JP5620462B2 - Seismic reinforcement method for existing buildings - Google Patents

Seismic reinforcement method for existing buildings Download PDF

Info

Publication number
JP5620462B2
JP5620462B2 JP2012274370A JP2012274370A JP5620462B2 JP 5620462 B2 JP5620462 B2 JP 5620462B2 JP 2012274370 A JP2012274370 A JP 2012274370A JP 2012274370 A JP2012274370 A JP 2012274370A JP 5620462 B2 JP5620462 B2 JP 5620462B2
Authority
JP
Japan
Prior art keywords
reinforcing
steel
column
seismic
frame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012274370A
Other languages
Japanese (ja)
Other versions
JP2013053518A (en
Inventor
増田 圭司
圭司 増田
佐々木 聡
聡 佐々木
直樹 高森
直樹 高森
幸博 佐藤
幸博 佐藤
仁 佐々木
仁 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujita Corp
Original Assignee
Fujita Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujita Corp filed Critical Fujita Corp
Priority to JP2012274370A priority Critical patent/JP5620462B2/en
Publication of JP2013053518A publication Critical patent/JP2013053518A/en
Application granted granted Critical
Publication of JP5620462B2 publication Critical patent/JP5620462B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G23/00Working measures on existing buildings
    • E04G23/02Repairing, e.g. filling cracks; Restoring; Altering; Enlarging

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Working Measures On Existing Buildindgs (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Mechanical Engineering (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)

Description

本発明は、鉄筋コンクリート造(RC造)もしくは鉄骨鉄筋コンクリート造(SRC造)ラーメン構造の既存建物の耐震補強工法に関し、より詳しくは、既存建物の外壁部に沿わせて耐震補強用骨組を構築し、既存建物の梁と耐震補強用骨組みの梁とを連結して補強するようにした耐震補強工法に関する。   The present invention relates to a seismic reinforcement method for an existing building having a reinforced concrete structure (RC structure) or a steel-framed reinforced concrete structure (SRC structure) ramen structure. The present invention relates to a seismic reinforcement method in which a beam of an existing building and a beam of a frame for seismic reinforcement are connected and reinforced.

従来の耐震補強工法は既存躯体を補強することが一般的である。最も一般的な手法は耐震壁、もしくは補強ブレースの構築である。
この手法の場合、開放的な空間が閉鎖的になることから嫌われることが多い。
他に、柱の靱性を確保するために、鋼板、炭素繊維シートなどを巻きつけたりする工法や、柱の耐力を確保するために柱断面そのものを大きくすることがある。梁に関しても同様である。
このような従来技術による耐震補強の場合、建物内部での施工が主となり、建物を使いながらの施工が困難である。これは建物の使用者に多大な負担をかけることとなり、耐震補強が普及する妨げとなっている。
Conventional seismic reinforcement methods generally reinforce existing structures. The most common method is the construction of shear walls or reinforced braces.
This method is often disliked because the open space becomes closed.
In addition, in order to ensure the toughness of the column, a method of winding a steel plate, a carbon fiber sheet, or the like, or the column cross section itself may be increased in order to ensure the strength of the column. The same applies to beams.
In the case of such seismic reinforcement by the prior art, construction is mainly performed inside the building, and construction while using the building is difficult. This puts a great burden on the user of the building and hinders the spread of seismic reinforcement.

また、外側からの施工であっても、耐震壁、ブレースによる補強であれば、居ながら施工は可能となるものの、耐震補強後の採光性、外観、内部からの景色が問題となる。
また、外部にフレームを構築する手法(特許文献1、特許文献2)も提案されている。
Moreover, even if it is construction from the outside, if it is reinforced with a seismic wall and braces, construction can be performed while it is in the room, but lighting, appearance, and scenery from the inside after seismic reinforcement are problems.
In addition, a method for constructing a frame outside (Patent Document 1 and Patent Document 2) has also been proposed.

特開2004−169504JP 2004-169504 A 特開2007−138472JP2007-138472

外部にフレームを構築する手法の場合、フレームがRC造であれば型枠を組む必要がある。
柱の型枠の組立は比較的容易であるが、大梁の型枠の組立には多くの労力が必要であり、結果として施工性があまり良くない。
また、外側のフレームと既存建物との接続には既存のRC構造物にあと施工アンカー、もしくは緊結用の孔が必要である。こういった施工に際し、柱部分は主筋、フープ筋が密に配置されているため施工しづらい。
本発明はかかる事情に鑑み成されたものであり、本発明の目的は、より低廉な施工コスト及びより少ない施工作業量で、RC造ラーメン構造の既存建物に高度の耐震性能を付与することのできる耐震補強工法を提供することにある。
In the case of a method of constructing a frame outside, if the frame is RC, it is necessary to form a formwork.
Assembling the pillar formwork is relatively easy, but assembling the large beam formwork requires a lot of labor and, as a result, the workability is not very good.
In addition, for the connection between the outer frame and the existing building, a post-installed anchor or a fastening hole is required in the existing RC structure. In such construction, the column part is difficult to construct because the main and hoop bars are densely arranged.
The present invention has been made in view of such circumstances, and an object of the present invention is to provide a high-grade seismic performance to an existing building of RC frame structure with a lower construction cost and a smaller construction work amount. The purpose is to provide a seismic reinforcement method.

