JP3677953B2 - Fuel supply control device for internal combustion engine - Google Patents

Fuel supply control device for internal combustion engine Download PDF

Info

Publication number
JP3677953B2
JP3677953B2 JP19669497A JP19669497A JP3677953B2 JP 3677953 B2 JP3677953 B2 JP 3677953B2 JP 19669497 A JP19669497 A JP 19669497A JP 19669497 A JP19669497 A JP 19669497A JP 3677953 B2 JP3677953 B2 JP 3677953B2
Authority
JP
Japan
Prior art keywords
combustion
equivalent ratio
switching
target equivalent
homogeneous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP19669497A
Other languages
Japanese (ja)
Other versions
JPH1136920A (en
Inventor
尚夫 川崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP19669497A priority Critical patent/JP3677953B2/en
Publication of JPH1136920A publication Critical patent/JPH1136920A/en
Application granted granted Critical
Publication of JP3677953B2 publication Critical patent/JP3677953B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、内燃機関の燃料供給制御装置において、特に、減速時における成層燃焼から均質燃焼への燃焼状態の切り換えを円滑にする技術に関する。
【0002】
【従来の技術】
従来から、減速時に燃料供給を停止し、HCの抑制と燃費向上を図った燃料カット制御を行う燃料供給制御装置が知られている(特開昭54−148929号公報等参照)。
【0003】
【発明が解決しようとする課題】
かかる燃料供給制御装置は、理論空然比近傍で可燃混合気を燃焼させる均質燃焼を前提としていたため、減速時における目標当量比に殆ど変化がなく、燃料カット後のリカバリー時におけるトルク変動がさほど問題とはならなかった。
しかしながら、近年、排気性状及び燃費の向上を目的として開発された、筒内に燃料を直接噴射して点火プラグによって火花点火を行う筒内噴射式内燃機関においては、目標当量比が極めて小さい超希薄燃焼を行う成層燃焼と、目標当量比が比較的大きい均質燃焼と、を機関運転状態に応じて切り換えている。従って、成層燃焼を行っている状態で減速すると、成層燃焼から均質燃焼への切り換えに伴い目標当量比を切り換える必要がある。この場合、従来の燃料供給制御装置をそのまま適用すると、次のような不具合が生じるおそれがある。
【0004】
(1) 成層燃焼から均質燃焼への切り換えと同時に目標当量比を切り換えると、切換時における空気量が過大となるため、トルクが急激に上昇し、減速感を損なうおそれがある。
(2) 排気の一部を吸気系に導入して再循環させる排気再循環装置等のデバイスを備える内燃機関において、成層燃焼から均質燃焼への切換時に、デバイスの応答遅れ等の影響により切換直後の燃焼が不安定になるおそれがある。
【0005】
(3) 成層燃焼から均質燃焼への切換中に目標当量比を変化させた場合には、成層燃焼と均質燃焼との中間の当量比を通過するため、燃料カットを行っていないときには、排気性状が低下するおそれがある。
そこで、本発明は以上のような従来の問題点に鑑み、減速時における成層燃焼から均質燃焼への燃焼状態の切り換えを円滑にすることで、切換時におけるトルク変動、燃焼の不安定化及び排気性状の低下を防止した内燃機関の燃料供給制御装置を提供することを目的とする。
【0006】
【課題を解決するための手段】
このため、請求項1記載の発明は、図1に示すように、燃焼室内の可燃混合気を成層状態と均質状態とに切り換えることにより、燃焼状態を成層燃焼と均質燃焼とに切換可能な内燃機関であって、成層燃焼中に減速を行ったときに、減速を開始してから第1の所定時間経過後に燃料供給を停止すると共に、減速を開始してから前記第1の所定時間が経過するまでの間に成層燃焼における目標当量比から均質燃焼における目標当量比に切り換える内燃機関の燃料供給制御装置において、内燃機関の燃料供給制御装置を、機関運転状態を検出する運転状態検出手段Aと、検出された運転状態に応じて目標当量比を演算する目標当量比演算手段Bと、演算された目標当量比に対して目標当量比の変化を徐々に遅らせるように補正する目標当量比補正手段Cと、補正された目標当量比に基づいて成層燃焼から均質燃焼への切換条件が成立したか否かを判定する切換条件判定手段Dと、均質燃焼への切換条件が成立したときに、燃焼状態を成層燃焼から均質燃焼に切り換える燃焼状態切換手段Eと、を含んで構成した。
【0007】
かかる構成によれば、目標当量比は、目標当量比演算手段によって運転状態に応じて設定された後、目標当量比補正手段により目標当量比の変化を遅らせるように補正される。そして、切換条件判定手段により、補正された目標当量比に基づいて成層燃焼から均質燃焼への切換条件が成立したと判定されたときに、燃焼状態切換手段によって成層燃焼から均質燃焼に切り換えられる。
【0008】
従って、成層燃焼から均質燃焼への燃焼状態の切り換えが行われる際に、目標当量比が徐々に変化するので、均質燃焼への切換直後に空気量が過大となることがなく、トルクの急激な上昇が防止される。
請求項2記載の発明は、前記目標当量比演算手段を、減速を開始してから前記第1の所定時間より短い第2の所定時間経過したときに、演算すべき目標当量比を、成層燃焼における目標当量比から均質燃焼における目標当量比に切り換える制御を行う構成とした。
【0009】
かかる構成によれば、減速が開始されてから第2の所定時間経過したときに、演算すべき目標当量比が均質燃焼における目標当量比に切り換えられるので、例えば、蒸発燃料処理装置や排気再循環装置等のデバイスを備えていても、切換時のデバイスの応答遅れが吸収される。
請求項3記載の発明は、前記切換条件判定手段を、前記第1の所定時間が経過するまでは、成層燃焼から均質燃焼への切換条件の成立を禁止する条件成立禁止手段を含んで構成した。
【0010】
かかる構成によれば、減速が開始されてから第1の所定時間経過するまでは、均質燃焼への切換条件の成立が禁止、即ち、均質燃焼への切り換えが禁止されるので、成層燃焼と均質燃焼との中間の当量比において燃焼が行われることが防止される。
請求項4記載の発明は、前記切換条件判定手段を、前記目標当量比補正手段により補正された目標当量比が所定の当量比しきい値以上になったときに、成層燃焼から均質燃焼への切換条件が成立したと判定する構成とした。
【0011】
かかる構成によれば、補正された目標当量比が所定の当量比しきい値以上になったときに、均質燃焼への切換条件が成立、即ち、均質燃焼への切り換えが行われるので、切換条件判定処理が極めて簡単に行われる。
請求項5記載の発明は、前記条件成立禁止手段を、前記第1の所定時間内は、前記目標当量比補正手段により補正された目標当量比を前記当量比しきい値未満に制限する制限手段を含んで構成した。
【0012】
かかる構成によれば、第1の所定時間内は補正された目標当量比が当量比しきい値未満に制限されるので、第1の所定時間内は目標当量比が小さくなり、均質燃焼への切り換えが行われないため排気性状が向上すると共に、燃料供給を停止したときのトルク変動が抑制される。
請求項6記載の発明は、燃焼室内の可燃混合気を成層状態と均質状態とに切り換えることにより、燃焼状態を成層燃焼と均質燃焼とに切換可能な内燃機関であって、成層燃焼中に減速を行ったときに、減速を開始してから所定時間経過後に燃料供給を停止すると共に、成層燃焼から均質燃焼に燃焼状態を切り換えるべく目標当量比を移行させる内燃機関の燃料供給制御装置において、内燃機関の燃料供給制御装置を、成層燃焼から均質燃焼に燃焼状態を切り換える際に、機関運転状態に応じて演算された目標当量比を徐々に変化させるようにした。
【0013】
かかる構成によれば、成層燃焼から均質燃焼に燃焼状態を切り換える際に、機関運転状態に応じて演算された目標当量比は徐々に変化するので、均質燃焼への切換直後に空気量が過大となることがなく、トルクの急激な上昇が防止される。
【0014】
【発明の効果】
以上説明したように、請求項1又は6に記載の発明によれば、成層燃焼から均質燃焼への燃焼状態の切換時に、トルクの急激な上昇が防止されるので、減速感の低下を抑制することができる。
請求項2記載の発明によれば、成層燃焼から均質燃焼への燃焼状態の切換時に、デバイスの応答遅れが吸収されるので、切換直後の燃焼を安定させることができる。
【0015】
請求項3記載の発明によれば、成層燃焼から均質燃焼への燃焼状態の切換時に、成層燃焼と均質燃焼との中間の当量比において燃焼が行われることが防止されるので、燃料供給を停止していない状態における排気性状を向上することができる。
請求項4記載の発明によれば、成層燃焼から均質燃焼への切換判定処理が極めて簡単に行われるので、車載制御装置の負担を軽減することができる。
【0016】
請求項5記載の発明によれば、第1の所定時間が経過するまでは、均質燃焼への切り換えが行われないので、排気性状が向上すると共に、燃料供給を停止したときのトルク変動が抑制されるので、乗心地を向上することができる。
【0017】
【発明の実施の形態】
以下、添付された図面を参照して本発明を詳述する。
図2は、本発明に係る燃料供給制御装置を筒内噴射式内燃機関に適用した一実施形態を示す。
先ず、筒内噴射式内燃機関(以下「機関」という)10の構成について説明する。ピストン11の頂面(以下「ピストン頂面」という)11aとシリンダヘッド12下面との間には、所定容積を有する燃焼室13が形成される。燃焼室13の上部に位置するシリンダヘッド12の壁面、即ち、シリンダヘッド12の下部に形成されたシリンダヘッド燃焼室13aの壁面には、吸気弁14によって開閉される吸気ポート15、及び、排気弁16によって開閉される排気ポート17が、夫々並列して2つずつ形成される。
【0018】
シリンダヘッド12の両吸気ポート15間には、燃焼室13に噴口を臨ませて燃焼室13内に直接燃料を噴射する燃料噴射弁18が配設される。また、シリンダヘッド燃焼室13aの壁面の略中央部には、燃料と空気との可燃混合気を火花点火させる点火プラグ19が配設される。
ピストン頂面11aには、燃料噴射弁18と点火プラグ19とを結ぶ線下の位置に、開口部が上面に形成されたキャビティ20が形成される。
【0019】
機関10の燃焼室13には、エアクリーナ21、吸気ダクト22、吸気コレクタ23、吸気ポート15及び吸気弁14を介して空気が吸入される。吸気ダクト22には、吸気ダクト22内の通路の開口面積を変化させる電子制御式のスロットル弁(以下「電制スロットル弁」という)24が介装され、機関運転状態に基づいて制御されるアクチュエータ25を介して、機関への吸入空気流量Qが制御される。
【0020】
そして、低負荷及び中負荷領域では、圧縮行程後期に燃料噴霧をキャビティ20内に噴射して、点火プラグ19下部に可燃混合気を層状に形成して成層燃焼を行い、高負荷領域では、吸気行程中に燃料噴霧を燃焼室13内に噴射して、燃焼室13内に略均質な可燃混合気を形成して均質燃焼が行われる。
また、機関10には、燃料供給系内で発生した蒸発燃料を処理する蒸発燃料処理装置30が併設されている。即ち、燃料タンク31の上部の空間に溜まる蒸発燃料は、機関10の停止中に、蒸発燃料通路32を介してキャニスタ33に導かれ、キャニスタ33内の活性炭等の吸着材33aにより一時的に吸着される。キャニスタ33の上部空間は、パージ通路34を介して吸気コレクタ23に連通される。パージ通路34には、パージ通路34を開閉する電子制御式のパージバルブ35が介装される。
【0021】
さらに、機関10には、排気の一部を吸入系に導入して再循環させる排気再循環装置40が併設される。即ち、機関10の排気ポート17に接続されたEGR通路41を介して排気の一部が吸気コレクタ23に再循環される。EGR通路41には、機関運転状態に応じて再循環される排気の量を制御する電子制御式のEGRコントロールバルブ42が介装される。そして、機関運転状態に応じてEGRコントロールバルブ42を開閉制御することで、吸入負圧を利用して排気が吸気コレクタ23内に導入され、吸入空気と共に燃焼室13内に吸引される。
【0022】
ここで、かかる構成からなる機関10の制御系について説明する。
マイクロコンピュータ内蔵のコントロールユニット50には、アクセルペダルの操作量(以下「アクセル操作量」という)APSを検出するポテンショメータ式のアクセルセンサ51、機関回転速度Ne を検出するクランク角センサ52、機関温度を代表する冷却水温度Tw を検出する水温センサ53、吸入空気流量Qを検出するエアフローメータ54、電制スロットル弁24のスロットル弁開度θを検出するポテンショメータ式のスロットル弁開度センサ55、排気中の酸素濃度を検出するO2 センサ56等の信号が入力される。
【0023】
なお、アクセルセンサ51等の各種センサが運転状態検出手段に相当し、コントロールユニット50が目標当量比演算手段、目標当量比補正手段、切換条件判定手段、燃焼状態切換手段、成立条件禁止手段及び制限手段としての機能を有している。
コントロールユニット50は、入力された各種信号に基づいて検出される運転状態に応じて、電制スロットル弁24の開度θを制御すると共に、点火時期を設定して、設定された点火時期に可燃混合気に火花点火する制御を行う。
【0024】
次に、本実施形態の作用の概要について、図3のタイミングチャートを参照しつつ説明する。このタイミングチャートは、成層燃焼運転中に減速をした場合、成層燃焼から均質燃焼に切り換わる際に、目標当量比及び燃焼状態がどのように切り換わるかを表わしたものである。
先ず、運転者がアクセルペダルを放すと、アクセル操作量が所定値以下となり減速が開始される。即ち、アクセル操作量が所定値以下となったときに、減速が開始されたと判断される。
【0025】
減速が開始された場合には、基本目標当量比マップを成層燃焼用から均質燃焼用に直ちに切り換えるのではなく、切換制御が開始されてから所定時間DLTFM(第2の所定時間)経過後に基本目標当量比マップを切り換えるようにする。この所定時間DLTFMは、定数としてもよいし、或いは、機関回転速度Neや目標トルクtTc等の機関運転状態に基づいて設定してもよい。このように、減速が開始されてから所定時間DLTFM経過したときに、基本当量比マップを成層燃焼用から均質燃焼用に切り換えるようにすれば、蒸発燃料処理装置30及び排気再循環装置40等のデバイスの応答遅れが吸収でき、デバイスの応答遅れによって切換直後の均質燃焼が不安定になることを防止することができる。
