JPH1136920A - Fuel supply control device for internal combustion engine - Google Patents

Fuel supply control device for internal combustion engine

Info

Publication number
JPH1136920A
JPH1136920A JP19669497A JP19669497A JPH1136920A JP H1136920 A JPH1136920 A JP H1136920A JP 19669497 A JP19669497 A JP 19669497A JP 19669497 A JP19669497 A JP 19669497A JP H1136920 A JPH1136920 A JP H1136920A
Authority
JP
Japan
Prior art keywords
combustion
switching
equivalence ratio
homogeneous
stratified
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19669497A
Other languages
Japanese (ja)
Other versions
JP3677953B2 (en
Inventor
Hisao Kawasaki
尚夫 川崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP19669497A priority Critical patent/JP3677953B2/en
Publication of JPH1136920A publication Critical patent/JPH1136920A/en
Application granted granted Critical
Publication of JP3677953B2 publication Critical patent/JP3677953B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

PROBLEM TO BE SOLVED: To smoothly change over the combustion condition from stratified combustion into homogeneous combustion during deceleration. SOLUTION: It is determined that deceleration is started when the degree of acceleration becomes lower than a predetermined value, a new map for computing a desired basic equivalence ratio is selected after a predetermined time DLTFM elapses, and the desired basic equivalence ratio TFBYA00 is computed with the use of thus selected map. Thereafter, a phase delay is compensated for the desired basic equivalence ratio TFBYA00 so as to set a compensated desired basic equivalence ratio TFBYA4 which is then compared with a predetermined equivalence ratio TFVYADF, and the smaller one of them is set as a desired equivalence ratio TFVYA0. Further, a combustion flag FSTRR1 is changed over so as to carry out homogeneous combustion when the desired equivalence ratio TFVYA0 becomes larger than a threshold value TFACH of equivalence ratio with which the combustion is changed over into homogeneous combustion from stratified combustion.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、内燃機関の燃料供
給制御装置において、特に、減速時における成層燃焼か
ら均質燃焼への燃焼状態の切り換えを円滑にする技術に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel supply control device for an internal combustion engine, and more particularly to a technique for smoothly switching a combustion state from stratified combustion to homogeneous combustion during deceleration.

【0002】[0002]

【従来の技術】従来から、減速時に燃料供給を停止し、
HCの抑制と燃費向上を図った燃料カット制御を行う燃
料供給制御装置が知られている(特開昭54−1489
29号公報等参照)。
2. Description of the Related Art Conventionally, fuel supply is stopped during deceleration,
2. Description of the Related Art A fuel supply control device for performing fuel cut control for suppressing HC and improving fuel efficiency is known (JP-A-54-1489).
No. 29).

【0003】[0003]

【発明が解決しようとする課題】かかる燃料供給制御装
置は、理論空然比近傍で可燃混合気を燃焼させる均質燃
焼を前提としていたため、減速時における目標当量比に
殆ど変化がなく、燃料カット後のリカバリー時における
トルク変動がさほど問題とはならなかった。しかしなが
ら、近年、排気性状及び燃費の向上を目的として開発さ
れた、筒内に燃料を直接噴射して点火プラグによって火
花点火を行う筒内噴射式内燃機関においては、目標当量
比が極めて小さい超希薄燃焼を行う成層燃焼と、目標当
量比が比較的大きい均質燃焼と、を機関運転状態に応じ
て切り換えている。従って、成層燃焼を行っている状態
で減速すると、成層燃焼から均質燃焼への切り換えに伴
い目標当量比を切り換える必要がある。この場合、従来
の燃料供給制御装置をそのまま適用すると、次のような
不具合が生じるおそれがある。
Since such a fuel supply control device is premised on homogeneous combustion in which a combustible air-fuel mixture is burned in the vicinity of a stoichiometric air-fuel ratio, there is almost no change in the target equivalence ratio during deceleration, and the fuel The torque fluctuations during later recovery did not matter much. However, in a direct injection type internal combustion engine, which has been developed in recent years for the purpose of improving exhaust properties and fuel efficiency and injecting fuel directly into a cylinder to perform spark ignition with a spark plug, an ultra-lean lean target equivalent ratio is extremely small. Switching between stratified combustion in which combustion is performed and homogeneous combustion in which the target equivalent ratio is relatively large is switched according to the engine operating state. Therefore, when deceleration is performed in the state where stratified combustion is being performed, it is necessary to switch the target equivalent ratio in accordance with switching from stratified combustion to homogeneous combustion. In this case, if the conventional fuel supply control device is applied as it is, the following problems may occur.

【0004】(1) 成層燃焼から均質燃焼への切り換えと
同時に目標当量比を切り換えると、切換時における空気
量が過大となるため、トルクが急激に上昇し、減速感を
損なうおそれがある。 (2) 排気の一部を吸気系に導入して再循環させる排気再
循環装置等のデバイスを備える内燃機関において、成層
燃焼から均質燃焼への切換時に、デバイスの応答遅れ等
の影響により切換直後の燃焼が不安定になるおそれがあ
る。
(1) If the target equivalent ratio is switched at the same time as switching from stratified combustion to homogeneous combustion, the air amount at the time of switching becomes excessively large, so that the torque rises sharply and the feeling of deceleration may be impaired. (2) In an internal combustion engine equipped with a device such as an exhaust gas recirculation device that introduces part of the exhaust gas into the intake system and recirculates it, immediately after switching due to the effect of device response delay when switching from stratified combustion to homogeneous combustion, Combustion may become unstable.

【0005】(3) 成層燃焼から均質燃焼への切換中に目
標当量比を変化させた場合には、成層燃焼と均質燃焼と
の中間の当量比を通過するため、燃料カットを行ってい
ないときには、排気性状が低下するおそれがある。 そこで、本発明は以上のような従来の問題点に鑑み、減
速時における成層燃焼から均質燃焼への燃焼状態の切り
換えを円滑にすることで、切換時におけるトルク変動、
燃焼の不安定化及び排気性状の低下を防止した内燃機関
の燃料供給制御装置を提供することを目的とする。
(3) If the target equivalence ratio is changed during switching from stratified combustion to homogeneous combustion, the target equivalence ratio is intermediate between stratified combustion and homogeneous combustion. , Exhaust properties may be reduced. Accordingly, the present invention has been made in view of the above-described conventional problems, and by smoothly switching the combustion state from stratified combustion to homogeneous combustion during deceleration, torque fluctuation during switching,
An object of the present invention is to provide a fuel supply control device for an internal combustion engine that prevents combustion instability and deterioration in exhaust properties.