上記目的を達成するため、本発明の耐震補強工法は、鉄筋コンクリート造もしくは鉄骨鉄筋コンクリート造ラーメン構造の既存建物の外壁部に沿わせて補強用柱と補強用梁からなる耐震補強用骨組を構築し、前記外壁部に位置する既存外部柱と前記耐震補強用骨組の補強用柱を接合せずに、前記外壁部に位置する既存外部梁と前記耐震補強用骨組の補強用梁を接合し、地震時の水平力を前記耐震補強用骨組に負担させ、もって前記既存建物を耐震補強するようにし、前記耐震補強用骨組を構成する前記補強用柱はRC造であり、前記補強用梁は鉄骨造であり、前記補強用梁が連結される前記補強用柱の箇所は、前記RC造の部分と、この部分を覆う断面が矩形の鋼管とから構成され、前記補強用梁は前記鋼管に溶接により接合されることで前記補強用柱に連結され、前記補強用柱の他の箇所は、前記鋼管と切り離された他の鋼管で覆われていることを特徴とする。 In order to achieve the above object, the seismic retrofitting method of the present invention constructs a seismic retrofit frame composed of a reinforcing column and a reinforcing beam along the outer wall of an existing building of a reinforced concrete structure or a steel reinforced concrete frame structure, Without joining the existing external column located on the outer wall and the reinforcing column of the seismic reinforcing frame, the existing external beam located on the outer wall and the reinforcing beam of the seismic reinforcing frame are joined. The seismic reinforcement frame is loaded with the horizontal force of the existing building so that the existing building is seismically reinforced, and the reinforcing columns constituting the seismic reinforcement frame are RC structures, and the reinforcing beams are steel structures. And the portion of the reinforcing column to which the reinforcing beam is connected is composed of the RC structure part and a steel pipe having a rectangular cross section covering the part, and the reinforcing beam is joined to the steel pipe by welding. Before being Is connected to the reinforcing pillars, elsewhere the reinforcing pillars, characterized in that it is covered with another steel pipe, separated and the steel pipe.

本発明によれば、既存建物の外壁部に沿わせて補強用柱と補強用梁からなる耐震補強用骨組を構築し、既存外部柱と補強用柱を接合せずに、既存外部梁と補強用梁を接合することで既存建物と耐震補強用骨組とを連結するため、低廉な施工コスト及び少ない施工作業量で、優れた補耐震補強効果が得られる。   According to the present invention, a seismic reinforcement frame composed of a reinforcing column and a reinforcing beam is constructed along the outer wall of an existing building, and the existing external beam and the reinforcing column are reinforced without joining the existing external column and the reinforcing column. Since the existing building and the seismic reinforcement framework are connected by joining the beams, an excellent seismic reinforcement effect can be obtained with low construction cost and a small construction work amount.

(A)は既存建物10および耐震補強用骨組24の正面図、(B)は既存建物10の外壁部および耐震補強用骨組24の平面図である。(A) is a front view of the existing building 10 and the seismic reinforcement frame 24, and (B) is a plan view of the outer wall of the existing building 10 and the seismic frame 24. 既存外部梁14と補強用鉄骨梁22との接合関係を示す図である。It is a figure which shows the joining relationship of the existing external beam 14 and the steel beam 22 for reinforcement. 既存外部梁14と補強用鉄骨梁22との接合関係を示す図である。It is a figure which shows the joining relationship of the existing external beam 14 and the steel beam 22 for reinforcement. 既存外部梁14と補強用鉄骨梁22との接合関係を示す図である。It is a figure which shows the joining relationship of the existing external beam 14 and the steel beam 22 for reinforcement. 既存外部梁14と補強用鉄骨梁22との接合関係を示す図である。It is a figure which shows the joining relationship of the existing external beam 14 and the steel beam 22 for reinforcement. (A)、(B)はそれぞれ補強用柱20と補強用鉄骨梁22との接合関係を示す図である。(A), (B) is a figure which shows the joining relationship of the pillar 20 for reinforcement, and the steel beam 22 for reinforcement, respectively. 補強用柱20と補強用鉄骨梁22との接合関係を示す図である。It is a figure which shows the joining relationship of the pillar 20 for reinforcement, and the steel beam 22 for reinforcement. 補強用柱20と補強用鉄骨梁22との接合関係を示す図である。It is a figure which shows the joining relationship of the pillar 20 for reinforcement, and the steel beam 22 for reinforcement. 補強用柱20と補強用鉄骨梁22との接合関係を示す図である。It is a figure which shows the joining relationship of the pillar 20 for reinforcement, and the steel beam 22 for reinforcement. 補強用柱20と補強用鉄骨梁22との接合関係を示す図である。It is a figure which shows the joining relationship of the pillar 20 for reinforcement, and the steel beam 22 for reinforcement. 補強用柱20と補強用鉄骨梁22との接合関係を示す図である。It is a figure which shows the joining relationship of the pillar 20 for reinforcement, and the steel beam 22 for reinforcement. 補強用柱20と補強用鉄骨梁22との接合関係を示す図である。It is a figure which shows the joining relationship of the pillar 20 for reinforcement, and the steel beam 22 for reinforcement. 補強用柱20と補強用鉄骨梁22との接合関係を示す図である。It is a figure which shows the joining relationship of the pillar 20 for reinforcement, and the steel beam 22 for reinforcement. 制震ダンパが組み込まれた補強骨組の模式図である。It is a schematic diagram of the reinforcement frame | frame in which the damping damper was integrated.