【0026】
次に、機関回転速度Ne及び目標トルクtTcに基づいて基本目標当量比マップを参照して、基本目標当量比TFBYA00を設定する。ここで参照される基本目標当量比マップは、減速が開始されてから所定時間DLTFM経過するまでは成層燃焼用が参照され、所定時間DLTFM経過後は均質燃焼用が参照される。
【0027】
そして、基本目標当量比TFBYA00に対して位相遅れ補正を行い、補正目標当量比TFBYA4を設定する。位相遅れ補正を行う理由は、機関運転状態の変化によって基本目標当量比TFBYA00が変化した場合、基本目標当量比TFBYA00の変化に見合った目標吸入空気流量になるようにスロットル弁を制御しても、スロットル弁の動作遅れや吸気系の容積により吸入空気流量の変化に遅れが生じるのに対して、燃料噴射量は殆ど遅れがなく基本目標当量比TFBYA00の変化に追従できるため、実際の当量比が基本目標当量比の変化に対して遅れが生じるからである。従って、位相遅れ補正を行うことにより、成層燃焼から均質燃焼への切換時のトルク変動を、滑らかにすることができる。
【0028】
最終的な目標当量比TFBYA0は、減速が開始されてから実際に燃料カットが開始されるカットインディレイ時間CFD(第1の所定時間)内には、所定当量比TFBYADFに制限される。即ち、カットインディレイ時間CFD内では、補正目標当量比TFBY4と所定当量比TFBYADFとを比較して、小さい方を目標当量比TFBYA0として設定する。そして、目標当量比TFBYA0が、成層燃焼から均質燃焼に切り換える判定を行う当量比しきい値TFACH以上になったときに、燃焼フラグFSTRR1を均質燃焼に切り換える。このようにすれば、カットインディレイ時間CFD内に、成層燃焼から均質燃焼への燃焼状態の切換が禁止されるので、燃料カットが行われるまでの間の排気性状の低下を防止することができる。
【0029】
図4及び図5は、以上説明した目標当量比及び燃焼状態の実際の切換制御内容を示したフローチャートである。
ステップ1(図では「S1」と略記する。以下同様)では、アクセルセンサ51より検出されたアクセル操作量APSに基づいて、機関10が減速中であるか否かを判定する。具体的には、検出されたアクセル操作量APSが所定値以下であるときに、機関10が減速中であると判定し、減速中であれば(Yes)ステップ2へと進み、減速中でなければ(No)ステップ3へと進む。
【0030】
ステップ2では、減速時における燃料カット制御を行う。即ち、図3に示すように、減速開始直後から徐々に基本噴射パルス幅を徐々に減少させ、カットインディレイ時間CFD経過後に基本噴射パルス幅を0にする制御を行うことで、燃料カット制御が行われる。なお、このステップにおける燃料カット制御は、電子制御式燃料噴射装置で一般的に行われているものであり、その制御内容は公知のものである。
【0031】
ステップ3では、減速中でないときの燃料供給制御を行う。即ち、機関回転速度Ne ,吸入空気流量Q等に基づいて基本燃料供給量Tp を設定し、冷却水温度Tw 等を考慮した各種補正を行い有効燃料供給量Te を算出して、有効燃料供給量Te に対応した基本噴射パルス幅でもって燃料噴射を行う。そして、本ルーチンを終了する。
【0032】
ステップ4では、均質燃焼切換フラグFSTR0に「0」をセットする。均質燃焼切換フラグFSTR0は、均質燃焼に切り換える場合には「0」が、成層燃焼を維持する場合には「1」がセットされる。
ステップ5では、減速を開始してから所定時間DLTFM経過したか否か、即ち、均質燃焼切換フラグFSTR0が「1」から「0」になってから所定時間DLTFM経過したか否かを判定し、所定時間DLTFM経過したときには(Yes)ステップ6へと進み、所定時間DLTFM経過していないときには(No)ステップ7へと進む。
【0033】
ステップ6では、当量比マップ参照用フラグFSTR1を「0」にセットする。当量比マップ参照用フラグFSTR1は、均質燃焼用マップを参照する場合には「0」が、成層燃焼用マップを参照する場合には「1」がセットされる。
ステップ7では、当量比マップ参照用フラグFSTR1に応じたマップ(均質燃焼用マップ或いは成層燃焼用マップ)を選択し、機関回転速度Ne 及び目標トルクtTcに基づく基本目標当量比TFBYA00を演算する。ここで、目標トルクtTcは、例えば、アクセル操作量APS及び機関回転速度Ne に基づいて設定される。なお、ステップ6の処理が目標当量比演算手段に相当する。
【0034】
ステップ8では、吸入空気流量Qの補正制御が行われる。即ち、図3に示すように、スロットル弁の応答遅れを考慮して、スロットル開度を段階的に減少させる制御を行うことで、実際のスロットル開度が図の点線のように変化するようにする。
ステップ9では、基本目標当量比TFBYA00に対して位相遅れ補正処理を行う。具体的には、補正処理後の補正目標当量比をTFBYA4とすると、次式によって補正が行われる。
【0035】
TFBYA4=FLOAD×TFBYA00
+(1−FLOAD)×TFBYA4(n−1)
ここで、FLOADは、機関運転状態に応じて設定される加重平均係数、TFBYA4(n−1)は、前回の補正目標当量比である。なお、ステップ9の処理が目標当量比補正手段に相当する。
【0036】
ステップ10では、燃焼判定フラグFSTRRに基づき、現在成層燃焼中であるか否かを判定し、成層燃焼運転中のときには(Yes)ステップ11へと進み、均質燃焼運転中のときには(No)本ルーチンを終了させる。なお、燃焼判定フラグFSTRRは、均質燃焼中には「0」に、成層燃焼中には「1」に設定される。
【0037】
ステップ11では、減速を開始してから所定時間CFD経過したか否か、即ち、均質燃焼切換フラグFSTR0が「1」から「0」になってから所定時間CFD経過したか否かを判定し、所定時間CFD経過したときには(Yes)ステップ12へと進み、所定時間CFD経過していないときには(No)ステップ13へと進む。
【0038】
ステップ12では、目標当量比TFBYA0として補正目標当量比TFBYA4をセットする。
ステップ13では、補正目標当量比TFBYA4が所定当量比TFBYADF以上であるか否かを判定し、TFBYA4≧TFBYADF(Yes)のときにはステップ14へと進み、TFBYA4<TFBYADF(No)のときにはステップ12へと進む。
【0039】
ステップ14では、目標当量比TFBYA0として所定当量比TFBYADFをセットする。
即ち、ステップ12〜ステップ14の処理で、補正目標当量比TFBYA4と所定当量比TFBYADFとの小さい方を選択して、最終的な目標当量比TFBFA0としてセットする。なお、ステップ12〜ステップ14の処理が条件成立禁止手段に相当し、特に、ステップ14の処理が制限手段に相当する。
【0040】
ステップ15では、成層燃焼から均質燃焼に燃焼状態を切り換えるか否かを判定する。具体的には、目標当量比TFBYA0が当量比しきい値TFACH以上であるか否かを判定し、TFBYA0≧TFACH(Yes)であればステップ16へと進み、TFBYA0<TFACH(No)であれば本ルーチンを終了する。なお、ステップ15の処理が切換条件判定手段に相当する。
【0041】
ステップ16では、均質燃焼への切換条件が全て成立したので、均質燃焼に切り換えるべく燃焼判定フラグFSTRRを「0」(均質燃焼中)にセットする。そして、図示しない別のルーチンにより、燃焼判定フラグFSTRRに基づく燃焼制御が行われる(燃焼状態切換手段)。
このような処理によれば、減速を開始してから所定時間CFD経過し、かつ、基本目標当量比TFBYA00に対して位相遅れ補正を行った補正目標当量比TFBYA4が当量比しきい値TFACH以上になったときに、減速時における成層燃焼から均質燃焼への燃焼状態の切換条件が成立したと判定される。従って、目標当量比TFBYA0が徐々に切り換わるので、燃焼状態の切換中のトルク変動を滑らかにすることができる。また、目標当量比TFBYA0を演算するマップを切り換えるタイミングを遅延することにより、蒸発燃料処理装置や排気再循環装置等のデバイスの応答遅れを吸収することができ、切換直後の燃焼が不安定になることが防止される。さらに、減速時に燃料カットが行われるまでの間、均質燃焼への切り換えが禁止されるので、排気性状の低下を防止することができる。
【図面の簡単な説明】
【図1】 本発明の請求項1のクレーム対応図
【図2】 本発明の一実施形態を示すシステム構成図
【図3】 同上の制御内容を示すタイミングチャート
【図4】 同上の制御内容を示すフローチャート
【図5】 同上の制御内容を示すフローチャート
【符号の説明】
10 筒内噴射式内燃機関
13 燃焼室
18 燃料噴射弁
50 コントロールユニット
51 アクセルセンサ
52 クランク角センサ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a fuel supply control device for an internal combustion engine, and more particularly to a technique for smoothly switching a combustion state from stratified combustion to homogeneous combustion during deceleration.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, a fuel supply control device that performs fuel cut control that stops fuel supply during deceleration and suppresses HC and improves fuel consumption is known (see Japanese Patent Laid-Open No. 54-148929).
[0003]
[Problems to be solved by the invention]
Since this fuel supply control device is based on the assumption of homogeneous combustion in which a combustible mixture is burned in the vicinity of the stoichiometric ratio, there is almost no change in the target equivalence ratio during deceleration, and torque fluctuation during recovery after fuel cut is small. It didn't matter.
However, in recent years, in-cylinder injection internal combustion engines that have been developed for the purpose of improving exhaust properties and fuel consumption and injecting fuel directly into the cylinder and igniting with a spark plug, the target equivalent ratio is extremely small. Switching between stratified combustion for performing combustion and homogeneous combustion with a relatively large target equivalence ratio is performed in accordance with the engine operating state. Therefore, if the speed is reduced in a state where stratified combustion is being performed, it is necessary to switch the target equivalence ratio in accordance with switching from stratified combustion to homogeneous combustion. In this case, if the conventional fuel supply control device is applied as it is, the following problems may occur.
[0004]
(1) If the target equivalence ratio is switched at the same time as switching from stratified combustion to homogeneous combustion, the air amount at the time of switching becomes excessive, so the torque may increase rapidly and the feeling of deceleration may be impaired.
(2) In an internal combustion engine equipped with a device such as an exhaust gas recirculation device that recirculates part of the exhaust gas by introducing it into the intake system, when switching from stratified combustion to homogeneous combustion, immediately after switching due to the influence of device response delay, etc. There is a risk that the combustion of this will become unstable.
[0005]
(3) When the target equivalence ratio is changed during switching from stratified combustion to homogeneous combustion, the intermediate equivalence ratio between stratified combustion and homogeneous combustion passes, so when the fuel cut is not performed, the exhaust properties May decrease.
