JPH1136650A - Aseismatic building structure - Google Patents

Aseismatic building structure

Info

Publication number
JPH1136650A
JPH1136650A JP21264597A JP21264597A JPH1136650A JP H1136650 A JPH1136650 A JP H1136650A JP 21264597 A JP21264597 A JP 21264597A JP 21264597 A JP21264597 A JP 21264597A JP H1136650 A JPH1136650 A JP H1136650A
Authority
JP
Japan
Prior art keywords
earthquake
resistant wall
frame
resistant
floor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21264597A
Other languages
Japanese (ja)
Inventor
Koji Yabuuchi
浩二 薮内
Kunio Watanabe
邦夫 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Construction Co Ltd
Original Assignee
Mitsui Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Construction Co Ltd filed Critical Mitsui Construction Co Ltd
Priority to JP21264597A priority Critical patent/JPH1136650A/en
Publication of JPH1136650A publication Critical patent/JPH1136650A/en
Pending legal-status Critical Current

Links

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Abstract

PROBLEM TO BE SOLVED: To ensure good structural characteristics such as horizontal strength and horizontal rigidity without impairing profitability, while arranging stories with no aseismic walls as successive layers in an aseismic wall structure having plural stories, and to greatly enhance the flexibility of building designs. SOLUTION: A rigid-frame structure 4, at least a portion of which involves stories with no aseismic walls 33, is joined with the bottom of an aseismic wall structure 3 having plural stories. The aseismic wall structure 3 is formed by integrating a framework, which consists of opposite upright columns 31 on each story and frame beams 32 for upper and lower stories, with the aseismic walls 33. The rigid-frame structure 4 has a pair of inclined columns 41 spaced apart and inclined in such a way as to diverge outward within the same frame plane, and the capital of each inclined column 41 is connected to a leg part of the aseismic wall structure 3. An upper beams 42' at the stories of the rigid- frame structure 4 with no aseismic walls are formed by skeletal members having a greater strength than the frame beams of the aseismic wall structure 3.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】 本発明は、例えば集合住宅建築に
適用される耐震構造に関するものである。
[Industrial applications] The present invention is applicable to, for example, apartment buildings.
It is about the seismic structure to be applied.

【0002】[0002]

【従来技術】複数階を有する集合住宅建築などに適用さ
れる耐震構造は、従来、耐震壁を連層配置したものが一
般的である。図15はそうした耐震壁構造による集合住
宅の基準階の一例を示す。
2. Description of the Related Art Conventionally, an earthquake-resistant structure applied to an apartment building having a plurality of floors generally has a structure in which earthquake-resistant walls are arranged in layers. FIG. 15 shows an example of a reference floor of an apartment house having such a shear wall structure.

【0003】図中符号Aは所要の間隔をおいて直立する
柱、Bは柱によって囲まれる住戸空間、Cは住戸空間B
の一側に設けられる共用廊下、Dは住戸空間の他側に設
けられるバルコニーである。片側廊下方式のこの建築物
は、図中矢印Xで示す桁行方向には、住戸空間Bと共用
廊下CもしくはバルコニーDとの境界面にラーメン骨組
が互いに対向するように配置される(梁は図示しな
い)。また、矢印Yで示す梁間方向には、各住戸の戸境
壁を耐震壁Eとすることによって上階から最下階まで鉄
筋コンクリート造の耐震壁構造が連層配置される。
[0003] In the drawing, reference numeral A denotes a pillar standing upright at a required interval, B denotes a dwelling unit space surrounded by the pillar, and C denotes a dwelling unit space B.
Is a shared corridor provided on one side of the house, and D is a balcony provided on the other side of the dwelling unit space. In this one-side corridor type building, in the girder direction indicated by an arrow X in the figure, a ramen frame is arranged so as to face a boundary surface between a dwelling unit space B and a common corridor C or a balcony D (beams are illustrated). do not do). In addition, in the direction between the beams indicated by the arrow Y, a seismic wall E of the dwelling unit of each dwelling unit is used as the earthquake-resistant wall E, so that a reinforced concrete-made earthquake-resistant wall structure is continuously arranged from the upper floor to the lowest floor.

【0004】耐震壁構造は柱と梁の骨組と壁とが一体化
されることで、鉛直荷重及び水平力に対して骨組と壁と
が一体となって抵抗する。したがって、地震時に各階に
作用する水平力は骨組と一体化された耐震壁の水平耐力
によって抵抗され、耐震壁構造はこの種の水平荷重に対
して骨組の変形を防いで建物全体の剛性を高める。
[0004] In the earthquake-resistant wall structure, the frame and the wall integrally resist the vertical load and the horizontal force by integrating the frame of the column and the beam with the wall. Therefore, the horizontal force acting on each floor during an earthquake is resisted by the horizontal strength of the shear wall integrated with the frame, and the shear wall structure prevents the frame from deforming against this kind of horizontal load and increases the rigidity of the whole building .

【0005】[0005]

【発明が解決しようとする課題】ところが、耐震壁構造
建築物の場合、最上階から最下階に至るまで全ての階を
耐震壁構造にしてこれを連層配置する必要がある。途中
階や下階に耐震壁を持たない階を形成すると、同一架構
面内でこの部分の水平耐力が極端に低くなり、当該階の
骨組に応力が集中しあるいは骨組が過大な軸力に耐えら
れなくなって建物の崩壊を招き易いからである。例えば
図16に見られるような連層耐震壁構造体Fの下部に直
立柱Hと上梁G及び支持梁Iとから成るラーメン骨組J
を接合した場合、地震時に、上部の連層耐震壁構造体F
は上記したように骨組と一体化した耐震壁Eの水平耐力
で抵抗する一方、下部のラーメン骨組Jは直立柱Hの水
平耐力で抵抗する機構となる。連層耐震壁構造体側端の
柱Aから下階のラーメン骨組Jの柱Hに大きな軸力が加
わる状況下では、ラーメン骨組Jにおいて直立柱Hの曲
げ耐力またはせん断耐力によって決定される水平耐力は
上階の耐震壁構造体Fの水平耐力に比較して極端に小さ
いという傾向がある。したがって、こうした複合構造物
は上部と下部とで水平剛性、水平耐力のバランスが悪い
骨組となり、地震時には下階のラーメン骨組Jで激しく
揺れ、柱が破壊し、建物の崩壊をもたらすことが多くな
る。
However, in the case of a building with an earthquake-resistant wall structure, it is necessary to make all the floors from the top floor to the lowest floor have a earthquake-resistant wall structure and arrange them in layers. If a floor without a seismic wall is formed in the middle floor or lower floor, the horizontal strength of this part will be extremely low within the same frame, stress will be concentrated on the frame of the floor, or the frame will withstand excessive axial force. This is because the building cannot be collapsed and the building collapses easily. For example, a rigid frame J including an upright column H, an upper beam G and a supporting beam I is provided below a multi-story shear wall structure F as shown in FIG.
When an earthquake occurs, the upper multi-story shear wall structure F
Is a mechanism that resists with the horizontal strength of the earthquake-resistant wall E integrated with the frame as described above, while the lower frame frame J resists with the horizontal strength of the upright column H. Under the situation where a large axial force is applied from the column A at the side end of the multi-story earthquake-resistant wall structure to the column H of the lower frame frame J, the horizontal strength determined by the bending strength or shear strength of the upright column H in the frame frame J is as follows. There is a tendency that it is extremely small compared to the horizontal strength of the upper floor earthquake-resistant wall structure F. Therefore, such a composite structure has a frame with poor balance of horizontal rigidity and horizontal strength between the upper part and the lower part, and in the event of an earthquake, violently shakes at the ramen frame J on the lower floor, the columns are destroyed, and the building collapses in many cases. .

【0006】ラーメン骨組Jの柱Hの水平断面積を連層
耐震壁Eの柱Aの水平断面積の数倍にしてラーメン骨組
Jの水平剛性を上階の連層耐震壁構造体Fと同等にする
ことも考えられるが、実際の設計ではこのような大きな
柱にすることは困難である。しかも、建物が高層化、大
型化するに連れて、ラーメン骨組Jに加わる地震時の荷
重が大きくなり、柱の大きさ、耐力を極端に高めること
は困難となるばかりでなく、構造体のコストも高くな
る。
The horizontal rigidity of the frame J is equal to that of the multi-story shear wall structure F on the upper floor by making the horizontal sectional area of the column H of the rigid frame J several times the horizontal sectional area of the column A of the multi-story shear wall E. However, it is difficult to make such a large pillar in an actual design. Moreover, as the building becomes higher and larger, the load applied to the frame J during the earthquake increases, and it becomes difficult not only to increase the size and strength of the column extremely, but also to reduce the cost of the structure. Will also be higher.

【0007】このため、耐震壁構造を連層させた集合住
宅のような建築物では、住宅とは異なる例えば事務所、
店舗、駐車場あるいはピロティや吹き抜きといった耐震
壁を持たない骨組部を途中階や下階に混在させにくく、
その分、設計の自由度が制限される。また、従来の耐震
壁構造において耐震壁を持たない階をあえて組み入れた
場合には、耐震壁構造物とはいえ十分な水平剛性を持た
ない構造体になる。
[0007] For this reason, in a building such as an apartment house having a multi-layered earthquake-resistant wall structure, for example, an office,
It is difficult to mix stores, parking lots, or frame parts that do not have earthquake-resistant walls such as piloties and blow-offs on middle floors and lower floors,
This limits the degree of freedom in design. In addition, if a floor having no earthquake-resistant wall is intentionally incorporated into the conventional earthquake-resistant wall structure, the structure will not have sufficient horizontal rigidity even though it is a earthquake-resistant wall structure.

