JP4339599B2 - In-cylinder injection internal combustion engine control device - Google Patents

In-cylinder injection internal combustion engine control device Download PDF

Info

Publication number
JP4339599B2
JP4339599B2 JP2003005288A JP2003005288A JP4339599B2 JP 4339599 B2 JP4339599 B2 JP 4339599B2 JP 2003005288 A JP2003005288 A JP 2003005288A JP 2003005288 A JP2003005288 A JP 2003005288A JP 4339599 B2 JP4339599 B2 JP 4339599B2
Authority
JP
Japan
Prior art keywords
torque
fuel injection
control
fuel
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003005288A
Other languages
Japanese (ja)
Other versions
JP2004218490A (en
Inventor
修 深沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2003005288A priority Critical patent/JP4339599B2/en
Priority to DE200410001825 priority patent/DE102004001825A1/en
Publication of JP2004218490A publication Critical patent/JP2004218490A/en
Application granted granted Critical
Publication of JP4339599B2 publication Critical patent/JP4339599B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3064Controlling fuel injection according to or using specific or several modes of combustion with special control during transition between modes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3017Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used
    • F02D41/3023Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the stratified charge spark-ignited mode
    • F02D41/3029Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the stratified charge spark-ignited mode further comprising a homogeneous charge spark-ignited mode

