させ、プレス機により圧縮成形し、負極板を作製し
た。塗布層の厚みは、プレス成形後の塗布層の厚みが1
20μmになるように調製し、バインダ量は、プレス成
形後の電極をφ2mmの円柱に巻き付けた場合に剥離の
生じない最少値とした。電極は、多孔度が30%になる
ようにプレス成形したのち、対極に金属リチウムを用い
て、図1に示すコイン型セルを組み立てた。図1に示す
コイン型セルは、負極材料3と正極材料6との間に電解
液を含有するセパレータ5が設けられ、正極缶1と負極
集電体2によりガスケット4を介して密封されている。
電解液には、エチレンカーボネートとジエチルカーボネ
ートとの混合溶媒に1モル/リットルの六フッ化燐酸リ
チウムを溶解させたものを用いた。セルを負極板の電流
密度が0.5mA/cm2に相当する定電流で0Vまで
放電後、同一電流で1.2Vまで充電して、炭素材料の
単位重量当たり、およびバインダ重量を含めた炭素材料
の単位重量当たりの放電容量を調べた。表1に結果を示
す。
EXAMPLES For comparative experiments, carbon materials having different particle shapes and specific surface areas, polyvinylidene fluoride as a binder, and N-methyl-2-pyrrolidone as a solvent were mixed, and the mixture was mixed on a copper foil having a thickness of 20 μm. , A solvent was dried, and compression molding was performed by a press machine to produce a negative electrode plate. The thickness of the coating layer is such that the thickness of the coating layer after press molding is 1
The electrode was prepared so as to have a thickness of 20 μm, and the amount of the binder was a minimum value at which no peeling occurred when the electrode after press molding was wound around a φ2 mm cylinder. The electrode was press-formed to have a porosity of 30%, and then a coin cell shown in FIG. 1 was assembled using lithium metal as a counter electrode. In the coin-type cell shown in FIG. 1, a separator 5 containing an electrolytic solution is provided between a negative electrode material 3 and a positive electrode material 6, and is sealed by a positive electrode can 1 and a negative electrode current collector 2 via a gasket 4. .
As the electrolytic solution, a solution prepared by dissolving 1 mol / liter of lithium hexafluorophosphate in a mixed solvent of ethylene carbonate and diethyl carbonate was used. After discharging the cell to 0 V at a constant current corresponding to the current density of the negative electrode plate of 0.5 mA / cm 2, the cell is charged to 1.2 V at the same current, and the carbon material including the carbon material per unit weight and the binder weight is included. Was examined for discharge capacity per unit weight. Table 1 shows the results.

【0009】なお、球状黒鉛としては、例えば、粒径5
〜20μm程度のものを使用できる。通常得られる球状
黒鉛の比表面積の最も小さいものは0.5m2 /g程度
であるが、本発明においてこれらを使用できる。また、
繊維状黒鉛としては、例えば、平均繊維径1〜10μ
m、平均繊維長10〜100μm程度のものを使用でき
る。通常得られる繊維状黒鉛の比表面積の最も小さいも
のは1.0m2 /g程度であるが、本発明においてこれ
らを使用できる。
[0009] Spheroidal graphite, for example, has a particle size of 5
の も の 20 μm can be used. Usually, the smallest specific surface area of the obtained spheroidal graphite is about 0.5 m 2 / g, but these can be used in the present invention. Also,
Examples of the fibrous graphite include, for example, an average fiber diameter of 1 to 10 μm.
m, an average fiber length of about 10 to 100 μm can be used. Usually, the smallest specific surface area of the obtained fibrous graphite is about 1.0 m2 / g, but these can be used in the present invention.

【0010】[0010]

【表1】 [Table 1]

【0011】表1から明らかなように、比表面積の増大
とともに炭素材料の単位重量当たりの容量は大きくなる
ものの、集電体との密着性を保持するために多量のバイ
ンダ量を必要とすることがわかる。バインダ重量を含め
た炭素材料の単位重量当たりの放電容量を比較すると、
炭素材料種間の放電容量の差は小さくなることがわか
る。
As is apparent from Table 1, although the capacity per unit weight of the carbon material increases as the specific surface area increases, a large amount of binder is required to maintain the adhesion to the current collector. I understand. Comparing the discharge capacity per unit weight of carbon material including binder weight,
It can be seen that the difference in discharge capacity between the carbon material types becomes smaller.