【0008】本発明の目的は、複数階を有する耐震壁構
造体に耐震壁を持たない階を連層的に配置しながらも経
済性を損なうことなく水平耐力や水平剛性等の構造的特
性に富み、建築設計の融通性を大幅に向上させる、耐震
建築構造を提供することにある。
[0008] An object of the present invention is to provide structural members such as horizontal proof strength and horizontal rigidity without losing economical efficiency while arranging floors having no earthquake-resistant walls in a multi-story structure. An object of the present invention is to provide a seismic building structure that is rich and greatly improves the flexibility of architectural design.

【0009】[0009]

【課題を解決するための手段】本発明は、上記した目的
を達成するために次の構成を備える。すなわち、請求項
1の発明は、複数階を有する耐震壁構造体の下部に、耐
震壁を持たない階を少なくとも一部に有するラーメン構
造体を接合して成る。耐震壁構造体は各階の対向する直
立柱と上下階の枠梁とから成る骨組と耐震壁とを一体化
させてある。ラーメン構造体は、間隔を置き同一架構面
内で外方に向けて末広がりに傾斜した一対の傾斜柱を有
し、これらの傾斜柱の柱頭部を上記耐震壁構造体の脚部
に連結させてある。また、ラーメン構造体の上記した耐
震壁を持たない階の上梁は、耐震壁構造体の枠梁よりも
耐力の大きな骨組み材によって形成されている。
The present invention has the following configuration to achieve the above object. That is, the invention of claim 1 is configured by joining a ramen structure having at least a portion of a floor having no earthquake-resistant wall to a lower portion of the earthquake-resistant wall structure having a plurality of floors. The earthquake-resistant wall structure is formed by integrating a frame composed of upright columns facing each floor and frame beams on the upper and lower floors with the earthquake-resistant wall. The ramen structure has a pair of inclined columns that are spaced apart and inclined outward and outward in the same frame surface, and the column heads of these inclined columns are connected to the legs of the earthquake-resistant wall structure. is there. Further, the upper beams of the ramen structure that do not have the above-mentioned earthquake-resistant wall are formed of a frame material having higher strength than the frame beam of the earthquake-resistant wall structure.

【0010】請求項2の発明は、請求項1記載の耐震建
築構造を前提とし、前記ラーメン構造体の下部に耐震壁
構造体を更に接合することにより、上下の耐震壁構造体
の間にラーメン構造体が配設されている点に特徴があ
る。
[0010] The invention of claim 2 is based on the earthquake-resistant building structure according to claim 1, and further comprises connecting the earthquake-resistant wall structure to a lower portion of the rigid-frame structure to thereby provide a rigid frame between the upper and lower earthquake-resistant wall structures. The feature is that the structure is provided.

【0011】請求項3の発明では、前記耐震壁構造体は
同一階に中廊下を挟んで第一及び第二の耐震壁構造体が
はり間方向に並設されている。これらの第一及び第二の
耐震壁構造体は、それぞれ各階の中廊下側の直立内方柱
及びこれと対向する直立外方柱と上下階の枠梁とから成
る骨組に耐震壁を一体化させてある。ラーメン構造体
は、一対の傾斜柱の他に直立補強柱を有する。この直立
補強柱は、両傾斜柱間に位置して第一及び第二の耐震壁
構造体の各内方柱の脚部近傍を支持する。
According to the third aspect of the present invention, the first and second earthquake-resistant wall structures are arranged side by side on the same floor with a central corridor interposed therebetween. Each of the first and second earthquake-resistant wall structures integrates an earthquake-resistant wall into a frame composed of an upright inner pillar on the middle corridor side of each floor, an upright outer pillar facing the inner pillar, and frame beams on the upper and lower floors. Let me do it. The ramen structure has upright reinforcing columns in addition to the pair of inclined columns. The upright reinforcing column is located between the two inclined columns and supports the vicinity of the leg of each inner column of the first and second earthquake-resistant wall structures.

【0012】本発明において、ラーメン構造体は、その
全体を耐震壁を持たない骨組とし、あるいは一部の階に
耐震壁を持つ骨組とすることもでき、耐震壁構造体との
境に位置する上梁と基礎梁等の下梁と一対の前記した傾
斜柱とによって略台形状を成す。また、ラーメン構造体
の傾斜柱と耐震壁構造体の脚部との接合位置は、耐震壁
構造体の直立柱直下が望ましいがそれよりも内側に位置
させる場合には耐震壁構造体の直立柱の軸線上に傾斜柱
とは別に支持柱を連結するのが望ましい。更に、ラーメ
ン構造体の両傾斜柱の傾斜角度は、両傾斜柱の軸線を延
長した交点(頂点)が地震による建物への水平荷重の合
力の作用点とその高さ位置においてほぼ等しいかこれよ
りも上方に位置するように設定するのが構造上望まし
い。上記頂点が作用点よりも下方に位置する場合には作
用点にできるだけ近い位置になるように両傾斜柱の傾斜
角度を設定する。
In the present invention, the frame structure may be a frame having no earthquake-resistant wall as a whole, or a frame having an earthquake-resistant wall on some floors, and is located at a boundary with the earthquake-resistant wall structure. The upper beam, a lower beam such as a foundation beam, and a pair of the above-mentioned inclined columns form a substantially trapezoidal shape. The joint position between the inclined column of the ramen structure and the leg of the earthquake-resistant wall structure is desirably directly below the upright column of the earthquake-resistant wall structure. It is desirable to connect a supporting column separately from the tilting column on the axis of. Furthermore, the inclination angle of both inclined columns of the ramen structure is such that the intersection (vertex) extending the axis of both inclined columns is approximately equal to or greater than the point of application of the resultant force of the horizontal load on the building due to the earthquake. It is structurally desirable to set the upper position also. When the apex is located below the point of action, the inclination angles of both inclined columns are set so as to be as close as possible to the point of action.

【0013】[0013]

【発明の実施の形態】以下、本発明を図示した実施例に
基づいて詳説する。 実施例1 図1は、上記従来例と同じ片廊下方式集合住宅のはり間
方向の構造物に本発明を適用した場合の実施例を示す。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail based on illustrated embodiments. Embodiment 1 FIG. 1 shows an embodiment in which the present invention is applied to a beam-to-beam direction structure of a single-hall corridor apartment house which is the same as the above-mentioned conventional example.

【0014】この構造物は、14階建ての構造物本体1
とそれを支持する基礎構造物2から成る。基礎構造物2
は所定の間隔(L1)を離して構築される複数の基礎2
1と、その基礎21を支持するために地盤中に打設する
複数の杭22と、基礎21を水平に連結する地中梁23
より成る。
This structure is a 14-story structure body 1
And a substructure 2 that supports it. Substructure 2
Are a plurality of foundations 2 constructed at a predetermined interval (L1) apart.
1, a plurality of piles 22 that are driven into the ground to support the foundation 21, and an underground beam 23 that horizontally connects the foundation 21
Consisting of

【0015】構造物本体1は、はり間方向を1スパンで
構成され、最上階から4階までが住居階に、また3階か
ら1階までが非住居階にそれぞれ割り当てられている。
住居階は各階全て耐震壁構造になっており全体として耐
震壁構造体3を構成している。また、非住居階は耐震壁
を持たない骨組から成るラーメン構造体4によって構成
されている。上記した「スパン」とは対向配置される2
本の柱間の単位のことで、1スパンとはそれが1単位、
つまり柱が2本の場合のことである。また、スパン長さ
とは柱間の直線状の距離、スパン数とはスパンの数をそ
れぞれ意味する。
The structure main body 1 has a span of one beam in the direction between the beams, and the top floor to the fourth floor are allocated to the residential floor, and the third floor to the first floor are allocated to the non-residential floor.
The dwelling floors have an earthquake-resistant wall structure on each floor, and constitute the earthquake-resistant wall structure 3 as a whole. The non-residential floor is constituted by a ramen structure 4 composed of a frame having no earthquake-resistant wall. 2 which is arranged opposite to the above “span”
It is a unit between pillars of a book, and one span is one unit,
That is, this is a case where there are two columns. The span length means the linear distance between the columns, and the number of spans means the number of spans.

【0016】耐震壁構造体3は、所定の間隔をおいて対
向配置された2本の柱31と、各階の床位置(屋上階を
含む)で上記柱間に水平方向に架設される複数の枠梁3
2と、前記柱31と上下階の枠梁32によって囲まれ、
これらと一体化された耐震壁33とより成る。
The earthquake-resistant wall structure 3 is composed of two columns 31 which are arranged opposite to each other at a predetermined interval, and a plurality of columns which are horizontally installed between the columns at the floor position (including the roof floor) of each floor. Frame 3
2, the column 31 and the frame beams 32 of the upper and lower floors,
It is composed of an earthquake-resistant wall 33 integrated with them.

【0017】直立柱31は各住戸の耐震壁33の両側端
にあって最上階から途中階(4階床位置)まで鉛直方向
に真っ直ぐに延びている。スパン長さ(L2)は各住戸
の室内所要スペース条件を満たすように建築計画で決定
される。直立柱31の横断面形状は、矩形、長方形、円
形等が良く用いられるが、柱として機能を発揮すること
ができればどのような形状でもよい。これは、後述する
傾斜柱でも同様である。
The upright pillars 31 are provided at both ends of the earthquake-resistant wall 33 of each dwelling unit, and extend straight vertically from the top floor to the middle floor (fourth floor position). The span length (L2) is determined by a building plan so as to satisfy the required space requirement of each dwelling unit. The cross-sectional shape of the upright pillar 31 is often a rectangle, a rectangle, a circle, or the like, but any shape may be used as long as it can function as a pillar. This is the same for the later-described inclined column.