以下に本発明の実施の形態について、添付図面を参照しつつ詳細に説明する。
図1は本発明の好適な実施の形態に係る耐震補強工法を施した建物の具体例を示した立面図を示す。
図1(A)は既存建物10および耐震補強用骨組24の正面図、(B)は既存建物10の外壁部および耐震補強用骨組24の平面図を示している。
図示例の建物10は、鉄筋コンクリート造(RC造)ラーメン構造の4階建ての校舎である。この建物10は、鉄筋コンクリート柱(RC柱)と、鉄筋コンクリート梁(RC梁)とから成るRC架構を有しており、図1には、この建物10のRC柱のうち、外壁部に位置する柱である外部柱12と、この建物10のRC梁のうち、外壁部に位置する梁である外部梁14とが示されている。また、外部梁14の下側に垂設された垂壁18とが示されている。
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 is an elevation view showing a specific example of a building subjected to a seismic reinforcement method according to a preferred embodiment of the present invention.
1A is a front view of the existing building 10 and the seismic reinforcement frame 24, and FIG. 1B is a plan view of the outer wall of the existing building 10 and the seismic frame 24.
The building 10 in the illustrated example is a four-story school building having a reinforced concrete (RC) ramen structure. The building 10 has an RC frame composed of a reinforced concrete column (RC column) and a reinforced concrete beam (RC beam). FIG. 1 shows a column located on the outer wall of the RC column of the building 10. The external column 12 and the external beam 14 which is a beam located on the outer wall portion of the RC beam of the building 10 are shown. Further, a hanging wall 18 suspended from the lower side of the external beam 14 is shown.

本発明に係る耐震補強工法は、RC造もしくはSRC造ラーメン構造の既存建物10に耐震補強を施すための工法である。
本発明の耐震補強工法は、既存建物10に近接して耐震補強用骨組24を構築し、それらの柱どうしを連結することなくそれらの梁どうしを連結することで、その既存建物10に耐震補強を施すものである。
そのため図1の具体例においては、既存外部梁14の外側面に沿わせて、この既存外部梁14に緊結された鉄骨梁22を設けることにより、この既存外部梁14を補強しており、もって建物10を耐震補強している。すなわち、地震時の水平力を耐震補強用骨組24に負担させ、もって既存建物10を耐震補強している。
The seismic reinforcement method according to the present invention is a method for applying seismic reinforcement to an existing building 10 having an RC structure or an SRC ramen structure.
The seismic strengthening method of the present invention constructs a seismic reinforcing frame 24 in the vicinity of an existing building 10 and connects the beams without connecting the columns, thereby seismically reinforcing the existing building 10. Is to be applied.
Therefore, in the specific example of FIG. 1, the existing external beam 14 is reinforced by providing a steel beam 22 tightly coupled to the existing external beam 14 along the outer surface of the existing external beam 14. The building 10 is seismically reinforced. That is, the horizontal force at the time of the earthquake is borne by the seismic reinforcement frame 24, and the existing building 10 is seismically reinforced.

本発明を実施する上で、補強用鉄骨梁22は、必ずしも建物10の外部梁14の全てに対応して設けるとは限らない。
図1の具体例においては、耐震補強用骨組24により既存建物10の左から1番目のスパンに位置する既存外部梁14を除いた他の既存外部梁14を補強している。
より詳細には、既存建物10の左から2番目のスパンに位置する既存外部梁14で2、3、4階の床スラブに相当する既存外部梁14と、耐震補強用骨組24の補強用鉄骨梁22とを連結している。
また、既存建物10の左から3番目と4番目のスパンに位置する既存外部梁14で2、3階の床スラブに相当する既存外部梁14と、耐震補強用骨組24の補強用鉄骨梁22とを連結している。
また、既存建物10の左から5番目のスパン(最も右側に位置するスパン)に位置する既存外部梁14で2、3、4階の床スラブに相当する既存外部梁14と、耐震補強用骨組24の補強用鉄骨梁22とを連結している。
In carrying out the present invention, the reinforcing steel beam 22 is not necessarily provided corresponding to all the external beams 14 of the building 10.
In the specific example of FIG. 1, other existing external beams 14 except for the existing external beam 14 located in the first span from the left of the existing building 10 are reinforced by the seismic reinforcement frame 24.
More specifically, the existing external beam 14 located in the second span from the left of the existing building 10 is the existing external beam 14 corresponding to the floor slabs of the second, third, and fourth floors, and the reinforcing steel frame of the seismic reinforcement frame 24. The beam 22 is connected.
In addition, the existing external beam 14 located in the third and fourth spans from the left of the existing building 10 is the existing external beam 14 corresponding to the floor slabs of the second and third floors, and the reinforcing steel beam 22 of the seismic reinforcement frame 24. Are linked.
In addition, the existing external beam 14 located on the fifth span from the left of the existing building 10 (the span located on the rightmost side) is the existing external beam 14 corresponding to the floor slabs of the second, third, and fourth floors, and a frame for seismic reinforcement. 24 reinforcing steel beams 22 are connected.