【0012】実施例および比較例 下層に比表面積が2m2 /g以下の種々の形状の炭素材
料を用い、上層に比較実験において最も高容量を示した
炭素材料B(塊状黒鉛)を用いて負極板を試作し、下層
の炭素材料種として比較実験と同じ球状黒鉛Cと繊維状
黒鉛Dを用い、下層の塗布層の厚みおよびバインダ量を
種々変化させて比較実験と同様にしてコイン型セルを試
作し、放電容量を調べた。上層の塗布層の厚みはプレス
成形後の塗布層の厚みが120μmとなるように調製し
た。バインダ量は、比較実験と同様に剥離の生じない必
要最少値とした。下層のバインダ量は6wt%、上層の
バインダ量は12wt%であった。表2に結果を示す。
なお、表2中の下層厚みはプレス成形後の厚みである。
Examples and Comparative Examples Negative electrode plates were prepared by using carbon materials of various shapes having a specific surface area of 2 m 2 / g or less for the lower layer and carbon material B (bulky graphite) showing the highest capacity in the comparative experiment for the upper layer. Using the same spherical graphite C and fibrous graphite D as the lower layer carbon material species as in the comparative experiment, and varying the thickness of the lower coating layer and the amount of binder to produce a coin-shaped cell in the same manner as the comparative experiment Then, the discharge capacity was examined. The thickness of the upper coating layer was adjusted so that the thickness of the coating layer after press molding was 120 μm. The amount of the binder was set to the minimum necessary value at which no peeling occurred as in the comparative experiment. The amount of binder in the lower layer was 6 wt%, and the amount of binder in the upper layer was 12 wt%. Table 2 shows the results.
The lower layer thickness in Table 2 is the thickness after press molding.

【0013】[0013]

【表2】 [Table 2]

【0014】表2から明らかなように、バインダ重量を
含めた炭素材料の単位重量当たりの放電容量を比較する
と、下層に用いる炭素材料種として球状黒鉛Cを用いた
場合、下層の塗布層の厚みが20μm〜80μmの範囲
のもの(実施例No.1〜4)では、比較実験で最も高
い放電容量を示した炭素材料B(塊状黒鉛)の304A
h/kgを上回る306〜310Ah/kgの放電容量
が得られた。さらに、下層に用いる炭素材料種として繊
維状黒鉛Dを用いた場合、下層の塗布層の厚みが20〜
80μmの範囲のもの(実施例No.7〜10)では、
放電容量は312〜314Ah/kgとなり、球状黒鉛
Cを用いた場合の306〜310Ah/kgに比べてさ
らに優れた特性が得られた。この特性の差の原因は不明
であるが、繊維状黒鉛Dが集電体と密接に接合するため
に、極板内の電子伝導性が向上し、リチウムイオンの挿
入・脱離がスムーズに行われたためと推定される。炭素
Dを用いた場合、下層の塗布層の厚みが100μmにお
いても、炭素Bの304Ah/kgと同等の放電容量が
得られる。下層の塗布層の厚みが100μmを上回るも
の(比較例No.5、6、12)では、炭素材料B(塊
状黒鉛)の一層塗工の場合の放電容量を上回る特性は得
られない。
As is apparent from Table 2, when the discharge capacity per unit weight of the carbon material including the binder weight is compared, when spherical graphite C is used as the carbon material used for the lower layer, the thickness of the lower coating layer is determined. In the range of 20 μm to 80 μm (Examples Nos. 1 to 4), 304A of carbon material B (bulk graphite) showing the highest discharge capacity in the comparative experiment
A discharge capacity of 306 to 310 Ah / kg exceeding h / kg was obtained. Further, when fibrous graphite D is used as the carbon material species used for the lower layer, the thickness of the lower coating layer is 20 to
In the range of 80 μm (Example Nos. 7 to 10),
The discharge capacity was 312 to 314 Ah / kg, and more excellent characteristics were obtained as compared with 306 to 310 Ah / kg when spherical graphite C was used. Although the cause of this difference in properties is unknown, the fibrous graphite D is closely bonded to the current collector, which improves the electron conductivity in the electrode plate and facilitates the insertion and desorption of lithium ions. It is presumed to have been done. When carbon D is used, a discharge capacity equivalent to 304 Ah / kg of carbon B can be obtained even when the thickness of the lower coating layer is 100 μm. In the case where the thickness of the lower coating layer exceeds 100 μm (Comparative Examples Nos. 5, 6, and 12), characteristics exceeding the discharge capacity in the case of single-layer coating of the carbon material B (bulk graphite) cannot be obtained.