【0018】枠梁32は、各階の床版の鉛直荷重を支え
ると共に、耐震壁33と互いに一体的に接合され、耐震
壁33の補強梁として機能する。補強梁としての効果を
高めるために枠梁32の梁幅を耐震壁33の壁厚よりも
大きくすることが多い。枠梁32のはり幅を耐震壁の壁
厚と等しくした場合には、壁面から梁型が突出せず、型
枠工事が簡素化し、完成後の居室内の美観に優れ、家具
の収納の障害物が無くなる。
The frame beam 32 supports the vertical load of the floor slab of each floor, and is integrally joined to the earthquake-resistant wall 33 to function as a reinforcing beam for the earthquake-resistant wall 33. In order to enhance the effect as a reinforcing beam, the beam width of the frame beam 32 is often made larger than the wall thickness of the earthquake-resistant wall 33. When the beam width of the frame beam 32 is made equal to the wall thickness of the earthquake-resistant wall, the beam form does not protrude from the wall surface, the formwork is simplified, the finished living room is excellent in appearance, and the storage of furniture is obstructed. Things are gone.

【0019】耐震壁33は任意の壁厚を有する面状の構
造部材で、主として地震力などの水平力に対して有効に
応力を分担する。耐震壁33は各住戸間の境界を区画す
るために戸境壁として建築計画上配置されることが多い
が、その他に構造計画上から配置されることがある。そ
の壁厚は隣接する住戸間の遮音性能、構造部材としての
耐力、水平剛性から決定される。図1では耐震壁33の
面内に開口部が無い場合を示しているが、耐震壁33と
して成立しうる範囲で任意の形状の開口部が有っても良
い。図1では、枠梁32及び耐震壁33が最上階から4
階まで上下方向に連層的に配置され、全体として1つの
連層耐震壁を構成している。構造種別は鉄筋コンクリー
ト造(以下「RC造」と称す。)が一般的であるが、そ
の壁体内部に鉄骨ブレースを内蔵することもある。ま
た、鉄骨のブレースで鉄骨造の耐震壁とすることもでき
る。
The earthquake-resistant wall 33 is a planar structural member having an arbitrary wall thickness and effectively shares stress mainly against horizontal force such as seismic force. The earthquake-resistant wall 33 is often arranged on a building plan as a door boundary wall in order to divide the boundary between each dwelling unit, but may be arranged on a structural plan. The wall thickness is determined from the sound insulation performance between adjacent dwelling units, the strength as a structural member, and the horizontal rigidity. Although FIG. 1 shows a case where there is no opening in the plane of the earthquake-resistant wall 33, an opening having an arbitrary shape may be present within a range that can be established as the earthquake-resistant wall 33. In FIG. 1, the frame beam 32 and the earthquake-resistant wall 33 are four
It is arranged in layers vertically up to the floor, and constitutes one multistory earthquake-resistant wall as a whole. The structure type is generally a reinforced concrete structure (hereinafter referred to as “RC structure”), but a steel brace may be built in the wall body. In addition, a steel frame brace can be used as a steel-framed earthquake-resistant wall.

【0020】ラーメン構造体4は、前記耐震壁構造体3
の下階に接続され、傾斜柱41と支持梁42を有する。
傾斜柱41は所定の間隔をおいて2本対向して配設さ
れ、その頭部を耐震壁構造体3の直立柱31の脚部に接
合して連結してある。傾斜柱41の脚部は耐震壁構造体
3と同一架構面内を外方に向けて末広がりに傾斜し、耐
震壁構造体3のスパン長L2よりも広い間隔L1で配設
された前記基礎21上に固定されている。従って、左右
の傾斜柱41と、両傾斜柱41,41を基端において連
結する前記地中梁23(基礎梁)と、傾斜柱41の柱頭
部を連結する上梁42’(上記耐震壁構造体との境に位
置する梁で本実施例の場合には4階の梁)とは、互いに
接合されて略台形状のラーメン骨組を形成する。上梁4
2’は耐震壁構造体3の他の梁材32よりも耐力のある
骨組み材によって形成される。後述するように地震時の
作用力によって大きな軸力がかかるからである。
The ramen structure 4 includes the earthquake-resistant wall structure 3
, And has an inclined column 41 and a support beam 42.
The two inclined columns 41 are arranged facing each other at a predetermined interval, and their heads are connected to the legs of the upright columns 31 of the earthquake-resistant wall structure 3 by joining. The legs of the inclined column 41 are inclined so as to extend outward in the same frame surface as the earthquake-resistant wall structure 3 outward, and are disposed at intervals L1 wider than the span length L2 of the earthquake-resistant wall structure 3. Fixed on top. Therefore, the left and right inclined columns 41, the underground beam 23 (foundation beam) connecting the two inclined columns 41, 41 at the base end, and the upper beam 42 ′ connecting the column head of the inclined column 41 (the above-mentioned earthquake-resistant wall structure) (A beam on the fourth floor in the case of this embodiment) which is located at the boundary with the body) and is joined to each other to form a substantially trapezoidal frame frame. Upper beam 4
Reference numeral 2 ′ is formed of a frame material having higher strength than the other beam members 32 of the earthquake-resistant wall structure 3. This is because a large axial force is applied by the acting force at the time of the earthquake as described later.

【0021】また、このラーメン構造体4は、2本の傾
斜柱41の材軸線が八の字状を成し、その延長線の交点
が耐震壁構造体の中途に位置して頂点Tを形成する(図
2〜図7参照)。この頂点Tを含む耐震壁33と2本の
傾斜柱41と前記地中梁23が描く三角形は仮想のトラ
ス構造となる。このため、本ラーメン構造体4はラーメ
ン骨組の特性にトラス構造を加味した複合構造になって
いる。更に、傾斜柱間には各階の床位置で水平方向に支
持梁42が架設されている。これらの支持梁42は傾斜
柱41と一体的に接合した場合には同様にラーメン骨組
を構成する。各階の床版の鉛直荷重を支えるだけであれ
ば、支持梁42はその材端を傾斜柱41にピン接合する
ものであっても良い。また、支持梁は傾斜柱の態様ある
いは高さいかん等によっては必ずしも設ける必要はな
い。図示しないが、支持梁のスパン長が大きくなるとき
は、スパン中間部の任意位置に中間柱を立設することも
ある。
Further, in this ramen structure 4, the material axis of the two inclined columns 41 forms an eight-shape, and the intersection of the extension lines is located in the middle of the earthquake-resistant wall structure to form a vertex T. (See FIGS. 2 to 7). The triangle drawn by the earthquake-resistant wall 33 including the apex T, the two inclined columns 41, and the underground beam 23 has a virtual truss structure. For this reason, the present ramen structure 4 has a composite structure in which the truss structure is added to the characteristics of the ramen frame. Further, between the inclined columns, a support beam 42 is erected horizontally at the floor position of each floor. When these support beams 42 are integrally joined to the inclined columns 41, they similarly constitute a frame frame. As long as the vertical load of the floor slab of each floor is only supported, the support beam 42 may be one in which the material end is pin-joined to the inclined column 41. Further, the support beam is not necessarily required to be provided depending on the mode of the inclined column or the height. Although not shown, when the span length of the support beam increases, an intermediate column may be erected at an arbitrary position in the middle of the span.

【0022】ラーメン構造体4は上記のようにしてその
内側に大きな空間Sを有する。この空間Sは建築計画の
要請にしたがって例えば駐車場、集会室、広場、公園、
遊技場等の幅広い用途に供される。尚、図中符号5は耐
震壁構造体の両側に張り出し形成した手摺付きの片持ち
スラブで図中右側は共用廊下として、また左側はバルコ
ニーとして利用される。
The ramen structure 4 has a large space S inside as described above. This space S is, for example, a parking lot, a meeting room, a plaza, a park,
Used for a wide range of applications such as amusement arcades. Reference numeral 5 in the figure denotes a cantilevered slab with handrails formed on both sides of the earthquake-resistant wall structure, and the right side in the figure is used as a common corridor, and the left side is used as a balcony.

【0023】地震力が作用したときの図1の構造物の構
造的な特徴を図2から図7を参照しつつ説明する。これ
らの図において、地震力はいずれも簡略化された構造物
モデルの右側から各階に加わる水平力の合力として示し
てある。具体的には10階床位置に集中荷重として加え
ている。そして、作用点Pを前記した仮想のトラス構造
の頂点Tとの関係で3態様に変化させてある。図2と図
3は上記作用点Pと頂点Tとを一致させた場合、図4と
図5は作用点Pを頂点Tよりも下側に位置させた場合、
また図6と図7は作用点Pを頂点Tよりも上側に位置さ
せた場合である。関連して図8と図9に、耐震壁構造体
3の下階(3階相当分)に耐震壁を持たない直立柱と梁
による骨組構造体4を接合した従来構造物について、地
震作用力によって生じる構造的変化を対比的に示した。
なお、図2から図7の構造物モデルの傾斜柱の傾斜角度
は一定である。
The structural features of the structure shown in FIG. 1 when seismic force is applied will be described with reference to FIGS. In these figures, the seismic force is shown as a resultant of horizontal forces applied to each floor from the right side of the simplified structure model. Specifically, a concentrated load is applied to the tenth floor position. The action point P is changed into three modes in relation to the above-described vertex T of the virtual truss structure. FIGS. 2 and 3 show the case where the action point P and the vertex T coincide with each other. FIGS. 4 and 5 show the case where the action point P is located below the vertex T.
6 and 7 show the case where the action point P is located above the vertex T. 8 and 9 show the seismic force of a conventional structure in which a framed structure 4 composed of upright columns and beams having no earthquake-resistant wall on the lower floor (equivalent to the third floor) of the earthquake-resistant wall structure 3 is attached. The structural changes caused by this are shown in contrast.
Note that the inclination angles of the inclined columns of the structure models in FIGS. 2 to 7 are constant.

