JP5711897B2 - Seismic strengthening method and seismic strengthening frame for existing buildings - Google Patents

Seismic strengthening method and seismic strengthening frame for existing buildings Download PDF

Info

Publication number
JP5711897B2
JP5711897B2 JP2010082064A JP2010082064A JP5711897B2 JP 5711897 B2 JP5711897 B2 JP 5711897B2 JP 2010082064 A JP2010082064 A JP 2010082064A JP 2010082064 A JP2010082064 A JP 2010082064A JP 5711897 B2 JP5711897 B2 JP 5711897B2
Authority
JP
Japan
Prior art keywords
floor
existing
column
reinforcing
reinforcement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010082064A
Other languages
Japanese (ja)
Other versions
JP2011214280A (en
Inventor
平野 勝識
勝識 平野
ウペンド ラヴィンドラ シング
ウペンド ラヴィンドラ シング
幸博 佐藤
幸博 佐藤
仁 佐々木
仁 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujita Corp
Original Assignee
Fujita Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujita Corp filed Critical Fujita Corp
Priority to JP2010082064A priority Critical patent/JP5711897B2/en
Publication of JP2011214280A publication Critical patent/JP2011214280A/en
Application granted granted Critical
Publication of JP5711897B2 publication Critical patent/JP5711897B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、鉄筋コンクリート造(RC造)もしくは鉄骨鉄筋コンクリート造(SRC造)ラーメン構造の既存建物の耐震補強工法および耐震補強フレームに関する。   The present invention relates to a seismic strengthening method and a seismic strengthening frame for an existing building having a reinforced concrete structure (RC structure) or a steel frame reinforced concrete structure (SRC structure) ramen structure.

従来の耐震補強工法は既存躯体を補強することが一般的である。最も一般的な手法は耐震壁、もしくは補強ブレースの構築である。
この手法の場合、開放的な空間が閉鎖的になることから嫌われることが多い。
他に、柱の靱性を確保するために、鋼板、炭素繊維シートなどを巻きつけたりする工法や、柱の耐力を確保するために柱断面そのものを大きくすることがある。梁に関しても同様である。
このような従来技術による耐震補強の場合、建物内部での施工が主となり、建物を使いながらの施工が困難である。これは建物の使用者に多大な負担をかけることとなり、耐震補強が普及する妨げとなっている。
Conventional seismic reinforcement methods generally reinforce existing structures. The most common method is the construction of shear walls or reinforced braces.
This method is often disliked because the open space becomes closed.
In addition, in order to ensure the toughness of the column, a method of winding a steel plate, a carbon fiber sheet, or the like, or the column cross section itself may be increased in order to ensure the strength of the column. The same applies to beams.
In the case of such seismic reinforcement by the prior art, construction is mainly performed inside the building, and construction while using the building is difficult. This puts a great burden on the user of the building and hinders the spread of seismic reinforcement.

また、外側からの施工であっても、耐震壁、ブレースによる補強であれば、居ながら施工は可能となるものの、耐震補強後の採光性、外観、内部からの景色が問題となる。
そこで、本出願人は、耐震補強後の採光性、外観性に優れ、また、内部からの景色にも問題の生じない耐震補強構造、工法を提供している。
Moreover, even if it is construction from the outside, if it is reinforced with a seismic wall and braces, construction can be performed while it is in the room, but lighting, appearance, and scenery from the inside after seismic reinforcement are problems.
Therefore, the present applicant provides a seismic reinforcement structure and method that are excellent in daylighting and appearance after seismic reinforcement, and that do not cause problems in the scenery from the inside.

より詳細に説明すると、例えば図1に示すように、既存建物10が鉄筋コンクリート造(RC造)ラーメン構造の4階建ての校舎とすると、既存建物10は、複数の既存柱12と、各階に設けられた既存梁14とを含んで構成され、図1において符号16Aは垂壁、16Bは腰壁、16Cは窓(散在点で示す)であり、図9、図10において符号16Dは既存梁である。
図8に示すように、耐震補強フレーム80は、既存建物10の構面に隣接して構築されている。
耐震補強フレーム80は、1階フレーム部分80Aと、2階フレーム部分80Bとを含んでいる。
2階フレーム部分80Bは、既存建物10の全ての2階に対応させておらず、2階のうちの補強すべき箇所のみに設けられている。
各フレーム部分80A、80Bは、補強柱82と補強梁84とを含んで構成され、各階の補強柱82の上部は、両端の補強梁84が結合された柱梁接合部88となっている。また、各階の既存柱12の上部も、両端の既存梁14とこの既存柱12とが結合された柱梁接合部18となっている。
More specifically, for example, as shown in FIG. 1, if the existing building 10 is a four-story school building having a reinforced concrete (RC) ramen structure, the existing building 10 is provided with a plurality of existing columns 12 and each floor. In FIG. 1, reference numeral 16A is a vertical wall, 16B is a waist wall, 16C is a window (indicated by scattered points), and in FIGS. 9 and 10, reference numeral 16D is an existing beam. is there.
As shown in FIG. 8, the seismic reinforcement frame 80 is constructed adjacent to the construction surface of the existing building 10.
The seismic reinforcement frame 80 includes a first floor frame portion 80A and a second floor frame portion 80B.
The second-floor frame portion 80B does not correspond to all the second floors of the existing building 10, and is provided only at the locations to be reinforced in the second floor.
Each frame part 80A, 80B is comprised including the reinforcement pillar 82 and the reinforcement beam 84, and the upper part of the reinforcement pillar 82 of each floor is the column beam junction part 88 with which the reinforcement beam 84 of both ends was couple | bonded. Moreover, the upper part of the existing pillar 12 on each floor is also a column beam joint 18 in which the existing beams 14 at both ends and the existing pillars 12 are coupled.

図8、図9に示すように、1階フレーム部分80Aは、1階の既存柱12の高さに相当する高さの第1補強柱82Aと、第1補強柱82Aの上部間を連結し既存梁14に対向する第1補強梁84Aとからなる。
第1補強柱82Aの上部の柱梁接合部88は、既存建物10の1階の既存柱12の上部の柱梁接合部18に、スタッドジベル90A、後施工アンカー90B、モルタル(またはコンクリート)90Cなどを介して連結されている。
図8、図10に示すように、2階フレーム部分80Bは、2階の既存柱12の高さに相当する高さの第2補強柱82Bと、第2補強柱82Bの上部間を連結し既存梁14に対向する第2補強梁84Bとからなる。
第2補強柱82Bは第1補強柱82Aの上部の柱梁接合部88から立設され、第2補強柱82Bの上部の柱梁接合部88は、既存建物10の2階の既存柱12の上部の柱梁接合部18に、スタッドジベル90A、後施工アンカー90B、モルタル(またはコンクリート)90Cなどを介して連結されている。
As shown in FIGS. 8 and 9, the first floor frame portion 80A connects the first reinforcing pillar 82A having a height corresponding to the height of the existing pillar 12 on the first floor and the upper part of the first reinforcing pillar 82A. The first reinforcing beam 84 </ b> A faces the existing beam 14.
The column beam joint 88 at the upper part of the first reinforcing column 82A is connected to the column beam joint 18 at the upper part of the existing column 12 on the first floor of the existing building 10 with a stud diver 90A, a post-installed anchor 90B, and a mortar (or concrete) 90C. It is connected through such as.
As shown in FIGS. 8 and 10, the second floor frame portion 80B connects the second reinforcement pillar 82B having a height corresponding to the height of the existing pillar 12 on the second floor and the upper part of the second reinforcement pillar 82B. The second reinforcing beam 84B faces the existing beam 14.
The second reinforcing column 82B is erected from the column beam joint 88 at the upper part of the first reinforcement column 82A, and the column beam junction 88 at the upper part of the second reinforcement column 82B is connected to the existing column 12 on the second floor of the existing building 10. It is connected to the upper column beam joint 18 via a stud diver 90A, a post-construction anchor 90B, a mortar (or concrete) 90C, and the like.

特開2008−248592JP 2008-244852 A 特開2009−249851JP2009-249851

ところで、図11に示すように、既存建物10の1階の既存柱12に対向して第1補強柱82Aが設けられている場合、地震による被災で1階の既存柱12がせん断破壊を起こし崩壊して軸方向に変位を生じると、第1補強柱82Aは既存建物10の重量である偏心軸力を受けて外側に曲げ変形を起こし、第1補強柱82Aの上部と既存柱12の上部との間に目開きが生じ、耐震補強フレーム80による補強効果が低減する。
また、図12に示すように、既存建物10の1階の既存柱12に対向して第1補強柱80Aが、2階の既存柱12に対向して第2補強柱80Bが設けられている場合、地震による被災で2階の既存柱12がせん断破壊を起こし崩壊して軸方向に変位を生じると、2階の第2補強柱80Bは偏心軸力を受けて外側に曲げ変形を起こし、第2補強柱80Bの上部と2階の既存柱12の上部との間、および第2補強柱80Bと第1補強柱80Aとの接合部に目開きが生じ、耐震補強フレーム80による補強効果が低減する。
本発明はかかる事情に鑑み成されたものであり、本発明の目的は、地震による被災で、既存の柱がせん断破壊を起こし軸方向に変位を生じた場合、この柱に対向する補強柱の外側への曲げ変形を抑制し、補強効果を維持できる耐震補強工法および耐震補強フレームを提供することにある。
By the way, as shown in FIG. 11, when the 1st reinforcement pillar 82A is provided facing the existing pillar 12 of the 1st floor of the existing building 10, the existing pillar 12 of the 1st floor raise | generates a shear failure by the earthquake damage. When collapsed and axially displaced, the first reinforcing column 82A is subjected to an eccentric axial force that is the weight of the existing building 10 and bends outward, and the upper portion of the first reinforcing column 82A and the upper portion of the existing column 12 A mesh opening is generated between them, and the reinforcing effect of the seismic reinforcing frame 80 is reduced.
Further, as shown in FIG. 12, a first reinforcing column 80A is provided facing the existing column 12 on the first floor of the existing building 10, and a second reinforcing column 80B is provided facing the existing column 12 on the second floor. In this case, when the existing pillar 12 on the second floor causes a shear failure and collapses due to the earthquake damage, the second reinforcing pillar 80B on the second floor receives an eccentric axial force and causes an outward bending deformation. Openings occur between the upper part of the second reinforcing column 80B and the upper part of the existing column 12 on the second floor, and at the joint between the second reinforcing column 80B and the first reinforcing column 80A, and the reinforcing effect by the seismic reinforcing frame 80 is obtained. Reduce.
The present invention has been made in view of such circumstances, and an object of the present invention is to provide a reinforcing column opposite to this column when an existing column undergoes shear fracture and is displaced in the axial direction due to earthquake damage. An object of the present invention is to provide a seismic strengthening method and a seismic strengthening frame capable of suppressing bending deformation to the outside and maintaining a reinforcing effect.

上記目的を達成するため、本発明の耐震補強工法は、鉄筋コンクリート造もしくは鉄骨鉄筋コンクリート造ラーメン構造の既存建物の1階の隣り合う複数本の既存柱に対向しその上部が既存柱に連結された複数本の第1補強柱を含む1階フレーム部分を構築し、1階フレーム部分を構築したならば、前記複数本の第1補強柱のうちの隣り合う2本以上の第1補強柱の上部に立設され既存建物の2階の既存柱に対向しその上部が既存柱に連結された2本以上の第2補強柱を含む2階フレーム部分を構築し、このように1階から2階以上の上層階へと1階分のフレーム部分を順次既存建物に連結しつつ既存建物の構面に隣接させて耐震補強フレームを構築していくに際して、Nを1以上の整数としてN階に設ける第N補強柱の高さを、N階の既存柱の上部をなす柱梁接合部の高さよりも大きい寸法に設定し、N階の既存柱の柱梁接合部に対向する第N補強柱の箇所を、前記柱梁接合部に連結するとともに、第N補強柱の上端を前記柱梁接合部よりも上方に位置する既存柱の箇所に、該箇所へ近づく方向へ移動不能に接合し、N階の既存柱がせん断破壊を起こして軸方向に変位した際の第N補強柱の外側への曲げ変形を抑制することを特徴とする。
また、本発明の耐震補強工法は、鉄筋コンクリート造もしくは鉄骨鉄筋コンクリート造ラーメン構造の既存建物の1階の隣り合う複数本の既存柱に対向する第1補強柱を複数立設すると共に、それら隣り合う第1補強柱の上部間を、既存建物の1階の既存梁に対向する第1補強梁で連結し、第1補強柱と既存柱の上部とを連結することで、既存建物に連結された1階フレーム部分を構築し、1階フレーム部分を構築したならば、前記複数本の第1補強柱のうちの隣り合う2本以上の第1補強柱の上部に既存建物の2階の既存柱に対向する第2補強柱を立設すると共に、それら隣り合う第2補強柱の上部間を、2階の既存梁に対向する第2補強梁で連結し、第2補強柱と2階の既存柱の上部とを連結することで、既存建物に連結された2階フレーム部分を構築し、このように1階から2階以上の上層階へと1階分のフレーム部分を順次既存建物に連結しつつ既存建物の構面に隣接させて耐震補強フレームを構築していくに際して、Nを1以上の整数としてN階に設ける第N補強柱の高さを、N階の既存柱の上部をなす柱梁接合部の高さよりも大きい寸法に設定し、N階の既存柱の柱梁接合部に対向する第N補強柱の箇所を、前記柱梁接合部に連結するとともに、第N補強柱の上端を前記柱梁接合部よりも上方に位置する既存柱の箇所に、該箇所へ近づく方向へ移動不能に接合し、N階の既存柱がせん断破壊を起こして軸方向に変位した際の前記第N補強柱の外側への曲げ変形を抑制することを特徴とする。
また、本発明は、鉄筋コンクリート造もしくは鉄骨鉄筋コンクリート造ラーメン構造の既存建物の1階の隣り合う複数本の既存柱に対向しその上部が既存柱に連結された複数本の第1補強柱を含んで構築された1階フレーム部分と、前記複数本の第1補強柱のうちの隣り合う2本以上の第1補強柱の上部に立設され既存建物の2階の既存柱に対向しその上部が既存柱に連結された2本以上の第2補強柱を含んで構築された2階フレーム部分と、このように1階から2階以上の上層階へと1階分のフレーム部分を順次既存建物に連結しつつ既存建物の構面に隣接させて構築された耐震補強フレームであって、Nを1以上の整数としてN階に設ける第N補強柱の高さは、N階の既存柱の上部をなす柱梁接合部の高さよりも大きい寸法に設定され、N階の既存柱の柱梁接合部に対向する第N補強柱の箇所が、前記柱梁接合部に連結されるとともに、第N補強柱の上端が前記柱梁接合部よりも上方に位置する既存柱の箇所に、該箇所へ近づく方向へ移動不能に接合され、N階の既存柱がせん断破壊を起こして軸方向に変位した際の前記第N補強柱の外側への曲げ変形が抑制されることを特徴とする。
また、本発明は、鉄筋コンクリート造もしくは鉄骨鉄筋コンクリート造ラーメン構造の既存建物の1階の隣り合う複数本の既存柱に対向する第1補強柱を複数立設すると共に、それら隣り合う第1補強柱の上部間を、既存建物の1階の既存梁に対向する第1補強梁で連結し、第1補強柱と既存柱の上部とを連結することで構築された1階フレーム部分と、前記複数本の第1補強柱のうちの隣り合う2本以上の第1補強柱の上部に既存建物の2階の既存柱に対向する第2補強柱を立設すると共に、それら隣り合う第2補強柱の上部間を、2階の既存梁に対向する第2補強梁で連結し、第2補強柱と2階の既存柱の上部とを連結することで構築された2階フレーム部分と、このように1階から2階以上の上層階へと1階分のフレーム部分を順次既存建物に連結しつつ既存建物の構面に隣接させて構築された耐震補強フレームであって、Nを1以上の整数としてN階に設ける第N補強柱の高さは、N階の既存柱の上部をなす柱梁接合部の高さよりも大きい寸法に設定され、N階の既存柱の柱梁接合部に対向する第N補強柱の箇所が、前記柱梁接合部に連結されるとともに、第N補強柱の上端が前記柱梁接合部よりも上方に位置する既存柱の箇所に、該箇所へ近づく方向へ移動不能に接合され、N階の既存柱がせん断破壊を起こして軸方向に変位した際の前記第N補強柱の外側への曲げ変形が抑制されることを特徴とする。
In order to achieve the above object, the seismic retrofitting method of the present invention is a plurality of existing columns of a reinforced concrete structure or a steel-framed reinforced concrete frame structure facing a plurality of adjacent existing columns on the first floor and connected to the existing columns. If the first-floor frame part including the first reinforcing pillars is constructed, and the first-floor frame part is constructed, the first reinforcing pillars may be formed on the upper part of two or more adjacent first reinforcing pillars. constructs a erected second floor frame portion 2 floor opposite the upper to the existing column comprises two or more second reinforcing pillar which is connected to the existing column of an existing building, this two floors or more from the first floor while connected to the sequentially existing building frame portion of 1 Kaibun to the upper floors to be adjacent to the Plane of existing buildings during build a seismic reinforcing frame, provided N floors and integer of 1 or more N of The height of the Nth reinforcement pillar is the same as that of the Nth floor. Of set larger than the height of the column Joints constituting the upper, the part of the N reinforcing pillar which faces the beam-column joints of N floor existing posts, as well as connected to the beam-column joints, the The upper end of the N reinforcing column is joined to the existing column located above the beam- to- column joint so as not to move in the direction approaching the location, and the existing column on the N floor is displaced in the axial direction due to shear failure The bending deformation to the outside of the N-th reinforcing column at the time is reduced.
Further, the seismic reinforcement method of the present invention is provided with a plurality of first reinforcing columns that are opposed to a plurality of adjacent existing columns on the first floor of an existing building having a reinforced concrete structure or a steel reinforced concrete frame structure, and are adjacent to each other. 1 connected to the existing building by connecting the upper part of the reinforcing column with the first reinforcing beam facing the existing beam on the first floor of the existing building, and connecting the first reinforcing column and the upper part of the existing column. If the floor frame part is constructed, and the first floor frame part is constructed, the existing pillar on the second floor of the existing building is placed on the upper part of two or more adjacent first reinforcement pillars among the plurality of first reinforcement pillars. The opposing second reinforcing columns are erected, and the upper portions of the adjacent second reinforcing columns are connected by the second reinforcing beams facing the existing beams on the second floor, and the second reinforcing columns and the existing columns on the second floor are connected. By connecting the upper part of the building, the second floor frame connected to the existing building Constructs a beam portion, thus building a seismic reinforcement frame to be adjacent from the first floor to the second floor above the 1 existing buildings while connected sequentially existing building frame portion of Kaibun Plane to upper floors in go, the height of the N reinforcing pillar provided in N floors and integer of 1 or more N, is set to N floor dimension larger than the height of the column joints forming the top of the existing columns, the N floor a portion of the N reinforcing pillar which faces the beam-column joints of existing posts, as well as connected to the beam-column joints, portions of the existing columns the upper end of the N reinforcing pillar positioned higher than the beam-column joints In addition, the non-movable joint in the direction approaching the location is characterized by suppressing bending deformation to the outside of the Nth reinforcing column when the existing column on the Nth floor is sheared and displaced in the axial direction. To do.
In addition, the present invention includes a plurality of first reinforcing columns facing a plurality of adjacent existing columns on the first floor of an existing building of a reinforced concrete structure or a steel-framed reinforced concrete frame structure and having upper portions connected to the existing columns. The constructed first-floor frame part and two or more adjacent first reinforcing pillars of the plurality of first reinforcing pillars are erected on the upper part of the existing building on the second floor of the existing building. The second-floor frame part constructed by including two or more second reinforcing pillars connected to the existing pillars, and the existing one-frame frame part from the first floor to the upper floors of the second and higher floors in this way. a seismic reinforcement frame that is built adjacent to the Plane of existing buildings while connected to the height of the N reinforcing pillar provided in N floors and integer of 1 or more N, the N-floor existing column is set to a larger dimension than the height of the column joints constituting the upper, The N reinforcing pillar portion of which faces the beam-column joints of existing columns floors, along with being connected to the beam-column joints, existing the upper end of the N reinforcing pillar is positioned above the beam-column joints It is joined to the location of the column so that it cannot move in the direction approaching the location, and the bending deformation to the outside of the Nth reinforcing column when the existing column on the Nth floor is sheared and displaced in the axial direction is suppressed. It is characterized by that.
In addition, the present invention sets up a plurality of first reinforcing columns facing a plurality of adjacent existing columns on the first floor of an existing building of a reinforced concrete structure or a steel reinforced concrete frame structure, and the adjacent first reinforcing columns The first floor frame portion constructed by connecting the upper portions with the first reinforcing beams facing the existing beams on the first floor of the existing building, and connecting the first reinforcing columns and the upper portions of the existing columns, and the plurality A second reinforcing column is installed on the upper part of two or more adjacent first reinforcing columns among the first reinforcing columns of the first building so as to face the existing columns on the second floor of the existing building, and the adjacent second reinforcing columns The second floor frame part constructed by connecting the upper part with the second reinforcing beam facing the existing beam on the second floor and connecting the second reinforcing column and the upper part of the existing pillar on the second floor, and sequentially already the frame portion 1 Kaibun and from the first floor to the second floor or more upper floors While connected to the building an earthquake-proof reinforcement frame that is built adjacent to the Plane of existing buildings, the height of the N reinforcing pillar provided in N floors and integer of 1 or more N is, N floor existing column The height of the column beam joint that forms the upper part of the column is set to be larger than the height of the column beam joint, and the location of the Nth reinforcing column facing the column beam joint of the existing column on the N floor is connected to the column beam joint , The upper end of the N-th reinforcing column is joined to an existing column located above the beam- to-column joint so as to be immovable in a direction approaching the location, and the existing column on the Nth floor is sheared and broken in the axial direction. Bending deformation to the outside of the Nth reinforcing pillar when displaced is suppressed.

本発明によれば、地震による被災で既存建物のN階の既存柱がせん断破壊を起こして軸方向に変位し、第N補強柱が偏心軸力を受けて外側に曲げ変形しようとすると、第N補強柱の上端が、N階の既存柱よりも上方に位置する既存柱の箇所にあたり、第N補強柱の外側への曲げ変形が抑制される。
したがって、第N補強柱と第(N−1)補強柱との接合部における目開きや、第N補強柱と既存柱との接合部の目開きを抑制でき、耐震補強フレームによる補強効果を維持する上で有利となる。
また、第N補強柱の外側への曲げ変形が抑制されるので、第N補強柱の上部とN階の既存柱の上部とを連結するための部材への負担を軽減できる。したがって、それら部材の数量を減少でき、コストダウンを図る上でも有利となる。
According to the present invention, when an N-th existing column of an existing building is sheared and displaced in the axial direction due to an earthquake damage, the N-th reinforcing column receives an eccentric axial force and is bent outward. The upper end of the N reinforcing column hits the existing column located above the existing column on the N floor, and the bending deformation to the outside of the Nth reinforcing column is suppressed.
Therefore, the opening at the joint between the Nth reinforcement column and the (N-1) th reinforcement column and the opening at the junction between the Nth reinforcement column and the existing column can be suppressed, and the reinforcement effect by the seismic reinforcement frame is maintained. This is advantageous.
Moreover, since the bending deformation to the outside of the Nth reinforcing column is suppressed, it is possible to reduce the burden on the member for connecting the upper part of the Nth reinforcing column and the upper part of the existing column on the Nth floor. Therefore, the number of these members can be reduced, which is advantageous for cost reduction.

耐震補強の対象となる既存建物の正面図である。It is a front view of the existing building used as the object of seismic reinforcement. 第1の実施の形態の耐震補強フレームを構築した状態の耐震補強フレームと既存建物の正面図である。It is a front view of an earthquake-proof reinforcement frame and the existing building of the state which constructed the earthquake-proof reinforcement frame of a 1st embodiment. 第1補強柱と既存建物の連結関係の説明図である。It is explanatory drawing of the connection relation of a 1st reinforcement pillar and the existing building. 第1、第2補強柱と既存建物の連結関係の説明図である。It is explanatory drawing of the connection relation of a 1st, 2nd reinforcement pillar and an existing building. 第2の実施の形態の耐震補強フレームを構築した状態の耐震補強フレームと既存建物の正面図である。It is a front view of an earthquake-proof reinforcement frame and the existing building of the state which constructed the earthquake-proof reinforcement frame of a 2nd embodiment. 第1補強柱と既存建物の連結関係の説明図である。It is explanatory drawing of the connection relation of a 1st reinforcement pillar and the existing building. 第1、第2補強柱と既存建物の連結関係の説明図である。It is explanatory drawing of the connection relation of a 1st, 2nd reinforcement pillar and an existing building. 従来の耐震補強フレームを構築した状態の耐震補強フレームと既存建物の正面図である。It is a front view of a seismic reinforcement frame in the state where the conventional seismic reinforcement frame was constructed, and an existing building. 従来の第1補強柱と既存建物の連結関係の説明図である。It is explanatory drawing of the connection relation of the conventional 1st reinforcement pillar and the existing building. 従来の第1、第2補強柱と既存建物の連結関係の説明図である。It is explanatory drawing of the connection relation of the conventional 1st, 2nd reinforcement pillar, and the existing building. 1階の既存柱がせん断破壊した際の従来の第1補強柱の説明図である。It is explanatory drawing of the conventional 1st reinforcement pillar when the existing pillar of the 1st floor carries out a shear failure. 2階の既存柱がせん断破壊した際の従来の第1補強柱の説明図である。It is explanatory drawing of the conventional 1st reinforcement pillar when the existing pillar of the 2nd floor carries out a shear failure.

以下に本発明の実施の形態について、添付図面を参照しつつ詳細に説明する。
図1は本発明の耐震補強工法の対象となる建物の具体例を示した正面図を示し、既存建物10の構成は前記と同様であり、既存柱12、既存梁14、垂壁16A、腰壁16B、窓(斜線で示す)16Cなどを含んで構成されている。
図2は、構築された第1の実施の形態の耐震補強フレーム20の正面図を示している。
図3、図4に示すように、耐震補強フレーム20は、既存建物10の構面に隣接して(近接して)構築されている。
耐震補強フレーム20は既存建物10の構面と平行する面上に位置しており、1階フレーム部分20Aと、2階フレーム部分20Bとを含んでいる。
各フレーム部分20A、20Bは、補強柱22と補強梁24とを含んで構成され、補強柱22と補強梁24は、鉄骨鉄筋コンクリート製、あるいは鉄筋コンクリート製、あるいは鉄骨製である。
各階の補強柱22の上部は、両端の補強梁24とこの補強柱22とが結合された柱梁接合部28となっている。また、各階の既存柱12の上部も、両端の既存梁14とこの既存柱12とが結合された柱梁接合部18となっている。
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 is a front view showing a specific example of a building to be subjected to the seismic reinforcement method of the present invention. The configuration of the existing building 10 is the same as described above, and the existing column 12, the existing beam 14, the hanging wall 16A, the waist It includes a wall 16B, a window (shown by diagonal lines) 16C, and the like.
FIG. 2 shows a front view of the constructed seismic reinforcement frame 20 of the first embodiment.
As shown in FIGS. 3 and 4, the seismic reinforcement frame 20 is constructed adjacent to (close to) the construction surface of the existing building 10.
The seismic reinforcement frame 20 is located on a plane parallel to the construction surface of the existing building 10 and includes a first floor frame portion 20A and a second floor frame portion 20B.
Each of the frame portions 20A and 20B includes a reinforcing column 22 and a reinforcing beam 24, and the reinforcing column 22 and the reinforcing beam 24 are made of steel reinforced concrete, reinforced concrete, or steel frame.
The upper part of the reinforcing column 22 on each floor is a column beam joint 28 in which the reinforcing beam 24 at both ends and the reinforcing column 22 are coupled. Moreover, the upper part of the existing pillar 12 on each floor is also a column beam joint 18 in which the existing beams 14 at both ends and the existing pillars 12 are coupled.

図2に示すように、1階フレーム部分20Aは、1階の既存柱12に対向する第1補強柱22Aと、第1補強柱22Aの上部間を連結し1階の既存梁14に対向する第1補強梁24Aとを含んでいる。
なお、図3、図4に示すように、既存柱12の既存基礎19に接合させて補強用基礎29が設けられ、第1補強柱22Aはそれら基礎19,29の上から立設され、複数本の柱脚アンカー29Aの一部が第1補強柱22Aの下部から既存基礎19に打ち込まれ、残りの柱脚アンカー29Aが第1補強柱22Aの下部から補強用基礎29に打ち込まれ、それら基礎19、29に連結されている。
第1補強柱22Aが並べられた方向において両端の2本の第1補強柱22Aを除いた残りの第1補強柱22Aは、その高さが、1階の既存柱12と同じ寸法で設定されている。
また、両端に位置する2本の第1補強柱22Aは、その高さが、1階の既存柱12のよりも大きい寸法に設定されている。
As shown in FIG. 2, the first floor frame portion 20 </ b> A connects the first reinforcement pillar 22 </ b> A facing the existing pillar 12 on the first floor and the upper part of the first reinforcement pillar 22 </ b> A to face the existing beam 14 on the first floor. The first reinforcing beam 24A is included.
As shown in FIGS. 3 and 4, a reinforcing foundation 29 is provided by being joined to the existing foundation 19 of the existing pillar 12, and the first reinforcing pillar 22 </ b> A is erected from above the foundations 19, 29. A part of the column base anchor 29A is driven into the existing foundation 19 from the lower portion of the first reinforcing column 22A, and the remaining column base anchor 29A is driven into the reinforcing foundation 29 from the lower portion of the first reinforcing column 22A. 19 and 29.
The remaining first reinforcing columns 22A excluding the two first reinforcing columns 22A at both ends in the direction in which the first reinforcing columns 22A are arranged have the same dimensions as the existing columns 12 on the first floor. ing.
Moreover, the height of the two first reinforcing columns 22A located at both ends is set to be larger than that of the existing columns 12 on the first floor.

図3に示すように、両端の2本の第1補強柱22Aの上部をなす柱梁接合部28は、1階の既存柱12の上部をなす柱梁接合部18にスタッドジベル90A、後施工アンカー90B、モルタル(またはコンクリート)90Cなどを介して連結されている。本実施の形態では、柱梁接合部28の両側に位置する第1補強梁24Aの箇所も1階の既存梁14に連結されている。
また、柱梁接合部28から突出する第1補強柱22Aの上端2202はモルタルMを介して1階の既存柱12の上方の既存柱12の箇所に、すなわち、2階の既存柱12の箇所に、該箇所へ近づく方向へ移動不能にモルタルMにより接合されている。
また、両端の2本の第1補強柱22Aを除いた残りの第1補強柱22Aの上端の柱梁接合部28は、1階の既存柱12の上端の柱梁接合部18に、スタッドジベル90A、後施工アンカー90B、モルタル(またはコンクリート)90Cなどを介して連結されている。本実施の形態では、柱梁接合部28に近接する第1補強梁24Aの箇所も1階の既存梁14に連結されている。
As shown in FIG. 3, the column beam joint 28 that forms the upper part of the two first reinforcing columns 22A at both ends is connected to the column beam joint 18 that forms the upper part of the existing column 12 on the first floor. It is connected via an anchor 90B, mortar (or concrete) 90C and the like. In the present embodiment, the locations of the first reinforcing beams 24A located on both sides of the column beam joint 28 are also connected to the existing beams 14 on the first floor.
Further, the upper end 2202 of the first reinforcing column 22A protruding from the column beam joint portion 28 is located at the location of the existing column 12 above the existing column 12 on the first floor via the mortar M, that is, the location of the existing column 12 on the second floor. to, and is joined by immovably mortar M direction toward the relevant section.
The column beam joint 28 at the upper end of the remaining first reinforcement column 22A excluding the two first reinforcement columns 22A at both ends is connected to the column beam junction 18 at the upper end of the existing column 12 on the first floor. 90A, post-construction anchor 90B, mortar (or concrete) 90C, and the like. In the present embodiment, the location of the first reinforcing beam 24A adjacent to the column beam joint 28 is also connected to the existing beam 14 on the first floor.

2階フレーム部分20Bは1階フレーム部分が構築された後に構築されており、2階フレーム部分は、既存建物10の全ての2階に対応させておらず、2階のうちの補強すべき箇所のみに設けられている。
図2に示すように、2階フレーム部分は、2階の既存柱12に対向する第2補強柱22Bと、第2補強柱22Bの上部間を連結し2階の既存梁14に対向する第2補強梁24Bとを含んでいる。
The second-floor frame portion 20 B is constructed after the first-floor frame portion is constructed, and the second-floor frame portion does not correspond to all the second floors of the existing building 10 and should be reinforced among the second floors. It is provided only in the place.
As shown in FIG. 2, the second floor frame portion connects the second reinforcement pillar 22B facing the existing pillar 12 on the second floor and the upper part of the second reinforcement pillar 22B and faces the existing beam 14 on the second floor. 2 reinforcing beams 24B.

第2補強柱22Bは第1補強柱22Aの上部をなす柱梁接合部28から立設されている。
図4に示すように、第2補強柱22Bは、その高さが、2階の既存柱12のよりも大きい寸法に設定されている。
各第2補強柱22Bの上部をなす柱梁接合部28は、2階の既存柱12の上部をなす柱梁接合部18にスタッドジベル90A、後施工アンカー90B、モルタル(またはコンクリート)90Cなどを介して連結している。本実施の形態では、柱梁接合部28に近接する第2補強梁24Bの箇所も2階の既存梁14に連結されている。
また、柱梁接合部28から突出する第2補強柱22Bの上端2204は、モルタルMを介して2階の既存柱12の上方の既存の既存柱12の箇所に、すなわち、3階の既存柱12の箇所に、該箇所へ近づく方向へ移動不能にモルタルMにより接合されている。
The second reinforcing column 22B is erected from a column beam joint 28 that forms the upper part of the first reinforcing column 22A.
As shown in FIG. 4, the height of the second reinforcing pillar 22B is set to be larger than that of the existing pillar 12 on the second floor.
The column beam joint 28 forming the upper part of each second reinforcing column 22B includes a stud beam 90A, a post-installed anchor 90B, a mortar (or concrete) 90C, etc. on the column beam joint 18 forming the upper part of the existing column 12 on the second floor. Are connected through. In the present embodiment, the location of the second reinforcing beam 24B adjacent to the column beam joint 28 is also connected to the existing beam 14 on the second floor.
Further, the upper end 2204 of the second reinforcing column 22B protruding from the column beam joint portion 28 is located at the location of the existing column 12 above the existing column 12 on the second floor via the mortar M, that is, the existing column on the third floor. the locations of 12, are joined by immovably mortar M direction toward the relevant section.

本実施の形態によれば次の効果が奏される。
まず、1階の両端に位置する2本の第1補強柱22Aについて説明する。
例えば、地震による被災で、図3に示す既存建物10の1階の既存柱12が、図11に示すように崩壊しせん断破壊を起こすことで軸方向に変位し、第1補強柱22Aが既存建物10の重量である偏心軸力を受け外側に曲げ変形しようとすると、第1補強柱22Aの上端2202がモルタルMを介して2階の既存柱12にあたり、第1補強柱22Aの外側への曲げ変形が抑制される。したがって、柱梁接合部18、28間の目開きを抑制でき、耐震補強フレーム20による補強効果を維持する上で有利となる。
また、第1補強柱22Aの外側への曲げ変形が抑制されるので、第1補強柱22Aの上部と1階の既存柱12の上部とを連結するための部材90A、90Bへの負担を軽減できる。したがって、第1補強柱22Aの上部と1階の既存柱12の上部とを連結するために用いる、本実施の形態では、第1補強柱22Aに近接する第1補強梁24A箇所と既存梁14とを連結するためにも用いる打設作業が困難な後施工アンカー90Bの数量を減少でき、コストダウンを図る上でも有利となる。
According to the present embodiment, the following effects are achieved.
First, the two first reinforcing pillars 22A located at both ends of the first floor will be described.
For example, due to an earthquake, the existing pillar 12 on the first floor of the existing building 10 shown in FIG. 3 is displaced in the axial direction by collapsing and causing shear failure as shown in FIG. When an eccentric axial force that is the weight of the building 10 is applied to bend and deform outward, the upper end 2202 of the first reinforcing column 22A hits the existing column 12 on the second floor via the mortar M, and the outer side of the first reinforcing column 22A Bending deformation is suppressed. Therefore, the opening between the column beam joints 18 and 28 can be suppressed, which is advantageous in maintaining the reinforcing effect of the seismic reinforcement frame 20.
In addition, since bending deformation to the outside of the first reinforcing column 22A is suppressed, the burden on the members 90A and 90B for connecting the upper portion of the first reinforcing column 22A and the upper portion of the existing column 12 on the first floor is reduced. it can. Therefore, in the present embodiment, which is used to connect the upper portion of the first reinforcing column 22A and the upper portion of the existing first column 12 on the first floor, the first reinforcing beam 24A near the first reinforcing column 22A and the existing beam 14 are used. The number of post-construction anchors 90B, which are difficult to place, also used for connecting the two, can be reduced, which is advantageous for cost reduction.

次に、第2補強柱22Bについて説明する。
例えば、地震による被災で、図4に示す既存建物10の2階の既存柱12が、図12に示すようにせん断破壊を起こして軸方向に変位し、第2補強柱22Bが偏心軸力受け外側に曲げ変形しようとすると、第2補強柱22Bの上端2204がモルタルMを介して3階の既存柱12にあたり、第2補強柱22Bの外側への曲げ変形が抑制される。したがって、2階における柱梁接合部18、28間の目開き、および第2補強柱22Bと第1補強柱22Aとの接合部における目開きを抑制でき、耐震補強フレーム20による補強効果を維持する上で有利となる。
また、前記と同様に、第2補強柱22Aの上部と2階の既存柱12の上部とを連結するために用いる、本実施の形態では、第2補強柱22Aに近接する第1補強梁24A箇所と既存梁とを連結するためにも用いる打設作業が困難な後施工アンカー90Bの数量を減少でき、コストダウンを図る上でも有利となる。
Next, the 2nd reinforcement pillar 22B is demonstrated.
For example, due to an earthquake, the existing pillar 12 on the second floor of the existing building 10 shown in FIG. 4 undergoes shear failure as shown in FIG. 12 and is displaced in the axial direction, and the second reinforcing pillar 22B receives the eccentric axial force. When bending outward is attempted, the upper end 2204 of the second reinforcing column 22B hits the existing column 12 on the third floor via the mortar M, and bending deformation to the outside of the second reinforcing column 22B is suppressed. Therefore, the opening between the column beam joints 18 and 28 on the second floor and the opening at the joint between the second reinforcing column 22B and the first reinforcing column 22A can be suppressed, and the reinforcing effect by the seismic reinforcement frame 20 is maintained. This is advantageous.
Similarly to the above, in the present embodiment, the first reinforcing beam 24A adjacent to the second reinforcing column 22A is used to connect the upper portion of the second reinforcing column 22A and the upper portion of the existing column 12 on the second floor. The number of post-construction anchors 90B, which are difficult to place, which is also used to connect the spot and the existing beam, can be reduced, which is advantageous in reducing costs.

次に、第2の実施の形態について説明する。
図5は、構築された第2の実施の形態の耐震補強フレーム30の正面図を示している。
図6、図7に示すように、耐震補強フレーム30は、既存建物10の構面に近接して構築されている。
第1の実施の形態と同様な箇所、部材に同一の符号を付し、その説明を省略すると、耐震補強フレーム30は既存建物10の構面と平行する面上に位置しており、1階フレーム部分30Aと、2階フレーム部分30Bとを含んでいる。
Next, a second embodiment will be described.
FIG. 5 shows a front view of the seismic reinforcement frame 30 of the second embodiment constructed.
As shown in FIGS. 6 and 7, the seismic reinforcement frame 30 is constructed close to the construction surface of the existing building 10.
If the same reference numerals are given to the same parts and members as in the first embodiment and the description thereof is omitted, the seismic reinforcement frame 30 is located on a plane parallel to the construction surface of the existing building 10, and the first floor It includes a frame portion 30A and a second floor frame portion 30B.

図5に示すように、1階フレーム部分30Aは、1階の既存柱12に対向する第1補強柱22Cと、第1補強柱22Cの上部間を連結し1階の既存梁14に対向する第1補強梁24Cとを含んでおり、第1補強柱22Cが並べられた方向において両端の2本の第1補強柱22Cを除いた残りの第1補強柱22Cは、その高さが、1階の既存柱12と同じ寸法で設定されている。
また、両端に位置する2本の第1補強柱22Cは、その高さが、1階の既存柱12のよりも大きい寸法に設定されている。本実施の形態では、2本の第1補強柱22Cの高さは、1階の既存柱12の高さに2階の既存柱12の高さを加えた寸法で形成されている。
As shown in FIG. 5, the first-floor frame portion 30 </ b> A connects the first reinforcement pillar 22 </ b> C facing the existing pillar 12 on the first floor and the upper part of the first reinforcement pillar 22 </ b> C to face the existing beam 14 on the first floor. The remaining first reinforcing pillars 22C excluding the two first reinforcing pillars 22C at both ends in the direction in which the first reinforcing pillars 22C are arranged have a height of 1 It is set with the same dimensions as the existing pillar 12 on the floor.
Moreover, the height of the two first reinforcing columns 22C located at both ends is set to be larger than that of the existing columns 12 on the first floor. In the present embodiment, the height of the two first reinforcing pillars 22C is formed to have a dimension obtained by adding the height of the existing pillar 12 on the first floor to the height of the existing pillar 12 on the first floor.

図6に示すように、両端の2本の第1補強柱22Cの上下中間部をなす柱梁接合部28は、1階の既存柱12の上部をなす柱梁接合部18にスタッドジベル90A、後施工アンカー90B、モルタル(またはコンクリート)90Cなどを介して連結されている。本実施の形態では、柱梁接合部28に近接する第1補強梁24Cの箇所も1階の既存梁14に連結されている。
また、柱梁接合部28から突出する第1補強柱22Cの上端2206はモルタルMを介して1階の既存柱12の上方の既存柱12の箇所に、すなわち、2階の既存柱12の上部をなす柱梁接合部18に、該柱梁接合部18へ近づく方向へ移動不能にモルタルMにより接合されている。
また、両端の2本の第1補強柱22Cを除いた残りの第1補強柱22Cの上部の柱梁接合部28は、1階の既存柱12の上端の柱梁接合部18に、スタッドジベル90A、後施工アンカー90B、モルタル(またはコンクリート)90Cなどを介して連結されている。本実施の形態では、柱梁接合部28に近接する第1補強梁24Cの箇所も1階の既存梁14に連結されている。
As shown in FIG. 6, the column beam joint 28 that forms the upper and lower middle portions of the two first reinforcing columns 22C at both ends is connected to the column beam joint 18 that forms the upper portion of the existing column 12 on the first floor, The post-construction anchor 90B and the mortar (or concrete) 90C are connected. In the present embodiment, the location of the first reinforcing beam 24C adjacent to the column beam joint 28 is also connected to the existing beam 14 on the first floor.
Further, the upper end 2206 of the first reinforcing column 22C protruding from the beam-column joint portion 28 is located at the location of the existing column 12 above the existing column 12 on the first floor via the mortar M, that is, the upper portion of the existing column 12 on the second floor. the beam-column joints 18 constituting a are joined by immovably mortar M direction toward the pillar joints 18.
In addition, the column beam joint 28 on the upper part of the remaining first reinforcement column 22C excluding the two first reinforcement columns 22C on both ends is connected to the column beam junction 18 on the upper end of the existing column 12 on the first floor. 90A, post-construction anchor 90B, mortar (or concrete) 90C, and the like. In the present embodiment, the location of the first reinforcing beam 24C adjacent to the column beam joint 28 is also connected to the existing beam 14 on the first floor.

2階フレーム部分30Bは1階フレーム部分30Aが構築された後に構築されており、2階フレーム部分30Bは、既存建物10の全ての2階に対応させておらず、2階のうちの補強すべき箇所のみに設けられている。
図5、図7に示すように、2階フレーム部分30Bは、2階の既存柱12に対向する第2補強柱22Dと、第2補強柱22Dの上部間を連結し2階の既存梁14に対向する第2補強梁24Dとを含んでいる。
The second-floor frame portion 30B is constructed after the first-floor frame portion 30A is constructed, and the second-floor frame portion 30B does not correspond to all the second floors of the existing building 10 and reinforces the second-floor frame portion 30B. It is provided only at the power points.
As shown in FIGS. 5 and 7, the second floor frame portion 30 </ b> B connects the second reinforcement pillar 22 </ b> D facing the existing pillar 12 on the second floor and the upper part of the second reinforcement pillar 22 </ b> D to connect the existing beam 14 on the second floor. And a second reinforcing beam 24D facing each other.

第2補強柱22Dは第1補強柱22Cの上部をなす柱梁接合部28から立設されている。
図7に示すように、第2補強柱22Dは、その高さが、2階の既存柱12のよりも大きい寸法に設定されている。本実施の形態では、第2補強柱22Dの高さは、2階の既存柱12の高さに3階の既存柱12の高さを加えた寸法で形成されている。
2階の既存柱12の上部をなす柱梁接合部18に対向する各第2補強柱22Dの上下中間部の柱梁接合部28は、2階の既存柱12の上部をなす柱梁接合部18にスタッドジベル90A、後施工アンカー90B、モルタル(またはコンクリート)90Cなどを介して連結している。本実施の形態では、柱梁接合部28に近接する第2補強梁24Dの箇所も2階の既存梁14に連結されている。
また、柱梁接合部28から突出する第2補強柱22Dの上端2208は、モルタルMを介して3階の既存柱12の上部をなす柱梁接合部18に、該柱梁接合部18へ近づく方向へ移動不能にモルタルMにより接合されている。
The second reinforcing column 22D is erected from a column beam joint 28 that forms the upper part of the first reinforcing column 22C.
As shown in FIG. 7, the height of the second reinforcing pillar 22D is set to be larger than that of the existing pillar 12 on the second floor. In the present embodiment, the height of the second reinforcing pillar 22D is formed by a dimension obtained by adding the height of the existing pillar 12 on the third floor to the height of the existing pillar 12 on the second floor.
The column beam joints 28 at the upper and lower intermediate portions of the second reinforcing columns 22D facing the column beam joints 18 forming the upper part of the existing pillars 12 on the second floor are the column beam joints forming the upper parts of the existing columns 12 on the second floor. 18 is connected via a stud diver 90A, a post-construction anchor 90B, a mortar (or concrete) 90C, and the like. In the present embodiment, the location of the second reinforcing beam 24D adjacent to the column beam joint 28 is also connected to the existing beam 14 on the second floor.
Further, the upper end 2208 of the second reinforcing column 22D protruding from the beam-column joint portion 28 approaches the beam-column joint portion 18 via the mortar M to the beam-column joint portion 18 forming the upper part of the existing column 12 on the third floor. They are joined by immovably mortar M direction.

本実施の形態によれば次の効果が奏される。
まず、1階の両端に位置する2本の第1補強柱22Cについて説明する。
例えば、地震による被災で、図6に示す既存建物10の1階の既存柱12が、図11に示すように崩壊し断破壊を起こして軸方向に変位し、偏心軸力を受けて第1補強柱22Cが外側に曲げ変形しようとすると、第1補強柱22Cの上端2206がモルタルMを介して2階の既存柱12の上端にあたり、第1補強柱22Cの外側への曲げ変形が抑制される。したがって、1階における柱梁接合部18、28間の目開きを抑制でき、耐震補強フレーム30による補強効果を維持する上で有利となる。
また、第1補強柱22Cの外側への曲げ変形が抑制されるので、第1補強柱22Cの上部と1階の既存柱12の上部とを連結するための部材50A、50Bへの負担を軽減できる。したがって、第1補強柱22Cの上部と1階の既存柱12の上部とを連結するために用いる、本実施の形態では、第1補強柱22Cに近接する第1補強梁24C箇所と既存梁14とを連結するためにも用いる打設作業が困難な後施工アンカー50Bの数量を減少でき、コストダウンを図る上でも有利となる。
According to the present embodiment, the following effects are achieved.
First, the two first reinforcing columns 22C located at both ends of the first floor will be described.
For example, due to earthquake damage, the existing pillar 12 on the first floor of the existing building 10 shown in FIG. 6 collapses and breaks and breaks in the axial direction as shown in FIG. When the reinforcing column 22C is bent outward, the upper end 2206 of the first reinforcing column 22C hits the upper end of the existing column 12 on the second floor via the mortar M, and the bending deformation to the outside of the first reinforcing column 22C is suppressed. The Therefore, the opening between the column beam joints 18 and 28 on the first floor can be suppressed, which is advantageous in maintaining the reinforcing effect by the seismic reinforcement frame 30.
In addition, since bending deformation to the outside of the first reinforcing column 22C is suppressed, the burden on the members 50A and 50B for connecting the upper portion of the first reinforcing column 22C and the upper portion of the existing column 12 on the first floor is reduced. it can. Therefore, in the present embodiment, which is used to connect the upper part of the first reinforcing column 22C and the upper part of the existing column 12 on the first floor, the first reinforcing beam 24C and the existing beam 14 adjacent to the first reinforcing column 22C are used. The number of post-installed anchors 50B, which are difficult to place, can also be reduced, which is advantageous for cost reduction.

次に、第2補強柱22Dについて説明する。
例えば、地震による被災で、図7に示す既存建物10の2階の既存柱12が、図12に示すようにせん断破壊を起こして軸方向に変位し、第2補強柱22Dが外側に曲げ変形しようとすると、第2補強柱22Dの上端2208がモルタルMを介して3階の既存柱12の上端にあたり、第2補強柱22Dの外側への曲げ変形が抑制される。したがって、2階における柱梁接合部18、28間の目開き、第2補強柱22Dと第1補強柱22Cとの接合部における目開きを抑制でき、耐震補強フレーム30による補強効果を維持する上で有利となる。
また、前記と同様に、第2補強柱22Dの上部と2階の既存柱12の上部とを連結するために用いる、本実施の形態では、第2補強柱22Dに近接する第2補強梁24D箇所と既存梁14とを連結するためにも用いる打設作業が困難な後施工アンカー50Bの数量を減少でき、コストダウンを図る上でも有利となる。
Next, the second reinforcing pillar 22D will be described.
For example, due to an earthquake, the existing pillar 12 on the second floor of the existing building 10 shown in FIG. 7 is sheared and displaced in the axial direction as shown in FIG. 12, and the second reinforcing pillar 22D is bent outwardly. If it tries, the upper end 2208 of 2nd reinforcement pillar 22D will hit the upper end of the existing pillar 12 of the 3rd floor through the mortar M, and the bending deformation to the outer side of 2nd reinforcement pillar 22D will be suppressed. Accordingly, the opening between the beam-column joints 18 and 28 on the second floor and the opening at the joint between the second reinforcement column 22D and the first reinforcement column 22C can be suppressed, and the reinforcing effect of the seismic reinforcement frame 30 can be maintained. Is advantageous.
Similarly to the above, in the present embodiment, the second reinforcing beam 24D adjacent to the second reinforcing column 22D is used to connect the upper portion of the second reinforcing column 22D and the upper portion of the existing column 12 on the second floor. The number of post-construction anchors 50B, which are difficult to place, also used to connect the spot and the existing beam 14, can be reduced, which is advantageous in reducing costs.

10……既存建物10、12……既存柱、14……既存梁、20、30……耐震補強フレーム、22A、22C……第1補強柱、22B、22D……第2補強柱、24A、24C……第1補強梁、24B、24D……第2補強梁。 10: Existing building 10, 12: Existing column, 14: Existing beam, 20, 30 ... Seismic reinforcement frame, 22A, 22C ... First reinforcement column, 22B, 22D ... Second reinforcement column, 24A, 24C: first reinforcing beam, 24B, 24D: second reinforcing beam.

Claims (7)

鉄筋コンクリート造もしくは鉄骨鉄筋コンクリート造ラーメン構造の既存建物の1階の隣り合う複数本の既存柱に対向しその上部が既存柱に連結された複数本の第1補強柱を含む1階フレーム部分を構築し、
1階フレーム部分を構築したならば、前記複数本の第1補強柱のうちの隣り合う2本以上の第1補強柱の上部に立設され既存建物の2階の既存柱に対向しその上部が既存柱に連結された2本以上の第2補強柱を含む2階フレーム部分を構築し、
このように1階から2階以上の上層階へと1階分のフレーム部分を順次既存建物に連結しつつ既存建物の構面に隣接させて耐震補強フレームを構築していくに際して、
Nを1以上の整数としてN階に設ける第N補強柱の高さを、N階の既存柱の上部をなす柱梁接合部の高さよりも大きい寸法に設定し、
N階の既存柱の柱梁接合部に対向する第N補強柱の箇所を、前記柱梁接合部に連結するとともに、第N補強柱の上端を前記柱梁接合部よりも上方に位置する既存柱の箇所に、該箇所へ近づく方向へ移動不能に接合し、N階の既存柱がせん断破壊を起こして軸方向に変位した際の第N補強柱の外側への曲げ変形を抑制する、
ことを特徴とする耐震補強工法。
Construct a first-floor frame part that includes multiple first reinforcing columns that are opposite to the existing columns on the first floor of an existing building of reinforced concrete or steel-framed reinforced concrete frame structure and that are connected to the existing columns at the top. ,
If the first-floor frame part is constructed, it is erected on the upper part of two or more adjacent first reinforcing pillars among the plurality of first reinforcing pillars and faces the existing pillars on the second floor of the existing building. Constructed a second floor frame part including two or more second reinforcing pillars connected to existing pillars,
In this way, when building an earthquake-proof reinforcement frame adjacent to the construction surface of an existing building, connecting the frame portion of the first floor to the existing building sequentially from the first floor to the upper floor of the second floor or more ,
The height of the N reinforcing pillar of N as the integer of 1 or more provided N floor, set larger than the height of the column Joints forming the top of the N floor existing posts,
The location of the Nth reinforcing column facing the beam-column joint of the existing column on the Nth floor is connected to the beam-beam joint , and the upper end of the N-th reinforcement column is located above the beam-beam joint. It is joined to the column part so as not to move in the direction approaching the part, and the bending deformation to the outside of the Nth reinforcing column when the existing column on the N floor is sheared and displaced in the axial direction is suppressed.
Seismic reinforcement construction method characterized by that.
鉄筋コンクリート造もしくは鉄骨鉄筋コンクリート造ラーメン構造の既存建物の1階の隣り合う複数本の既存柱に対向する第1補強柱を複数立設すると共に、それら隣り合う第1補強柱の上部間を、既存建物の1階の既存梁に対向する第1補強梁で連結し、第1補強柱と既存柱の上部とを連結することで、既存建物に連結された1階フレーム部分を構築し、
1階フレーム部分を構築したならば、前記複数本の第1補強柱のうちの隣り合う2本以上の第1補強柱の上部に既存建物の2階の既存柱に対向する第2補強柱を立設すると共に、それら隣り合う第2補強柱の上部間を、2階の既存梁に対向する第2補強梁で連結し、第2補強柱と2階の既存柱の上部とを連結することで、既存建物に連結された2階フレーム部分を構築し、
このように1階から2階以上の上層階へと1階分のフレーム部分を順次既存建物に連結しつつ既存建物の構面に隣接させて耐震補強フレームを構築していくに際して、
Nを1以上の整数としてN階に設ける第N補強柱の高さを、N階の既存柱の上部をなす柱梁接合部の高さよりも大きい寸法に設定し、
N階の既存柱の柱梁接合部に対向する第N補強柱の箇所を、前記柱梁接合部に連結するとともに、第N補強柱の上端を前記柱梁接合部よりも上方に位置する既存柱の箇所に、該箇所へ近づく方向へ移動不能に接合し、N階の既存柱がせん断破壊を起こして軸方向に変位した際の前記第N補強柱の外側への曲げ変形を抑制する、
ことを特徴とする耐震補強工法。
Establish a plurality of first reinforcing columns facing the existing columns on the first floor of an existing building with a reinforced concrete structure or a steel-framed reinforced concrete frame structure. By connecting with the first reinforcing beam facing the existing beam on the first floor, and connecting the first reinforcing column and the upper part of the existing column, the first floor frame part connected to the existing building is constructed,
If the 1st floor frame part is constructed, the second reinforcement pillar facing the existing pillar on the second floor of the existing building is formed on the upper part of two or more adjacent first reinforcement pillars among the plurality of first reinforcement pillars. Connect the second reinforcement pillar and the upper part of the existing pillar on the second floor by connecting the upper part of the second reinforcement pillars adjacent to each other with the second reinforcement beam facing the existing beam on the second floor. Then build the second floor frame part connected to the existing building,
In this way, when building an earthquake-proof reinforcement frame adjacent to the construction surface of an existing building, connecting the frame portion of the first floor to the existing building sequentially from the first floor to the upper floor of the second floor or more ,
The height of the N reinforcing pillar of N as the integer of 1 or more provided N floor, set larger than the height of the column Joints forming the top of the N floor existing posts,
The location of the Nth reinforcing column facing the beam-column joint of the existing column on the Nth floor is connected to the beam-beam joint , and the upper end of the N-th reinforcement column is located above the beam-beam joint. It is joined to the location of the column so as to be immovable in the direction approaching the location, and the bending deformation to the outside of the N-th reinforcing column when the existing column on the N floor is sheared and displaced in the axial direction is suppressed.
Seismic reinforcement construction method characterized by that.
第N補強柱の上端の、N階の既存柱よりも上方に位置する既存柱の箇所への接合は、モルタルを介してなされる、
ことを特徴とする請求項1または2記載の耐震補強工法。
Joining the upper end of the Nth reinforcing pillar to the existing pillar located above the existing pillar on the Nth floor is made through mortar.
The seismic reinforcement method according to claim 1 or 2.
第N補強柱の高さは、N階の既存柱の高さに、(N+1)階の既存柱の高さを加えた寸法であり、
第N補強柱の上端が接合されるN階の既存柱よりも上方に位置する既存柱の箇所は、(N+1)階の既存柱の上端である、
ことを特徴とする請求項1乃至3に何れか1項記載の耐震補強工法。
The height of the Nth reinforcing pillar is the dimension of the height of the existing pillar on the Nth floor plus the height of the existing pillar on the (N + 1) th floor,
The location of the existing column located above the existing column on the Nth floor to which the upper end of the Nth reinforcing column is joined is the upper end of the existing column on the (N + 1) th floor,
The seismic reinforcement method according to any one of claims 1 to 3, characterized in that.
既存柱を支える既存基礎に接合する補強基礎がさらに設けられ、
第1補強柱は、前記補強基礎および既存基礎から立設され、第1補強柱の下部は複数のアンカーを介してそれら基礎に連結されている、
ことを特徴とする請求項1乃至4に何れか1項記載の耐震補強工法。
Reinforcement foundations that are joined to existing foundations that support existing pillars are further provided,
The first reinforcement pillar is erected from the reinforcement foundation and the existing foundation, and the lower part of the first reinforcement pillar is connected to the foundation via a plurality of anchors.
The seismic reinforcement method according to any one of claims 1 to 4, wherein the seismic reinforcement method is provided.
鉄筋コンクリート造もしくは鉄骨鉄筋コンクリート造ラーメン構造の既存建物の1階の隣り合う複数本の既存柱に対向しその上部が既存柱に連結された複数本の第1補強柱を含んで構築された1階フレーム部分と、
前記複数本の第1補強柱のうちの隣り合う2本以上の第1補強柱の上部に立設され既存建物の2階の既存柱に対向しその上部が既存柱に連結された2本以上の第2補強柱を含んで構築された2階フレーム部分と、
このように1階から2階以上の上層階へと1階分のフレーム部分を順次既存建物に連結しつつ既存建物の構面に隣接させて構築された耐震補強フレームであって、
Nを1以上の整数としてN階に設ける第N補強柱の高さは、N階の既存柱の上部をなす柱梁接合部の高さよりも大きい寸法に設定され、
N階の既存柱の柱梁接合部に対向する第N補強柱の箇所が、前記柱梁接合部に連結されるとともに、第N補強柱の上端が前記柱梁接合部よりも上方に位置する既存柱の箇所に、該箇所へ近づく方向へ移動不能に接合され、N階の既存柱がせん断破壊を起こして軸方向に変位した際の前記第N補強柱の外側への曲げ変形が抑制される、
ことを特徴とする耐震補強フレーム。
A first-floor frame constructed with multiple first reinforcing columns facing the existing columns on the first floor of an existing building of reinforced concrete or steel-framed reinforced concrete ramen structure and connected to the existing columns on the top. Part,
Two or more of the plurality of first reinforcing columns that are erected on the upper side of two or more adjacent first reinforcing columns that face the existing columns on the second floor of the existing building and whose upper portions are connected to the existing columns. The second-floor frame part constructed including the second reinforcing pillar of
In this way, the seismic reinforcement frame constructed by connecting the frame part of the first floor from the first floor to the upper floor of the second floor or more in order while adjoining the construction surface of the existing building,
Height of the N reinforcing pillar of N as the integer of 1 or more provided N floor is set to a larger dimension than the height of the column Joints forming the top of the N floor existing posts,
The location of the Nth reinforcing column facing the beam-column joint of the existing column on the Nth floor is connected to the beam-beam joint , and the upper end of the N-th reinforcement column is located above the beam-beam joint. Bending to the outside of the Nth reinforcing column when the existing column on the Nth floor is joined to the existing column so as to be immovable in the direction approaching the location and the existing column on the Nth floor is sheared and displaced in the axial direction is suppressed. The
Seismic reinforcement frame characterized by that.
鉄筋コンクリート造もしくは鉄骨鉄筋コンクリート造ラーメン構造の既存建物の1階の隣り合う複数本の既存柱に対向する第1補強柱を複数立設すると共に、それら隣り合う第1補強柱の上部間を、既存建物の1階の既存梁に対向する第1補強梁で連結し、第1補強柱と既存柱の上部とを連結することで構築された1階フレーム部分と、
前記複数本の第1補強柱のうちの隣り合う2本以上の第1補強柱の上部に既存建物の2階の既存柱に対向する第2補強柱を立設すると共に、それら隣り合う第2補強柱の上部間を、2階の既存梁に対向する第2補強梁で連結し、第2補強柱と2階の既存柱の上部とを連結することで構築された2階フレーム部分と、
このように1階から2階以上の上層階へと1階分のフレーム部分を順次既存建物に連結しつつ既存建物の構面に隣接させて構築された耐震補強フレームであって、
Nを1以上の整数としてN階に設ける第N補強柱の高さは、N階の既存柱の上部をなす柱梁接合部の高さよりも大きい寸法に設定され、
N階の既存柱の柱梁接合部に対向する第N補強柱の箇所が、前記柱梁接合部に連結されるとともに、第N補強柱の上端が前記柱梁接合部よりも上方に位置する既存柱の箇所に、該箇所へ近づく方向へ移動不能に接合され、N階の既存柱がせん断破壊を起こして軸方向に変位した際の前記第N補強柱の外側への曲げ変形が抑制される、
ことを特徴とする耐震補強フレーム。
Establish a plurality of first reinforcing columns facing the existing columns on the first floor of an existing building with a reinforced concrete structure or a steel-reinforced concrete frame structure, and the existing building between the adjacent first reinforcing columns. 1st floor frame part constructed by connecting the first reinforcing beam and the upper part of the existing column, connected by the first reinforcing beam facing the existing beam on the first floor of
A second reinforcing column is provided on the upper part of two or more adjacent first reinforcing columns among the plurality of first reinforcing columns, and the second reinforcing column is opposed to the existing column on the second floor of the existing building, and the second The upper part of the reinforcement pillar is connected by the second reinforcement beam facing the existing beam on the second floor, and the second floor frame part constructed by connecting the second reinforcement pillar and the upper part of the existing pillar on the second floor;
In this way, the seismic reinforcement frame constructed by connecting the frame part of the first floor from the first floor to the upper floor of the second floor or more in order while adjoining the construction surface of the existing building,
Height of the N reinforcing pillar of N as the integer of 1 or more provided N floor is set to a larger dimension than the height of the column Joints forming the top of the N floor existing posts,
The location of the Nth reinforcing column facing the beam-column joint of the existing column on the Nth floor is connected to the beam-beam joint , and the upper end of the N-th reinforcement column is located above the beam-beam joint. Bending to the outside of the Nth reinforcing column when the existing column on the Nth floor is joined to the existing column so as to be immovable in the direction approaching the location and the existing column on the Nth floor is sheared and displaced in the axial direction is suppressed. The
Seismic reinforcement frame characterized by that.
JP2010082064A 2010-03-31 2010-03-31 Seismic strengthening method and seismic strengthening frame for existing buildings Active JP5711897B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010082064A JP5711897B2 (en) 2010-03-31 2010-03-31 Seismic strengthening method and seismic strengthening frame for existing buildings

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010082064A JP5711897B2 (en) 2010-03-31 2010-03-31 Seismic strengthening method and seismic strengthening frame for existing buildings

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2015016277A Division JP5873194B2 (en) 2015-01-30 2015-01-30 Seismic strengthening method and seismic strengthening frame for existing buildings

Publications (2)

Publication Number Publication Date
JP2011214280A JP2011214280A (en) 2011-10-27
JP5711897B2 true JP5711897B2 (en) 2015-05-07

Family

ID=44944296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010082064A Active JP5711897B2 (en) 2010-03-31 2010-03-31 Seismic strengthening method and seismic strengthening frame for existing buildings

Country Status (1)

Country Link
JP (1) JP5711897B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5946165B2 (en) * 2011-05-09 2016-07-05 株式会社明興コンサルタンツ Seismic reinforcement structure
JP6424044B2 (en) * 2014-08-19 2018-11-14 宇部興産建材株式会社 Reinforced structure manufacturing method and seismic structure
JP2016044396A (en) * 2014-08-19 2016-04-04 宇部興産株式会社 Reinforcement structure and design method thereof
JP6826404B2 (en) * 2016-09-12 2021-02-03 センクシア株式会社 How to reinforce existing columns

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005350859A (en) * 2004-06-08 2005-12-22 Nippon Steel Corp Seismic strengthening structure of existing building
JP4721273B2 (en) * 2005-11-16 2011-07-13 株式会社フジタ Seismic reinforcement method for existing buildings with reinforced concrete frame structures
JP4272253B1 (en) * 2008-08-20 2009-06-03 黒沢建設株式会社 Reinforcement structure of existing building

Also Published As

Publication number Publication date
JP2011214280A (en) 2011-10-27

Similar Documents

Publication Publication Date Title
KR101767677B1 (en) Compisite column structure for steel and concrete
JP3832581B2 (en) RC braceless seismic reinforcement method for RC construction
JP4247496B2 (en) Seismic reinforcement structure
JP2009249851A (en) Seismic strengthening method for existing building
JP5711897B2 (en) Seismic strengthening method and seismic strengthening frame for existing buildings
JPH09264049A (en) Aseismic structure of building
JP2007162354A (en) Reinforcing method for existing building, and building reinforced by the method
JP6122740B2 (en) Seismic reinforcement structure
JP5873194B2 (en) Seismic strengthening method and seismic strengthening frame for existing buildings
JP5620462B2 (en) Seismic reinforcement method for existing buildings
JP2007170103A (en) Aseismatic reinforcing structure
JP5827804B2 (en) Structure
JP3104679U (en) Braceless reinforced concrete construction
JP4406270B2 (en) Seismic reinforcement extension method of existing building and earthquake resistance reinforcement extension building
JP6261964B2 (en) Seismic reinforcement structure
JP6019710B2 (en) Seismic reinforcement structure and method for existing buildings
JP5946165B2 (en) Seismic reinforcement structure
JP2006241892A (en) Aseismatic structure of house and its construction method
JP5541520B2 (en) Underground construction
KR20130051183A (en) Seismic resistant reinforcement structures and the reinforcing method using it
JP7281165B2 (en) Column-beam frame and frame
JP2012233374A5 (en)
JP6951851B2 (en) High-rise earthquake-resistant building
JP2006037530A (en) Building structure skeleton and building structure making use thereof
JPH02128035A (en) Method for earthquake-resistant reinforcement for opening of reinforced concrete structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140311

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140508

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150303

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150309

R150 Certificate of patent or registration of utility model

Ref document number: 5711897

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250