Therefore, in view of the above-described conventional problems, the present invention facilitates switching of the combustion state from stratified combustion to homogeneous combustion at the time of deceleration so that torque fluctuation at the time of switching, combustion instability, and exhaust It is an object of the present invention to provide a fuel supply control device for an internal combustion engine that prevents deterioration in properties.
[0006]
[Means for Solving the Problems]
Therefore, as shown in FIG. 1, the invention according to claim 1 is an internal combustion engine capable of switching the combustion state between stratified combustion and homogeneous combustion by switching the combustible air-fuel mixture in the combustion chamber between the stratified state and the homogeneous state. When the engine is decelerated during stratified combustion, the fuel supply is stopped after the elapse of a first predetermined time from the start of decelerating, and the first predetermined time elapses after the deceleration is started In the fuel supply control device for an internal combustion engine that switches from the target equivalent ratio in stratified combustion to the target equivalent ratio in homogeneous combustion until the engine is operated, the fuel supply control device for the internal combustion engine includes an operating state detecting means A for detecting the engine operating state; , detected a target equivalent ratio calculation means B for calculating a target equivalent ratio according to the operating state, computed gradually slowing as the correction to the target equivalent ratio correction changes in the target equivalent ratio to the target equivalent ratio When the switching condition determining means D for determining whether or not the switching condition from the stratified combustion to the homogeneous combustion is satisfied based on the stage C and the corrected target equivalent ratio, and the switching condition to the homogeneous combustion are satisfied, And combustion state switching means E for switching the combustion state from stratified combustion to homogeneous combustion.
[0007]
According to this configuration, the target equivalent ratio is set according to the operating state by the target equivalent ratio calculating means, and then corrected by the target equivalent ratio correcting means so as to delay the change of the target equivalent ratio. When the switching condition determining means determines that the switching condition from stratified combustion to homogeneous combustion is established based on the corrected target equivalence ratio, the combustion state switching means switches from stratified combustion to homogeneous combustion.
[0008]
Therefore, when the combustion state is switched from stratified combustion to homogeneous combustion, the target equivalence ratio gradually changes, so that the air amount does not become excessive immediately after switching to homogeneous combustion, and the torque suddenly increases. The rise is prevented.
According to a second aspect of the present invention, the target equivalent ratio calculation means is configured to calculate a target equivalent ratio to be calculated when a second predetermined time shorter than the first predetermined time has elapsed since the start of deceleration. The control is performed to switch from the target equivalent ratio in Fig. 1 to the target equivalent ratio in homogeneous combustion.
[0009]
According to such a configuration, the target equivalent ratio to be calculated is switched to the target equivalent ratio in the homogeneous combustion when the second predetermined time has elapsed since the start of deceleration. Even if a device such as a device is provided, the response delay of the device at the time of switching is absorbed.
According to a third aspect of the present invention, the switching condition determining means includes condition establishment prohibiting means for prohibiting establishment of the switching condition from stratified combustion to homogeneous combustion until the first predetermined time has elapsed. .
[0010]
According to such a configuration, since the establishment of the switching condition to the homogeneous combustion is prohibited until the first predetermined time elapses after the deceleration is started, that is, the switching to the homogeneous combustion is prohibited. Combustion is prevented from being performed at an intermediate equivalent ratio to combustion.
According to a fourth aspect of the present invention, when the target equivalence ratio corrected by the target equivalence ratio correcting means is equal to or greater than a predetermined equivalence ratio threshold value, the switching condition determining means is configured to switch from stratified combustion to homogeneous combustion. It was determined that the switching condition was satisfied.
[0011]
According to such a configuration, when the corrected target equivalence ratio is equal to or greater than the predetermined equivalence ratio threshold value, the switching condition to the homogeneous combustion is established, that is, the switching to the homogeneous combustion is performed. The determination process is very simple.
According to a fifth aspect of the present invention, the condition establishment prohibiting means limits the target equivalent ratio corrected by the target equivalent ratio correcting means within the first predetermined time to be less than the equivalent ratio threshold value. Constructed including.
[0012]
According to this configuration, the corrected target equivalence ratio is limited to be less than the equivalence ratio threshold value within the first predetermined time period. Therefore, the target equivalence ratio becomes small during the first predetermined time period, and the homogeneous combustion is reduced. Since the switching is not performed, the exhaust property is improved and the torque fluctuation when the fuel supply is stopped is suppressed.
The invention according to claim 6 is an internal combustion engine capable of switching the combustion state between the stratified combustion and the homogeneous combustion by switching the combustible air-fuel mixture in the combustion chamber between the stratified combustion and the homogeneous combustion, and decelerated during the stratified combustion. In a fuel supply control device for an internal combustion engine, the fuel supply is stopped after a predetermined time has elapsed from the start of deceleration and the target equivalence ratio is shifted to switch the combustion state from stratified combustion to homogeneous combustion. When the engine fuel supply control device switches the combustion state from stratified combustion to homogeneous combustion, the target equivalent ratio calculated according to the engine operating state is gradually changed.