Description

【0001】
【発明の属する技術分野】
本発明は、圧縮行程で筒内に燃料を噴射して成層燃焼させる筒内噴射式内燃機関の制御装置に関するものである。
【0002】
【従来の技術】
近年、低燃費、低排気エミッション、高出力の特長を兼ね備えた筒内噴射式エンジンの需要が急増している。この筒内噴射式エンジンは、低負荷時には、少量の燃料を圧縮行程で筒内に直接噴射して混合気を成層燃焼させ、高負荷時には、燃料噴射量を増量して吸気行程で筒内に直接噴射して混合気を均質燃焼させるようにしている。
【0003】
この筒内噴射式エンジンにおいては、特許文献1(特開2001−221091号公報)に示すように、成層燃焼モード運転中に、アクセル開度等に基づいて要求トルクを算出し、この要求トルクに基づいて燃料噴射量を算出すると共に、この燃料噴射量に基づいて燃料噴射時期、点火時期、吸入空気量(スロットル開度)、EGR量(EGR弁開度)等の各種制御パラメータを算出するようにしたものがある。
【0004】
また、特許文献2(特開2000−38953号公報)に示すように、成層燃焼モード運転中に、自動変速装置の変速時等に発生するトルクショックを抑制するために、自動変速装置の変速時等に燃料噴射量を一時的に補正してトルク補正を行うようにしたものがある。
【0005】
【特許文献1】
特開2001−221091号公報(第3頁〜第5頁等)
【特許文献2】
特開2000−38953号公報(第4頁〜第5頁等)
【0006】
【発明が解決しようとする課題】
前述したように、成層燃焼モード運転中に、要求トルクに基づいて算出した燃料噴射量に基づいて各種制御パラメータ(燃料噴射時期、点火時期、吸入空気量、EGR量等)を算出するシステムでは、例えば図5に示すように、自動変速装置の変速時等にトルクダウン要求が発生して、燃料噴射量を一時的に減量補正してトルク補正を行ったときに、燃料噴射量の変化に応じて、燃料噴射時期、点火時期、吸入空気量(スロットル開度)、EGR量(EGR弁開度)等の各種制御パラメータも変化する。
【0007】
その際、燃料噴射時期や点火時期は、ほとんど応答遅れなくほぼ瞬時に変更することができるので、要求トルクの変化に応答良く追従して変化させることができるが、吸入空気量やEGR量等の空気系は、要求トルクの変化に伴って実吸入空気量や実EGR量がそれらの目標値まで変化するにはある程度の時間が掛かるため、要求トルクの変化に対して吸入空気量やEGR量は応答遅れを持って変化する。このため、成層燃焼モード運転中に一時的に短時間だけトルク補正(燃料噴射量の補正)を行ったときに、吸入空気量やEGR量等、応答遅れが大きい空気系の制御パラメータを変化させると、その変化タイミングが要求トルクの変化タイミングからずれて、却って空燃比やトルクが乱れてしまう可能性があり、排気エミッションやトルク補正精度が悪化する可能性がある。
【0008】
本発明はこのような事情を考慮してなされたものであり、従ってその目的は、成層燃焼モード運転中に一時的にトルク補正を行うときの空燃比の挙動を安定させることができ、排気エミッションやトルク補正精度を向上させることができる筒内噴射式内燃機関の制御装置を提供することにある。
【0009】
【課題を解決するための手段】
上記目的を達成するために、本発明の請求項1の筒内噴射式内燃機関の制御装置は、制御パラメータ算出手段により成層燃焼モード運転中に要求トルクに基づいて複数の制御パラメータを算出すると共に、トルク補正手段により所定のトルク補正条件が成立したときに要求トルクを一時的に補正するシステムにおいて、成層燃焼モード運転中に要求トルクが一時的に補正されたときに、補正された後の要求トルクに基づいて燃料噴射量、燃料噴射時期、及び点火時期の制御パラメータを算出し、一時的に補正される前の要求トルクに基づいて吸入空気量、排出ガス還流量、バルブタイミング、燃料圧力のうちの少なくとも1つの他の制御パラメータを算出するようにしたものである。そして、成層燃焼モード運転中に要求トルクが一時的に補正されるときには、当該制御パラメータと他の制御パラメータとに基づいて制御する。
【0010】
このようにすれば、成層燃焼モード運転中に一時的に要求トルクを補正してトルク補正を行うときに、応答性の良い制御パラメータは、補正後の要求トルクに基づいて算出することで、要求トルクの変化に応じて応答良く追従させて変化させることができ、一方、応答性が悪く遅れが大きい制御パラメータは、補正前の要求トルクに基づいて算出することで、あまり変化させないようにすることができる。これにより、成層燃焼モード運転中に一時的にトルク補正を行うときに、全ての制御パラメータを変化させる従来システム(図5参照)に比べて、空燃比の挙動を安定させてトルク変動を少なくすることができ、排気エミッションやトルク補正精度を向上させることができる。
【0014】
この場合、請求項のように、補正後の燃料噴射量に基づいて算出する制御パラメータは、燃料噴射時期、点火時期のうちの少なくとも一方とし、補正前の燃料噴射量に基づいて算出する制御パラメータは、吸入空気量、排出ガス還流量、バルブタイミング、燃料圧力のうちの少なくとも1つとする。このようにすれば、トルク補正時に、応答性の良い燃料噴射時期、点火時期は、要求トルク(燃料噴射量)の変化に応じて応答良く追従させて変化させることができ、応答性が悪く遅れが大きい吸入空気量、排出ガス還流量、バルブタイミング、燃料圧力は、あまり変化させないようにすることができる。
【0015】
また、成層燃焼モード運転中は、燃料を筒内に噴射して成層混合気を形成すると共にその成層混合気が点火プラグの近傍まで流動するタイミングで点火して成層燃焼させるので、良好な成層燃焼を確保するには、筒内気流強度(スワール流強度やタンブル流強度)、燃料噴射時期、点火時期の関係を適切に保つ必要がある。
【0017】
また、請求項のように、トルク補正条件は、自動変速機の変速時、燃料カット復帰時、加速時のうちの少なくとも1つの運転状態のときに成立するようにすると良い。このようにすれば、トルクショックを抑制する必要がある自動変速機の変速時、燃料カット復帰時、加速時に、本発明のトルク補正時の制御を実施することができ、変速ショック、燃料カット復帰時ショック、加速ショックを効果的に抑制しながら空燃比の乱れを防止することができる。
【0018】
【発明の実施の形態】
《実施形態(1)》
以下、本発明の実施形態(1)を図1乃至図3に基づいて説明する。まず、図1に基づいてエンジン制御システム全体の概略構成を説明する。筒内噴射式内燃機関である筒内噴射式エンジン11の吸気管12の最上流部には、エアクリーナ13が設けられ、このエアクリーナ13の下流側に、吸入空気量を検出するエアフローメータ14が設けられている。このエアフローメータ14の下流側には、DCモータ等のモータ15によって駆動されるスロットルバルブ16が設けられ、このスロットルバルブ16の開度(スロットル開度)がスロットル開度センサ17によって検出される。
【0019】
また、スロットルバルブ16の下流側には、サージタンク18が設けられ、このサージタンク18に、吸気管圧力を検出する吸気管圧力センサ19が設けられている。また、サージタンク18には、エンジン11の各気筒に空気を導入する吸気マニホールド20が設けられ、各気筒の吸気マニホールド20に、筒内の気流強度(スワール流強度やタンブル流強度)を制御する気流制御弁31が設けられている。
【0020】
エンジン11の各気筒の上部には、それぞれ燃料を筒内に直接噴射する燃料噴射弁21が取り付けられている。エンジン11のシリンダヘッドには、各気筒毎に点火プラグ22が取り付けられ、各点火プラグ22の火花放電によって筒内の混合気に着火される。また、エンジン11の吸気バルブ37と排気バルブ38には、それぞれバルブタイミングを可変する可変バルブタイミング機構39,40が設けられている。
【0021】
エンジン11のシリンダブロックには、ノッキングを検出するノックセンサ32と、冷却水温を検出する冷却水温センサ23とが取り付けられている。また、クランク軸(図示せず)の外周側には、所定のクランク角毎にクランク角信号を出力するクランク角センサ24が取り付けられている。このクランク角センサ24の出力信号に基づいてクランク角やエンジン回転速度が検出される。
【0022】
一方、エンジン11の排気管25には、排出ガスを浄化する上流側触媒26と下流側触媒27が設けられ、上流側触媒26の上流側に、排出ガスの空燃比又はリッチ/リーン等を検出する排出ガスセンサ28(空燃比センサ、酸素センサ等)が設けられている。本実施形態では、上流側触媒26として理論空燃比付近で排出ガス中のCO,HC,NOx等を浄化する三元触媒が設けられ、下流側触媒27としてNOx吸蔵還元型触媒が設けられている。このNOx吸蔵還元型触媒は、排出ガスの空燃比がリーンのときに排出ガス中のNOxを吸蔵し、空燃比が理論空燃比付近又はリッチになったときに吸蔵NOxを還元浄化して放出する特性を持っている。
【0023】
また、排気管25のうちの上流側触媒26の下流側と吸気管12のうちのスロットルバルブ16の下流側のサージタンク18との間に、排出ガスの一部を吸気側に還流させるためのEGR配管33が接続され、このEGR配管33の途中に排出ガス還流量(EGR量)を制御するEGR弁34が設けられている。また、アクセルペダル35の踏込量(アクセル開度)がアクセルセンサ36によって検出される。
【0024】
前述した各種センサの出力は、エンジン制御回路(以下「ECU」と表記する)30に入力される。このECU30は、マイクロコンピュータを主体として構成され、内蔵されたROM(記憶媒体)に記憶された各種の制御プログラムを実行することで、エンジン運転状態に応じて燃料噴射弁21の燃料噴射量や燃料噴射時期、点火プラグ22の点火時期等を制御する。
【0025】
このECU30は、エンジン運転状態(要求トルクやエンジン回転速度等)に応じて成層燃焼モードと均質燃焼モードとを切り換える。成層燃焼モードでは、少量の燃料を圧縮行程で筒内に直接噴射して点火プラグ22の近傍に成層混合気を形成して成層燃焼させることで、燃費を向上させる。一方、均質燃焼モードでは、燃料噴射量を増量して吸気行程で筒内に直接噴射して均質混合気を形成して均質燃焼させることで、エンジン出力を高める。
【0026】
ECU30は、図2に示すように、成層燃焼モード運転中に、アクセル開度、エンジン回転速度Ne、車速等に基づいて要求軸トルクを算出し、この要求軸トルクに内部損失トルク、外部負荷トルク、アイドルスピードコントロール(ISC)による補正トルク等を加算して要求図示トルクを求める。
【0027】
ここで、要求軸トルクに加算する内部損失トルクは、機械摩擦損失とポンピング損失であり、機械摩擦損失は、エンジン回転速度Neと冷却水温とに基づいてマップ等により算出され、ポンピング損失は、エンジン回転速度Neと吸気管圧力とに基づいてマップ等により算出される。また、要求軸トルクに加算する外部負荷トルクは、エンジン11の動力で駆動される補機類(エアコンのコンプレッサ、オルタネータ、パワーステアリングのポンプ等)の負荷トルクであり、エアコン信号、オルタネータの負荷電流等に応じて設定される。また、要求軸トルクに加算するISCによる補正トルクは、目標アイドル回転速度と現在のエンジン回転速度Neとに基づいてマップ等により算出される。
【0028】
ECU30は、成層燃焼モード運転中の通常時(トルクダウン要求が発生していないとき)には、要求図示トルクとエンジン回転速度Neに基づいて、それぞれマップ等により燃料噴射量、燃料噴射時期、点火時期、筒内気流強度(気流制御弁開度)、EGR量(EGR弁開度)、バルブタイミング、燃料圧力、吸入空気量(スロットル開度)等の各種制御パラメータを算出することで、特許請求の範囲でいう制御パラメータ算出手段としての役割を果たし、これらの制御パラメータに基づいて燃料噴射弁21、点火プラグ22、気流制御弁31、EGR弁34、可変バルブタイミング機構39,40、燃料ポンプ(図示せず)、スロットルバルブ16等を駆動する。
【0029】
また、ECU30は、成層燃焼モード運転中に、例えば、自動変速機の変速時、燃料カット復帰時、加速時等のトルクショックが発生する運転状態になってトルクダウン要求が発生したときに、トルクショックを抑制するのに必要なトルクダウン量を算出し、このトルクダウン量だけ要求図示トルクから減算して要求図示トルクを一時的に補正することで、特許請求の範囲でいうトルク補正手段としての役割を果たす。
【0030】
ECU30は、成層燃焼モード運転中に、トルクダウン要求が発生して要求図示トルクが一時的に補正されたときには、補正後の要求図示トルクとエンジン回転速度Neに基づいて燃料噴射量、燃料噴射時期、点火時期、筒内気流強度(気流制御弁開度)をマップ等により算出し、補正前の要求図示トルクとエンジン回転速度Neに基づいてEGR量(EGR弁開度)、バルブタイミング、燃料圧力、吸入空気量(スロットル開度)をマップ等により算出する。
【0031】
ここで、補正後の要求図示トルクに基づいて算出する燃料噴射量、燃料噴射時期、点火時期は、応答性の良い制御パラメータであり、補正前の要求図示トルクに基づいて算出するEGR量(EGR弁開度)、バルブタイミング、燃料圧力、吸入空気量(スロットル開度)は、応答性が悪く遅れが大きい制御パラメータである。
【0032】
以上説明した本実施形態(1)の実行例を図3のタイムチャートを用いて説明する。成層燃焼モード運転中の通常時(トルクダウン要求が発生していないとき)には、アクセル開度等に基づいて要求図示トルクを算出し、この要求図示トルクに基づいて燃料噴射量、燃料噴射時期、点火時期、筒内気流強度(気流制御弁開度)、EGR量(EGR弁開度)、吸入空気量(スロットル開度)、バルブタイミング、燃料圧力等の各種制御パラメータを算出する。
【0033】
その後、自動変速装置の変速時等にトルクダウン要求が発生したときには、要求図示トルクを一時的に減量補正してトルク補正を行う。このトルク補正中に、応答性の良い制御パラメータ(燃料噴射量、燃料噴射時期、点火時期、筒内気流強度)は、補正後の要求図示トルクに基づいて算出することで、要求図示トルクの変化に応じて応答良く追従させて変化させる。これに対して、応答性が悪く遅れが大きい制御パラメータ(EGR量、吸入空気量、バルブタイミング、燃料圧力)は、補正前の要求図示トルクに基づいて算出することで、あまり変化させないようにする。
【0034】