そして、それらの補強用鉄骨梁22に対応し、補強用鉄骨梁22の両端を支持する補強用柱20も、必ずしも建物10の外部柱12の全てに対応して設けるとは限らず、また、個々の補強用柱20を建物10の外部柱12の全高に亘って設けるとは限らず、図1の具体例においては、左右両側の2本の補強用柱20が、4階の床スラブまでの高さしかなく、左右中央の1本の補強用柱20は、3階の床スラブまでの高さしかない。
どの既存外部梁14に対応させて補強用鉄骨梁22を設けるか、その際に、梁成などの補強用鉄骨梁22の各部の寸法をどのようにするかは、耐震補強を施そうとする建物10の耐震強度の解析結果に基づいて適宜決定される。
Further, the reinforcing columns 20 corresponding to those reinforcing steel beams 22 and supporting both ends of the reinforcing steel beams 22 are not necessarily provided corresponding to all the external columns 12 of the building 10, and The individual reinforcing columns 20 are not necessarily provided over the entire height of the external column 12 of the building 10, and in the specific example of FIG. 1, the two reinforcing columns 20 on the left and right sides extend to the floor slab on the fourth floor. The one reinforcing column 20 at the center of the left and right is only as high as the floor slab on the third floor.
Which existing external beam 14 is to be provided and the reinforcing steel beam 22 is provided, and at that time, the dimensions of each part of the reinforcing steel beam 22 such as beam formation are to be subjected to seismic reinforcement. It is determined as appropriate based on the analysis result of the seismic strength of the building 10.

本発明に係る耐震補強工法では、既存建物10に近接して耐震補強用骨組24を構築し、それらの柱どうしを連結せずに、それらの梁どうしを連結する。
この場合、補強用柱20と補強用鉄骨梁22とからなる耐震補強用骨組24を1層階分構築し、既存外部梁14と補強用鉄骨梁22とを連結する。このようにして、順次、上方へ1層階分づつ耐震補強用骨組24を構築し、1層階分づつ既存外部梁14と補強用鉄骨梁22とを連結していくようにしてもよい。
あるいは、補強用柱20のみを予め完成させ、補強用鉄骨梁22を補強用柱20に組み付け、その後、既存外部梁14と補強用鉄骨梁22とを連結していくようにしてもよい。
In the seismic reinforcement method according to the present invention, the seismic reinforcement framework 24 is constructed close to the existing building 10 and the beams are connected without connecting the columns.
In this case, the seismic reinforcing frame 24 composed of the reinforcing pillar 20 and the reinforcing steel beam 22 is constructed for one layer, and the existing external beam 14 and the reinforcing steel beam 22 are connected. In this way, the seismic reinforcement frame 24 may be constructed one by one in the upward direction, and the existing external beam 14 and the reinforcing steel beam 22 may be connected one by one.
Alternatively, only the reinforcing column 20 may be completed in advance, the reinforcing steel beam 22 may be assembled to the reinforcing column 20, and then the existing external beam 14 and the reinforcing steel beam 22 may be connected.

本実施の形態では、耐震補強用骨組24を構成する補強用鉄骨梁22としてH形鋼が用いられている。
H形鋼は、図2に示すように、ウェブ32が鉛直面上を延在し、両端のフランジ34が水平面上を延在するように配置してもよい。あるいは、ウェブ32が水平面上を延在し、両端のフランジ34が鉛直面上を延在するように配置してもよい。
In the present embodiment, an H-shaped steel is used as the reinforcing steel beam 22 constituting the seismic reinforcing frame 24.
As shown in FIG. 2, the H-shaped steel may be arranged such that the web 32 extends on a vertical plane and the flanges 34 at both ends extend on a horizontal plane. Or you may arrange | position so that the web 32 may extend on a horizontal surface and the flange 34 of both ends may extend on a vertical surface.

既存外部梁14と、耐震補強用骨組24を構成する補強用鉄骨梁22との接合には、従来公知の様々な構造が採用可能である。
図2乃至図5は、既存外部梁14と補強用鉄骨梁22との接合構造図を示す。
既存外部梁14がRC造である場合には、例えば、図2に示すように、あと施工アンカー40を用いた間接接合方法が挙げられる。
また、図3に示すように、全ネジボルト42(接着系アンカー)(補強用鉄骨梁22のウェブ32を貫通する全ネジボルト)を用いた摩擦直接接合法などが挙げられる。
また、図4に示すように、PC鋼材44(補強用鉄骨梁22のウェブ32および既存外部梁14を貫通するPC鋼材)を用いた摩擦直接接合法が挙げられる。
また、図5に示すように、床形式で接合するようにしてもよい。
なお、図2乃至図5において符号46は、頭付きスタッド、符号47は、あと施工アンカー、符号48は、既存外部梁14と補強用鉄骨梁22との間に充填されるモルタルやコンクリートを示している。
Various known structures can be used for joining the existing external beam 14 and the reinforcing steel beam 22 that constitutes the seismic reinforcing frame 24.
FIG. 2 to FIG. 5 are diagrams showing a joint structure between the existing external beam 14 and the reinforcing steel beam 22.
When the existing external beam 14 is RC, for example, as shown in FIG. 2, an indirect joining method using a post-construction anchor 40 can be used.
Further, as shown in FIG. 3, a frictional direct joining method using all screw bolts 42 (adhesive anchors) (all screw bolts penetrating the web 32 of the reinforcing steel beam 22) can be used.
Moreover, as shown in FIG. 4, the friction direct joining method using PC steel material 44 (PC steel material which penetrates the web 32 of the reinforcing steel beam 22 and the existing external beam 14) is mentioned.
Moreover, as shown in FIG. 5, you may make it join in a floor form.
2 to 5, reference numeral 46 denotes a headed stud, reference numeral 47 denotes a post-installed anchor, and reference numeral 48 denotes mortar or concrete filled between the existing external beam 14 and the reinforcing steel beam 22. ing.