【0024】先ず、従来例(図8,9)を見るに、地震
力によって構造物に水平荷重が加わると、図8の曲げモ
ーメント図(以下「M図」と称する)に見られるよう
に、直立柱には軸力とせん断力が働くと共に曲げモーメ
ントが生じる。これらの力はそのまま骨組構造体を図9
に示すように水平方向にずれるように大きく変形させ、
耐震壁構造体3の上部に激しい揺れを生じさせる。耐震
壁構造体3が大きな水平耐力や水平剛性を有するとして
もその下部にある骨組構造体の水平剛性や耐力が低いた
めに、この構造物は上記作用力に耐えきれずに崩壊す
る。
First, referring to a conventional example (FIGS. 8 and 9), when a horizontal load is applied to a structure by seismic force, as shown in a bending moment diagram (hereinafter referred to as "M diagram") in FIG. An axial force and a shear force act on the upright column, and a bending moment is generated. These forces are applied to the frame structure as shown in FIG.
As shown in the figure, greatly deform so that it is shifted in the horizontal direction,
Intense shaking occurs at the upper part of the earthquake-resistant wall structure 3. Even if the earthquake-resistant wall structure 3 has a large horizontal strength and a horizontal rigidity, the frame structure below it has a low horizontal rigidity and a low strength.

【0025】図2は、地震力の作用点がトラス構造の頂
点と一致する場合のM図である。この場合、地震力は前
記頂点Tに水平力のみとして加わる。従って、傾斜柱に
は軸力だけが生じ、曲げモーメントは生じない。同様に
上梁及び基礎梁にも軸力のみの負荷がかかるにすぎな
い。特に上梁は耐震壁構造体3の梁材に比べて耐力の大
きな骨組み材を使用してあるために、この部分での変形
や破断を生じさせない。また、ラーメン構造体4はトラ
ス構造として機能する。傾斜柱の軸力変形は、ラーメン
構造体に対しては僅かな水平変形を生じさせ、耐震壁構
造体3に対しては支点の回転変形として働く。図3に見
られるように耐震壁構造体3は作用力の方向に傾くがそ
の量はほんの僅かであり、構造物全体は上部において大
きな揺れを生じることはなく安定している。
FIG. 2 is an M diagram when the point of action of the seismic force coincides with the vertex of the truss structure. In this case, the seismic force is applied to the apex T only as a horizontal force. Therefore, only the axial force is generated on the inclined column, and no bending moment is generated. Similarly, only the axial force is applied to the upper beam and the foundation beam. In particular, since the upper beam uses a frame material having a higher strength than the beam material of the earthquake-resistant wall structure 3, deformation and breakage at this portion do not occur. The ramen structure 4 functions as a truss structure. The axial force deformation of the inclined column causes slight horizontal deformation of the rigid frame structure, and acts as rotational deformation of the fulcrum for the earthquake-resistant wall structure 3. As can be seen in FIG. 3, the shear wall structure 3 tilts in the direction of the acting force, but the amount is only slight, and the entire structure is stable without significant shaking at the upper part.

【0026】図4は、作用点Pが頂点TよりもH/14
だけ低い位置(Hは建物の高さ)にあるときのM図であ
る。地震力は前記頂点に水平力だけでなく反時計方向の
曲げモーメントとして加わる。従って、傾斜柱には軸力
及び曲げモーメントが生じる(図のラーメン構造体参
照)。こうした作用力に対して、ラーメン構造体4はラ
ーメン骨組及びトラス構造の複合構造として機能する。
図5は図4に対応した構造体の変形状態を示す。傾斜柱
の柱頭部では、図2,3の場合に生じる水平変形に、傾
斜柱の曲げモーメントによって地震力の荷重方向への水
平変形が加算される。作用点が頂点から離れるにしたが
って変形の度合いは大きくなる。しかし、耐震壁構造体
3はラーメン構造体4に対して作用力と逆方向に傾くよ
うに変形し、構造物全体としての揺れは比較的に小さく
抑えられている。
FIG. 4 shows that the action point P is higher than the vertex T by H / 14.
FIG. 3 is an M diagram when the camera is at a lower position (H is the height of a building). The seismic force is applied to the apex not only as a horizontal force but also as a counterclockwise bending moment. Therefore, an axial force and a bending moment are generated in the inclined column (see the rigid frame structure in the figure). The ramen structure 4 functions as a composite structure of the ramen frame and the truss structure against such an acting force.
FIG. 5 shows a deformed state of the structure corresponding to FIG. At the column head of the inclined column, horizontal deformation in the load direction of the seismic force is added by the bending moment of the inclined column to the horizontal deformation generated in the case of FIGS. The degree of deformation increases as the point of action moves away from the vertex. However, the earthquake-resistant wall structure 3 is deformed so as to incline in a direction opposite to the acting force with respect to the rigid frame structure 4, and the swing of the whole structure is relatively suppressed.

【0027】図6は、地震力の作用点を前記頂点より高
くした場合であり、作用点Pが頂点TよりもH/14だ
け高い位置にあるときのM図である。地震力は仮想のト
ラス構造の頂点に水平力及び時計方向の曲げモーメント
として加わる。従って、傾斜柱には軸力及び曲げモーメ
ントが生じ、ラーメン構造体4はラーメン骨組及びトラ
ス構造の複合構造として機能する。しかし、上記曲げモ
ーメントは時計方向に回転する力としてラーメン構造体
に働くので、傾斜柱の柱頭部の水平変形は、図1と2に
おける水平変形から曲げモーメントによる水平変形を控
除したものとなる。従って、上記曲げモーメントの値に
よっては、ラーメン構造体は僅かではあるが地震力の逆
方向に押し戻されるように変形し、架構としての水平剛
性は負の値(換言すれば無限大の水平剛性)を示す。し
かし、図7に見られるように上記した図5の場合とは異
なり、ラーメン構造体4の上部に位置する耐震壁構造体
3は上記作用力によって同作用力の方向に振られるの
で、作用点が上記頂点よりも大きく離れる場合には揺れ
が激しくなる。従って、作用点を仮想トラスの頂点より
も高い位置に設定するときには極力、作用点を頂点に近
い位置に選ぶ方が良い。
FIG. 6 is an M diagram when the point of action of the seismic force is higher than the apex, and when the point of action P is higher than the apex T by H / 14. The seismic force is applied to the top of the virtual truss structure as a horizontal force and a clockwise bending moment. Therefore, an axial force and a bending moment are generated in the inclined column, and the rigid frame structure 4 functions as a composite structure of the rigid frame and the truss structure. However, since the bending moment acts on the rigid frame structure as a clockwise rotating force, the horizontal deformation of the column head of the inclined column is the horizontal deformation in FIGS. 1 and 2 minus the horizontal deformation due to the bending moment. Therefore, depending on the value of the bending moment, the ramen structure is slightly deformed so as to be pushed back in the opposite direction of the seismic force, and the horizontal rigidity of the frame is a negative value (in other words, infinite horizontal rigidity). Is shown. However, as seen in FIG. 7, unlike the case of FIG. 5 described above, the earthquake-resistant wall structure 3 located above the ramen structure 4 is swung in the direction of the same acting force by the acting force, and Is farther than the top, the shaking becomes severe. Therefore, when setting the action point higher than the vertex of the virtual truss, it is better to select the action point as close to the vertex as possible.

【0028】このようにして上記構造物は、耐震壁構造
体3の下部に接合されるラーメン構造体4がラーメン骨
組及びトラス構造の複合構造として機能するために、ラ
ーメン構造体4の水平剛性、水平耐力が柱を単に直立し
た従来のラーメン骨組(図8,9の例参照)に比べて極
めて高いものになり、上階に位置する耐震壁構造体3の
水平剛性に比肩し得る値を示す。この結果、耐震壁構造
体3にラーメン構造体4を接合した構造でありながら、
上下方向の水平剛性、水平耐力上のバランスが良い構造
物となる。
In this manner, the above-mentioned structure has the horizontal rigidity of the rigid frame structure 4 because the rigid frame structure 4 joined to the lower part of the earthquake-resistant wall structure 3 functions as a composite structure of the rigid frame structure and the truss structure. The horizontal strength is much higher than that of a conventional rigid frame with columns simply standing upright (see examples in FIGS. 8 and 9), indicating a value comparable to the horizontal rigidity of the earthquake-resistant wall structure 3 located on the upper floor. . As a result, although the ramen structure 4 is joined to the earthquake-resistant wall structure 3,
The structure has a good balance of vertical rigidity and horizontal strength.