【0006】[0006]

【課題を解決するための手段】このため、請求項1記載
の発明は、図1に示すように、燃焼室内の可燃混合気を
成層状態と均質状態とに切り換えることにより、燃焼状
態を成層燃焼と均質燃焼とに切換可能な内燃機関であっ
て、成層燃焼中に減速を行ったときに、減速を開始して
から第1の所定時間経過後に燃料供給を停止すると共
に、成層燃焼から均質燃焼に燃焼状態を切り換えるべく
目標当量比を移行させる内燃機関の燃料供給制御装置に
おいて、内燃機関の燃料供給制御装置を、機関運転状態
を検出する運転状態検出手段Aと、検出された運転状態
に応じて目標当量比を演算する目標当量比演算手段B
と、演算された目標当量比に対して目標当量比の変化を
遅らせるように補正する目標当量比補正手段Cと、補正
された目標当量比に基づいて成層燃焼から均質燃焼への
切換条件が成立したか否かを判定する切換条件判定手段
Dと、均質燃焼への切換条件が成立したときに、燃焼状
態を成層燃焼から均質燃焼に切り換える燃焼状態切換手
段Eと、を含んで構成した。
According to the present invention, as shown in FIG. 1, the combustion state is changed to a stratified combustion state by switching a combustible mixture in a combustion chamber between a stratified state and a homogeneous state. An internal combustion engine that can be switched to a homogeneous combustion mode. When the deceleration is performed during the stratified combustion, the fuel supply is stopped after a first predetermined time has elapsed since the deceleration was started, and the stratified combustion is switched to the homogeneous combustion. In the fuel supply control device for an internal combustion engine that shifts the target equivalent ratio to switch the combustion state, the fuel supply control device for the internal combustion engine is provided with operating state detecting means A for detecting the engine operating state, and according to the detected operating state. Equivalent ratio calculating means B for calculating the target equivalent ratio by using
And a target equivalence ratio correction means C for correcting a change in the target equivalence ratio with respect to the calculated target equivalence ratio, and a condition for switching from stratified combustion to homogeneous combustion based on the corrected target equivalence ratio. And a combustion state switching means E for switching the combustion state from stratified combustion to homogeneous combustion when a condition for switching to homogeneous combustion is satisfied.

【0007】かかる構成によれば、目標当量比は、目標
当量比演算手段によって運転状態に応じて設定された
後、目標当量比補正手段により目標当量比の変化を遅ら
せるように補正される。そして、切換条件判定手段によ
り、補正された目標当量比に基づいて成層燃焼から均質
燃焼への切換条件が成立したと判定されたときに、燃焼
状態切換手段によって成層燃焼から均質燃焼に切り換え
られる。
According to this configuration, after the target equivalence ratio is set by the target equivalence ratio calculation means in accordance with the operating state, the target equivalence ratio correction means corrects the target equivalence ratio to delay the change of the target equivalence ratio. When the switching condition determination means determines that the switching condition from stratified combustion to homogeneous combustion is satisfied based on the corrected target equivalent ratio, the combustion state switching means switches from stratified combustion to homogeneous combustion.

【0008】従って、成層燃焼から均質燃焼への燃焼状
態の切り換えが行われる際に、目標当量比が徐々に変化
するので、均質燃焼への切換直後に空気量が過大となる
ことがなく、トルクの急激な上昇が防止される。請求項
2記載の発明は、前記目標当量比演算手段を、減速を開
始してから第2の所定時間経過したときに、演算すべき
目標当量比を、成層燃焼における目標当量比から均質燃
焼における目標当量比に切り換える制御を行う構成とし
た。
Therefore, when the combustion state is switched from stratified combustion to homogeneous combustion, the target equivalence ratio gradually changes, so that the air amount does not become excessive immediately after switching to homogeneous combustion, and the torque does not increase. Sharp rise is prevented. According to a second aspect of the present invention, the target equivalence ratio calculating means changes the target equivalence ratio to be calculated from the target equivalence ratio in the stratified charge combustion in the homogeneous combustion when the second predetermined time has elapsed since the start of the deceleration. The control for switching to the target equivalent ratio is performed.

【0009】かかる構成によれば、減速が開始されてか
ら第2の所定時間経過したときに、演算すべき目標当量
比が均質燃焼における目標当量比に切り換えられるの
で、例えば、蒸発燃料処理装置や排気再循環装置等のデ
バイスを備えていても、切換時のデバイスの応答遅れが
吸収される。請求項3記載の発明は、前記切換条件判定
手段を、前記第1の所定時間が経過するまでは、成層燃
焼から均質燃焼への切換条件の成立を禁止する条件成立
禁止手段を含んで構成した。
With this configuration, when the second predetermined time has elapsed after the start of deceleration, the target equivalent ratio to be calculated is switched to the target equivalent ratio in homogeneous combustion. Even if a device such as an exhaust gas recirculation device is provided, the response delay of the device at the time of switching is absorbed. According to a third aspect of the present invention, the switching condition determination unit includes a condition establishment prohibition unit that inhibits establishment of a switching condition from stratified combustion to homogeneous combustion until the first predetermined time elapses. .

【0010】かかる構成によれば、減速が開始されてか
ら第1の所定時間経過するまでは、均質燃焼への切換条
件の成立が禁止、即ち、均質燃焼への切り換えが禁止さ
れるので、成層燃焼と均質燃焼との中間の当量比におい
て燃焼が行われることが防止される。請求項4記載の発
明は、前記切換条件判定手段を、前記目標当量比補正手
段により補正された目標当量比が所定の当量比しきい値
以上になったときに、成層燃焼から均質燃焼への切換条
件が成立したと判定する構成とした。
According to such a configuration, the condition for switching to homogeneous combustion is prohibited from being satisfied until the first predetermined time has elapsed since the start of deceleration, that is, switching to homogeneous combustion is prohibited. Combustion is prevented from occurring at an equivalence ratio between combustion and homogeneous combustion. According to a fourth aspect of the present invention, when the target equivalence ratio corrected by the target equivalence ratio correction device becomes equal to or greater than a predetermined equivalence ratio threshold value, the switching condition determination means switches from stratified combustion to homogeneous combustion. The configuration is such that it is determined that the switching condition is satisfied.

【0011】かかる構成によれば、補正された目標当量
比が所定の当量比しきい値以上になったときに、均質燃
焼への切換条件が成立、即ち、均質燃焼への切り換えが
行われるので、切換条件判定処理が極めて簡単に行われ
る。請求項5記載の発明は、前記条件成立禁止手段を、
前記第1の所定時間内は、前記目標当量比補正手段によ
り補正された目標当量比を前記当量比しきい値未満に制
限する制限手段を含んで構成した。
With this configuration, when the corrected target equivalence ratio becomes equal to or greater than the predetermined equivalence ratio threshold value, the condition for switching to homogeneous combustion is satisfied, that is, switching to homogeneous combustion is performed. In addition, the switching condition determination processing is very easily performed. According to a fifth aspect of the present invention, the condition prohibition means includes:
Within the first predetermined time, a limiting means for limiting the target equivalent ratio corrected by the target equivalent ratio correcting means to less than the equivalent ratio threshold is included.