これにより、成層燃焼モード運転中に一時的にトルク補正を行うときに、全ての制御パラメータを変化させる従来システム(図5参照)に比べて、空燃比の挙動を安定化させてトルク変動を少なくすることができ、排気エミッションやトルク補正精度を向上させることができる。
【0035】
また、成層燃焼モード運転中は、燃料を筒内に噴射して成層混合気を形成すると共にその成層混合気が点火プラグ22の近傍まで流動するタイミングで点火して成層燃焼させるので、良好な成層燃焼を確保するには、筒内気流強度、燃料噴射時期、点火時期の関係を適切に保つ必要がある。
【0036】
その点、本実施形態(1)では、トルク補正時に、燃料噴射時期、点火時期に加えて筒内気流強度も、補正後の要求図示トルクに基づいて算出するようにしたので、トルク補正時に、燃料噴射時期や点火時期の変化に応じて筒内気流強度も同時に変化させて、筒内気流強度、燃料噴射時期、点火時期の関係を適切に保つことができ、良好な成層燃焼を確保することができる。
【0037】
《実施形態(2)》
次に、図4を用いて本発明の実施形態(2)を説明する。
本実施形態(2)では、ECU30は、成層燃焼モード運転中の通常時(トルクダウン要求が発生していないとき)には、要求図示トルクとエンジン回転速度Neに基づいてマップ等により燃料噴射量を算出し、この燃料噴射量に基づいて燃料噴射時期、点火時期、筒内気流強度(気流制御弁開度)、EGR量(EGR弁開度)、バルブタイミング、燃料圧力、吸入空気量(スロットル開度)等をマップ等により算出する。
【0038】
そして、成層燃焼モード運転中に、トルクダウン要求が発生して要求図示トルクが一時的に補正されたときには、補正後の要求図示トルクとエンジン回転速度Neに基づいて補正後の燃料噴射量を算出し、この補正後の燃料噴射量とエンジン回転速度Neに基づいて燃料噴射時期、点火時期、筒内気流強度(気流制御弁開度)をマップ等により算出する。更に、補正前の要求図示トルクとエンジン回転速度Neに基づいて補正前の燃料噴射量を算出し、この補正前の燃料噴射量とエンジン回転速度Neに基づいてEGR量(EGR弁開度)、バルブタイミング、燃料圧力、吸入空気量(スロットル開度)をマップ等により算出する。
【0039】
以上説明した本実施形態(2)においても、前記実施形態(1)と同じく、トルク補正時に、応答性の良い制御パラメータは、要求図示トルクトルク(燃料噴射量)の変化に応じて応答良く追従させて変化させ、応答性が悪く遅れが大きい制御パラメータは、あまり変化させないようにすることができるので、空燃比の挙動を安定化させてトルク変動を少なくすることができ、排気エミッションやトルク補正精度を向上させることができる。
【0040】
尚、上記各実施形態(1),(2)では、自動変速機の変速時、燃料カット復帰時、加速時のトルク変動を防止する際のトルク補正時の制御に本発明を適用したが、これに限定されず、アンチロックブレーキシステムの作動時、トラクションコントロールシステムの作動時等、他の運転状態のときのトルク変動を防止する際のトルク補正時の制御に本発明を適用しても良い。
【図面の簡単な説明】
【図1】本発明の実施形態(1)におけるエンジン制御システム全体の概略構成図
【図2】実施形態(1)の成層燃焼モード運転中の制御パラメータの算出方法を説明するための機能ブロック図
【図3】実施形態(1)の成層燃焼モード運転中のトルク補正時の制御例を示すタイムチャート
【図4】実施形態(2)の成層燃焼モード運転中の制御パラメータの算出方法を説明するための機能ブロック図
【図5】従来の成層燃焼モード運転中のトルク補正時の制御例を示すタイムチャート
【符号の説明】
11…筒内噴射式エンジン(筒内噴射式内燃機関)、12…吸気管、16…スロットルバルブ、21…燃料噴射弁、22…点火プラグ、23…冷却水温センサ、24…クランク角センサ、25…排気管、30…ECU(制御パラメータ算出手段,トルク補正手段)、31…気流制御弁、34…EGR弁、36…アクセルセンサ、37…吸気バルブ、38…排気バルブ、39,40…可変バルブタイミング機構。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a control device for an in-cylinder injection internal combustion engine in which fuel is injected into a cylinder in a compression stroke and stratified combustion is performed.
[0002]
[Prior art]
In recent years, the demand for in-cylinder injection engines that combine the features of low fuel consumption, low exhaust emissions, and high output has increased rapidly. This in-cylinder injection engine injects a small amount of fuel directly into the cylinder during the compression stroke at low load to stratify the mixture, and increases the fuel injection amount during high load to enter the cylinder during the intake stroke. Direct injection is performed so that the air-fuel mixture is combusted uniformly.
[0003]
In this in-cylinder injection engine, as shown in Patent Document 1 (Japanese Patent Application Laid-Open No. 2001-221091), during the stratified combustion mode operation, the required torque is calculated based on the accelerator opening, etc. Based on this fuel injection amount, various control parameters such as fuel injection timing, ignition timing, intake air amount (throttle opening), EGR amount (EGR valve opening) are calculated. There is something that was made.
[0004]
Further, as shown in Patent Document 2 (Japanese Patent Laid-Open No. 2000-38953), during the stratified combustion mode operation, in order to suppress a torque shock that occurs during a shift of the automatic transmission and the like, For example, torque correction is performed by temporarily correcting the fuel injection amount.
[0005]
[Patent Document 1]
JP 2001-221091 A (pages 3 to 5 etc.)
[Patent Document 2]
JP 2000-38953 A (pages 4 to 5 etc.)
[0006]
[Problems to be solved by the invention]
As described above, in the stratified combustion mode operation, in the system that calculates various control parameters (fuel injection timing, ignition timing, intake air amount, EGR amount, etc.) based on the fuel injection amount calculated based on the required torque, For example, as shown in FIG. 5, when a torque down request is generated at the time of a shift of an automatic transmission and the like, the fuel injection amount is temporarily reduced to correct the torque and the torque correction is performed. Thus, various control parameters such as fuel injection timing, ignition timing, intake air amount (throttle opening), EGR amount (EGR valve opening), and the like also change.
[0007]
At that time, the fuel injection timing and the ignition timing can be changed almost instantaneously with almost no response delay, and can be changed in response to changes in the required torque, but the intake air amount, EGR amount, etc. In the air system, since it takes a certain amount of time for the actual intake air amount and the actual EGR amount to change to their target values in accordance with the change in the required torque, the intake air amount and the EGR amount are different from the change in the required torque. It changes with a response delay. For this reason, when the torque correction (correction of fuel injection amount) is temporarily performed for a short time during the stratified combustion mode operation, the control parameters of the air system having a large response delay such as the intake air amount and the EGR amount are changed. Then, the change timing may deviate from the change timing of the required torque, and the air-fuel ratio and torque may be disturbed, and exhaust emission and torque correction accuracy may be deteriorated.
[0008]
The present invention has been made in view of such circumstances. Therefore, the object of the present invention is to stabilize the behavior of the air-fuel ratio when the torque correction is temporarily performed during the stratified combustion mode operation. Another object of the present invention is to provide a control device for a direct injection internal combustion engine that can improve the accuracy of torque correction.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, a control apparatus for a direct injection internal combustion engine according to claim 1 of the present invention calculates a plurality of control parameters based on a required torque during stratified combustion mode operation by a control parameter calculation means. a system for temporarily correcting the required torque when the predetermined torque correction condition is satisfied by the torque correcting means, when the required torque is temporarily corrected in the stratified combustion mode operation, the request after it has been corrected Control parameters of fuel injection amount, fuel injection timing, and ignition timing are calculated based on torque, and intake air amount, exhaust gas recirculation amount, valve timing, fuel pressure are calculated based on the required torque before being temporarily corrected. At least one other control parameter is calculated. Then, when the required torque is temporarily corrected during the stratified combustion mode operation, control is performed based on the control parameter and other control parameters.