【0029】ラーメン構造体4は傾斜柱の傾斜角度を調
整することによって仮想トラス構造の形状が変化する。
したがって、傾斜角度の変更によってラーメン構造体4
の水平剛性を自由に調節できる。耐震壁構造体3よりも
大きな水平剛性を持たせることも勿論可能である。ま
た、傾斜柱の傾斜角度調整によるトラス構造の形状変化
は、前記した図2から図7の説明からも明らかなよう
に、構造物全体の耐震性能に大きく影響を与える。すな
わち、ラーメン構造体4がラーメン骨組とトラス構造の
複合構造としての機能を発揮し、その特徴を耐震壁構造
体3との組合せにおいて最大限に活かすためには、仮想
トラスの頂点と地震力作用点とが一致するかあるいは仮
想トラス頂点が地震力作用点よりも上位に位置するよう
ラーメン構造体4の傾斜柱の傾斜角度を設定するのが良
い。傾斜柱の傾斜角度がより鋭角になって仮想トラス頂
点が地震作用点よりも下位にある場合にも、構造力学上
のバランスの良さという点では従来例(図8と9)に勝
るものであるが、耐震性という点では仮想トラス頂点が
地震作用点になるべく近い位置になるように傾斜柱の傾
斜角度を設定するのが望ましい。
The shape of the virtual truss structure of the ramen structure 4 changes by adjusting the inclination angle of the inclined column.
Therefore, the ramen structure 4 can be changed by changing the inclination angle.
You can freely adjust the horizontal rigidity. Of course, it is also possible to have a horizontal rigidity greater than that of the earthquake-resistant wall structure 3. Further, the change in the shape of the truss structure due to the adjustment of the inclination angle of the inclined column greatly affects the seismic performance of the entire structure, as is clear from the description of FIGS. That is, in order for the ramen structure 4 to function as a composite structure of the ramen frame and the truss structure, and to make the most of the features in combination with the earthquake-resistant wall structure 3, the top of the virtual truss and the seismic force It is preferable to set the inclination angle of the inclined column of the ramen structure 4 so that the point coincides or the virtual truss vertex is located higher than the seismic force action point. Even in the case where the inclination angle of the inclined column becomes sharper and the virtual truss vertex is lower than the seismic action point, it is superior to the conventional example (FIGS. 8 and 9) in terms of good structural mechanics balance. However, in terms of earthquake resistance, it is desirable to set the inclination angle of the inclined column so that the vertex of the virtual truss is as close to the seismic action point as possible.

【0030】上記した実施例の構造物は次のような付随
する特徴点を備える。本構造物は傾斜柱41に生じる地
震時の応力は軸力が支配的となることから、傾斜柱41
の部材断面を小さくすることが可能となる。傾斜柱41
を設けることによって構造物の最下階の両端の柱間長さ
を大きくできるので、構造物の塔状比(=構造物の高さ
/柱間長さ)を小さくできる。従って、地震時に建物を
転倒させようとする曲げモーメントによって、基礎に生
じる鉛直力(引抜力または圧縮力)が小さくなるので、
基礎及び杭を小さくでき、建物の高層化も可能となる。
The structure of the above embodiment has the following additional features. In this structure, the axial force prevails in the stress generated in the inclined column 41 during the earthquake.
Can be made smaller. Inclined pillar 41
The tower length of the structure (= height of the structure)
/ Pole length) can be reduced. Therefore, the vertical force (pulling force or compressive force) generated on the foundation is reduced by the bending moment that tries to overturn the building during an earthquake,
The foundation and piles can be made smaller, and the building can be made higher.

【0031】耐震壁構造体3とラーメン構造体4から成
る構造物本体1の構造種別はRC造、鉄骨鉄筋コンクリ
ート造(以下「SRC造」と称す。)、鉄骨コンクリー
ト造(以下「SC造」と称す。)、鉄骨造が一般的であ
るが、本発明はこれらの構造種別に限定されるのではな
く、それぞれの機能を発揮できるものであれば他のもの
でも良い。
The structural types of the structure main body 1 composed of the earthquake-resistant wall structure 3 and the rigid frame structure 4 are RC structures, steel frame reinforced concrete structures (hereinafter referred to as “SRC structures”), and steel frame concrete structures (hereinafter “SC structures”). In general, steel structures are used, but the present invention is not limited to these structural types, and other structures may be used as long as they can exhibit their respective functions.

【0032】本発明に係る耐震壁構造体とラーメン構造
体の複合構造は、種々の変形例を採ることができる。以
下、更に説明する。 第2実施例 図10は本発明の実施例2を示す。この実施例では、耐
震壁構造体103の下部に耐震壁133を持たないラー
メン構造体104を接合し、更にラーメン構造体104
の下部に耐震壁構造体203を接合してある。すなわ
ち、構造物本体101は、1スパン、7階建ての規模
で、最上階から順に耐震壁構造体103(7階から5
階)、ラーメン構造体104(4階)、耐震壁構造体2
03(3階から1階)が配設されている。上部及び下部
の耐震壁構造体103,203は、共に上記した実施例
1と同様に直立する柱間に各階で耐震壁133,233
を固定してある。また、上部の耐震壁構造体103と中
間のラーメン構造体104の関係は上記した実施例1と
同様である。ラーメン構造体104の傾斜柱141は実
施例1の仮想トラスと地震力作用点との関係に基づいて
傾斜角度が設定されている。ラーメン構造体104と上
部耐震壁構造体103の境部に位置する梁材142’
は、耐震壁構造体103の枠梁材よりも高耐力、特に軸
方向に耐力の大きな骨組み材を使用してある。
The composite structure of the earthquake-resistant wall structure and the rigid frame structure according to the present invention can take various modifications. This will be further described below. Second Embodiment FIG. 10 shows a second embodiment of the present invention. In this embodiment, a ramen structure 104 having no seismic wall 133 is joined to a lower portion of the seismic wall structure 103, and the ramen structure 104 is further joined.
Is attached to the lower part of the structure. That is, the structure main body 101 is a one-span, seven-story building, and the earthquake-resistant wall structure 103 (from the seventh floor to five
Floor), ramen structure 104 (fourth floor), earthquake-resistant wall structure 2
03 (3rd to 1st floor) is provided. The upper and lower earthquake-resistant wall structures 103 and 203 are each provided with an earthquake-resistant wall 133 and 233 on each floor between upright columns as in the first embodiment.
Is fixed. The relationship between the upper earthquake-resistant wall structure 103 and the intermediate ramen structure 104 is the same as in the first embodiment. The inclination angle of the inclined column 141 of the ramen structure 104 is set based on the relationship between the virtual truss of Embodiment 1 and the point of action of the seismic force. Beam 142 ′ located at the boundary between ramen structure 104 and upper earthquake-resistant wall structure 103
Uses a frame material having a higher proof strength than the frame beam material of the earthquake-resistant wall structure 103, particularly a higher proof strength in the axial direction.

【0033】下部耐震壁構造体203は、ラーメン構造
体104の傾斜柱141の脚部に直立柱231を接合し
てラーメン構造体と一体化してある。ラーメン構造体の
傾斜柱141の脚部は柱頭部よりも間隔が広くなるた
め、上部耐震壁構造体103のスパン長よりも下部耐震
壁構造体203のスパン長を長くできる。これにより、
ラーメン構造体104を挟んで上下階の住戸プランを異
なるものに選定でき、更に設計の自由度が広がる。本実
施例の構造体は、上下の耐震壁構造体103,203の
中間部に耐震壁を持たない階を有するが、この階が傾斜
柱141を持つラーメン構造体104によって骨組み形
成され、上下部の耐震壁構造体103,203と同等の
水平剛性、水平耐性、靱性を具えるため、全体を連層耐
震壁構造とした構造物以上の耐震構造となる。
The lower earthquake-resistant wall structure 203 is integrated with the rigid frame structure by joining an upright column 231 to the leg of the inclined column 141 of the rigid frame structure 104. Since the legs of the inclined columns 141 of the ramen structure are wider than the column heads, the span length of the lower earthquake-resistant wall structure 203 can be longer than the span length of the upper earthquake-resistant wall structure 103. This allows
Different dwelling unit plans can be selected for the upper and lower floors with the ramen structure 104 interposed therebetween, further expanding the design freedom. The structure of the present embodiment has a floor without an earthquake-resistant wall in the middle of the upper and lower earthquake-resistant wall structures 103 and 203. This floor is framed by the ramen structure 104 having the inclined columns 141, and the upper and lower parts are formed. In order to provide horizontal rigidity, horizontal resistance, and toughness equivalent to those of the earthquake-resistant wall structures 103 and 203 of the above, the earthquake-resistant wall structure has a structure that is equal to or greater than a structure in which the entire structure is a multi-layer earthquake-resistant wall structure.

【0034】実施例3 図11は本発明を中片廊下方式集合住宅のはり間方向の
構造物に適用した実施例を示す正面図である。この建物
は14階建てで、最上階から4階までを住居空間が形成
された住居階に、またその下部の3階を非住居階にして
ある。本構造物は3スパンで構成されている。柱位置で
の通り符号を左側から右側に順に、I通、II通、III
通、IV通で表示する。即ち、第1スパンはI通〜II通
間、第2スパンはII通〜III通間、第3スパンはIII通〜
IV通間を示す。
Embodiment 3 FIG. 11 is a front view showing an embodiment in which the present invention is applied to a structure in the direction of a beam in a one-sided corridor type apartment house. This building has 14 floors, with the top floor to the fourth floor being the residential floor where the living space is formed, and the lower three floors being the non-residential floor. This structure is composed of three spans. I, II, III
And IV That is, the first span is between I and II, the second span is between II and III, and the third span is III and
Shows the IV section.