[0013]
According to such a configuration, when the combustion state is switched from stratified combustion to homogeneous combustion, the target equivalent ratio calculated according to the engine operating state gradually changes, so that the air amount is excessive immediately after switching to homogeneous combustion. Therefore, a rapid increase in torque is prevented.
[0014]
【The invention's effect】
As described above, according to the invention described in claim 1 or 6, when the combustion state is switched from stratified combustion to homogeneous combustion, a sudden increase in torque is prevented, so that a decrease in the feeling of deceleration is suppressed. be able to.
According to the second aspect of the present invention, the response delay of the device is absorbed when the combustion state is switched from the stratified combustion to the homogeneous combustion, so that the combustion immediately after the switching can be stabilized.
[0015]
According to the third aspect of the invention, when the combustion state is switched from stratified combustion to homogeneous combustion, combustion is prevented from being performed at an equivalent ratio intermediate between stratified combustion and homogeneous combustion, so the fuel supply is stopped. It is possible to improve the exhaust properties in a state where the operation is not performed.
According to the fourth aspect of the present invention, since the switching determination process from the stratified combustion to the homogeneous combustion is performed very simply, the burden on the on-vehicle control device can be reduced.
[0016]
According to the fifth aspect of the present invention, since the switching to the homogeneous combustion is not performed until the first predetermined time elapses, the exhaust property is improved and the torque fluctuation when the fuel supply is stopped is suppressed. Therefore, riding comfort can be improved.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.
FIG. 2 shows an embodiment in which the fuel supply control device according to the present invention is applied to a direct injection internal combustion engine.
First, the configuration of a cylinder injection internal combustion engine (hereinafter referred to as “engine”) 10 will be described. A combustion chamber 13 having a predetermined volume is formed between the top surface of the piston 11 (hereinafter referred to as “piston top surface”) 11 a and the lower surface of the cylinder head 12. An intake port 15 that is opened and closed by an intake valve 14 and an exhaust valve are provided on the wall surface of the cylinder head 12 positioned above the combustion chamber 13, that is, the wall surface of the cylinder head combustion chamber 13 a formed at the lower part of the cylinder head 12. Two exhaust ports 17 opened and closed by 16 are formed in parallel.
[0018]
A fuel injection valve 18 that directly injects fuel into the combustion chamber 13 with the injection port facing the combustion chamber 13 is disposed between the intake ports 15 of the cylinder head 12. An ignition plug 19 for spark ignition of a combustible mixture of fuel and air is disposed at a substantially central portion of the wall surface of the cylinder head combustion chamber 13a.
On the piston top surface 11a, a cavity 20 having an opening formed on the upper surface is formed at a position below the line connecting the fuel injection valve 18 and the spark plug 19.
[0019]
Air is sucked into the combustion chamber 13 of the engine 10 through an air cleaner 21, an intake duct 22, an intake collector 23, an intake port 15 and an intake valve 14. The intake duct 22 is provided with an electronically controlled throttle valve (hereinafter referred to as “electric throttle valve”) 24 that changes the opening area of the passage in the intake duct 22 and is controlled based on the engine operating state. The intake air flow rate Q to the engine is controlled via 25.
[0020]
In the low load and medium load regions, fuel spray is injected into the cavity 20 at the later stage of the compression stroke, and a flammable mixture is formed in a layered manner at the lower portion of the spark plug 19 to perform stratified combustion. During the stroke, fuel spray is injected into the combustion chamber 13 to form a substantially homogeneous combustible air-fuel mixture in the combustion chamber 13 and homogeneous combustion is performed.
The engine 10 is also provided with an evaporative fuel processing device 30 for processing evaporative fuel generated in the fuel supply system. That is, the evaporated fuel accumulated in the space above the fuel tank 31 is guided to the canister 33 through the evaporated fuel passage 32 while the engine 10 is stopped, and temporarily adsorbed by the adsorbent 33a such as activated carbon in the canister 33. Is done. The upper space of the canister 33 communicates with the intake collector 23 via the purge passage 34. An electronically controlled purge valve 35 that opens and closes the purge passage 34 is interposed in the purge passage 34.
[0021]
Further, the engine 10 is provided with an exhaust gas recirculation device 40 that introduces a part of the exhaust gas into the intake system and recirculates the exhaust gas. That is, a part of the exhaust gas is recirculated to the intake collector 23 via the EGR passage 41 connected to the exhaust port 17 of the engine 10. The EGR passage 41 is provided with an electronically controlled EGR control valve 42 that controls the amount of exhaust gas recirculated in accordance with the engine operating state. Then, by opening and closing the EGR control valve 42 according to the engine operating state, exhaust gas is introduced into the intake collector 23 using the intake negative pressure, and is sucked into the combustion chamber 13 together with the intake air.
[0022]
Here, a control system of the engine 10 having such a configuration will be described.