[0010]
In this way, when performing torque correction by temporarily correcting the required torque during the stratified combustion mode operation, a control parameter with good responsiveness is calculated based on the corrected required torque. Control parameters can be changed with good response in response to changes in torque. On the other hand, control parameters with poor responsiveness and large delays are calculated based on the required torque before correction so that they do not change much. Can do. As a result, when performing torque correction temporarily during stratified combustion mode operation, the behavior of the air-fuel ratio is stabilized and torque fluctuation is reduced compared to the conventional system (see FIG. 5) that changes all control parameters. Therefore, exhaust emission and torque correction accuracy can be improved.
[0014]
In this case, as in claim 2 , the control parameter calculated based on the corrected fuel injection amount is at least one of the fuel injection timing and the ignition timing, and the control parameter is calculated based on the fuel injection amount before correction. parameter, the intake air amount, exhaust gas recirculation amount, Ru least 1 Tsutosu of the valve timing, the fuel pressure. In this way, at the time of torque correction, the fuel injection timing and ignition timing with good responsiveness can be changed with good response in response to changes in the required torque (fuel injection amount), resulting in poor responsiveness and delay. The intake air amount, exhaust gas recirculation amount, valve timing, and fuel pressure that are large can be kept from changing so much.
[0015]
In addition, during stratified combustion mode operation, fuel is injected into the cylinder to form a stratified mixture, and the stratified mixture is ignited at the timing when it flows to the vicinity of the spark plug for stratified combustion, so good stratified combustion In order to ensure this, it is necessary to appropriately maintain the relationship between the in-cylinder airflow strength (swirl flow strength and tumble flow strength), fuel injection timing, and ignition timing.
[0017]
According to a third aspect of the present invention, it is preferable that the torque correction condition is satisfied in at least one operating state among a shift of the automatic transmission, a return from fuel cut, and an acceleration. In this way, the control for torque correction according to the present invention can be performed at the time of shifting, fuel cut recovery, and acceleration of an automatic transmission that needs to suppress torque shock. It is possible to prevent disturbance of the air-fuel ratio while effectively suppressing the time shock and the acceleration shock.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
<< Embodiment (1) >>
Hereinafter, an embodiment (1) of the present invention will be described with reference to FIGS. First, a schematic configuration of the entire engine control system will be described with reference to FIG. An air cleaner 13 is provided at the most upstream portion of the intake pipe 12 of the cylinder injection engine 11 which is a cylinder injection internal combustion engine, and an air flow meter 14 for detecting the intake air amount is provided downstream of the air cleaner 13. It has been. A throttle valve 16 driven by a motor 15 such as a DC motor is provided on the downstream side of the air flow meter 14, and an opening degree (throttle opening degree) of the throttle valve 16 is detected by a throttle opening degree sensor 17.
[0019]
A surge tank 18 is provided on the downstream side of the throttle valve 16, and an intake pipe pressure sensor 19 for detecting the intake pipe pressure is provided in the surge tank 18. The surge tank 18 is provided with an intake manifold 20 that introduces air into each cylinder of the engine 11, and controls the in-cylinder airflow strength (swirl flow strength and tumble flow strength) in the intake manifold 20 of each cylinder. An airflow control valve 31 is provided.
[0020]
A fuel injection valve 21 that directly injects fuel into the cylinder is attached to an upper portion of each cylinder of the engine 11. A spark plug 22 is attached to the cylinder head of the engine 11 for each cylinder, and the air-fuel mixture in the cylinder is ignited by the spark discharge of each spark plug 22. In addition, the intake valve 37 and the exhaust valve 38 of the engine 11 are provided with variable valve timing mechanisms 39 and 40 for varying the valve timing, respectively.
[0021]
A knock sensor 32 for detecting knocking and a cooling water temperature sensor 23 for detecting cooling water temperature are attached to the cylinder block of the engine 11. A crank angle sensor 24 that outputs a crank angle signal at every predetermined crank angle is attached to the outer peripheral side of the crankshaft (not shown). Based on the output signal of the crank angle sensor 24, the crank angle and the engine speed are detected.
[0022]
On the other hand, the exhaust pipe 25 of the engine 11 is provided with an upstream catalyst 26 and a downstream catalyst 27 for purifying the exhaust gas, and the air-fuel ratio or rich / lean of the exhaust gas is detected on the upstream side of the upstream catalyst 26. An exhaust gas sensor 28 (air-fuel ratio sensor, oxygen sensor, etc.) is provided. In the present embodiment, a three-way catalyst for purifying CO, HC, NOx, etc. in the exhaust gas near the stoichiometric air-fuel ratio is provided as the upstream side catalyst 26, and a NOx occlusion reduction type catalyst is provided as the downstream side catalyst 27. . This NOx occlusion reduction type catalyst occludes NOx in the exhaust gas when the air-fuel ratio of the exhaust gas is lean, and reduces and purifies the occluded NOx when the air-fuel ratio becomes near the stoichiometric air-fuel ratio or becomes rich. Has characteristics.