【0015】なお、本発明において、下層に用いる比表
面積の炭素材料に、比表面積2m2/gを越える各種形
状の炭素材料を混合して用いてもよい。この場合、添加
量の増大にともない集電体との密着性が低下するので、
添加量は50wt%以下が好ましい。また、比表面積2
m2 /g以下の炭素材料のみからなる下層と高容量の炭
素材料からなる上層との間に両層の材料を混合した中間
層を設けるなどして、層構造を三層とすることも適宜な
し得る。また、バインダとしては、ポリフッ化ビニリデ
ンに限らず、ポリイミド樹脂、ポリスチレンゴム、ポリ
テトラフルオロエチレン等も適宜使用できる。また、セ
ル構造としては、コイン型に限らず、その他の扁平型、
円筒型など電極の形状に関係なく適用できる。
In the present invention, various shapes of carbon materials having a specific surface area of more than 2 m 2 / g may be mixed with the carbon material having a specific surface area used for the lower layer. In this case, the adhesion with the current collector decreases with an increase in the amount of addition.
The addition amount is preferably 50 wt% or less. In addition, specific surface area 2
It is not necessary to appropriately form a three-layer structure by providing an intermediate layer in which both materials are mixed between a lower layer made of only a carbon material having a capacity of m2 / g or less and an upper layer made of a high-capacity carbon material. obtain. In addition, the binder is not limited to polyvinylidene fluoride, but a polyimide resin, polystyrene rubber, polytetrafluoroethylene, or the like can be used as appropriate. Further, the cell structure is not limited to the coin type, but may be any other flat type,
It can be applied regardless of the shape of the electrode such as a cylindrical type.

【0016】[0016]

【発明の効果】本発明は、集電体表面に炭素材料からな
る塗布層を有するリチウムイオン二次電池用の負極にお
いて、集電体に接する塗布層の炭素材料として比表面積
が2m2 /g以下の炭素材料を用い、かつ該層の厚みを
20〜100μmの範囲としたことによって、一層塗工
により製造した高容量の負極材料のみを用いたものと比
較してさらに高容量の電池が得られるという顕著な効果
をもたらすものである。
According to the present invention, a negative electrode for a lithium ion secondary battery having a coating layer made of a carbon material on the surface of a current collector has a specific surface area of 2 m 2 / g or less as a carbon material of the coating layer in contact with the current collector. By using the carbon material of the above, and by setting the thickness of the layer in the range of 20 to 100 μm, a battery having a higher capacity can be obtained as compared with a battery using only a high-capacity negative electrode material manufactured by one-layer coating. It has a remarkable effect.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、本発明のコイン型セルの断面図であ
る。
FIG. 1 is a cross-sectional view of a coin cell of the present invention.