A control unit 50 with a built-in microcomputer includes a potentiometer-type accelerator sensor 51 for detecting an accelerator pedal operation amount (hereinafter referred to as “accelerator operation amount”) APS, a crank angle sensor 52 for detecting an engine rotational speed Ne, and an engine temperature. A representative water temperature sensor 53 for detecting the cooling water temperature Tw, an air flow meter 54 for detecting the intake air flow rate Q, a potentiometer type throttle valve opening sensor 55 for detecting the throttle valve opening θ of the electric throttle valve 24, and in exhaust A signal from the O 2 sensor 56 and the like for detecting the oxygen concentration is input.
[0023]
Various sensors such as the accelerator sensor 51 correspond to the operating state detecting means, and the control unit 50 is a target equivalent ratio calculating means, target equivalent ratio correcting means, switching condition determining means, combustion state switching means, establishment condition prohibiting means, and restriction. It has a function as a means.
The control unit 50 controls the opening degree θ of the electric throttle valve 24 according to the operation state detected based on various input signals, sets the ignition timing, and combusts at the set ignition timing. Controls to ignite the air-fuel mixture.
[0024]
Next, an outline of the operation of the present embodiment will be described with reference to the timing chart of FIG. This timing chart shows how the target equivalence ratio and the combustion state are switched when switching from stratified combustion to homogeneous combustion when deceleration is performed during the stratified combustion operation.
First, when the driver releases the accelerator pedal, the accelerator operation amount becomes equal to or less than a predetermined value, and deceleration is started. That is, it is determined that deceleration has started when the accelerator operation amount becomes equal to or less than a predetermined value.
[0025]
When deceleration is started, the basic target equivalence ratio map is not immediately switched from stratified combustion to homogeneous combustion, but the basic target equivalence ratio map is not changed immediately after starting the switching control but after a predetermined time DLTFM (second predetermined time) has elapsed. Switch the equivalence ratio map. The predetermined time DLTFM may be a constant, or may be set based on the engine operating state such as the engine speed Ne and the target torque tTc. As described above, when the basic equivalence ratio map is switched from stratified combustion to homogeneous combustion when a predetermined time DLTFM has elapsed since the start of deceleration, the evaporative fuel processing device 30 and the exhaust gas recirculation device 40, etc. The device response delay can be absorbed, and the homogeneous combustion immediately after switching can be prevented from becoming unstable due to the device response delay.
[0026]
Next, the basic target equivalent ratio TFBYA00 is set with reference to the basic target equivalent ratio map based on the engine speed Ne and the target torque tTc. The basic target equivalence ratio map referred to here refers to stratified combustion until a predetermined time DLTFM elapses after the start of deceleration, and refers to homogeneous combustion after the predetermined time DLTFM elapses.
[0027]
Then, phase lag correction is performed on the basic target equivalent ratio TFBYA00, and a corrected target equivalent ratio TFBYA4 is set. The reason for performing the phase lag correction is that when the basic target equivalent ratio TFBYA00 changes due to a change in the engine operating state, the throttle valve is controlled so that the target intake air flow rate matches the change in the basic target equivalent ratio TFBYA00. The change in the intake air flow rate is delayed due to the delay in the operation of the throttle valve and the volume of the intake system, whereas the fuel injection amount has almost no delay and can follow the change in the basic target equivalent ratio TFBYA00. This is because a delay occurs with respect to the change in the basic target equivalent ratio. Therefore, by performing the phase delay correction, the torque fluctuation at the time of switching from stratified combustion to homogeneous combustion can be smoothed.
[0028]
The final target equivalent ratio TFBYA0 is limited to the predetermined equivalent ratio TFBYADF within a cut-in delay time CFD (first predetermined time) in which fuel cut is actually started after deceleration is started. That is, within the cut-in delay time CFD, the corrected target equivalent ratio TFBY4 is compared with the predetermined equivalent ratio TFBYADF, and the smaller one is set as the target equivalent ratio TFBYA0. When the target equivalent ratio TFBYA0 becomes equal to or greater than the equivalent ratio threshold value TFACH for determining whether to switch from stratified combustion to homogeneous combustion, the combustion flag FSTRR1 is switched to homogeneous combustion. By doing so, switching of the combustion state from stratified combustion to homogeneous combustion is prohibited within the cut-in delay time CFD, so that it is possible to prevent a decrease in exhaust properties until the fuel cut is performed. .
[0029]
4 and 5 are flowcharts showing the actual switching control contents of the target equivalence ratio and the combustion state described above.
In step 1 (abbreviated as “S1” in the figure, the same applies hereinafter), it is determined whether the engine 10 is decelerating based on the accelerator operation amount APS detected by the accelerator sensor 51. Specifically, when the detected accelerator operation amount APS is equal to or less than a predetermined value, it is determined that the engine 10 is decelerating, and if it is decelerating (Yes), the process proceeds to step 2 and must be decelerating. (No) Proceed to step 3.
[0030]
In step 2, fuel cut control during deceleration is performed. That is, as shown in FIG. 3, the fuel cut control is performed by gradually decreasing the basic injection pulse width immediately after the start of deceleration, and performing the control to make the basic injection pulse width 0 after the cut-in delay time CFD elapses. Done. The fuel cut control in this step is generally performed by an electronically controlled fuel injection device, and the control content is publicly known.
[0031]
In step 3, fuel supply control is performed when the vehicle is not decelerating. That is, the basic fuel supply amount Tp is set based on the engine rotational speed Ne, the intake air flow rate Q, etc., various corrections are performed in consideration of the cooling water temperature Tw, etc., and the effective fuel supply amount Te is calculated to obtain the effective fuel supply amount. Fuel injection is performed with a basic injection pulse width corresponding to Te. Then, this routine ends.