【0012】かかる構成によれば、第1の所定時間内は
補正された目標当量比が当量比しきい値未満に制限され
るので、第1の所定時間内は目標当量比が小さくなり、
均質燃焼への切り換えが行われないため排気性状が向上
すると共に、燃料供給を停止したときのトルク変動が抑
制される。請求項6記載の発明は、燃焼室内の可燃混合
気を成層状態と均質状態とに切り換えることにより、燃
焼状態を成層燃焼と均質燃焼とに切換可能な内燃機関で
あって、成層燃焼中に減速を行ったときに、減速を開始
してから所定時間経過後に燃料供給を停止すると共に、
成層燃焼から均質燃焼に燃焼状態を切り換えるべく目標
当量比を移行させる内燃機関の燃料供給制御装置におい
て、内燃機関の燃料供給制御装置を、成層燃焼から均質
燃焼に燃焼状態を切り換える際に、機関運転状態に応じ
て演算された目標当量比を徐々に変化させるようにし
た。
According to this configuration, the corrected target equivalence ratio is limited to less than the equivalence ratio threshold value within the first predetermined time, so that the target equivalence ratio becomes smaller within the first predetermined time,
Since the switching to the homogeneous combustion is not performed, the exhaust properties are improved, and the torque fluctuation when the fuel supply is stopped is suppressed. The invention according to claim 6 is an internal combustion engine capable of switching a combustion state between stratified combustion and homogeneous combustion by switching a combustible mixture in a combustion chamber between a stratified state and a homogeneous state, and decelerates during stratified combustion. When the fuel supply is stopped after a predetermined time has elapsed since the start of deceleration,
In a fuel supply control device for an internal combustion engine that shifts a target equivalence ratio to switch a combustion state from stratified combustion to homogeneous combustion, the engine operation is performed when the fuel supply control device for the internal combustion engine is switched from stratified combustion to homogeneous combustion. The target equivalent ratio calculated according to the state is gradually changed.

【0013】かかる構成によれば、成層燃焼から均質燃
焼に燃焼状態を切り換える際に、機関運転状態に応じて
演算された目標当量比は徐々に変化するので、均質燃焼
への切換直後に空気量が過大となることがなく、トルク
の急激な上昇が防止される。
With this configuration, when the combustion state is switched from stratified combustion to homogeneous combustion, the target equivalent ratio calculated according to the engine operating state gradually changes. Does not become excessive, and a sharp increase in torque is prevented.

【0014】[0014]

【発明の効果】以上説明したように、請求項1又は6に
記載の発明によれば、成層燃焼から均質燃焼への燃焼状
態の切換時に、トルクの急激な上昇が防止されるので、
減速感の低下を抑制することができる。請求項2記載の
発明によれば、成層燃焼から均質燃焼への燃焼状態の切
換時に、デバイスの応答遅れが吸収されるので、切換直
後の燃焼を安定させることができる。
As described above, according to the first or sixth aspect of the present invention, when the combustion state is switched from stratified combustion to homogeneous combustion, a sharp increase in torque is prevented.
It is possible to suppress a decrease in the sense of deceleration. According to the second aspect of the invention, when switching the combustion state from stratified combustion to homogeneous combustion, the response delay of the device is absorbed, so that combustion immediately after the switching can be stabilized.

【0015】請求項3記載の発明によれば、成層燃焼か
ら均質燃焼への燃焼状態の切換時に、成層燃焼と均質燃
焼との中間の当量比において燃焼が行われることが防止
されるので、燃料供給を停止していない状態における排
気性状を向上することができる。請求項4記載の発明に
よれば、成層燃焼から均質燃焼への切換判定処理が極め
て簡単に行われるので、車載制御装置の負担を軽減する
ことができる。
According to the third aspect of the invention, when the combustion state is switched from stratified combustion to homogeneous combustion, combustion is prevented from being performed at an equivalence ratio intermediate between stratified combustion and homogeneous combustion. Exhaust properties in a state where the supply is not stopped can be improved. According to the fourth aspect of the present invention, the switching determination process from the stratified combustion to the homogeneous combustion is performed extremely easily, so that the load on the on-vehicle control device can be reduced.

【0016】請求項5記載の発明によれば、第1の所定
時間が経過するまでは、均質燃焼への切り換えが行われ
ないので、排気性状が向上すると共に、燃料供給を停止
したときのトルク変動が抑制されるので、乗心地を向上
することができる。
According to the fifth aspect of the present invention, since the switching to the homogeneous combustion is not performed until the first predetermined time has elapsed, the exhaust characteristics are improved and the torque at the time of stopping the fuel supply is improved. Since the fluctuation is suppressed, the riding comfort can be improved.

【0017】[0017]

【発明の実施の形態】以下、添付された図面を参照して
本発明を詳述する。図2は、本発明に係る燃料供給制御
装置を筒内噴射式内燃機関に適用した一実施形態を示
す。先ず、筒内噴射式内燃機関(以下「機関」という)
10の構成について説明する。ピストン11の頂面(以
下「ピストン頂面」という)11aとシリンダヘッド1
2下面との間には、所定容積を有する燃焼室13が形成
される。燃焼室13の上部に位置するシリンダヘッド1
2の壁面、即ち、シリンダヘッド12の下部に形成され
たシリンダヘッド燃焼室13aの壁面には、吸気弁14
によって開閉される吸気ポート15、及び、排気弁16
によって開閉される排気ポート17が、夫々並列して2
つずつ形成される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail with reference to the attached drawings. FIG. 2 shows an embodiment in which the fuel supply control device according to the present invention is applied to a direct injection internal combustion engine. First, a direct injection internal combustion engine (hereinafter referred to as "engine")
The configuration of No. 10 will be described. Top surface 11a of piston 11 (hereinafter referred to as “piston top surface”) and cylinder head 1
A combustion chamber 13 having a predetermined volume is formed between the two lower surfaces. Cylinder head 1 located above combustion chamber 13
2, the wall of the cylinder head combustion chamber 13a formed below the cylinder head 12,
Intake port 15 opened and closed by an exhaust valve 16
Exhaust ports 17 which are opened and closed by
Formed one by one.

【0018】シリンダヘッド12の両吸気ポート15間
には、燃焼室13に噴口を臨ませて燃焼室13内に直接
燃料を噴射する燃料噴射弁18が配設される。また、シ
リンダヘッド燃焼室13aの壁面の略中央部には、燃料
と空気との可燃混合気を火花点火させる点火プラグ19
が配設される。ピストン頂面11aには、燃料噴射弁1
8と点火プラグ19とを結ぶ線下の位置に、開口部が上
面に形成されたキャビティ20が形成される。
Between the intake ports 15 of the cylinder head 12, there is provided a fuel injection valve 18 which directs fuel into the combustion chamber 13 with the injection port facing the combustion chamber 13. A spark plug 19 for spark-igniting a combustible mixture of fuel and air is provided substantially at the center of the wall surface of the cylinder head combustion chamber 13a.
Is arranged. The fuel injection valve 1 is provided on the piston top surface 11a.
A cavity 20 having an opening on the upper surface is formed at a position below a line connecting the spark plug 8 and the spark plug 19.

【0019】機関10の燃焼室13には、エアクリーナ
21、吸気ダクト22、吸気コレクタ23、吸気ポート
15及び吸気弁14を介して空気が吸入される。吸気ダ
クト22には、吸気ダクト22内の通路の開口面積を変
化させる電子制御式のスロットル弁(以下「電制スロッ
トル弁」という)24が介装され、機関運転状態に基づ
いて制御されるアクチュエータ25を介して、機関への
吸入空気流量Qが制御される。
Air is sucked into the combustion chamber 13 of the engine 10 through an air cleaner 21, an intake duct 22, an intake collector 23, an intake port 15, and an intake valve 14. An electronically controlled throttle valve (hereinafter referred to as an “electronically controlled throttle valve”) 24 that changes the opening area of a passage in the intake duct 22 is interposed in the intake duct 22, and an actuator that is controlled based on an engine operating state. Via 25, the intake air flow Q to the engine is controlled.