【0035】第1スパン及び第3スパンでは、最上階か
ら4階まで耐震壁構造体303(303R,303L)
が中廊下306を挟んで構築されている。図中左右の耐
震壁構造体303R,303Lの構成は実施例1及び実
施例2と同様である。ただ、両実施例と異なり、耐震壁
333にはそれぞれ外側寄りに開口334が形成されて
いる。左右の耐震壁構造体303R,303Lは第2ス
パンの中廊下306によって接続されている。
In the first span and the third span, from the top floor to the fourth floor, the earthquake-resistant wall structures 303 (303R, 303L)
Is built across the central corridor 306. The configurations of the left and right earthquake-resistant wall structures 303R and 303L in the figure are the same as those in the first and second embodiments. However, unlike the embodiments, the earthquake-resistant wall 333 has an opening 334 formed on the outer side. The left and right earthquake-resistant wall structures 303R and 303L are connected by the middle corridor 306 of the second span.

【0036】本構造物は3階から1階までがラーメン構
造体304となっている。耐震壁構造体303のI通の
直立柱とIV通の直立柱の基部に柱頭部を接合されたラー
メン構造体304の傾斜柱341は、外方に向けて末広
がりに延びて基礎に至っている。両傾斜柱341の柱頭
部相互を連結する上梁342’(耐震壁構造体303の
最下階の床梁に相当)は、耐震壁構造体303の各階の
枠梁332あるいはラーメン構造体304の他の支持梁
342に比べて大きな耐力を有する骨組み材によって形
成されている。両傾斜柱341と上梁342’と基礎梁
323とは接合され、外形が略台形状を成す。また、本
構造物は、ラーメン構造体内部空間のII通とIII通に補
強柱307が立設され、これらの柱頭部をII通もしくは
III通の耐震壁構造体303の直立柱の基部に接合して
ある。
In this structure, a ramen structure 304 is provided from the third floor to the first floor. The inclined column 341 of the ramen structure 304 having a column head joined to the base of the I-shaped upright column and the IV-shaped upright column of the earthquake-resistant wall structure 303 extends outward to the base. An upper beam 342 ′ (corresponding to a floor beam on the lowest floor of the earthquake-resistant wall structure 303) that connects the column heads of the two inclined columns 341 is formed by a frame beam 332 or a ramen structure 304 on each floor of the earthquake-resistant wall structure 303. The support beam 342 is formed of a skeleton material having a higher strength than the other support beams 342. The two inclined columns 341, the upper beam 342 ′, and the foundation beam 323 are joined, and the outer shape is substantially trapezoidal. In addition, in this structure, reinforcing columns 307 are erected on the second and third passages in the inner space of the ramen structure.
It is joined to the base of the upright pillar of the III-shake wall structure 303.

【0037】本実施例によれば、図1の実施例と同様な
ラーメン構造体304と耐震壁構造体303の組合せに
よる構造的特徴を有するばかりでなく、中廊下を有する
比較的大きな建築物に耐震性に優れた本発明を適用でき
るものである。なお、本実施例では耐震壁構造体を第1
スパンと第3スパンで同一形状、規模にしているが、本
発明は必ずしもこれに限定されない。例えば第1スパン
の最上階より第3スパンの最上階を少なくしたものであ
っても良い。ラーメン構造体において、第1スパンを全
階(1〜3階)耐震壁を持たない階とし、第3スパンを
全階(1〜3階)または一部の階で耐震壁のある階とし
ても良い。
According to the present embodiment, not only the same structural features as the embodiment of FIG. 1 but also the combination of the rigid frame structure 304 and the earthquake-resistant wall structure 303, as well as a relatively large building having a central corridor. The present invention which is excellent in earthquake resistance can be applied. In this embodiment, the earthquake-resistant wall structure is the first
Although the span and the third span have the same shape and scale, the present invention is not necessarily limited to this. For example, the top floor of the third span may be smaller than the top floor of the first span. In the ramen structure, the first span may be a floor without any earthquake-resistant walls on all floors (1 to 3 floors), and the third span may be a floor with all floors (1 to 3 floors) or some floors with earthquake-resistant walls. good.

【0038】実施例4 図12はラーメン構造体404の傾斜柱441の断面形
状の変形例を示す。以上の実施例では、傾斜柱441は
その部材断面(材軸に直角な面の形状)が柱頭部から1
階の脚部まで同一のものを用いた。しかし、傾斜柱自体
は前記した略三角形の仮想のトラス構造を形成するもの
であればその断面形状のいかんを問うものではない。本
図に示すように柱の見付け幅を柱頭部から1階の柱脚部
に向かうにつれて直線状に狭くした変断面材でも良い。
逆に柱の見付け幅を柱頭部から柱脚部に向かう程直線状
に広くした変断面材でも良い。また、柱の見付け幅は柱
頭部から屋外に面する外形線を傾斜させているが、内部
に面する外形線を鉛直にした変断面材を使用することも
できる。
Embodiment 4 FIG. 12 shows a modification of the sectional shape of the inclined column 441 of the rigid frame structure 404. In the above embodiment, the inclined column 441 has a member cross section (the shape of a surface perpendicular to the material axis) that is 1 mm from the column head.
The same thing was used up to the leg of the floor. However, as long as the inclined column itself forms the above-described substantially triangular virtual truss structure, the cross-sectional shape thereof does not matter. As shown in the figure, a variable cross section material in which the width of the column is narrowed linearly from the column head toward the column base on the first floor may be used.
Conversely, a material having a variable cross section in which the width of the pillar is increased linearly from the column head toward the column base may be used. Further, although the found width of the pillar is such that the outer shape line facing the outside from the column head is inclined, a variable cross-section material in which the outer shape line facing the inside is vertical may be used.

【0039】実施例5 傾斜柱を備えたラーメン構造体は、耐震壁を持たない空
間を少なくとも1つの階に有することが必要である(上
記した実施例ではいずれも傾斜柱によって囲まれた階の
全てを耐震壁のない階にしてある)。図13は3階に耐
震壁533を組み込むことによって1階と2階を空き空
間にしてある。この場合に形成されるラーメン構造体5
04は両傾斜柱541と基礎梁523と2階の上梁54
2’とが成す台形形状の骨組から成る。従って、2階の
上梁542’には前記した耐力の大きな骨組み材が用い
られる。本構造物では、耐震壁構造体503は実質的に
3階をも含むものとなるが、耐震壁構造体503とラー
メン構造体504との組合せによる構造的な特性は前記
した実施例と同じである。
Embodiment 5 A ramen structure having a sloped column needs to have a space without an earthquake-resistant wall on at least one floor. All are on floors without shear walls). In FIG. 13, the first floor and the second floor are made empty spaces by incorporating the earthquake-resistant wall 533 on the third floor. Ramen structure 5 formed in this case
04 is both inclined columns 541, foundation beams 523, and upper beams 54 on the second floor
2 ′. Therefore, the above-mentioned frame material having a large strength is used for the upper beam 542 'on the second floor. In this structure, the earthquake-resistant wall structure 503 substantially includes the third floor, but the structural characteristics of the combination of the earthquake-resistant wall structure 503 and the ramen structure 504 are the same as those in the above-described embodiment. is there.

【0040】実施例6 図14は、ラーメン構造体604の傾斜柱641の柱脚
部の下に地下構造体7を設けた実施例である。地下構造
体7は地下駐車場、機械室、倉庫等に使用される。図1
4で住戸階(4階以上)でのスパン長は住戸の必要スペ
ースから決定されるが,地下構造体7のスパン長を前記
住戸階のスパン長より大きくして、駐車場計画を容易に
することができる利点がある。
Embodiment 6 FIG. 14 shows an embodiment in which the underground structure 7 is provided below the column base of the inclined column 641 of the ramen structure 604. The underground structure 7 is used for an underground parking lot, a machine room, a warehouse, and the like. FIG.
In 4, the span length at the dwelling unit floor (fourth floor or more) is determined from the required space of the dwelling unit, but the span length of the underground structure 7 is made larger than the span length of the dwelling unit floor to facilitate parking lot planning. There are advantages that can be.

【0041】ラーメン構造体の傾斜柱はその柱頭部を耐
震壁構造体の直立柱の柱脚部に直接接続する必要はな
く、耐震壁構造体全体の柱脚部に接合すれば良い。図示
しないが、耐震壁構造体の直立柱をそのまま下方に延長
して傾斜柱の柱脚部と交差する位置に接続させ、傾斜柱
の柱頭部を直立柱の内方で耐震壁構造体の底部(例えば
図14の実施例で最下階である4階の耐震壁の側端位
置)に接合する。このように構成することで、傾斜柱が
建物の外壁面から突出しなくなり、建物の外観が良くな
る利点がある。なお、直立柱は上階の耐震壁構造体の両
側の柱から伝わる長期柱軸力を支持するためのもので、
地震力には余り抵抗しない。地震力は殆ど傾斜柱によっ
て負担される。
It is not necessary to directly connect the column head of the inclined column of the ramen structure to the column base of the upright column of the earthquake-resistant wall structure, but may be connected to the column base of the entire earthquake-resistant wall structure. Although not shown, the upright column of the earthquake-resistant wall structure is extended downward as it is and connected to a position intersecting the column base of the inclined column, and the column head of the inclined column is located inside the upright column at the bottom of the earthquake-resistant wall structure. (For example, the side end position of the earthquake-resistant wall on the fourth floor which is the lowest floor in the embodiment of FIG. 14). With such a configuration, the inclined pillar does not protrude from the outer wall surface of the building, and there is an advantage that the appearance of the building is improved. The upright columns are for supporting the long-term column axial force transmitted from the columns on both sides of the upper floor earthquake-resistant wall structure.
It doesn't much resist seismic forces. The seismic force is mostly borne by the inclined columns.