また、耐震補強用骨組24を構成する補強用柱20は、図6(A)、(B)に示すように、鉄骨柱(S造)であってもよい。図6(A)、(B)に示す鉄骨柱は、H形鋼から構成されている。
このように補強用柱20を鉄骨造とすることで、施工性を向上し工期を短縮化する上で有利となる。
なお、図6(A)に示す補強用柱20を構成するH形鋼は、既存外部柱12の幅よりも両端のフランジ間の寸法が小さく、したがって、既存外部柱12と両端のフランジとが離されて補強用柱20が配置されているのに対して、図6(B)に示す補強用柱20を構成するH形鋼は、既存外部柱12の幅よりも両端のフランジ間の寸法が大きく、したがって、既存外部柱12が両端のフランジの間に侵入し既存外部柱12とウェブとが近接した状態で補強用柱20が配置され、既存外部梁14と補強用鉄骨梁22との間に充填されるモルタルやコンクリート48の量の低減化が図られている。
また、補強用柱20は、図7に示すように、鉄筋コンクリート柱(RC造)であってもよい。この場合、鉄筋コンクリート柱は、プレキャスト鉄筋コンクリート部材であってもよく、現場打ちであってもよい。本実施の形態では、補強用鉄骨梁22が、補強用柱20を貫通して延在している。なお、図7において、符号50は柱主筋、符号52はフープ筋を示している。
このように補強用柱20をRC造とすることで、鉄骨造と比較した場合に工期が多少長くなる点で不利があるものの、既存柱と同じ力学特性を有する部材を用いることにより、耐震補強性能の向上を図る上で有利となる。
Further, as shown in FIGS. 6 (A) and 6 (B), the reinforcing column 20 constituting the seismic reinforcing frame 24 may be a steel column (S structure). The steel column shown in FIGS. 6A and 6B is made of H-section steel.
Thus, making the reinforcing column 20 steel structure is advantageous in improving workability and shortening the construction period.
6A has a smaller dimension between the flanges at both ends than the width of the existing external column 12, and therefore the existing external column 12 and the flanges at both ends are Whereas the reinforcing pillars 20 are arranged apart from each other, the H-section steel constituting the reinforcing pillars 20 shown in FIG. 6B is a dimension between the flanges at both ends rather than the width of the existing external pillars 12. Therefore, the reinforcing column 20 is disposed in a state where the existing external column 12 enters between the flanges at both ends and the existing external column 12 and the web are close to each other, and the existing external beam 14 and the reinforcing steel beam 22 are The amount of mortar and concrete 48 filled in between is reduced.
Further, the reinforcing pillar 20 may be a reinforced concrete pillar (RC structure) as shown in FIG. In this case, the reinforced concrete column may be a precast reinforced concrete member or may be cast on-site. In the present embodiment, the reinforcing steel beam 22 extends through the reinforcing column 20. In FIG. 7, reference numeral 50 indicates a columnar main bar, and reference numeral 52 indicates a hoop line.
In this way, the reinforcement column 20 is made of RC, which is disadvantageous in that the construction period is slightly longer when compared with steel structure, but by using a member having the same mechanical characteristics as the existing column, seismic reinforcement This is advantageous for improving performance.

また、補強用柱20は、図8に示すように、断面が矩形や円形の鋼管54の内部にコンクリートを充填して構成したいわゆるコンクリート充填鋼管構造(CFT構造)であってもよい。なお、図8において、符号56は、補強柱20と鉄骨梁22との間の応力伝達のための縦ダイヤフラムを示している。この場合、補強用柱20は、プレキャスト鉄筋コンクリート部材であってもよく、現場打ちであってもよい。   Further, as shown in FIG. 8, the reinforcing column 20 may have a so-called concrete-filled steel pipe structure (CFT structure) configured by filling concrete into a steel pipe 54 having a rectangular or circular cross section. In FIG. 8, reference numeral 56 indicates a vertical diaphragm for transmitting stress between the reinforcing column 20 and the steel beam 22. In this case, the reinforcing column 20 may be a precast reinforced concrete member or may be cast on-site.