[0023]
Further, a part of the exhaust gas is recirculated to the intake side between the downstream side of the upstream catalyst 26 in the exhaust pipe 25 and the surge tank 18 on the downstream side of the throttle valve 16 in the intake pipe 12. An EGR pipe 33 is connected, and an EGR valve 34 for controlling the exhaust gas recirculation amount (EGR amount) is provided in the middle of the EGR pipe 33. Further, the accelerator sensor 36 detects the amount of depression of the accelerator pedal 35 (accelerator opening).
[0024]
Outputs of the various sensors described above are input to an engine control circuit (hereinafter referred to as “ECU”) 30. The ECU 30 is mainly composed of a microcomputer, and executes various control programs stored in a built-in ROM (storage medium), so that the fuel injection amount of the fuel injection valve 21 and the fuel are controlled according to the engine operating state. The injection timing, the ignition timing of the spark plug 22 and the like are controlled.
[0025]
The ECU 30 switches between the stratified combustion mode and the homogeneous combustion mode in accordance with the engine operating state (required torque, engine speed, etc.). In the stratified charge combustion mode, a small amount of fuel is directly injected into the cylinder in the compression stroke, and a stratified mixture is formed in the vicinity of the spark plug 22 for stratified charge combustion, thereby improving fuel efficiency. On the other hand, in the homogeneous combustion mode, the engine output is increased by increasing the fuel injection amount and directly injecting it into the cylinder during the intake stroke to form a homogeneous mixture and performing homogeneous combustion.
[0026]
As shown in FIG. 2, the ECU 30 calculates a required shaft torque based on the accelerator opening, the engine rotational speed Ne, the vehicle speed, and the like during the stratified combustion mode operation, and the internal loss torque and the external load torque are added to the required shaft torque. Then, the required indicated torque is obtained by adding a correction torque or the like by idle speed control (ISC).
[0027]
Here, the internal loss torque to be added to the required shaft torque is a mechanical friction loss and a pumping loss, and the mechanical friction loss is calculated by a map or the like based on the engine rotational speed Ne and the cooling water temperature. A map or the like is calculated based on the rotational speed Ne and the intake pipe pressure. The external load torque to be added to the required shaft torque is the load torque of auxiliary equipment (air conditioner compressor, alternator, power steering pump, etc.) driven by the power of the engine 11, and the air conditioner signal and alternator load current. It is set according to etc. Further, the ISC correction torque to be added to the required shaft torque is calculated by a map or the like based on the target idle speed and the current engine speed Ne.
[0028]
During normal operation during the stratified charge combustion mode operation (when no torque down request is generated), the ECU 30 maps the fuel injection amount, the fuel injection timing, the ignition based on the requested indicated torque and the engine speed Ne based on the requested indicated torque, respectively. By calculating various control parameters such as timing, in-cylinder airflow strength (airflow control valve opening), EGR amount (EGR valve opening), valve timing, fuel pressure, intake air amount (throttle opening), etc. In the range of the control parameter calculation means, and based on these control parameters, the fuel injection valve 21, the spark plug 22, the airflow control valve 31, the EGR valve 34, the variable valve timing mechanisms 39 and 40, the fuel pump ( (Not shown), the throttle valve 16 and the like are driven.
[0029]
In addition, during the stratified charge combustion mode operation, the ECU 30 performs torque reduction when a torque down request is generated in an operation state in which a torque shock is generated, for example, at the time of shifting of the automatic transmission, at the time of fuel cut return, or at the time of acceleration. By calculating the torque down amount necessary to suppress the shock, and subtracting this torque down amount from the required indicated torque to temporarily correct the indicated indicated torque, Play a role.
[0030]
When the torque reduction request is generated and the required indicated torque is temporarily corrected during the stratified combustion mode operation, the ECU 30 determines the fuel injection amount and the fuel injection timing based on the corrected indicated indicated torque and the engine rotational speed Ne. , Ignition timing, in-cylinder airflow strength (airflow control valve opening) is calculated from a map or the like, and EGR amount (EGR valve opening), valve timing, fuel pressure based on the required indicated torque before correction and engine speed Ne The intake air amount (throttle opening) is calculated using a map or the like.
[0031]
Here, the fuel injection amount, the fuel injection timing, and the ignition timing calculated based on the required indicated torque after correction are control parameters with good responsiveness, and the EGR amount (EGR) calculated based on the required indicated torque before correction. Valve opening), valve timing, fuel pressure, and intake air amount (throttle opening) are control parameters with poor response and large delay.
[0032]
An execution example of this embodiment (1) described above will be described with reference to the time chart of FIG. During normal operation in the stratified combustion mode operation (when no torque down request is generated), the required indicated torque is calculated based on the accelerator opening, etc., and the fuel injection amount and the fuel injection timing are calculated based on this required indicated torque. Various control parameters such as ignition timing, in-cylinder airflow strength (airflow control valve opening), EGR amount (EGR valve opening), intake air amount (throttle opening), valve timing, fuel pressure, and the like are calculated.