【0042】上記した実施例はいずれも本発明を集合住
宅のはり間方向の構造物に適用したが、本発明はこれに
限定されるものではなく集合住宅のはり間方向以外の構
造物にも適用可能である。集合住宅の基準階の平面形式
は片廊下方式、中廊下方式に限定されず、中空コアー方
式、雁行方式等でも良い。また建物の用途も集合住宅に
限定されず、事務所、ホテル等の他の用途の建物の構造
物にも幅広く適用できる。更に基礎構造体は杭基礎につ
いて説明したが、本発明は勿論これに限定されるもので
はなく、直接基礎であっても良い。
In each of the above-described embodiments, the present invention is applied to the structure of the apartment house in the direction between the beams. However, the present invention is not limited to this. Applicable. The floor type of the standard floor of the apartment complex is not limited to the one-way corridor type or the middle-type corridor type, but may be a hollow core type, a geese type or the like. In addition, the use of the building is not limited to the condominium, but can be widely applied to structures of buildings for other uses such as offices and hotels. Furthermore, although the foundation structure has been described with reference to a pile foundation, the present invention is not limited to this, and may be a direct foundation.

【0043】[0043]

【発明の効果】以上述べたように本発明によれば、耐震
壁構造体の下階に末広がりに延びる傾斜柱を持つラーメ
ン構造体を接続してあり、ラーメン構造体はラーメン骨
組の特性に仮想のトラス構造を加味した複合構造を成
し、極めて高い水平剛性と水平耐力を有するので、耐震
壁を持たない階を耐震壁構造体の下方に配置する構造で
ありながら、水平剛性、水平耐力の点で上下にバランス
のとれた構造体を提供できる。
As described above, according to the present invention, a ramen structure having an inclined column extending divergently is connected to the lower floor of the earthquake-resistant wall structure, and the ramen structure is imagined based on the characteristics of the ramen frame. The truss structure has a very high level of horizontal rigidity and horizontal strength, and the floor without the earthquake-resistant wall is located below the earthquake-resistant wall structure. It is possible to provide a structure that is balanced in terms of points.

【0044】また、地震時に傾斜柱に作用する応力は軸
力が支配的で曲げモーメントやせん断力が少なくなるの
で、地震時にはこの部分での揺れが少なく、上階の耐震
壁構造体の揺れも抑えることができ、耐震壁構造体とラ
ーメン構造体とが構造上有機的に結合することによって
柱を健全な状態に確保し、建物の耐震性を向上させるこ
とができる。
Also, the stress acting on the inclined column during an earthquake is dominated by the axial force and the bending moment and the shearing force are reduced. Therefore, the shaking in this portion is small during the earthquake, and the shaking of the upper floor earthquake-resistant wall structure is also reduced. The columns can be kept in a healthy state by structurally connecting the earthquake-resistant wall structure and the ramen structure organically, and the earthquake resistance of the building can be improved.

【0045】また、ラーメン構造体は、その内部空間を
駐車場、集会室、広場、遊戯場、あるいはピロティ、吹
き抜きといった住宅とは異なる様々な用途空間として利
用できるので、設計の自由度あるいは融通性に富む構造
体を構築できる。
In addition, the ramen structure can be used as a parking space, a meeting room, a plaza, a playground, or a variety of use spaces different from a house such as a piloti and a blow-out room, so that the degree of freedom or design flexibility can be improved. A structure with rich properties can be constructed.

【0046】更に、ラーメン構造体は、傾斜柱の材軸の
傾斜角度を変えることによって仮想のトラス構造の形を
変更できるので、水平剛性の調節を自由に行うことがで
きる。構造物の最下階の両端の柱間長さを大きくするこ
とで、構造物の塔状比(=構造物の高さ/柱間長さ)を
小さくすることができ、これにより地震時の転倒モーメ
ントによる基礎に生じる鉛直力(引抜力または圧縮力)
が小さくなるので、基礎及び杭を小さくすることがで
き、建物の高層化も可能となる。これらはいずれも傾斜
柱の断面性能を大きくすることなく傾斜させることによ
ってもたらされる効果なので、コストも比較的に低く抑
えることができる。
Further, in the rigid frame structure, the shape of the virtual truss structure can be changed by changing the inclination angle of the material axis of the inclined column, so that the horizontal rigidity can be freely adjusted. By increasing the length between the columns at both ends of the lowest floor of the structure, the tower ratio (= structure height / length between columns) of the structure can be reduced, which allows Vertical force (pulling force or compressive force) generated on the foundation due to overturning moment
The size of the foundation can be reduced, and the size of the foundation and the pile can be reduced. These are all effects provided by inclining the inclined column without increasing the cross-sectional performance thereof, so that the cost can be suppressed relatively low.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1に係るはり間方向構造物の正
面図。
FIG. 1 is a front view of an inter-beam direction structure according to a first embodiment of the present invention.

【図2】図1の構造物の地震時における挙動を示す説明
図で、仮想トラス構造の頂点と地震作用点とが一致して
いる場合のM図。
FIG. 2 is an explanatory diagram showing a behavior of the structure of FIG. 1 during an earthquake, and is an M diagram in a case where a vertex of a virtual truss structure coincides with an earthquake action point.

【図3】図2の場合の構造物の変形状態を示す図。FIG. 3 is a diagram showing a deformed state of the structure in the case of FIG. 2;

【図4】図1の構造物の地震時における挙動を示す説明
図で、仮想トラス構造の頂点が地震作用点よりもH/1
4だけ上方に位置している場合のM図。
FIG. 4 is an explanatory diagram showing the behavior of the structure of FIG. 1 during an earthquake, wherein the top of the virtual truss structure is H / 1 higher than the point of seismic action;
FIG. 8 is an M diagram in a case where it is located only 4 above.

【図5】図4の場合の構造物の変形状態を示す図。FIG. 5 is a diagram showing a deformed state of the structure in the case of FIG. 4;

【図6】図1の構造物の地震時における挙動を示す説明
図で、仮想トラス構造の頂点が地震作用点よりもH/1
4だけ下方に位置している場合のM図。
FIG. 6 is an explanatory diagram showing the behavior of the structure of FIG. 1 during an earthquake, wherein the vertex of the virtual truss structure is H / 1 higher than the point of seismic action;
FIG. 8 is an M diagram when the device is located only 4 below.

【図7】図6の場合の構造物の変形状態を示す図。FIG. 7 is a view showing a deformed state of the structure in the case of FIG. 6;

【図8】図16(従来例)の構造物に地震作用力が負荷
されたときのM図。
FIG. 8 is an M diagram when a seismic force is applied to the structure of FIG. 16 (conventional example).

【図9】図8の場合の構造物の変形状態を示す図。FIG. 9 is a diagram showing a deformed state of the structure in the case of FIG. 8;

【図10】本発明の実施例2に係るはり間方向構造物の
正面図。
FIG. 10 is a front view of an inter-beam direction structure according to a second embodiment of the present invention.

【図11】本発明の実施例3に係るはり間方向構造物の
正面図。
FIG. 11 is a front view of an inter-beam direction structure according to a third embodiment of the present invention.

【図12】本発明の実施例4に係るはり間方向構造物の
正面図。
FIG. 12 is a front view of an inter-beam direction structure according to a fourth embodiment of the present invention.

【図13】本発明の実施例5に係るはり間方向構造物の
正面図。
FIG. 13 is a front view of an inter-beam direction structure according to a fifth embodiment of the present invention.

【図14】本発明の実施例6に係るはり間方向構造物の
正面図。
FIG. 14 is a front view of an inter-beam direction structure according to a sixth embodiment of the present invention.

【図15】従来例における基準階の平面図。FIG. 15 is a plan view of a reference floor in a conventional example.

【図16】従来例のはり間方向構造物の正面図。FIG. 16 is a front view of a conventional structure between beams.

【図中符号の説明】 1・・・・・・・・・・構造物本体 2・・・・・・・・・・基礎構造物 3,103,203,303,403,503・・・・
耐震壁構造体 4、104,304,404,504・・・・・・・・
ラーメン構造体 7・・・・・・・・・・地下構造体 31,231,331,431,531,・・・・・・
直立柱 32,332,432、532,632・・・・・・・
枠梁 33,133,333,433,533・・・・・・・
耐震壁 334・・・・・・・・開口部 41,141,341,441,541,641・・・
傾斜柱
[Description of reference numerals in the drawings] 1..., Structure main body 2,..., Basic structure 3, 103, 203, 303, 403, 503,.
Earthquake-resistant wall structure 4, 104, 304, 404, 504 ...
Ramen structure 7 Underground structure 31, 231, 331, 431, 531, ...
Upright pillar 32,332,432,532,632 ...
Frame beams 33, 133, 333, 433, 533 ...
Shear wall 334 ······ Opening 41,141,341,441,541,641 ···
Inclined pillar