また、補強用柱20は、図9、図10に示すように、柱主筋50を有するRC造とし、補強用鉄骨梁22が連結されるこのRC造の柱の部分のみを矩形鋼管58の内側に位置させた構造とし、帯筋を省略しこの鋼管58を鋼製型枠として利用することにより施工性を大幅に向上させることも可能である。言い換えると、補強用鉄骨梁22が連結される補強用柱20の箇所は、RC造の部分と、この部分を覆う断面が矩形の鋼管58とから構成され、補強用鉄骨梁22は鋼管58に溶接により結合されることで補強用柱20に連結されている。この場合、補強用柱20は、プレキャスト鉄筋コンクリート部材であってもよく、現場打ちであってもよい。現場打ちの場合には、矩形鋼管58以外の箇所には、コンクリート型枠が組み付けられる。   Further, as shown in FIGS. 9 and 10, the reinforcing column 20 is an RC structure having a column main bar 50, and only the portion of the RC column to which the reinforcing steel beam 22 is connected is disposed inside the rectangular steel pipe 58. It is also possible to greatly improve the workability by adopting the structure positioned in the above, omitting the stirrup, and using the steel pipe 58 as a steel mold. In other words, the portion of the reinforcing column 20 to which the reinforcing steel beam 22 is connected is composed of an RC structure and a steel pipe 58 having a rectangular cross section covering the portion, and the reinforcing steel beam 22 is connected to the steel pipe 58. The reinforcing column 20 is connected by welding. In this case, the reinforcing column 20 may be a precast reinforced concrete member or may be cast on-site. In the case of on-site casting, a concrete formwork is assembled at a place other than the rectangular steel pipe 58.

また、補強用柱20は、図11に示すように、柱主筋50を有するRC造とし、帯筋兼用の鋼製型枠58を上下方向に連続させないことにより、施工時の溶接を省略し施工性を向上させることも可能である。言い換えると、補強用鉄骨梁22が連結される補強用柱20の箇所は、RC造の部分と、この部分を覆う断面が矩形の鋼管58とから構成され、補強用鉄骨梁20は鋼管58に溶接により結合されることで補強用柱20に連結され、また、補強用柱20の他の箇所は、鋼管58と切り離された他の鋼管59で覆われている。
この場合、補強用柱20は、プレキャスト鉄筋コンクリート部材であってもよく、現場打ちであってもよい。現場打ちの場合には、矩形鋼管58、59の間の隙間を閉塞するように、コンクリート型枠が組み付けられる。
Further, as shown in FIG. 11, the reinforcing column 20 is made of RC having a column main reinforcement 50, and the steel mold 58 serving as a reinforcing bar is not continued in the vertical direction, so that welding at the time of construction is omitted. It is also possible to improve the performance. In other words, the portion of the reinforcing column 20 to which the reinforcing steel beam 22 is connected is composed of an RC structure and a steel pipe 58 having a rectangular cross section covering the portion, and the reinforcing steel beam 20 is connected to the steel pipe 58. It is connected to the reinforcing column 20 by being joined by welding, and other portions of the reinforcing column 20 are covered with another steel pipe 59 separated from the steel pipe 58.
In this case, the reinforcing column 20 may be a precast reinforced concrete member or may be cast on-site. In the case of on-site casting, the concrete formwork is assembled so as to close the gap between the rectangular steel pipes 58 and 59.

また、本発明では、図12に示すような、柱梁の接合部としてもよい。
すなわち、図12の補強用柱20は、図10と同様に、補強用鉄骨梁22が連結される補強用柱20の箇所は、RC造の部分と、この部分を覆う断面が矩形の鋼管58とから構成されている。
補強用鉄骨梁22はH形鋼で構成され、H形鋼のフランジ34は補強柱20の柱鉄骨22に接合されておらず、H形鋼のウェブ32のみが補強柱20の柱鉄骨22に接合されている。
そして、H形鋼のフランジ34と鋼管58(補強柱20)の間に方杖60を設けたものである。
このように、鉄骨梁22の接合をウェブ32のみとし、方杖60を入れることで、接合部の溶接手間を軽減することができる。
Moreover, in this invention, it is good also as a junction part of a column beam as shown in FIG.
That is, in the reinforcing column 20 of FIG. 12, the portion of the reinforcing column 20 to which the reinforcing steel beam 22 is connected is the same as in FIG. 10, the RC structure portion and the steel pipe 58 having a rectangular cross section covering this portion. It consists of and.
The reinforcing steel beam 22 is made of H-shaped steel, and the flange 34 of the H-shaped steel is not joined to the column steel frame 22 of the reinforcing column 20, and only the H-shaped steel web 32 is connected to the column steel frame 22 of the reinforcing column 20. It is joined.
And the cane 60 is provided between the flange 34 of H-shaped steel and the steel pipe 58 (reinforcing column 20).
In this way, by joining the steel beam 22 only to the web 32 and inserting the cane 60, it is possible to reduce the welding effort of the joint.