[0032]
In step 4, "0" is set to the homogeneous combustion switching flag FSTR0. The homogeneous combustion switching flag FSTR0 is set to “0” when switching to homogeneous combustion and “1” when maintaining stratified combustion.
In step 5, it is determined whether or not a predetermined time DLTFM has elapsed since the start of deceleration, that is, whether or not a predetermined time DLTFM has elapsed since the homogeneous combustion switching flag FSTR0 changed from “1” to “0”. When the predetermined time DLTFM has elapsed (Yes), the routine proceeds to step 6, and when the predetermined time DLTFM has not elapsed (No), the routine proceeds to step 7.
[0033]
In step 6, the equivalence ratio map reference flag FSTR1 is set to "0". The equivalent ratio map reference flag FSTR1 is set to “0” when referring to the homogeneous combustion map, and to “1” when referring to the stratified combustion map.
In step 7, a map (homogeneous combustion map or stratified combustion map) corresponding to the equivalent ratio map reference flag FSTR1 is selected, and a basic target equivalent ratio TFBYA00 based on the engine speed Ne and the target torque tTc is calculated. Here, the target torque tTc is set based on, for example, the accelerator operation amount APS and the engine rotational speed Ne. Note that the processing in step 6 corresponds to a target equivalent ratio calculation means.
[0034]
In step 8, correction control of the intake air flow rate Q is performed. That is, as shown in FIG. 3, by taking into account the response delay of the throttle valve, the throttle opening is controlled stepwise so that the actual throttle opening changes as indicated by the dotted line in the figure. To do.
In step 9, a phase lag correction process is performed on the basic target equivalent ratio TFBYA00. Specifically, when the corrected target equivalent ratio after the correction process is TFBYA4, the correction is performed by the following equation.
[0035]
TFBYA4 = FLOAD × TFBYA00
+ (1-FLOAD) × TFBYA4 (n−1)
Here, FLOAD is a weighted average coefficient set according to the engine operating state, and TFBYA4 (n−1) is the previous corrected target equivalent ratio. Note that the processing in step 9 corresponds to a target equivalence ratio correcting means.
[0036]
In step 10, based on the combustion determination flag FSTRR, it is determined whether or not stratified combustion is currently being performed. When the stratified combustion operation is being performed (Yes), the routine proceeds to step 11, and when the homogeneous combustion operation is being performed (No) this routine. End. The combustion determination flag FSTRR is set to “0” during homogeneous combustion and “1” during stratified combustion.
[0037]
In step 11, it is determined whether or not a predetermined time CFD has elapsed since the start of deceleration, that is, whether or not a predetermined time CFD has elapsed since the homogeneous combustion switching flag FSTR0 changed from “1” to “0”. When the predetermined time CFD has elapsed (Yes), the routine proceeds to step 12, and when the predetermined time CFD has not elapsed (No), the routine proceeds to step 13.
[0038]
In step 12, the corrected target equivalent ratio TFBYA4 is set as the target equivalent ratio TFBYA0.
In step 13, it is determined whether or not the corrected target equivalent ratio TFBYA4 is equal to or greater than a predetermined equivalent ratio TFBYADF. move on.
[0039]
In step 14, a predetermined equivalent ratio TFBYADF is set as the target equivalent ratio TFBYA0.
That is, in the processing of Step 12 to Step 14, the smaller one of the corrected target equivalent ratio TFBYA4 and the predetermined equivalent ratio TFBYADF is selected and set as the final target equivalent ratio TFBFA0. Note that the processing from step 12 to step 14 corresponds to the condition establishment prohibiting means, and in particular, the processing from step 14 corresponds to the limiting means.
[0040]
In step 15, it is determined whether to switch the combustion state from stratified combustion to homogeneous combustion. Specifically, it is determined whether or not the target equivalent ratio TFBYA0 is equal to or greater than the equivalent ratio threshold value TFACH. This routine ends. Note that the processing in step 15 corresponds to a switching condition determination means.
[0041]
In step 16, since all the conditions for switching to homogeneous combustion are satisfied, the combustion determination flag FSTRR is set to “0” (during homogeneous combustion) to switch to homogeneous combustion. Then, combustion control based on the combustion determination flag FSTRR is performed by another routine (not shown) (combustion state switching means).
According to such processing, the corrected target equivalent ratio TFBYA4 obtained by performing the phase lag correction on the basic target equivalent ratio TFBYA00 after the predetermined time CFD has elapsed from the start of deceleration is equal to or higher than the equivalent ratio threshold value TFACH. When it becomes, it is determined that the condition for switching the combustion state from stratified combustion to homogeneous combustion during deceleration is satisfied. Therefore, since the target equivalent ratio TFBYA0 is gradually switched, torque fluctuation during switching of the combustion state can be smoothed. Also, by delaying the timing for switching the map for calculating the target equivalent ratio TFBYA0, it is possible to absorb the response delay of devices such as the evaporated fuel processing device and the exhaust gas recirculation device, and the combustion immediately after switching becomes unstable. It is prevented. Furthermore, since the switching to the homogeneous combustion is prohibited until the fuel cut is performed at the time of deceleration, it is possible to prevent the exhaust property from being deteriorated.
[Brief description of the drawings]
FIG. 1 is a diagram corresponding to claims of claim 1 of the present invention. FIG. 2 is a system configuration diagram showing an embodiment of the present invention. FIG. 3 is a timing chart showing control contents. Flowchart showing [FIG. 5] Flowchart showing control contents same as above
DESCRIPTION OF SYMBOLS 10 Cylinder injection type internal combustion engine 13 Combustion chamber 18 Fuel injection valve 50 Control unit 51 Accelerator sensor 52 Crank angle sensor

Claims (6)

燃焼室内の可燃混合気を成層状態と均質状態とに切り換えることにより、燃焼状態を成層燃焼と均質燃焼とに切換可能な内燃機関であって、成層燃焼中に減速を行ったときに、減速を開始してから第1の所定時間経過後に燃料供給を停止すると共に、減速を開始してから前記第1の所定時間が経過するまでの間に成層燃焼における目標当量比から均質燃焼における目標当量比に切り換える内燃機関の燃料供給制御装置において、
機関運転状態を検出する運転状態検出手段と、検出された運転状態に応じて目標当量比を演算する目標当量比演算手段と、演算された目標当量比に対して目標当量比の変化を徐々に遅らせるように補正する目標当量比補正手段と、補正された目標当量比に基づいて成層燃焼から均質燃焼への切換条件が成立したか否かを判定する切換条件判定手段と、均質燃焼への切換条件が成立したときに、燃焼状態を成層燃焼から均質燃焼に切り換える燃焼状態切換手段と、を含んで構成されたことを特徴とする内燃機関の燃料供給制御装置。
An internal combustion engine in which the combustion state can be switched between stratified combustion and homogeneous combustion by switching the combustible air-fuel mixture in the combustion chamber between stratified combustion and homogeneous combustion, and when the deceleration is performed during stratified combustion, the deceleration is reduced. The fuel supply is stopped after the elapse of a first predetermined time from the start, and the target equivalent ratio in the stratified combustion is changed from the target equivalent ratio in the stratified combustion until the first predetermined time elapses after starting the deceleration. In the internal combustion engine fuel supply control device for switching to
An operating state detecting means for detecting the engine operating state, a target equivalent ratio calculating means for calculating a target equivalent ratio according to the detected operating state, and gradually changing the target equivalent ratio with respect to the calculated target equivalent ratio Target equivalence ratio correcting means for correcting to delay, switching condition determining means for determining whether or not a switching condition from stratified combustion to homogeneous combustion is established based on the corrected target equivalent ratio, and switching to homogeneous combustion A fuel supply control device for an internal combustion engine, comprising: combustion state switching means for switching the combustion state from stratified combustion to homogeneous combustion when the condition is satisfied.
前記目標当量比演算手段は、減速を開始してから前記第1の所定時間より短い第2の所定時間経過したときに、演算すべき目標当量比を、成層燃焼における目標当量比から均質燃焼における目標当量比に切り換える制御を行う構成である請求項1記載の内燃機関の燃料供給制御装置。The target equivalent ratio calculation means calculates a target equivalent ratio to be calculated when a second predetermined time shorter than the first predetermined time has elapsed since the start of deceleration, from a target equivalent ratio in stratified combustion to a homogeneous combustion. The fuel supply control device for an internal combustion engine according to claim 1, wherein the control is performed to switch to a target equivalent ratio. 前記切換条件判定手段は、前記第1の所定時間が経過するまでは、成層燃焼から均質燃焼への切換条件の成立を禁止する条件成立禁止手段を含んで構成された請求項1又は2に記載の内燃機関の燃料供給制御装置。  The switching condition determining means includes condition establishment prohibiting means for prohibiting establishment of a switching condition from stratified combustion to homogeneous combustion until the first predetermined time has elapsed. Fuel supply control device for internal combustion engine. 前記切換条件判定手段は、前記目標当量比補正手段により補正された目標当量比が所定の当量比しきい値以上になったときに、成層燃焼から均質燃焼への切換条件が成立したと判定する構成である請求項1〜3のいずれか1つに記載の内燃機関の燃料供給制御装置。  The switching condition determining means determines that the switching condition from stratified combustion to homogeneous combustion has been established when the target equivalent ratio corrected by the target equivalent ratio correcting means is equal to or greater than a predetermined equivalent ratio threshold value. The fuel supply control device for an internal combustion engine according to any one of claims 1 to 3, which has a configuration. 前記条件成立禁止手段は、前記第1の所定時間内は、前記目標当量比補正手段により補正された目標当量比を前記当量比しきい値未満に制限する制限手段を含んで構成された請求項4記載の内燃機関の燃料供給制御装置。  The condition establishment prohibiting means includes a limiting means for limiting the target equivalent ratio corrected by the target equivalent ratio correcting means to be less than the equivalent ratio threshold value during the first predetermined time. 5. A fuel supply control device for an internal combustion engine as set forth in claim 4. 燃焼室内の可燃混合気を成層状態と均質状態とに切り換えることにより、燃焼状態を成層燃焼と均質燃焼とに切換可能な内燃機関であって、成層燃焼中に減速を行ったときに、減速を開始してから所定時間経過後に燃料供給を停止すると共に、成層燃焼から均質燃焼に燃焼状態を切り換えるべく目標当量比を移行させる内燃機関の燃料供給制御装置において、
成層燃焼から均質燃焼に燃焼状態を切り換える際に、機関運転状態に応じて演算された目標当量比を徐々に変化させることを特徴とする内燃機関の燃料供給制御装置。
An internal combustion engine in which the combustion state can be switched between stratified combustion and homogeneous combustion by switching the combustible air-fuel mixture in the combustion chamber between stratified combustion and homogeneous combustion, and when the deceleration is performed during stratified combustion, the deceleration is reduced. In the fuel supply control device for an internal combustion engine that stops the fuel supply after a lapse of a predetermined time from the start and shifts the target equivalent ratio to switch the combustion state from stratified combustion to homogeneous combustion,
A fuel supply control device for an internal combustion engine characterized by gradually changing a target equivalence ratio calculated according to an engine operating state when switching the combustion state from stratified combustion to homogeneous combustion.
JP19669497A 1997-07-23 1997-07-23 Fuel supply control device for internal combustion engine Expired - Lifetime JP3677953B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19669497A JP3677953B2 (en) 1997-07-23 1997-07-23 Fuel supply control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19669497A JP3677953B2 (en) 1997-07-23 1997-07-23 Fuel supply control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JPH1136920A JPH1136920A (en) 1999-02-09
JP3677953B2 true JP3677953B2 (en) 2005-08-03

Family

ID=16362043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19669497A Expired - Lifetime JP3677953B2 (en) 1997-07-23 1997-07-23 Fuel supply control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP3677953B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3259712B2 (en) * 1999-01-12 2002-02-25 トヨタ自動車株式会社 Control device for internal combustion engine
JP3791288B2 (en) * 1999-06-18 2006-06-28 トヨタ自動車株式会社 Control device for in-vehicle internal combustion engine
JP4089127B2 (en) 2000-04-21 2008-05-28 トヨタ自動車株式会社 Control device for internal combustion engine
JP4318081B2 (en) 2004-08-31 2009-08-19 株式会社デンソー Control device for automatic transmission
JP4743042B2 (en) * 2006-08-10 2011-08-10 トヨタ自動車株式会社 Combustion control device for internal combustion engine

Also Published As

Publication number Publication date
JPH1136920A (en) 1999-02-09

Similar Documents

Publication Publication Date Title
JP3569120B2 (en) Combustion control device for lean burn internal combustion engine
JPH11336589A (en) Vapor recovery control system of direct injection spark ignition engine
JP4477249B2 (en) In-cylinder injection internal combustion engine control device
JP3175601B2 (en) Air intake control system for lean burn engine
JP3385919B2 (en) Evaporative fuel purge control system for internal combustion engine
JPH1193731A (en) Fuel injection control device for cylinder injection internal combustion engine
JP4778401B2 (en) Control device for internal combustion engine
JP3677953B2 (en) Fuel supply control device for internal combustion engine
JP3753166B2 (en) Evaporative fuel processing device for internal combustion engine
JP2874572B2 (en) Air-fuel ratio control device for internal combustion engine
JP2006329003A (en) Secondary air supply device for internal combustion engine
JP5586733B1 (en) Fuel injection amount control device for internal combustion engine and fuel injection amount control method for internal combustion engine
JP3846481B2 (en) In-cylinder injection internal combustion engine control device
JP3985419B2 (en) Control device for internal combustion engine
JP4453187B2 (en) Control device for internal combustion engine
JP3835975B2 (en) In-cylinder injection internal combustion engine control device
JP4339599B2 (en) In-cylinder injection internal combustion engine control device
JP3555394B2 (en) Air-fuel ratio control device for internal combustion engine
JPH09324672A (en) Fuel injection timing control device of lean-burn engine
JP3633283B2 (en) Evaporative fuel processing device for internal combustion engine
JP3562315B2 (en) Evaporative fuel supply control device for lean burn internal combustion engine
JP3384291B2 (en) Evaporative fuel treatment system for internal combustion engine
JPH1136921A (en) Control device for internal combustion engine
JP3862934B2 (en) Evaporative fuel processing device for internal combustion engine
JP3738805B2 (en) Control device for internal combustion engine

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050419

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050502

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080520

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090520

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090520

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100520

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110520

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130520

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 9

EXPY Cancellation because of completion of term