【0020】そして、低負荷及び中負荷領域では、圧縮
行程後期に燃料噴霧をキャビティ20内に噴射して、点
火プラグ19下部に可燃混合気を層状に形成して成層燃
焼を行い、高負荷領域では、吸気行程中に燃料噴霧を燃
焼室13内に噴射して、燃焼室13内に略均質な可燃混
合気を形成して均質燃焼が行われる。また、機関10に
は、燃料供給系内で発生した蒸発燃料を処理する蒸発燃
料処理装置30が併設されている。即ち、燃料タンク3
1の上部の空間に溜まる蒸発燃料は、機関10の停止中
に、蒸発燃料通路32を介してキャニスタ33に導か
れ、キャニスタ33内の活性炭等の吸着材33aにより
一時的に吸着される。キャニスタ33の上部空間は、パ
ージ通路34を介して吸気コレクタ23に連通される。
パージ通路34には、パージ通路34を開閉する電子制
御式のパージバルブ35が介装される。
In the low-load and medium-load regions, fuel spray is injected into the cavity 20 at a later stage of the compression stroke, and a combustible air-fuel mixture is formed below the ignition plug 19 to perform stratified combustion. In the above, fuel spray is injected into the combustion chamber 13 during the intake stroke to form a substantially homogeneous combustible mixture in the combustion chamber 13 and homogeneous combustion is performed. Further, the engine 10 is provided with an evaporative fuel processing device 30 for processing the evaporative fuel generated in the fuel supply system. That is, the fuel tank 3
Evaporated fuel accumulated in the upper space of 1 is guided to the canister 33 via the evaporated fuel passage 32 while the engine 10 is stopped, and is temporarily adsorbed by the adsorbent 33a such as activated carbon in the canister 33. The upper space of the canister 33 is connected to the intake collector 23 via a purge passage 34.
The purge passage 34 is provided with an electronically controlled purge valve 35 for opening and closing the purge passage 34.

【0021】さらに、機関10には、排気の一部を吸入
系に導入して再循環させる排気再循環装置40が併設さ
れる。即ち、機関10の排気ポート17に接続されたE
GR通路41を介して排気の一部が吸気コレクタ23に
再循環される。EGR通路41には、機関運転状態に応
じて再循環される排気の量を制御する電子制御式のEG
Rコントロールバルブ42が介装される。そして、機関
運転状態に応じてEGRコントロールバルブ42を開閉
制御することで、吸入負圧を利用して排気が吸気コレク
タ23内に導入され、吸入空気と共に燃焼室13内に吸
引される。
Further, the engine 10 is provided with an exhaust gas recirculation device 40 for introducing a part of the exhaust gas into the intake system and recirculating the exhaust gas. That is, the E connected to the exhaust port 17 of the engine 10
Part of the exhaust gas is recirculated to the intake collector 23 through the GR passage 41. The EGR passage 41 has an electronically controlled EG that controls the amount of exhaust gas that is recirculated according to the operating state of the engine.
An R control valve 42 is interposed. By controlling the opening and closing of the EGR control valve 42 according to the engine operating state, the exhaust gas is introduced into the intake collector 23 using the suction negative pressure, and is sucked into the combustion chamber 13 together with the suction air.

【0022】ここで、かかる構成からなる機関10の制
御系について説明する。マイクロコンピュータ内蔵のコ
ントロールユニット50には、アクセルペダルの操作量
(以下「アクセル操作量」という)APSを検出するポ
テンショメータ式のアクセルセンサ51、機関回転速度
Ne を検出するクランク角センサ52、機関温度を代表
する冷却水温度Tw を検出する水温センサ53、吸入空
気流量Qを検出するエアフローメータ54、電制スロッ
トル弁24のスロットル弁開度θを検出するポテンショ
メータ式のスロットル弁開度センサ55、排気中の酸素
濃度を検出するO2 センサ56等の信号が入力される。
Here, a control system of the engine 10 having such a configuration will be described. A control unit 50 with a built-in microcomputer has a potentiometer type accelerator sensor 51 for detecting an accelerator pedal operation amount (hereinafter referred to as "accelerator operation amount") APS, a crank angle sensor 52 for detecting the engine speed Ne, and an engine temperature. A water temperature sensor 53 for detecting the representative cooling water temperature Tw, an air flow meter 54 for detecting the intake air flow rate Q, a potentiometer type throttle valve opening sensor 55 for detecting the throttle valve opening θ of the electronically controlled throttle valve 24, and exhaust air. signal of the O 2 sensor 56 for detecting the oxygen concentration of the input.

【0023】なお、アクセルセンサ51等の各種センサ
が運転状態検出手段に相当し、コントロールユニット5
0が目標当量比演算手段、目標当量比補正手段、切換条
件判定手段、燃焼状態切換手段、成立条件禁止手段及び
制限手段としての機能を有している。コントロールユニ
ット50は、入力された各種信号に基づいて検出される
運転状態に応じて、電制スロットル弁24の開度θを制
御すると共に、点火時期を設定して、設定された点火時
期に可燃混合気に火花点火する制御を行う。
Various sensors such as an accelerator sensor 51 correspond to operating state detecting means, and
0 has functions as a target equivalence ratio calculating means, a target equivalence ratio correcting means, a switching condition determining means, a combustion state switching means, a fulfillment condition prohibiting means and a limiting means. The control unit 50 controls the opening degree θ of the electronically controlled throttle valve 24 and sets the ignition timing in accordance with the operating state detected based on the various signals that have been input, and sets the ignition timing to Controls spark ignition of the mixture.

【0024】次に、本実施形態の作用の概要について、
図3のタイミングチャートを参照しつつ説明する。この
タイミングチャートは、成層燃焼運転中に減速をした場
合、成層燃焼から均質燃焼に切り換わる際に、目標当量
比及び燃焼状態がどのように切り換わるかを表わしたも
のである。先ず、運転者がアクセルペダルを放すと、ア
クセル操作量が所定値以下となり減速が開始される。即
ち、アクセル操作量が所定値以下となったときに、減速
が開始されたと判断される。
Next, an outline of the operation of the present embodiment will be described.
This will be described with reference to the timing chart of FIG. This timing chart shows how the target equivalent ratio and the combustion state change when switching from stratified combustion to homogeneous combustion when deceleration is performed during stratified combustion operation. First, when the driver releases the accelerator pedal, the accelerator operation amount falls below a predetermined value, and deceleration is started. That is, when the accelerator operation amount becomes equal to or less than the predetermined value, it is determined that the deceleration has been started.

【0025】減速が開始された場合には、基本目標当量
比マップを成層燃焼用から均質燃焼用に直ちに切り換え
るのではなく、切換制御が開始されてから所定時間DL
TFM経過後に基本目標当量比マップを切り換えるよう
にする。この所定時間DLTFMは、定数としてもよい
し、或いは、機関回転速度Ne や目標トルクtTc等の
機関運転状態に基づいて設定してもよい。このように、
減速が開始されてから所定時間DLTFM経過したとき
に、基本当量比マップを成層燃焼用から均質燃焼用に切
り換えるようにすれば、蒸発燃料処理装置30及び排気
再循環装置40等のデバイスの応答遅れが吸収でき、デ
バイスの応答遅れによって切換直後の均質燃焼が不安定
になることを防止することができる。
When the deceleration is started, the basic target equivalence ratio map is not immediately switched from the stratified charge combustion mode to the homogeneous charge combustion map, but a predetermined time DL after the switching control is started.
After the TFM has elapsed, the basic target equivalent ratio map is switched. The predetermined time DLTFM may be a constant or may be set based on an engine operating state such as the engine speed Ne and the target torque tTc. in this way,
If the basic equivalent ratio map is switched from stratified charge combustion to homogeneous charge combustion when a predetermined time DLTFM has elapsed since the start of deceleration, response delay of devices such as the evaporative fuel treatment device 30 and the exhaust gas recirculation device 40 can be achieved. Can be absorbed to prevent unstable homogeneous combustion immediately after switching due to a response delay of the device.