また、本発明では、図13に示すような、柱梁の接合部としてもよい。
すなわち、図13の補強用柱20は、RC造の部分と、この部分を覆う断面が矩形の鋼管62とから構成されている。
補強用鉄骨梁22はH形鋼で構成され、H形鋼のフランジ34は補強柱20の柱鉄骨22に接合されておらず、H形鋼のウェブ32のみが補強柱20の柱鉄骨22に接合されている。
そして、H形鋼のフランジ34と鋼管58(補強柱20)の間に方杖状に制震ダンパ64を設けるようにしたものである。
このように制震ダンパ64を介挿することで、既存建物10を耐震補強すると同時に、制震構造とすることが可能である。
Moreover, in this invention, it is good also as a junction part of a column beam as shown in FIG.
That is, the reinforcing column 20 shown in FIG. 13 includes an RC portion and a steel pipe 62 having a rectangular cross section covering the portion.
The reinforcing steel beam 22 is made of H-shaped steel, and the flange 34 of the H-shaped steel is not joined to the column steel frame 22 of the reinforcing column 20, and only the H-shaped steel web 32 is connected to the column steel frame 22 of the reinforcing column 20. It is joined.
And the damping damper 64 is provided in the shape of a cane between the H-shaped steel flange 34 and the steel pipe 58 (reinforcing column 20).
By inserting the damping damper 64 in this way, the existing building 10 can be seismically strengthened and at the same time, a damping structure can be obtained.

また、図14に示した耐震補強用骨組24において、2階の床スラブの高さに配設された鉄骨梁22aと、3階の床スラブの高さに配設された鉄骨梁22bとの間に、間柱型の制震ダンパ70を設置してあり、即ち、上下に隣り合った鉄骨梁の間に間柱型の制震ダンパを設置してある。間柱型の制震ダンパ70としては、例えば特開平7−317370号公報に記載されているものなどを用いることができる。
また、4階の床スラブの高さに配設された鉄骨梁22cには制震ダンパ72を介挿してあり、即ち、隣り合った補強柱20どうしを、制震ダンパ72を介挿した鉄骨梁22cで連結している。鉄骨梁に介挿する制震ダンパ72としては、例えば特開平7−207984号公報に記載されているものなどを用いることができる。
これらのように、耐震補強用骨組24にエネルギ吸収装置である制震ダンパを組み込むことにより、耐震性能を大幅に向上させることができる。
Further, in the seismic reinforcing frame 24 shown in FIG. 14, a steel beam 22a disposed at the height of the floor slab on the second floor and a steel beam 22b disposed at the height of the floor slab on the third floor. In between, a pillar-shaped damping damper 70 is installed, that is, a pillar-shaped damping damper is installed between steel beams adjacent vertically. As the stud-type seismic damper 70, for example, the one described in JP-A-7-317370 can be used.
Further, the steel beam 22c disposed at the height of the floor slab on the fourth floor is provided with a vibration damper 72, that is, the adjacent reinforcing columns 20 are inserted into the steel frame with the vibration damper 72 interposed therebetween. They are connected by a beam 22c. As the damping damper 72 inserted in the steel beam, for example, the one described in JP-A-7-207984 can be used.
As described above, by incorporating a vibration damper, which is an energy absorbing device, into the earthquake-resistant reinforcement framework 24, the earthquake resistance can be greatly improved.

10……既存建物、12……外部柱、14……外部梁、20……補強用柱、22……補強用鉄骨梁、24……耐震補強用骨組。   DESCRIPTION OF SYMBOLS 10 ... Existing building, 12 ... External pillar, 14 ... External beam, 20 ... Reinforcement pillar, 22 ... Reinforcement steel beam, 24 ... Seismic reinforcement frame

Claims (3)

鉄筋コンクリート造もしくは鉄骨鉄筋コンクリート造ラーメン構造の既存建物の外壁部に沿わせて補強用柱と補強用梁からなる耐震補強用骨組を構築し、
前記外壁部に位置する既存外部柱と前記耐震補強用骨組の補強用柱を接合せずに、前記外壁部に位置する既存外部梁と前記耐震補強用骨組の補強用梁を接合し、
地震時の水平力を前記耐震補強用骨組に負担させ、もって前記既存建物を耐震補強するようにし、
前記耐震補強用骨組を構成する前記補強用柱はRC造であり、前記補強用梁は鉄骨造であり、
前記補強用梁が連結される前記補強用柱の箇所は、前記RC造の部分と、この部分を覆う断面が矩形の鋼管とから構成され、
前記補強用梁は前記鋼管に溶接により接合されることで前記補強用柱に連結され、
前記補強用柱の他の箇所は、前記鋼管と切り離された他の鋼管で覆われている、
ことを特徴とする耐震補強工法。
Build a seismic reinforcement frame consisting of reinforcement columns and beams along the outer wall of an existing building of reinforced concrete structure or steel reinforced concrete frame structure,
Without joining the existing external column located on the outer wall and the reinforcing column of the seismic reinforcing frame, joining the existing external beam located on the outer wall and the reinforcing beam of the seismic reinforcing frame,
The horizontal force at the time of an earthquake is borne by the frame for seismic reinforcement, so that the existing building is seismically reinforced,
The reinforcing column constituting the seismic reinforcing frame is RC, and the reinforcing beam is steel.
The location of the reinforcing column to which the reinforcing beam is connected is composed of the RC part and a steel pipe having a rectangular cross section covering the part,
The reinforcing beam is connected to the reinforcing column by being joined to the steel pipe by welding ,
The other part of the reinforcing column is covered with another steel pipe separated from the steel pipe.
Seismic reinforcement construction method characterized by that.
前記鉄骨梁はウェブ及びフランジを備えたH形鋼から成り、
該H形鋼のフランジは前記補強柱の前記鋼管に接合せず、該H形鋼のウェブのみを前記補強柱の前記鋼管に接合し、
該H形鋼のフランジと前記補強柱の前記鋼管との間に方杖を設ける、
ことを特徴とする請求項1記載の耐震補強工法。
The steel beam consists of an H-section steel with a web and a flange,
The flange of the H-shaped steel is not joined to the steel pipe of the reinforcing column, and only the H-shaped steel web is joined to the steel pipe of the reinforcing column,
Providing a cane between the flange of the H-shaped steel and the steel pipe of the reinforcing column;
The seismic reinforcement method according to claim 1.
前記鉄骨梁はウェブ及びフランジを備えたH形鋼から成り、
該H形鋼のフランジは前記補強柱の前記鋼管に接合せず、該H形鋼のウェブのみを前記補強柱の前記鋼管に接合し、
該H形鋼のフランジと前記補強柱の前記鋼管との間に方杖状に制震ダンパを設ける、
ことを特徴とする請求項1記載の耐震補強工法。
The steel beam consists of an H-section steel with a web and a flange,
The flange of the H-shaped steel is not joined to the steel pipe of the reinforcing column, and only the H-shaped steel web is joined to the steel pipe of the reinforcing column,
A damping damper is provided in the shape of a cane between the flange of the H-shaped steel and the steel pipe of the reinforcing column.
The seismic reinforcement method according to claim 1.
JP2012274370A 2012-12-17 2012-12-17 Seismic reinforcement method for existing buildings Active JP5620462B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012274370A JP5620462B2 (en) 2012-12-17 2012-12-17 Seismic reinforcement method for existing buildings