[0033]
Thereafter, when a torque down request is generated during a shift of the automatic transmission or the like, the requested indicated torque is temporarily reduced to correct the torque. During this torque correction, control parameters with good responsiveness (fuel injection amount, fuel injection timing, ignition timing, in-cylinder airflow strength) are calculated based on the corrected required indicated torque, thereby changing the indicated indicated torque. The response is changed according to the response. On the other hand, the control parameters (EGR amount, intake air amount, valve timing, fuel pressure) with poor response and large delay are calculated based on the requested indicated torque before correction so as not to change much. .
[0034]
This stabilizes the behavior of the air-fuel ratio and reduces torque fluctuations compared to the conventional system (see FIG. 5) in which all control parameters are changed when temporarily correcting torque during stratified combustion mode operation. Thus, exhaust emission and torque correction accuracy can be improved.
[0035]
Further, during the stratified charge combustion mode operation, fuel is injected into the cylinder to form a stratified mixture, and the stratified mixture is ignited at the timing when the stratified mixture flows to the vicinity of the spark plug 22 and stratified combustion is performed. In order to ensure combustion, it is necessary to appropriately maintain the relationship between the in-cylinder airflow intensity, the fuel injection timing, and the ignition timing.
[0036]
In this respect, in the present embodiment (1), the in-cylinder airflow strength is calculated based on the required indicated torque after correction in addition to the fuel injection timing and ignition timing at the time of torque correction. In-cylinder airflow strength can be changed at the same time according to changes in fuel injection timing and ignition timing, and the relationship between in-cylinder airflow strength, fuel injection timing, and ignition timing can be maintained appropriately, and good stratified combustion can be ensured. Can do.
[0037]
<< Embodiment (2) >>
Next, Embodiment (2) of this invention is demonstrated using FIG.
In the present embodiment (2), during normal operation during stratified combustion mode operation (when no torque down request is generated), the ECU 30 uses a map or the like based on the requested indicated torque and the engine rotational speed Ne to map the fuel injection amount. Based on this fuel injection amount, fuel injection timing, ignition timing, in-cylinder airflow strength (airflow control valve opening), EGR amount (EGR valve opening), valve timing, fuel pressure, intake air amount (throttle) Opening) etc. are calculated with a map or the like.
[0038]
When a torque reduction request is generated and the required indicated torque is temporarily corrected during the stratified combustion mode operation, the corrected fuel injection amount is calculated based on the corrected indicated indicated torque and the engine rotational speed Ne. Then, based on the corrected fuel injection amount and the engine rotational speed Ne, the fuel injection timing, ignition timing, and in-cylinder airflow strength (airflow control valve opening) are calculated using a map or the like. Further, a fuel injection amount before correction is calculated based on the requested indicated torque before correction and the engine rotational speed Ne, and an EGR amount (EGR valve opening) is calculated based on the fuel injection amount before correction and the engine rotational speed Ne. The valve timing, fuel pressure, and intake air amount (throttle opening) are calculated using a map or the like.
[0039]
In the embodiment (2) described above, as in the embodiment (1), the control parameter with good responsiveness follows the response with good response according to the change in the requested indicated torque torque (fuel injection amount) at the time of torque correction. Control parameters that have poor responsiveness and a large delay can be kept from changing so much that the air-fuel ratio behavior can be stabilized to reduce torque fluctuations, exhaust emissions, and torque correction. Accuracy can be improved.
[0040]
In each of the above embodiments (1) and (2), the present invention is applied to control at the time of torque correction for preventing torque fluctuation at the time of shifting of the automatic transmission, at the time of fuel cut return, and acceleration. However, the present invention is not limited to this, and the present invention may be applied to control at the time of torque correction when preventing torque fluctuation in other operating states such as when the anti-lock brake system is operated or when the traction control system is operated. .
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of an entire engine control system according to an embodiment (1) of the present invention. FIG. 2 is a functional block diagram for explaining a control parameter calculation method during stratified combustion mode operation according to an embodiment (1). FIG. 3 is a time chart showing an example of control at the time of torque correction during the stratified charge combustion mode operation of the embodiment (1). FIG. 4 explains a calculation method of control parameters during the stratified charge combustion mode operation of the embodiment (2). Functional block diagram for the purpose [FIG. 5] Time chart showing a control example at the time of torque correction during the conventional stratified combustion mode operation
DESCRIPTION OF SYMBOLS 11 ... Cylinder injection type engine (Cylinder injection type internal combustion engine), 12 ... Intake pipe, 16 ... Throttle valve, 21 ... Fuel injection valve, 22 ... Spark plug, 23 ... Cooling water temperature sensor, 24 ... Crank angle sensor, 25 ... Exhaust pipe, 30 ... ECU (control parameter calculation means, torque correction means), 31 ... Airflow control valve, 34 ... EGR valve, 36 ... Accelerator sensor, 37 ... Intake valve, 38 ... Exhaust valve, 39,40 ... Variable valve Timing mechanism.