【符号の説明】[Explanation of symbols]

1 正極缶 2 負極集電体 3 負極材料 4 ガスケット 5 セパレータ+電解液 6 正極材料 REFERENCE SIGNS LIST 1 positive electrode can 2 negative electrode current collector 3 negative electrode material 4 gasket 5 separator + electrolyte 6 positive electrode material

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】集電体表面に炭素材料からなる塗布層を有
するリチウムイオン二次電池用の負極において、炭素材
料からなる塗布層を二層以上とし、集電体に接する塗布
層の炭素材料として比表面積が2m2 /g以下の炭素材
料を用い、かつ該層の厚みを20〜100μmの範囲と
したことを特徴とするリチウムイオン二次電池用負極。
1. A negative electrode for a lithium ion secondary battery having a coating layer made of a carbon material on the surface of a current collector, wherein the coating layer made of a carbon material has two or more layers, and the carbon material of the coating layer in contact with the current collector is provided. Negative electrode for a lithium ion secondary battery, wherein a carbon material having a specific surface area of 2 m @ 2 / g or less is used and the thickness of the layer is in the range of 20 to 100 .mu.m.
【請求項2】比表面積が2m2 /g以下の炭素材料とし
て繊維状炭素を用いることを特徴とする請求項1記載の
リチウムイオン二次電池用負極。
2. The negative electrode for a lithium ion secondary battery according to claim 1, wherein fibrous carbon is used as the carbon material having a specific surface area of 2 m 2 / g or less.
【請求項3】 塗布層のバインダ量が塗布層の全重量に
対し10wt%以下であることを特徴とする請求項1ま
たは2記載のリチウムイオン二次電池用負極。
3. The negative electrode for a lithium ion secondary battery according to claim 1, wherein the amount of the binder in the coating layer is 10 wt% or less based on the total weight of the coating layer.
JP9166524A 1997-06-09 1997-06-09 Negative electrode for lithium ion secondary battery Pending JPH113699A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9166524A JPH113699A (en) 1997-06-09 1997-06-09 Negative electrode for lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9166524A JPH113699A (en) 1997-06-09 1997-06-09 Negative electrode for lithium ion secondary battery

Publications (1)

Publication Number Publication Date
JPH113699A true JPH113699A (en) 1999-01-06

Family

ID=15832920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9166524A Pending JPH113699A (en) 1997-06-09 1997-06-09 Negative electrode for lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JPH113699A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001102091A (en) * 1999-07-29 2001-04-13 Toshiba Corp Non-aqueous electrolyte secondary cell
JP2003077482A (en) * 2001-08-31 2003-03-14 Sanyo Electric Co Ltd Battery
JP2007273183A (en) * 2006-03-30 2007-10-18 Sony Corp Negative electrode and secondary battery
JP2008251401A (en) * 2007-03-30 2008-10-16 Tdk Corp Electrode and electrochemical device
JP2008311164A (en) * 2007-06-18 2008-12-25 Panasonic Corp Nonaqueous electrolyte secondary battery and manufacturing method of electrode for nonaqueous electrolyte secondary battery
JP2009193924A (en) * 2008-02-18 2009-08-27 Nec Tokin Corp Negative electrode for lithium ion secondary battery, and lithium ion secondary battery using the same
JP2010182479A (en) * 2009-02-04 2010-08-19 Toyota Industries Corp Negative electrode for lithium ion secondary battery, and method for manufacturing the same
JP2012004066A (en) * 2010-06-21 2012-01-05 Hitachi Vehicle Energy Ltd Secondary battery, secondary battery electrode and method of manufacturing the same
CN102834953A (en) * 2010-03-15 2012-12-19 丰田自动车株式会社 Lithium secondary battery
JP5403153B2 (en) * 2010-05-12 2014-01-29 株式会社豊田自動織機 ELECTRODE FOR LITHIUM ION SECONDARY BATTERY AND METHOD FOR PRODUCING THE SAME
WO2014207526A1 (en) * 2013-06-28 2014-12-31 Toyota Jidosha Kabushiki Kaisha Electrode for secondary battery
US9159987B2 (en) 2010-03-17 2015-10-13 Toyota Jidosha Kabushiki Kaisha Method for manufacturing battery electrode including depositing a liquid phase bilayer

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001102091A (en) * 1999-07-29 2001-04-13 Toshiba Corp Non-aqueous electrolyte secondary cell
JP2003077482A (en) * 2001-08-31 2003-03-14 Sanyo Electric Co Ltd Battery
JP2007273183A (en) * 2006-03-30 2007-10-18 Sony Corp Negative electrode and secondary battery
JP4513822B2 (en) * 2007-03-30 2010-07-28 Tdk株式会社 Electrode and electrochemical device
JP2008251401A (en) * 2007-03-30 2008-10-16 Tdk Corp Electrode and electrochemical device
JP2008311164A (en) * 2007-06-18 2008-12-25 Panasonic Corp Nonaqueous electrolyte secondary battery and manufacturing method of electrode for nonaqueous electrolyte secondary battery
JP2009193924A (en) * 2008-02-18 2009-08-27 Nec Tokin Corp Negative electrode for lithium ion secondary battery, and lithium ion secondary battery using the same
JP2010182479A (en) * 2009-02-04 2010-08-19 Toyota Industries Corp Negative electrode for lithium ion secondary battery, and method for manufacturing the same
CN102834953A (en) * 2010-03-15 2012-12-19 丰田自动车株式会社 Lithium secondary battery
JP5397715B2 (en) * 2010-03-15 2014-01-22 トヨタ自動車株式会社 Lithium secondary battery
US9159987B2 (en) 2010-03-17 2015-10-13 Toyota Jidosha Kabushiki Kaisha Method for manufacturing battery electrode including depositing a liquid phase bilayer
JP5403153B2 (en) * 2010-05-12 2014-01-29 株式会社豊田自動織機 ELECTRODE FOR LITHIUM ION SECONDARY BATTERY AND METHOD FOR PRODUCING THE SAME
JP2012004066A (en) * 2010-06-21 2012-01-05 Hitachi Vehicle Energy Ltd Secondary battery, secondary battery electrode and method of manufacturing the same
WO2014207526A1 (en) * 2013-06-28 2014-12-31 Toyota Jidosha Kabushiki Kaisha Electrode for secondary battery

Similar Documents

Publication Publication Date Title
US5789114A (en) Active materials for a secondary cell, a method for making the same, positive electrodes for a secondary cell comprising the active material, and a non-aqueous electrolytic secondary cell
EP0848435B1 (en) Lithium battery and production method thereof
US20160013480A1 (en) Multi-layer battery electrode design for enabling thicker electrode fabrication
KR20090086456A (en) Negative electrode material for lithium ion secondary battery, method for production thereof, negative electrode for lithium ion secondary battery, and lithium ion secondary batter
WO2007141905A1 (en) Negative electrode active material for lithium ion rechargeable battery, and negative electrode
KR20110060900A (en) Binder composition for secondary battery electrode and method for producing same
JPH113699A (en) Negative electrode for lithium ion secondary battery
CN113809389A (en) All-solid battery including electrolyte layer having concave pattern
US11081700B2 (en) Nonaqueous electrolyte secondary battery and method for producing nonaqueous electrolyte secondary battery
JP3182195B2 (en) Electrode for non-aqueous electrolyte secondary battery and battery using the same
JP2000011991A (en) Organic electrolyte secondary battery
CN110911640A (en) Multi-layer anode and lithium secondary battery comprising same
JP3440963B2 (en) Anode plate for lithium secondary battery
JP4053657B2 (en) Lithium secondary battery and manufacturing method thereof
JP7319008B2 (en) Electrodes and secondary batteries
JP2002134101A (en) Method of producing positive electrode plate for lithium secondary battery
JP6777137B2 (en) Negative electrode
JP3637351B2 (en) Nonaqueous electrolyte secondary battery
JP2003317695A (en) Nonaqueous electrolyte lithium ion cell and separator there for
JPH1167207A (en) Negative electrode for lithium secondary battery
JPS63121247A (en) Negative electrode of secondary battery
KR20070059569A (en) Anode active material for lithium secondary battery having coating layer of carbon and non-carbon material and preparation thereof
JP3048953B2 (en) Non-aqueous electrolyte secondary battery
WO2022091407A1 (en) Lithium secondary battery
WO2022168296A1 (en) Lithium secondary battery