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】複数階を有する耐震壁構造体の下部に、耐
震壁を持たない階を少なくとも一部に有するラーメン構
造体を接合して成り、 上記耐震壁構造体は各階の対向する直立柱と上下階の枠
梁とから成る骨組と耐震壁とを一体化させてあり、 一方、上記ラーメン構造体は、耐震壁構造体と同一架構
面内で間隔を置き外方に向けて末広がりに傾斜した一対
の傾斜柱を有し、これらの傾斜柱の柱頭部が上記耐震壁
構造体の脚部に連結され、また、上記耐震壁を持たない
階の上梁が上記耐震壁構造体の枠梁よりも耐力の大きな
骨組み材によって形成されている、 ことを特徴とする耐震建築構造。
1. A rigid frame structure having at least a part of a floor having no earthquake-resistant wall is joined to a lower part of an earthquake-resistant wall structure having a plurality of floors. And the frame composed of the upper and lower floor frames and the earthquake-resistant wall are integrated. On the other hand, the above-mentioned ramen structure is spaced apart in the same frame surface as the earthquake-resistant wall structure and slopes outward and outward. A pair of inclined columns, the capitals of these inclined columns are connected to the legs of the earthquake-resistant wall structure, and the upper beam of the floor without the earthquake-resistant wall is a frame beam of the earthquake-resistant wall structure. A quake-resistant building structure, which is formed of a skeleton material having greater strength than that of a building.
【請求項2】請求項1記載の耐震建築構造において、 前記ラーメン構造体の下部に耐震壁構造体を更に接合す
ることにより、上下の耐震壁構造体の間に上記ラーメン
構造体が配設されている、 ことを特徴とする耐震建築構造。
2. The earthquake-resistant building structure according to claim 1, wherein said earthquake-resistant wall structure is further joined to a lower portion of said frame structure, whereby said frame structure is disposed between said upper and lower earthquake-resistant wall structures. An earthquake-resistant building structure.
【請求項3】複数階を有する耐震壁構造体の下部に、耐
震壁を持たない階を少なくとも一部に有するラーメン構
造体を接合して成り、 上記耐震壁構造体は、同一階に中廊下を挟んで第一及び
第二の耐震壁構造体がはり間方向に並設されており、 これらの第一及び第二の耐震壁構造体は、それぞれ各階
の中廊下側の直立内方柱及びこれと対向する直立外方柱
と上下階の枠梁とから成る骨組に耐震壁を一体化させて
あり、 一方、上記ラーメン構造体は、耐震壁構造体と同一架構
面内で間隔を置き外方に向けて末広がりに傾斜した一対
の傾斜柱を有し、これらの傾斜柱の柱頭部が上記耐震壁
構造体の脚部に連結され、また、上記耐震壁を持たない
階の上梁が上記耐震壁構造体の枠梁よりも耐力の大きな
骨組み材によって形成されており、 上記第一及び第二の耐震壁構造体の各内方柱の脚部近傍
が上記一対の傾斜柱間に立設した直立補強柱によって支
持されている、 ことを特徴とする耐震建築構造。
3. A structure in which a ramen structure having at least a portion of a floor having no earthquake-resistant wall is joined to a lower portion of the earthquake-resistant wall structure having a plurality of floors, wherein the earthquake-resistant wall structure has a central corridor on the same floor. The first and second earthquake-resistant wall structures are arranged side by side in the direction between the beams, and the first and second earthquake-resistant wall structures are respectively upright inner pillars on the middle corridor side of each floor and An anti-seismic wall is integrated with a frame consisting of upright outer columns facing the frame and upper and lower floor frame beams. On the other hand, the ramen structure is spaced apart from the anti-seismic wall structure in the same frame plane. Have a pair of inclined columns that are divergently divergent toward the direction, the column heads of these inclined columns are connected to the legs of the earthquake-resistant wall structure, and the upper beam that does not have the earthquake-resistant wall is It is formed of a framing material with higher strength than the frame beam of the earthquake-resistant wall structure. And the vicinity of a leg of each inner pillar of the second earthquake-resistant wall structure is supported by an upright reinforcing pillar erected between the pair of inclined pillars.
【請求項4】前記ラーメン構造体は、その全体が耐震壁
を持たない階として骨組み形成され、 前記耐震壁構造体との境に耐震壁構造体の梁よりも耐力
の大きな軸材から成る上梁が架設され、この上梁と基礎
梁等の下梁と一対の前記した傾斜柱とによって略台形状
の骨組が形成される、 請求項1から請求項3のいずれかに記載の耐震建築構
造。
4. The frame structure is entirely formed as a frame having no earthquake-resistant wall, and is formed of a shaft having a higher strength than a beam of the earthquake-resistant wall structure at a boundary with the earthquake-resistant wall structure. The seismic building structure according to any one of claims 1 to 3, wherein a beam is erected, and a substantially trapezoidal frame is formed by the upper beam, a lower beam such as a foundation beam, and a pair of the inclined columns. .
【請求項5】前記ラーメン構造体の両傾斜柱の傾斜角度
を、両傾斜柱の軸線を延長した交点が地震による建物へ
の水平荷重の合力の作用点とその高さ位置においてほぼ
等しいかこれよりも上方に位置するように設定した、 請求項1から請求項3のいずれかに記載の耐震建築構
造。
5. The inclination angle of the two inclined columns of the rigid frame structure is substantially equal to or equal to the height of the point of application of the horizontal load to the building due to the earthquake at the intersection where the axes of the both inclined columns are extended. The earthquake-resistant building structure according to any one of claims 1 to 3, wherein the building is set so as to be positioned higher than the building.
【請求項6】前記ラーメン構造体の両傾斜柱の傾斜角度
を、両傾斜柱の軸線を延長した交点が地震による建物へ
の水平荷重の合力の作用点よりも下方位置で当該作用点
に近接するように設定した、 請求項1から請求項3のいずれかに記載の耐震建築構
造。
6. The angle of inclination of both the inclined columns of the ramen structure, the intersection of the axes of the both inclined columns being closer to the point of application than the point of application of the resultant force of the horizontal load on the building due to the earthquake. The earthquake-resistant building structure according to any one of claims 1 to 3, wherein the building is set to perform the following.
【請求項7】前記ラーメン構造体は、前記傾斜柱間に上
下に間隔を置いて支持梁を横設することにより複数階に
骨組み形成され、 このラーメン構造体の最上階から所定の階数分下階の骨
組にそれぞれ耐震壁を一体化させて耐震壁構造とし、 耐震壁を持たない階と耐震壁構造の階の境界に位置する
支持梁を前記耐震壁構造体の枠梁よりも耐力の大きな骨
組み材によって形成した、 請求項1から請求項3のいずれかに記載の耐震建築構
造。
7. The ramen structure is provided between the inclined columns.
By laying support beams horizontally at intervals below, multiple floors
A frame is formed, and a predetermined number of floors below the top floor of this ramen structure
Each group is integrated with an earthquake-resistant wall to form a earthquake-resistant wall structure,  Located on the boundary between the floor without the shear wall and the floor with the shear wall structure
The supporting beam is made of a bone having higher strength than the frame beam of the earthquake-resistant wall structure.
The earthquake-resistant building structure according to any one of claims 1 to 3, wherein the building is formed by a braided material.
Build.
【請求項8】前記ラーメン構造体は、前記耐震壁構造体
両側にある前記直立柱の下方に支持柱が同一軸線上に連
結され、また前記傾斜柱が柱頭部を耐震壁構造体の上記
直立柱よりも内方位置の脚部に連結されて外方に末広が
りに傾斜している、 請求項1もしくは請求項2に記載の耐震建築構造。
8. The rigid frame structure has support columns connected on the same axis below the upright columns on both sides of the earthquake-resistant wall structure, and the inclined columns connect the column heads to the vertical portions of the earthquake-resistant wall structure. 3. The earthquake-resistant building structure according to claim 1, wherein the building is connected to a leg located at a position more inward than the standing pillar and is inclined outward and outward.
【請求項9】前記枠梁の梁幅は、枠梁と接続している耐
震壁の壁厚と等しい、 ことを特徴とする請求項1から請求項3のいづれかに記
載の耐震建築構造。
9. The earthquake-resistant building structure according to claim 1, wherein a beam width of the frame beam is equal to a wall thickness of the earthquake-resistant wall connected to the frame beam.
JP21264597A 1997-07-23 1997-07-23 Aseismatic building structure Pending JPH1136650A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21264597A JPH1136650A (en) 1997-07-23 1997-07-23 Aseismatic building structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21264597A JPH1136650A (en) 1997-07-23 1997-07-23 Aseismatic building structure

Publications (1)

Publication Number Publication Date
JPH1136650A true JPH1136650A (en) 1999-02-09

Family

ID=16626072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21264597A Pending JPH1136650A (en) 1997-07-23 1997-07-23 Aseismatic building structure

Country Status (1)

Country Link
JP (1) JPH1136650A (en)

Similar Documents

Publication Publication Date Title
CN111364616A (en) Super high-rise building giant frame bottom inclined leg rigid frame type supporting structure and construction method
JP3273357B2 (en) Seismic building structure
JP5711897B2 (en) Seismic strengthening method and seismic strengthening frame for existing buildings
JP2006138127A (en) Structure of building
JP3725863B2 (en) Buildings for mixed use
JP3754612B2 (en) housing complex
JPH1136650A (en) Aseismatic building structure
JP5873194B2 (en) Seismic strengthening method and seismic strengthening frame for existing buildings
JP3356419B2 (en) Seismic building structure
JP2914187B2 (en) Bending deformation control type vibration control frame
JP3397749B2 (en) Seismic frame structure
KR102629892B1 (en) Variable apartment building with modular atructure
JPH08277587A (en) Framework bearing wall and frame work construction method based on its application
JP2527975B2 (en) Building structure
JP7316526B2 (en) Storage structures and buildings on the site with different heights
JP2002161580A (en) Multiple dwelling house structure
CN109372266B (en) Assembling method of interlayer overhanging concrete truss type building
JPH0463947B2 (en)
Khatiwada Diagonally Operating Knotted Overlay (DOKO) Structural System
JP2651505B2 (en) Frame structure of high-rise building
JPH0235136A (en) Precast and prestressed concrete low-story house and its manufacture
JPH10219819A (en) Structure of multiple dwelling house
JP3356414B2 (en) Earthquake-resistant wall structure
Besjak et al. Shenzhen Shum-Yip: New Super Tall Systems through AE Collaboration
JP3820521B2 (en) Building frame