Claims (3)

圧縮行程で筒内に燃料を噴射して成層燃焼させる成層燃焼モードで運転する筒内噴射式内燃機関の制御装置において、
前記成層燃焼モード運転中に要求トルクに基づいて複数の制御パラメータを算出する制御パラメータ算出手段と、
所定のトルク補正条件が成立したときに前記要求トルクを一時的に補正するトルク補正手段とを備え、
前記制御パラメータ算出手段は、前記成層燃焼モード運転中に前記トルク補正手段により前記要求トルクが一時的に補正されときに、補正された後の要求トルクに基づいて燃料噴射量、燃料噴射時期、及び点火時期の制御パラメータを算出し、一時的に補正される前の要求トルクに基づいて吸入空気量、排出ガス還流量、バルブタイミング、燃料圧力のうちの少なくとも1つの他の制御パラメータを算出するものであって、
前記成層燃焼モード運転中に前記トルク補正手段により前記要求トルクが一時的に補正されるときには、前記制御パラメータ算出手段により算出される前記制御パラメータと前記他の制御パラメータとに基づいて制御することを特徴とする筒内噴射式内燃機関の制御装置。
In a control apparatus for a direct injection internal combustion engine that operates in a stratified combustion mode in which fuel is injected into a cylinder in a compression stroke and stratified combustion is performed,
Control parameter calculating means for calculating a plurality of control parameters based on the required torque during the stratified combustion mode operation;
Torque correction means for temporarily correcting the required torque when a predetermined torque correction condition is satisfied,
Said control parameter calculating means, the when the required torque by the torque correcting means during stratified charge combustion mode operation Ru is temporarily corrected fuel injection amount based on the required torque after being corrected, the fuel injection timing, and calculates the control parameters of the ignition timing, intake air amount based on the required torque before being temporarily corrected exhaust gas recirculation amount is calculated at least one other control parameters of the valve timing, fuel pressure And
When the required torque is temporarily corrected by the torque correction means during the stratified combustion mode operation, the control is performed based on the control parameter calculated by the control parameter calculation means and the other control parameters. A control apparatus for a cylinder injection internal combustion engine.
圧縮行程で筒内に燃料を噴射して成層燃焼させる成層燃焼モードで運転する筒内噴射式内燃機関の制御装置において、
前記成層燃焼モード運転中に要求トルクに基づいて算出した燃料噴射量に基づいて複数の制御パラメータを算出する制御パラメータ算出手段と、
所定のトルク補正条件が成立したときに前記燃料噴射量を一時的に補正するトルク補正手段とを備え、
前記制御パラメータ算出手段は、前記成層燃焼モード運転中に前記トルク補正手段により前記燃料噴射量が一時的に補正されときに、補正された後の燃料噴射量に基づいて燃料噴射時期又は点火時期の制御パラメータを算出し、一時的に補正される前の燃料噴射量に基づいて吸入空気量、排出ガス還流量、バルブタイミング、燃料圧力のうちの少なくとも1つの他の制御パラメータを算出するものであって、
前記成層燃焼モード運転中に前記トルク補正手段により前記燃料噴射量が一時的に補正されるときには、前記制御パラメータ算出手段により算出される前記制御パラメータと前記他の制御パラメータとに基づいて制御することを特徴とする筒内噴射式内燃機関の制御装置。
In a control apparatus for a direct injection internal combustion engine that operates in a stratified combustion mode in which fuel is injected into a cylinder in a compression stroke and stratified combustion is performed,
Control parameter calculating means for calculating a plurality of control parameters based on the fuel injection amount calculated based on the required torque during the stratified combustion mode operation;
Torque correction means for temporarily correcting the fuel injection amount when a predetermined torque correction condition is satisfied,
Said control parameter calculating means, the stratified by combustion mode the torque correction means during operation when the amount the fuel injection Ru is temporarily corrected, based on the fuel injection amount after correction fuel injection timing or ignition timing in which the calculated control parameters, the intake air amount based on the fuel injection amount before being temporarily corrected exhaust gas recirculation amount is calculated at least one other control parameters of the valve timing, fuel pressure There,
When the fuel injection amount is temporarily corrected by the torque correction unit during the stratified combustion mode operation, the control is performed based on the control parameter calculated by the control parameter calculation unit and the other control parameter. A control apparatus for a direct injection internal combustion engine.
前記トルク補正条件は、自動変速機の変速時、燃料カット復帰時、加速時のうちの少なくとも1つの運転状態のときに成立することを特徴とする請求項1又は2に記載の筒内噴射式内燃機関の制御装置。 3. The in-cylinder injection type according to claim 1, wherein the torque correction condition is satisfied in at least one operating state among a shift of the automatic transmission, a return from fuel cut, and an acceleration. Control device for internal combustion engine.
JP2003005288A 2003-01-14 2003-01-14 In-cylinder injection internal combustion engine control device Expired - Fee Related JP4339599B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003005288A JP4339599B2 (en) 2003-01-14 2003-01-14 In-cylinder injection internal combustion engine control device
DE200410001825 DE102004001825A1 (en) 2003-01-14 2004-01-13 Fuel injection control apparatus of cylinder injection-type internal combustion engine, performs spark-advance correction of fuel injection timing corresponding to combustion mode when fuel characteristic is heavy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003005288A JP4339599B2 (en) 2003-01-14 2003-01-14 In-cylinder injection internal combustion engine control device