【0026】次に、機関回転速度Ne及び目標トルクt
Tcに基づいて基本目標当量比マップを参照して、基本
目標当量比TFBYA00を設定する。ここで参照され
る基本目標当量比マップは、減速が開始されてから所定
時間DLTFM経過するまでは成層燃焼用が参照され、
所定時間DLTFM経過後は均質燃焼用が参照される。
Next, the engine speed Ne and the target torque t
The basic target equivalent ratio TFBYA00 is set with reference to the basic target equivalent ratio map based on Tc. The basic target equivalence ratio map referred to here is referred to for stratified charge combustion until a predetermined time DLTFM has elapsed from the start of deceleration,
After the lapse of the predetermined time DLTFM, reference is made to the one for homogeneous combustion.

【0027】そして、基本目標当量比TFBYA00に
対して位相遅れ補正を行い、補正目標当量比TFBYA
4を設定する。位相遅れ補正を行う理由は、機関運転状
態の変化によって基本目標当量比TFBYA00が変化
した場合、基本目標当量比TFBYA00の変化に見合
った目標吸入空気流量になるようにスロットル弁を制御
しても、スロットル弁の動作遅れや吸気系の容積により
吸入空気流量の変化に遅れが生じるのに対して、燃料噴
射量は殆ど遅れがなく基本目標当量比TFBYA00の
変化に追従できるため、実際の当量比が基本目標当量比
の変化に対して遅れが生じるからである。従って、位相
遅れ補正を行うことにより、成層燃焼から均質燃焼への
切換時のトルク変動を、滑らかにすることができる。
Then, phase delay correction is performed on the basic target equivalent ratio TFBYA00, and the corrected target equivalent ratio TFBYA
Set 4. The reason for performing the phase lag correction is that when the basic target equivalent ratio TFBYA00 changes due to a change in the engine operating state, even if the throttle valve is controlled so that the target intake air flow rate matches the change in the basic target equivalent ratio TFBYA00, While the change in the intake air flow rate is delayed due to the delay in the operation of the throttle valve or the volume of the intake system, the fuel injection amount has almost no delay and can follow the change in the basic target equivalent ratio TFBYA00. This is because a delay occurs with respect to a change in the basic target equivalent ratio. Therefore, by performing the phase lag correction, the torque fluctuation at the time of switching from stratified combustion to homogeneous combustion can be made smooth.

【0028】最終的な目標当量比TFBYA0は、減速
が開始されてから実際に燃料カットが開始されるカット
インディレイ時間CFD内には、所定当量比TFBYA
DFに制限される。即ち、カットインディレイ時間CF
D内では、補正目標当量比TFBYA4と所定当量比T
FBYADFとを比較して、小さい方を目標当量比TF
BYA0として設定する。そして、目標当量比TFBY
A0が、成層燃焼から均質燃焼に切り換える判定を行う
当量比しきい値TFACH以上になったときに、燃焼フ
ラグFSTRR1を均質燃焼に切り換える。このように
すれば、カットインディレイ時間CFD内に、成層燃焼
から均質燃焼への燃焼状態の切換が禁止されるので、燃
料カットが行われるまでの間の排気性状の低下を防止す
ることができる。
The final target equivalence ratio TFBYA0 is equal to the predetermined equivalence ratio TFBYA0 within the cut-in delay time CFD at which the fuel cut is actually started after the deceleration is started.
Limited to DF. That is, the cut-in delay time CF
In D, the correction target equivalent ratio TFBYA4 and the predetermined equivalent ratio T
Compared to FBYADF, the smaller one is the target equivalent ratio TF
Set as BYA0. Then, the target equivalent ratio TFBY
When A0 becomes equal to or higher than the equivalence ratio threshold value TFACH for determining whether to switch from stratified combustion to homogeneous combustion, the combustion flag FSTRR1 is switched to homogeneous combustion. In this way, since the switching of the combustion state from stratified combustion to homogeneous combustion is prohibited within the cut-in delay time CFD, it is possible to prevent a decrease in the exhaust properties until the fuel cut is performed. .

【0029】図4及び図5は、以上説明した目標当量比
及び燃焼状態の実際の切換制御内容を示したフローチャ
ートである。ステップ1(図では「S1」と略記する。
以下同様)では、アクセルセンサ51より検出されたア
クセル操作量APSに基づいて、機関10が減速中であ
るか否かを判定する。具体的には、検出されたアクセル
操作量APSが所定値以下であるときに、機関10が減
速中であると判定し、減速中であれば(Yes)ステッ
プ2へと進み、減速中でなければ(No)ステップ3へ
と進む。
FIGS. 4 and 5 are flow charts showing the contents of the actual switching control of the target equivalent ratio and the combustion state described above. Step 1 (abbreviated as “S1” in the figure)
In the following), it is determined whether or not the engine 10 is decelerating based on the accelerator operation amount APS detected by the accelerator sensor 51. Specifically, when the detected accelerator operation amount APS is equal to or smaller than the predetermined value, it is determined that the engine 10 is decelerating. If the engine 10 is decelerating (Yes), the process proceeds to step 2 and the engine 10 must not be decelerating. (No) Go to step 3.

【0030】ステップ2では、減速時における燃料カッ
ト制御を行う。即ち、図3に示すように、減速開始直後
から徐々に基本噴射パルス幅を徐々に減少させ、カット
インディレイ時間CFD経過後に基本噴射パルス幅を0
にする制御を行うことで、燃料カット制御が行われる。
なお、このステップにおける燃料カット制御は、電子制
御式燃料噴射装置で一般的に行われているものであり、
その制御内容は公知のものである。
In step 2, fuel cut control during deceleration is performed. That is, as shown in FIG. 3, the basic injection pulse width is gradually reduced immediately after the start of deceleration, and the basic injection pulse width is set to 0 after the cut-in delay time CFD has elapsed.
Is performed, the fuel cut control is performed.
The fuel cut control in this step is generally performed by an electronically controlled fuel injection device.
The control contents are publicly known.

【0031】ステップ3では、減速中でないときの燃料
供給制御を行う。即ち、機関回転速度Ne ,吸入空気流
量Q等に基づいて基本燃料供給量Tp を設定し、冷却水
温度Tw 等を考慮した各種補正を行い有効燃料供給量T
e を算出して、有効燃料供給量Te に対応した基本噴射
パルス幅でもって燃料噴射を行う。そして、本ルーチン
を終了する。
In step 3, fuel supply control is performed when the vehicle is not decelerating. That is, the basic fuel supply amount Tp is set based on the engine rotation speed Ne, the intake air flow rate Q, and the like, and various corrections are made in consideration of the cooling water temperature Tw and the like, and the effective fuel supply amount Tp
e is calculated, and fuel is injected with a basic injection pulse width corresponding to the effective fuel supply amount Te. Then, this routine ends.

【0032】ステップ4では、均質燃焼切換フラグFS
TR0に「0」をセットする。均質燃焼切換フラグFS
TR0は、均質燃焼に切り換える場合には「0」が、成
層燃焼を維持する場合には「1」がセットされる。ステ
ップ5では、減速を開始してから所定時間DLTFM経
過したか否か、即ち、均質燃焼切換フラグFSTR0が
「1」から「0」になってから所定時間DLTFM経過
したか否かを判定し、所定時間DLTFM経過したとき
には(Yes)ステップ6へと進み、所定時間DLTF
M経過していないときには(No)ステップ7へと進
む。
In step 4, the homogeneous combustion switching flag FS
"0" is set to TR0. Homogeneous combustion switching flag FS
TR0 is set to "0" when switching to homogeneous combustion, and "1" to maintain stratified combustion. In step 5, it is determined whether or not a predetermined time DLTFM has elapsed since the start of deceleration, that is, whether or not a predetermined time DLTFM has elapsed since the homogeneous combustion switching flag FSTR0 changed from "1" to "0". When the predetermined time DLTFM has elapsed (Yes), the process proceeds to step 6, where the predetermined time DLTFM
If M has not elapsed (No), the process proceeds to step 7.

【0033】ステップ6では、当量比マップ参照用フラ
グFSTR1を「0」にセットする。当量比マップ参照
用フラグFSTR1は、均質燃焼用マップを参照する場
合には「0」が、成層燃焼用マップを参照する場合には
「1」がセットされる。ステップ7では、当量比マップ
参照用フラグFSTR1に応じたマップ(均質燃焼用マ
ップ或いは成層燃焼用マップ)を選択し、機関回転速度
Ne 及び目標トルクtTcに基づく基本目標当量比TF
BYA00を演算する。ここで、目標トルクtTcは、
例えば、アクセル操作量APS及び機関回転速度Ne に
基づいて設定される。なお、ステップ6の処理が目標当
量比演算手段に相当する。
At step 6, an equivalent ratio map reference flag FSTR1 is set to "0". The equivalence ratio map reference flag FSTR1 is set to “0” when referring to the homogeneous combustion map, and is set to “1” when referring to the stratified combustion map. In step 7, a map (homogeneous combustion map or stratified combustion map) corresponding to the equivalence ratio map reference flag FSTR1 is selected, and the basic target equivalence ratio TF based on the engine speed Ne and the target torque tTc is selected.
Calculate BYA00. Here, the target torque tTc is:
For example, it is set based on the accelerator operation amount APS and the engine speed Ne. Note that the processing in step 6 corresponds to a target equivalent ratio calculating means.

【0034】ステップ8では、吸入空気流量Qの補正制
御が行われる。即ち、図3に示すように、スロットル弁
の応答遅れを考慮して、スロットル開度を段階的に減少
させる制御を行うことで、実際のスロットル開度が図の
点線のように変化するようにする。ステップ9では、基
本目標当量比TFBYA00に対して位相遅れ補正処理
を行う。具体的には、補正処理後の補正目標当量比をT
FBYA4とすると、次式によって補正が行われる。
In step 8, correction control of the intake air flow rate Q is performed. That is, as shown in FIG. 3, by performing control to gradually reduce the throttle opening in consideration of the response delay of the throttle valve, the actual throttle opening changes as indicated by the dotted line in the figure. I do. In step 9, a phase delay correction process is performed on the basic target equivalent ratio TFBYA00. Specifically, the corrected target equivalent ratio after the correction processing is set to T
If FBYA4 is set, the correction is performed by the following equation.

【0035】 TFBYA4=FLOAD×TFBYA00 +(1−FLOAD)×TFBYA4(n−1) ここで、FLOADは、機関運転状態に応じて設定され
る加重平均係数、TFBYA4(n−1)は、前回の補
正目標当量比である。なお、ステップ9の処理が目標当
量比補正手段に相当する。
TFBYA4 = FLOAD × TFBYA00 + (1−FLOAD) × TFBYA4 (n−1) Here, FLOAD is a weighted average coefficient set according to the engine operation state, and TFBYA4 (n−1) is This is a correction target equivalent ratio. Note that the processing in step 9 corresponds to a target equivalent ratio correction unit.

【0036】ステップ10では、燃焼判定フラグFST
RRに基づき、現在成層燃焼中であるか否かを判定し、
成層燃焼運転中のときには(Yes)ステップ11へと
進み、均質燃焼運転中のときには(No)本ルーチンを
終了させる。なお、燃焼判定フラグFSTRRは、均質
燃焼中には「0」に、成層燃焼中には「1」に設定され
る。
In step 10, the combustion determination flag FST
Based on RR, it is determined whether or not stratified combustion is currently in progress,
When the stratified combustion operation is being performed (Yes), the process proceeds to step 11, and when the homogeneous combustion operation is being performed (No), this routine is ended. Note that the combustion determination flag FSTRR is set to “0” during homogeneous combustion, and is set to “1” during stratified combustion.

【0037】ステップ11では、減速を開始してから所
定時間CFD経過したか否か、即ち、均質燃焼切換フラ
グFSTR0が「1」から「0」になってから所定時間
CFD経過したか否かを判定し、所定時間CFD経過し
たときには(Yes)ステップ12へと進み、所定時間
CFD経過していないときには(No)ステップ13へ
と進む。
In step 11, it is determined whether a predetermined time CFD has elapsed since the start of deceleration, that is, whether a predetermined time CFD has elapsed since the homogeneous combustion switching flag FSTR0 changed from "1" to "0". If it is determined that the predetermined time CFD has elapsed (Yes), the process proceeds to step 12, and if the predetermined time CFD has not elapsed (No), the process proceeds to step 13.

【0038】ステップ12では、目標当量比TFBYA
0として補正目標当量比TFBYA4をセットする。ス
テップ13では、補正目標当量比TFBYA4が所定当
量比TFBYADF以上であるか否かを判定し、TFB
YA4≧TFBYADF(Yes)のときにはステップ
14へと進み、TFBYA4<TFBYADF(No)
のときにはステップ12へと進む。
In step 12, the target equivalent ratio TFBYA
As 0, the correction target equivalent ratio TFBYA4 is set. In step 13, it is determined whether or not the corrected target equivalent ratio TFBYA4 is equal to or greater than the predetermined equivalent ratio TFBYADF.
If YA4 ≧ TFBYADF (Yes), the process proceeds to step 14, where TFBYA4 <TFBYADF (No)
If so, go to step 12.

【0039】ステップ14では、目標当量比TFBYA
0として所定当量比TFBYADFをセットする。即
ち、ステップ12〜ステップ14の処理で、補正目標当
量比TFBYA4と所定当量比TFBYADFとの小さ
い方を選択して、最終的な目標当量比TFBFA0とし
てセットする。なお、ステップ12〜ステップ14の処
理が条件成立禁止手段に相当し、特に、ステップ14の
処理が制限手段に相当する。
In step 14, the target equivalent ratio TFBYA
The predetermined equivalence ratio TFBYADF is set to 0. That is, in the processing of steps 12 to 14, the smaller of the corrected target equivalent ratio TFBYA4 and the predetermined equivalent ratio TFBYADF is selected and set as the final target equivalent ratio TFBFA0. Note that the processing of steps 12 to 14 corresponds to the condition satisfaction prohibiting means, and in particular, the processing of step 14 corresponds to the limiting means.

【0040】ステップ15では、成層燃焼から均質燃焼
に燃焼状態を切り換えるか否かを判定する。具体的に
は、目標当量比TFBYA0が当量比しきい値TFAC
H以上であるか否かを判定し、TFBYA0≧TFAC
H(Yes)であればステップ16へと進み、TFBY
A0<TFACH(No)であれば本ルーチンを終了す
る。なお、ステップ15の処理が切換条件判定手段に相
当する。
In step 15, it is determined whether or not to switch the combustion state from stratified combustion to homogeneous combustion. Specifically, the target equivalence ratio TFBYA0 is equal to the equivalence ratio threshold value TFAC.
H is determined to be greater than or equal to H, TFBYA0 ≧ TFAC
If H (Yes), the process proceeds to step 16 where TFBY
If A0 <TFACH (No), this routine ends. Note that the processing in step 15 corresponds to a switching condition determination unit.

【0041】ステップ16では、均質燃焼への切換条件
が全て成立したので、均質燃焼に切り換えるべく燃焼判
定フラグFSTRRを「0」(均質燃焼中)にセットす
る。そして、図示しない別のルーチンにより、燃焼判定
フラグFSTRRに基づく燃焼制御が行われる(燃焼状
態切換手段)。このような処理によれば、減速を開始し
てから所定時間CFD経過し、かつ、基本目標当量比T
FBYA00に対して位相遅れ補正を行った補正目標当
量比TFBYA4が当量比しきい値TFACH以上にな
ったときに、減速時における成層燃焼から均質燃焼への
燃焼状態の切換条件が成立したと判定される。従って、
目標当量比TFBYA0が徐々に切り換わるので、燃焼
状態の切換中のトルク変動を滑らかにすることができ
る。また、目標当量比TFBYA0を演算するマップを
切り換えるタイミングを遅延することにより、蒸発燃料
処理装置や排気再循環装置等のデバイスの応答遅れを吸
収することができ、切換直後の燃焼が不安定になること
が防止される。さらに、減速時に燃料カットが行われる
までの間、均質燃焼への切り換えが禁止されるので、排
気性状の低下を防止することができる。
In step 16, since all the conditions for switching to homogeneous combustion are satisfied, the combustion determination flag FSTRR is set to "0" (during homogeneous combustion) to switch to homogeneous combustion. Then, combustion control based on the combustion determination flag FSTRR is performed by another routine (not shown) (combustion state switching means). According to such processing, the predetermined time CFD has elapsed since the start of deceleration, and the basic target equivalent ratio T
When the correction target equivalence ratio TFBYA4 obtained by performing the phase delay correction on FBYA00 becomes equal to or higher than the equivalence ratio threshold value TFACH, it is determined that the condition for switching the combustion state from stratified combustion to homogeneous combustion during deceleration is satisfied. You. Therefore,
Since the target equivalent ratio TFBYA0 is gradually switched, torque fluctuation during switching of the combustion state can be smoothed. Further, by delaying the timing of switching the map for calculating the target equivalent ratio TFBYA0, it is possible to absorb a response delay of a device such as an evaporative fuel processing device or an exhaust gas recirculation device, and combustion immediately after the switching becomes unstable. Is prevented. Further, since the switching to the homogeneous combustion is prohibited until the fuel cut is performed at the time of deceleration, it is possible to prevent the deterioration of the exhaust properties.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の請求項1のクレーム対応図FIG. 1 is a diagram corresponding to claim 1 of the present invention.

【図2】 本発明の一実施形態を示すシステム構成図FIG. 2 is a system configuration diagram showing an embodiment of the present invention.

【図3】 同上の制御内容を示すタイミングチャートFIG. 3 is a timing chart showing control contents of the above.

【図4】 同上の制御内容を示すフローチャートFIG. 4 is a flowchart showing control contents of the above.

【図5】 同上の制御内容を示すフローチャートFIG. 5 is a flowchart showing control contents of the above.

【符号の説明】[Explanation of symbols]

10 筒内噴射式内燃機関 13 燃焼室 18 燃料噴射弁 50 コントロールユニット 51 アクセルセンサ 52 クランク角センサ Reference Signs List 10 in-cylinder internal combustion engine 13 combustion chamber 18 fuel injection valve 50 control unit 51 accelerator sensor 52 crank angle sensor

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】燃焼室内の可燃混合気を成層状態と均質状
態とに切り換えることにより、燃焼状態を成層燃焼と均
質燃焼とに切換可能な内燃機関であって、成層燃焼中に
減速を行ったときに、減速を開始してから第1の所定時
間経過後に燃料供給を停止すると共に、成層燃焼から均
質燃焼に燃焼状態を切り換えるべく目標当量比を移行さ
せる内燃機関の燃料供給制御装置において、 機関運転状態を検出する運転状態検出手段と、検出され
た運転状態に応じて目標当量比を演算する目標当量比演
算手段と、演算された目標当量比に対して目標当量比の
変化を遅らせるように補正する目標当量比補正手段と、
補正された目標当量比に基づいて成層燃焼から均質燃焼
への切換条件が成立したか否かを判定する切換条件判定
手段と、均質燃焼への切換条件が成立したときに、燃焼
状態を成層燃焼から均質燃焼に切り換える燃焼状態切換
手段と、を含んで構成されたことを特徴とする内燃機関
の燃料供給制御装置。
An internal combustion engine capable of switching a combustion state between stratified combustion and homogeneous combustion by switching a combustible mixture in a combustion chamber between a stratified state and a homogeneous state, wherein deceleration is performed during stratified combustion. A fuel supply control device for an internal combustion engine that stops the fuel supply after a first predetermined time has elapsed from the start of deceleration and shifts a target equivalent ratio to switch the combustion state from stratified combustion to homogeneous combustion. Operating state detecting means for detecting an operating state; target equivalent ratio calculating means for calculating a target equivalent ratio in accordance with the detected operating state; and a method for delaying a change in the target equivalent ratio with respect to the calculated target equivalent ratio. Target equivalent ratio correction means for correcting,
A switching condition determining means for determining whether a condition for switching from stratified combustion to homogeneous combustion is established based on the corrected target equivalence ratio, and a combustion condition for stratified combustion when the condition for switching to homogeneous combustion is satisfied. And a combustion state switching means for switching from a combustion mode to a homogeneous combustion mode.
【請求項2】前記目標当量比演算手段は、減速を開始し
てから第2の所定時間経過したときに、演算すべき目標
当量比を、成層燃焼における目標当量比から均質燃焼に
おける目標当量比に切り換える制御を行う構成である請
求項1記載の内燃機関の燃料供給制御装置。
2. The target equivalence ratio calculating means calculates a target equivalence ratio to be calculated from a target equivalence ratio in stratified combustion to a target equivalence ratio in homogeneous combustion when a second predetermined time has elapsed since the start of deceleration. 2. The fuel supply control device for an internal combustion engine according to claim 1, wherein the control is performed to switch the fuel supply to the internal combustion engine.
【請求項3】前記切換条件判定手段は、前記第1の所定
時間が経過するまでは、成層燃焼から均質燃焼への切換
条件の成立を禁止する条件成立禁止手段を含んで構成さ
れた請求項1又は2に記載の内燃機関の燃料供給制御装
置。
3. The switching condition judging means includes a condition satisfaction prohibiting means for prohibiting establishment of a switching condition from stratified combustion to homogeneous combustion until the first predetermined time has elapsed. 3. The fuel supply control device for an internal combustion engine according to claim 1 or 2.
【請求項4】前記切換条件判定手段は、前記目標当量比
補正手段により補正された目標当量比が所定の当量比し
きい値以上になったときに、成層燃焼から均質燃焼への
切換条件が成立したと判定する構成である請求項1〜3
のいずれか1つに記載の内燃機関の燃料供給制御装置。
4. The switching condition determining means determines that a condition for switching from stratified combustion to homogeneous combustion is satisfied when the target equivalence ratio corrected by the target equivalence ratio correction means becomes equal to or greater than a predetermined equivalence ratio threshold value. 4. The configuration according to claim 1, wherein the determination is made.
The fuel supply control device for an internal combustion engine according to any one of the above.
【請求項5】前記条件成立禁止手段は、前記第1の所定
時間内は、前記目標当量比補正手段により補正された目
標当量比を前記当量比しきい値未満に制限する制限手段
を含んで構成された請求項4記載の内燃機関の燃料供給
制御装置。
5. The condition satisfaction inhibiting means includes limiting means for limiting the target equivalence ratio corrected by the target equivalence ratio correcting means to less than the equivalence ratio threshold value within the first predetermined time. The fuel supply control device for an internal combustion engine according to claim 4, wherein the control device is a fuel supply control device.
【請求項6】燃焼室内の可燃混合気を成層状態と均質状
態とに切り換えることにより、燃焼状態を成層燃焼と均
質燃焼とに切換可能な内燃機関であって、成層燃焼中に
減速を行ったときに、減速を開始してから所定時間経過
後に燃料供給を停止すると共に、成層燃焼から均質燃焼
に燃焼状態を切り換えるべく目標当量比を移行させる内
燃機関の燃料供給制御装置において、 成層燃焼から均質燃焼に燃焼状態を切り換える際に、機
関運転状態に応じて演算された目標当量比を徐々に変化
させることを特徴とする内燃機関の燃料供給制御装置。
6. An internal combustion engine capable of switching a combustion state between stratified combustion and homogeneous combustion by switching a combustible mixture in a combustion chamber between a stratified state and a homogeneous state, wherein deceleration is performed during stratified combustion. Sometimes, the fuel supply is stopped after a lapse of a predetermined time from the start of deceleration, and the fuel supply control device for the internal combustion engine that shifts the target equivalent ratio to switch the combustion state from stratified combustion to homogeneous combustion. A fuel supply control device for an internal combustion engine, wherein a target equivalent ratio calculated according to an engine operating state is gradually changed when switching a combustion state to combustion.
JP19669497A 1997-07-23 1997-07-23 Fuel supply control device for internal combustion engine Expired - Lifetime JP3677953B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19669497A JP3677953B2 (en) 1997-07-23 1997-07-23 Fuel supply control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19669497A JP3677953B2 (en) 1997-07-23 1997-07-23 Fuel supply control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JPH1136920A true JPH1136920A (en) 1999-02-09
JP3677953B2 JP3677953B2 (en) 2005-08-03

Family

ID=16362043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19669497A Expired - Lifetime JP3677953B2 (en) 1997-07-23 1997-07-23 Fuel supply control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP3677953B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000042306A1 (en) * 1999-01-12 2000-07-20 Toyota Jidosha Kabushiki Kaisha Device and method for controlling engines
US6443120B1 (en) 2000-04-21 2002-09-03 Toyota Jidosha Kabushiki Kaisha Controlling apparatus and method of internal combustion engine
DE10030366B4 (en) * 1999-06-18 2006-10-12 Toyota Jidosha K.K., Toyota Control device for a vehicle internal combustion engine
JP2008038865A (en) * 2006-08-10 2008-02-21 Toyota Motor Corp Combustion controller for internal combustion engine
US7503873B2 (en) 2004-08-31 2009-03-17 Denso Corporation Control apparatus for an automatic transmission and related control method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000042306A1 (en) * 1999-01-12 2000-07-20 Toyota Jidosha Kabushiki Kaisha Device and method for controlling engines
US6510835B1 (en) 1999-01-12 2003-01-28 Toyota Jidosha Kabushiki Kaisha Device and method for controlling engines
DE10030366B4 (en) * 1999-06-18 2006-10-12 Toyota Jidosha K.K., Toyota Control device for a vehicle internal combustion engine
DE10030366B8 (en) * 1999-06-18 2007-06-21 Toyota Jidosha Kabushiki Kaisha, Toyota Control device for a vehicle internal combustion engine
US6443120B1 (en) 2000-04-21 2002-09-03 Toyota Jidosha Kabushiki Kaisha Controlling apparatus and method of internal combustion engine
US7503873B2 (en) 2004-08-31 2009-03-17 Denso Corporation Control apparatus for an automatic transmission and related control method
US7645210B2 (en) 2004-08-31 2010-01-12 Denso Corporation Control apparatus for an automatic transmission and related control method
JP2008038865A (en) * 2006-08-10 2008-02-21 Toyota Motor Corp Combustion controller for internal combustion engine

Also Published As

Publication number Publication date
JP3677953B2 (en) 2005-08-03

Similar Documents

Publication Publication Date Title
US6024069A (en) Controller for an internal combustion engine
JP3211677B2 (en) Ignition timing control system for in-cylinder injection internal combustion engine
US7168409B2 (en) Controller for direct injection internal combustion engine
JP3683681B2 (en) Control device for direct-injection spark-ignition internal combustion engine
JP3971004B2 (en) Combustion switching control device for internal combustion engine
JP4477249B2 (en) In-cylinder injection internal combustion engine control device
JPH1193731A (en) Fuel injection control device for cylinder injection internal combustion engine
JP2003172170A (en) Brake negative pressure control device for internal combustion engine
JPH1130159A (en) Evaporated fuel purge processing control device for internal combustion engine
JPH11287143A (en) Internal combustion engine controller
JPH1136920A (en) Fuel supply control device for internal combustion engine
JP5586733B1 (en) Fuel injection amount control device for internal combustion engine and fuel injection amount control method for internal combustion engine
JP3846481B2 (en) In-cylinder injection internal combustion engine control device
US6390083B2 (en) Control apparatus for internal combustion engine
JP3985419B2 (en) Control device for internal combustion engine
JPH11101144A (en) Fuel supply control device for internal combustion engine
JP4453187B2 (en) Control device for internal combustion engine
JP3835975B2 (en) In-cylinder injection internal combustion engine control device
JPH1068376A (en) Lean burn internal combustion engine
JP4339599B2 (en) In-cylinder injection internal combustion engine control device
JP3491019B2 (en) Idle rotation learning control system for electronically controlled throttle internal combustion engine
JP3384291B2 (en) Evaporative fuel treatment system for internal combustion engine
JP4123612B2 (en) In-cylinder injection engine control device
JP3189731B2 (en) Control device for in-cylinder injection spark ignition internal combustion engine
JP3562315B2 (en) Evaporative fuel supply control device for lean burn internal combustion engine

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050419

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050502

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080520

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090520

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090520

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100520

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110520

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130520

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 9

EXPY Cancellation because of completion of term