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012274370A JP5620462B2 (en) 2012-12-17 2012-12-17 Seismic reinforcement method for existing buildings

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2008096158A Division JP2009249851A (en) 2008-04-02 2008-04-02 Seismic strengthening method for existing building

Publications (2)

Publication Number Publication Date
JP2013053518A JP2013053518A (en) 2013-03-21
JP5620462B2 true JP5620462B2 (en) 2014-11-05

Family

ID=48130751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012274370A Active JP5620462B2 (en) 2012-12-17 2012-12-17 Seismic reinforcement method for existing buildings

Country Status (1)

Country Link
JP (1) JP5620462B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106522114A (en) * 2016-10-28 2017-03-22 同济大学 Concrete structure prestress reinforcing device adopting CFRP cloth

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104153596B (en) * 2014-08-21 2016-03-16 中铁西北科学研究院有限公司 Ancient masonry pagoda overall seismic strengthening method
JP6499853B2 (en) * 2014-12-10 2019-04-10 株式会社竹中工務店 Seismic wall structure
JP6161228B1 (en) * 2017-02-14 2017-07-12 槇谷 榮次 Seismic reinforcement structure for concrete structures

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4757590B2 (en) * 2005-09-28 2011-08-24 株式会社フジタ Seismic reinforcement method for existing reinforced concrete structures
JP4721273B2 (en) * 2005-11-16 2011-07-13 株式会社フジタ Seismic reinforcement method for existing buildings with reinforced concrete frame structures

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106522114A (en) * 2016-10-28 2017-03-22 同济大学 Concrete structure prestress reinforcing device adopting CFRP cloth
CN106522114B (en) * 2016-10-28 2018-08-28 同济大学 The prestressed reinforcement device of concrete structure is carried out using CFRP cloth materials

Also Published As

Publication number Publication date
JP2013053518A (en) 2013-03-21

Similar Documents

Publication Publication Date Title
JP2009249851A (en) Seismic strengthening method for existing building
KR101670633B1 (en) Earthqake Exterior Composite Reinforcing Method
KR101295740B1 (en) Joint of Steel Column
JP2007138472A (en) Earthquake resistant reinforcing method of existing building of reinforced concrete construction frame structure
KR20180109766A (en) E-z connecting structure for beam and column wherein the end-moment and bending resistibility are reinforced
JP5620462B2 (en) Seismic reinforcement method for existing buildings
JP6815183B2 (en) Complex building
KR20120122276A (en) Method of strengthening shearing force of precast concrete
JP5759608B1 (en) Reinforcement structure of existing building
JP2008175004A (en) Seismic response control member and seismic response control building used for boundary beam
JP6053485B2 (en) Installation structure of studs in existing building
JP2010159543A (en) Aseismatic reinforcing structure
JP6122740B2 (en) Seismic reinforcement structure
JP6574336B2 (en) Steel-framed reinforced concrete columns and buildings using the same
JP7449685B2 (en) Precast concrete shear wall joint structure
KR20130117204A (en) Earthquake-resistant frame and seismic retrofit method for building using the same
JP2011069148A (en) Building structure
JP4095534B2 (en) Joint structure of column and beam in ramen structure and its construction method
JP2015025314A (en) Construction method for precast concrete skeleton
JP5207078B2 (en) Construction method for seismic control columns
JP6839921B2 (en) Column-beam joint structure
JP6388738B1 (en) Seismic reinforcement structure for concrete structures
JP5726675B2 (en) Reinforcement structure of existing building
JP6293207B2 (en) Installation structure of studs in existing building
KR20090093540A (en) Construction system using form-less method

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121217

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140317

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140916

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140918

R150 Certificate of patent or registration of utility model

Ref document number: 5620462

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250