Publications (2)

Publication Number Publication Date
JP2004218490A JP2004218490A (en) 2004-08-05
JP4339599B2 true JP4339599B2 (en) 2009-10-07

Family

ID=32895977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003005288A Expired - Fee Related JP4339599B2 (en) 2003-01-14 2003-01-14 In-cylinder injection internal combustion engine control device

Country Status (1)

Country Link
JP (1) JP4339599B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9797302B2 (en) 2014-06-05 2017-10-24 Hyundai Motor Company Engine control system with variable turbocharger and method thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007297992A (en) * 2006-05-01 2007-11-15 Toyota Motor Corp Control device for internal combustion engine
JP2010156225A (en) * 2008-12-26 2010-07-15 Toyota Motor Corp Vehicular engine output control device
US9546605B2 (en) * 2011-12-08 2017-01-17 Toyota Jidosha Kabushiki Kaisha Throttle control device for controlling engine torque

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3680432B2 (en) * 1996-08-16 2005-08-10 日産自動車株式会社 Control device for internal combustion engine
JP3695070B2 (en) * 1997-07-28 2005-09-14 日産自動車株式会社 Engine control device
JP2000038953A (en) * 1998-07-21 2000-02-08 Denso Corp Controller for cylinder fuel injection type internal combustion engine
JP3791288B2 (en) * 1999-06-18 2006-06-28 トヨタ自動車株式会社 Control device for in-vehicle internal combustion engine
JP2001221091A (en) * 2000-02-10 2001-08-17 Denso Corp Controller for cylinder injection type internal combustion engine
JP4366855B2 (en) * 2000-10-03 2009-11-18 トヨタ自動車株式会社 In-cylinder injection internal combustion engine control device
JP2002161774A (en) * 2000-11-27 2002-06-07 Toyota Motor Corp Combustion control device for internal combustion engine
JP4054547B2 (en) * 2001-06-01 2008-02-27 株式会社日立製作所 Control device for internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9797302B2 (en) 2014-06-05 2017-10-24 Hyundai Motor Company Engine control system with variable turbocharger and method thereof

Also Published As

Publication number Publication date
JP2004218490A (en) 2004-08-05

Similar Documents

Publication Publication Date Title
JP4483684B2 (en) Fuel injection control device for in-cylinder internal combustion engine
JP3768296B2 (en) In-cylinder injection type spark ignition internal combustion engine control device
JP3569120B2 (en) Combustion control device for lean burn internal combustion engine
JP3123474B2 (en) Exhaust gas purification device for internal combustion engine
JP3971004B2 (en) Combustion switching control device for internal combustion engine
JP2005214102A (en) Control device of cylinder injection internal combustion engine
JP3175601B2 (en) Air intake control system for lean burn engine
JP2008019729A (en) Control device of cylinder injection type engine
US20160348606A1 (en) Control apparatus for internal combustion engine
US7997067B2 (en) Exhaust emission control device and method for internal combustion engine, and engine control unit
JP3845866B2 (en) Fuel injection control device for in-cylinder internal combustion engine
JP4339599B2 (en) In-cylinder injection internal combustion engine control device
EP1088983A2 (en) A control system for a direct injection engine of spark ignition type
JP4610404B2 (en) Diesel engine control device
JPH10184418A (en) Exhaust purifying device for lean combustion engine
JP3648864B2 (en) Lean combustion internal combustion engine
JP3846481B2 (en) In-cylinder injection internal combustion engine control device
JP4092940B2 (en) Internal combustion engine control device
JP4324297B2 (en) In-cylinder injection engine control device
JP3835975B2 (en) In-cylinder injection internal combustion engine control device
JP3962920B2 (en) Fuel injection control device for in-cylinder internal combustion engine
JP3546742B2 (en) Intake air amount control device for internal combustion engine
JP2006132399A (en) Control device and control method for an engine with supercharger
JP4171909B2 (en) In-cylinder injection internal combustion engine control device
JP2005220857A (en) Control device for cylinder injection internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050418

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060529

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060721

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060828

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060920

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061025

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20061113

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20061208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090514

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090702

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120710

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120710

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130710

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees