JP6574336B2 - Steel-framed reinforced concrete columns and buildings using the same - Google Patents

Steel-framed reinforced concrete columns and buildings using the same Download PDF

Info

Publication number
JP6574336B2
JP6574336B2 JP2015090490A JP2015090490A JP6574336B2 JP 6574336 B2 JP6574336 B2 JP 6574336B2 JP 2015090490 A JP2015090490 A JP 2015090490A JP 2015090490 A JP2015090490 A JP 2015090490A JP 6574336 B2 JP6574336 B2 JP 6574336B2
Authority
JP
Japan
Prior art keywords
column
steel
building
reinforced concrete
reinforcing bars
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015090490A
Other languages
Japanese (ja)
Other versions
JP2016205054A (en
Inventor
恒久 松浦
恒久 松浦
鈴木 英之
英之 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hazama Ando Corp
Original Assignee
Hazama Ando Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hazama Ando Corp filed Critical Hazama Ando Corp
Priority to JP2015090490A priority Critical patent/JP6574336B2/en
Publication of JP2016205054A publication Critical patent/JP2016205054A/en
Application granted granted Critical
Publication of JP6574336B2 publication Critical patent/JP6574336B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、建物外壁面となる位置に配設される外周柱と、外周柱間に架設される外周梁と、外周柱から建物内部方向に向けて架設される内部梁とにより構成される建物などに使用する鉄骨鉄筋コンクリート造(SRC造)の柱、及びこれを用いた建物に関する。   The present invention is a building composed of an outer peripheral column disposed at a position to be an outer wall surface of a building, an outer peripheral beam constructed between the outer peripheral columns, and an inner beam constructed from the outer peripheral column toward the inside of the building. The present invention relates to a steel reinforced concrete structure (SRC structure) column used for the above, and a building using the same.

オフィスビルなどの建物では、内部空間を極力大きくするために、耐震要素を建物の外周部に配置して、内部空間側の柱を可及的に少なくし、大スパンで架構を構築することがある。   In buildings such as office buildings, in order to make the internal space as large as possible, it is possible to construct seismic elements on the outer periphery of the building, reduce the number of pillars on the internal space side as much as possible, and build a frame with a large span is there.

この種の構造が特許文献1により提案されている。この文献1は外殻構造に関するもので、この外殻構造では、外周柱と外周梁と内部梁とを主体とし、外周柱をSRC造の壁柱とし、外周梁および内部梁をいずれもS造とする。この場合、芯鉄骨および外周梁をH形鋼とし、内部梁を芯鉄骨のフランジに対して溶接し、外周梁のウェブを芯鉄骨のウェブに対して構造的に直接接合することなく外周梁の端部を外周柱の被覆コンクリートに定着して剛接合する。そして、芯鉄骨のウェブ同士をボルトにより締結して上下方向に連結し被覆コンクリートに一体に定着する。このようにして内部梁を撓みにくいものにし、内部梁のスパンを大きくしている。   This type of structure is proposed in Patent Document 1. This reference 1 relates to an outer shell structure. In this outer shell structure, an outer peripheral column, an outer peripheral beam, and an inner beam are mainly used, an outer peripheral column is an SRC wall column, and both the outer peripheral beam and the inner beam are S structures. And In this case, the core steel frame and the outer peripheral beam are H-shaped steel, the inner beam is welded to the flange of the core steel frame, and the outer beam is not directly bonded to the core steel web structurally. The end is fixed to the concrete covering the outer peripheral column and rigidly joined. Then, the core steel webs are fastened with bolts and connected in the vertical direction so as to be integrally fixed to the covering concrete. In this way, the inner beam is made difficult to bend and the span of the inner beam is increased.

特開2013−245442公報JP2013-245442A

しかしながら、この種のSRC造の建物の施工は、通常、建設サイトで柱鉄骨と梁鉄骨を接合し架構を構築した後、各鉄骨の外周部にコンクリートを打設するという手順で行い、鉄骨建て方、コンクリート工事の2つの工程を各別に行うために、次のような問題がある。
(1)鉄骨造(S造)、鉄筋コンクリート造(RC造)による施工に比べて、工期が長くなる。
(2)2つの工程(鉄骨建て方、コンクリート工事)があり、施工が煩雑になる。
(3)鉄骨、鉄筋が入り組んだ型枠内にコンクリートを打設するため、コンクリートを隙間なく充填するために、施工管理を十分に行う必要がある。
また、特に上記従来の外殻構造にあっては、上下の鉄骨のウェブをボルトにより締結して鉄骨柱の一体化を図るため、鉄骨柱の建て方の後にコンクリート工事を行う必要があり、一般的なSRC構造と同様の課題がある。
However, the construction of this type of SRC building is usually carried out in the procedure of building a frame by joining column steel beams and beam steel frames at the construction site, and then placing concrete on the outer periphery of each steel frame. On the other hand, there are the following problems because the two processes of concrete work are performed separately.
(1) The construction period becomes longer compared to the construction by steel structure (S structure) and reinforced concrete structure (RC structure).
(2) There are two processes (steel frame building method, concrete work), and the construction becomes complicated.
(3) Since concrete is placed in a formwork in which steel frames and reinforcing bars are intricate, it is necessary to sufficiently perform construction management in order to fill the concrete without gaps.
In particular, in the above-described conventional outer shell structure, it is necessary to perform concrete work after the construction of the steel column in order to consolidate the steel column by fastening the upper and lower steel webs with bolts. There is a problem similar to a typical SRC structure.

本発明は、このような従来の問題を解決するものであり、この種の鉄骨鉄筋コンクリート造の柱、及びこれを用いた建物において、施工を簡略化して、工期の短縮を図ることなど、を目的とする。   The present invention solves such a conventional problem, and aims to simplify the construction and shorten the construction period in this type of steel-framed reinforced concrete columns and buildings using the same. And

上記目的を達成するために、本発明の鉄骨鉄筋コンクリート造の柱は、
(イ)複数の分割された柱部材からなり、
(ロ)前記各柱部材は、芯部に軸方向に向けて鉄骨柱が配置され、前記鉄骨柱の周囲に軸方向に向けて複数の鉄筋が配筋され、前記鉄骨柱及び前記各鉄筋に被覆コンクリートが一体に打設されて、扁平の断面略矩形状で、当該矩形状の長辺方向と短辺方向の比が略1.5〜5.5倍のプレキャスト部材として形成され、前記被覆コンクリート内の前記各鉄筋は上下いずれか一方の端部が前記被覆コンクリートの上下いずれか一方の面から所定の長さだけ突出され、上下いずれか他方の端部に所定の長さを有する筒形形状の機械式鉄筋継手用カプラが連接されて前記被覆コンクリート内に埋め込まれ、当該各機械式鉄筋継手用カプラの開口が前記被覆コンクリートの上下いずれか他方の面に開口されてなり、
(ハ)前記複数の柱部材が上下に、前記各柱部材相互間で前記鉄骨柱が直接接合されることなく、一方の前記柱部材の前記各鉄筋の端部が他方の前記柱部材の前記機械式鉄筋継手用カプラに挿入されて接合され、プレキャスト工法により組み立てられる、
ことを要旨とする。
In order to achieve the above object, a steel reinforced concrete column according to the present invention includes:
(B) It consists of a plurality of divided pillar members,
(B) each pillar member is arranged steel columns in the axial direction to the core portion, a plurality of reinforcing bars in the axial direction around the steel column is reinforcement, the steel columns and the respective rebar Covered concrete is integrally cast, and is formed as a precast member having a flat cross-sectional substantially rectangular shape, and the ratio of the long side direction to the short side direction of the rectangular shape is about 1.5 to 5.5 times , Each of the reinforcing bars in the coated concrete is a cylinder whose upper or lower end protrudes from the upper or lower surface of the coated concrete by a predetermined length and has a predetermined length at the upper or lower end. Shaped mechanical rebar joint couplers are connected and embedded in the coated concrete, and the opening of each mechanical rebar joint coupler is opened on either the upper or lower surface of the coated concrete,
(C) The plurality of column members are vertically joined to each other without the steel column being directly joined between the column members, and the end portions of the reinforcing bars of one of the column members are the ones of the other column member. Inserted into a mechanical rebar joint coupler and joined, assembled by a precast method,
This is the gist.

この鉄骨鉄筋コンクリート造の柱はまた、各部に次のような構成を備える。
)各柱部材は鉄骨柱が概ね階高中央で分断可能に形成される。
)各柱部材は鉄骨柱の上下端部にエンドプレートが取り付けられ、前記各柱部材間で前記エンドプレート同士が鉄筋を介して接続される。
この場合、エンドプレートは鉄骨柱の上下端部で鉄骨柱の両側に水平方向に延び、両側に鉄筋貫通用の孔が穿設されて、前記各鉄骨柱の上下いずれか一方の端部の前記エンドプレートの両側の前記鉄筋貫通用の孔に所定の長さの鉄筋が上下に貫通して取り付けられ、前記各鉄骨柱の上下いずれか他方の端部の前記エンドプレートの両側の内側面に前記鉄筋貫通用の孔に連通して、前記上下いずれか一方の端部のエンドプレートの前記各鉄筋が挿通可能な所定の長さを有する機械式鉄筋継手用カプラが取り付けられ、前記各柱部材間で前記鉄筋が前記機械式鉄筋継手用カプラに挿入されて前記各柱部材間の前記各エンドプレートが接続されることが好ましい。
)各柱部材は高さ方向略中央に鉄骨柱から建物の外周方向に向けて梁主筋又はプレキャスト梁が突設される。
)各柱部材は高さ方向略中央に鉄骨柱から建物の内部方向に向けて梁鉄骨が突設される。
Pillar of the steel reinforced concrete are also Ru includes the following configuration in each section.
( 1 ) Each column member is formed so that the steel column can be divided at the center of the floor.
(2) Each column member end plate is attached to the upper and lower ends of the steel columns, the previous SL end plates to each other between the respective pillar members are connected via the reinforcing bars.
In this case, the end plate extends in the horizontal direction on both sides of the steel column at the upper and lower ends of the steel column, and holes for penetrating reinforcing bars are drilled on both sides, so that the above-described one of the upper and lower ends of each steel column Reinforcing bars of a predetermined length are vertically attached to the holes for penetrating the reinforcing bars on both sides of the end plate, and are attached to the inner side surfaces on both sides of the end plate at either the upper or lower end of each steel column. A mechanical rebar joint coupler having a predetermined length through which the rebar of the end plate at either one of the upper and lower ends can be inserted is communicated with a hole for rebar penetration, and between the column members. It is preferable that the rebar is inserted into the mechanical rebar joint coupler to connect the end plates between the column members.
( 3 ) In each column member, a beam main bar or a precast beam protrudes from the steel column toward the outer periphery of the building at approximately the center in the height direction.
( 4 ) Each column member has a steel beam projecting from the steel column toward the interior of the building at approximately the center in the height direction.

また、上記目的を達成するために、本発明は、建物外壁面となる位置に外周柱が配設され、前記外周壁間に外周梁が架設されてなる建物であって、前記外周柱に上記の鉄骨鉄筋コンクリート造の柱が採用される、ことを要旨とする。
この場合、外周梁は鉄筋コンクリート造の梁とすることが好ましい。
また、この場合、外周柱から建物内部方向に向けて架設される内部梁は鉄骨造の梁とすることが好ましい。
In order to achieve the above object, the present invention provides a building in which an outer peripheral column is disposed at a position to be an outer wall surface of a building, and an outer peripheral beam is installed between the outer peripheral walls. The main point is that steel reinforced concrete columns are used.
In this case, the outer peripheral beam is preferably a reinforced concrete beam.
In this case, it is preferable that the internal beam erected from the outer peripheral column toward the inside of the building is a steel beam.

本発明の鉄骨鉄筋コンクリート造の柱、及びこれを用いた建物では、上記の構成により、次のような格別な効果を奏する。
(1)複数の柱部材を、芯部に軸方向に向けて鉄骨柱を配置し、鉄骨柱の周囲に軸方向に向けて複数の鉄筋を配筋し、鉄骨柱及び各鉄筋に被覆コンクリートを一体に打設して、扁平の断面略矩形状で、当該矩形状の長辺方向と短辺方向の比が略1.5〜5.5倍のプレキャスト部材として形成し、各柱部材を上下に、各柱部材相互間で鉄骨柱を直接接合することなく、一方の柱部材の各鉄筋の端部を他方の柱部材の機械式鉄筋継手用カプラに挿入して接合するようにしたことで、鉄骨鉄筋コンクリート造の柱のプレキャスト化を可能とする。
(2)プレキャスト工法を採用したことにより、施工の省力化、省人化を可能とする。
(3)複数の柱部材を、芯部に軸方向に向けて鉄骨柱を配置し、鉄骨柱の周囲に軸方向に向けて複数の鉄筋を配筋し、鉄骨柱及び各鉄筋に被覆コンクリートを一体に打設して、扁平の断面略矩形状で、当該矩形状の長辺方向と短辺方向の比が略1.5〜5.5倍のプレキャスト部材として形成し、各柱部材を上下に、各柱部材相互間で鉄骨柱を直接接合することなく、一方の柱部材の各鉄筋の端部を他方の柱部材の機械式鉄筋継手用カプラに挿入して接合するようにしたことで、各柱部材の鉄骨柱の接合部で鉄筋を介して曲げモーメントの伝達が可能となり、反曲点が接合部にない場合でも、十分な耐力、変形性能を有する。
(4)各柱部材の鉄骨柱の接合部で曲げモーメントの伝達を可能としたことで、各柱部材の接合部間の構造性能を確保するための曲げ補強筋が不要である。
以上により、本発明の鉄骨鉄筋コンクリート造の柱、及びこれを用いた建物によれば、施工を簡略化して、工期の短縮を図ることができる。
The steel reinforced concrete column according to the present invention and a building using the column have the following special effects due to the above configuration.
(1) A steel column is arranged in a core portion with a plurality of column members facing the axial direction, a plurality of reinforcing bars are arranged around the steel column in the axial direction, and the concrete is coated on the steel column and each reinforcing bar. It is cast as a single piece and formed as a precast member with a flat cross-section having a substantially rectangular shape, and the ratio of the long side direction to the short side direction of the rectangular shape is about 1.5 to 5.5 times. In addition, without directly joining the steel columns between the column members, the end of each reinforcing bar of one column member is inserted into the coupler for mechanical rebar joint of the other column member and joined. It enables the precasting of steel reinforced concrete columns.
(2) Employing the precast method enables labor and labor saving in construction.
(3) A steel column is arranged in the axial direction in the core part with a plurality of column members, a plurality of reinforcing bars are arranged in the axial direction around the steel column, and the concrete is coated on the steel column and each reinforcing bar. It is cast as a single piece and formed as a precast member with a flat cross-section having a substantially rectangular shape, and the ratio of the long side direction to the short side direction of the rectangular shape is about 1.5 to 5.5 times. In addition, without directly joining the steel columns between the column members, the end of each reinforcing bar of one column member is inserted into the coupler for mechanical rebar joint of the other column member and joined. The bending moment can be transmitted through the reinforcing bars at the joints between the steel columns of the respective column members, and even when there are no inflection points at the joints, sufficient proof stress and deformation performance are provided.
(4) Since the bending moment can be transmitted at the joint of the steel column of each column member, a bending reinforcing bar for securing the structural performance between the joints of each column member is unnecessary.
As described above, according to the steel-framed reinforced concrete column of the present invention and the building using the same, the construction can be simplified and the construction period can be shortened.

本発明の一実施の形態における鉄骨鉄筋コンクリート造の柱の構成を示す斜視図The perspective view which shows the structure of the column of the steel reinforced concrete structure in one embodiment of this invention 同柱の特に鉄骨柱の構成を示す図((a)は側面図(b)は端面図)The figure which shows the structure of the steel column especially the same column ((a) is a side view (b) is an end view) 同柱の特に鉄骨柱の接合構造を示す側面図Side view showing the joint structure of steel columns, especially steel columns 同柱の内部構造を示す図((a)は同柱の被覆コンクリート打設前の状態を示す斜視図(b)は同柱の被覆コンクリート打設後の状態を示す斜視図)The figure which shows the internal structure of the pillar ((a) is a perspective view which shows the state before the covering concrete placement of the pillar, (b) is the perspective view which shows the state after the covering concrete placement of the pillar) 同柱の外部構造を示す斜視図Perspective view showing the external structure of the pillar 同柱の各柱部材の鉄骨柱間の接合部での力の流れを示す図The figure which shows the flow of the force in the junction part between the steel column of each column member of the same column 同柱の作用を示す図Diagram showing the action of the pillar 同柱を用いた建物を示す斜視図Perspective view showing a building using the same pillar 同柱の変形例を示す図The figure which shows the modification of the same pillar

次に、この発明を実施するための形態について図を用いて説明する。
図1に鉄骨鉄筋コンクリート造の柱を示している。なお、この柱は、建物の外周面の位置に配置される外周柱(壁柱)を構成するものとして例示してある。
図1に示すように、この鉄骨鉄筋コンクリート造の柱Pは、複数の分割された柱部材P1から構成される。これらの柱部材P1はそれぞれ、芯部に軸方向に向けて鉄骨柱1が配置され、鉄骨柱1の周囲に軸方向に向けて複数の鉄筋2が配筋されて、鉄骨柱1及び各鉄筋2に被覆コンクリート3が一体に打設されてなるプレキャスト(鉄骨鉄筋コンクリート)部材として形成され、被覆コンクリート3内の各鉄筋2は上下いずれか一方の端部、この場合、上端部21が被覆コンクリート3の上下いずれか一方の面、この場合、上面から所定の長さだけ突出され、上下いずれか他方の端部、この場合、下端部22に所定の長さを有する筒形形状の機械式鉄筋継手用カプラ23が連接されて被覆コンクリート3内に埋め込まれ、各機械式鉄筋継手用カプラ23の開口230が被覆コンクリート3の上下いずれか他方の面、この場合、下面に開口されてなる。
また、各柱部材P1は、扁平の断面略矩形状に形成され、当該矩形状の長辺方向と短辺方向の比は、略1.5〜5.5倍にしてある。各柱部材P1の鉄骨柱1は概ね階高中央で分断可能に形成され、鉄骨柱1の上下端部にそれぞれエンドプレート4が取り付けられ、各柱部材P1の高さ方向略中央に、鉄骨柱1から建物の外周方向に向けて梁主筋5が突設され、鉄骨柱1から建物の内部方向に向けて梁鉄骨6が突設される。
Next, embodiments for carrying out the present invention will be described with reference to the drawings.
FIG. 1 shows a steel reinforced concrete column. In addition, this pillar is illustrated as what comprises the outer periphery pillar (wall pillar) arrange | positioned in the position of the outer peripheral surface of a building.
As shown in FIG. 1, the steel-framed reinforced concrete column P is composed of a plurality of divided column members P1. Each of these column members P1 has a steel column 1 arranged in the axial direction in the core portion, and a plurality of reinforcing bars 2 are arranged around the steel column 1 in the axial direction. 2 is formed as a precast (steel reinforced concrete) member in which the covering concrete 3 is integrally cast, and each reinforcing bar 2 in the covering concrete 3 is either one of the upper and lower ends, in this case, the upper end 21 is the covering concrete 3. One of the upper and lower surfaces in this case, in this case, a cylindrical mechanical rebar joint projecting from the upper surface by a predetermined length and having the predetermined length at either the upper or lower end, in this case, the lower end 22 The coupler 23 is connected and embedded in the coated concrete 3, and the opening 230 of each mechanical rebar joint coupler 23 is opened on either the upper or lower surface of the coated concrete 3, in this case, the lower surface.
Moreover, each pillar member P1 is formed in the flat cross-section substantially rectangular shape, and the ratio of the said rectangular long side direction and short side direction is about 1.5 to 5.5 times. The steel column 1 of each column member P1 is formed so that it can be divided substantially at the center of the floor height, end plates 4 are attached to the upper and lower ends of the steel column 1, respectively, and the steel column 1 is approximately at the center in the height direction of each column member P1. A beam main reinforcing bar 5 projects from 1 toward the outer periphery of the building, and a beam steel frame 6 projects from the steel column 1 toward the interior of the building.

鉄骨柱1は、図2に示すように、H形鋼により建物の階高に応じて所定の長さに形成され、図3に示すように、各柱部材P1の組み立て時に階高略中央の位置で分断されるようになっている。
鉄骨柱1の上下端部にはそれぞれ、図2及び図3に示すように、鋼材からなるエンドプレート4が溶接などにより取り付けられる。このエンドプレート4は略長方形の平板状で、一方の辺がフランジ11間の内法長さと略同じ長さで、他方の辺がフランジ11の幅からウェブ12の板厚を除いた長さの1/2に略同じか少し長く形成され、鉄骨柱1の上下端部で鉄骨柱1の(ウェブ12の)両側に水平方向に延ばされる。なお、このエンドプレート4は一例にすぎず、エンドプレートとしての同じ機能を有するものであれば、例えば、図2(c)に示すように、一方の辺がフランジの長さと同じ、他方の辺がウェブの長さ(フランジの厚さ分を含む)と同じ一枚の四角形の鋼板が使用されてもよい。このエンドプレート4の鉄骨柱1の両側に延びる部分には鉄筋貫通用の複数の孔40が穿設されて、鉄骨柱1の上下いずれか一方の端部、この場合、上端部のエンドプレート4の両側の鉄筋貫通用の孔40に所定の長さの鉄筋41が上下に貫通して取り付けられ、鉄骨柱1の上下いずれか他方の端部、この場合、下端部のエンドプレート4の両側の内面、この場合、上面に鉄筋貫通用の孔40に連通して、上端部のエンドプレート4の各鉄筋41が挿通可能な所定の長さを有する機械式鉄筋継手用カプラ42が取り付けられる。なお、この場合、鉄骨柱1上端部のエンドプレート4に取り付けられる鉄筋41はその全長の略上半部近くがエンドプレート4の上方に突出されて、この鉄骨柱1の周囲に配筋される各鉄筋2の上端部と略同じ高さになっていて、その略下半部近くがエンドプレート4の下方に配置される。機械式鉄筋継手用カプラ42は鉄骨柱1上端部のエンドプレート4の上方から突出される鉄筋41の長さと略同じかそれよりも少し長くなっている。
また、この鉄骨柱1の高さ方向略中央には、図4(a)に示すように、H形鋼のウェブ12に対して略直角に梁主筋5が取り付けられ、H形鋼の一方のフランジ11に対して略直角に梁鉄骨6が取り付けられる。この場合、梁主筋5は柱鉄骨1のウェブ12に設けられた孔(図示省略)に挿通配置される。なお、この梁主筋5は柱鉄骨1に固定されない。また、場合によって、梁主筋5は柱鉄骨1を貫通されず、柱鉄骨1の手前で機械式定着、折り曲げ定着されることがある。この取り付けでは、柱部材(プレキャスト部材)P1の両側(柱鉄骨1のウェブ12の両側)から突出される各梁主筋5は繋がれないことになる。また、この場合、梁鉄骨6は柱鉄骨1のフランジ11に溶接により接合される。
鉄骨柱1はかかる構成を有し、図4に示すように、被覆コンクリート3内で柱部材P1の幅方向中央にH形鋼のウェブ12両面を柱部材P1の幅方向に向けて配置され、鉄骨柱1上端部のエンドプレート4に取り付けられた鉄筋41のエンドプレート4の下に配置される部分(略下半部)、及び鉄骨柱1下端部のエンドプレート4に取り付けられた機械式鉄筋継手用カプラ42(図2、図3参照)とともに被覆コンクリート3に定着され、鉄骨柱1上端部のエンドプレート4に取り付けられた鉄筋41のエンドプレート4から上の部分(略上半部)が被覆コンクリート3の上面から突出される。
As shown in FIG. 2, the steel column 1 is formed to have a predetermined length by H-shaped steel according to the floor height of the building, and as shown in FIG. It is divided at the position.
As shown in FIGS. 2 and 3, end plates 4 made of steel are attached to the upper and lower ends of the steel column 1 by welding or the like. This end plate 4 has a substantially rectangular flat plate shape, one side having a length substantially the same as the inner length between the flanges 11 and the other side having a length obtained by removing the thickness of the web 12 from the width of the flange 11. It is formed to be approximately the same as 1/2 or slightly longer, and is extended horizontally on both sides (of the web 12) of the steel column 1 at the upper and lower ends of the steel column 1. In addition, this end plate 4 is only an example, and if it has the same function as the end plate, for example, as shown in FIG. 2C, one side is the same as the length of the flange, and the other side. A rectangular steel plate having the same length as that of the web (including the thickness of the flange) may be used. A plurality of holes 40 for penetrating reinforcing bars are formed in portions of the end plate 4 extending on both sides of the steel column 1, and the end plate 4 at the upper or lower end of the steel column 1, in this case, the upper end portion 4. Reinforcing bars 41 of a predetermined length are vertically attached to the holes 40 for penetrating reinforcing bars on both sides of the steel frame 1, and either the upper or lower end of the steel column 1, in this case, on both sides of the end plate 4 at the lower end. A mechanical rebar coupling coupler 42 having a predetermined length through which the reinforcing bars 41 of the end plate 4 at the upper end can be inserted is attached to the inner surface, in this case, the upper surface, to the hole 40 for penetrating the reinforcing bars. In this case, the reinforcing bar 41 attached to the end plate 4 at the upper end portion of the steel column 1 protrudes above the end plate 4 in the vicinity of the upper half of the entire length, and is arranged around the steel column 1. The height of each reinforcing bar 2 is substantially the same as the upper end portion, and a portion near the lower half of the reinforcing bar 2 is disposed below the end plate 4. The mechanical rebar joint coupler 42 is substantially the same as or slightly longer than the length of the rebar 41 protruding from above the end plate 4 at the upper end of the steel column 1.
Further, as shown in FIG. 4 (a), the beam main bar 5 is attached at a substantially right angle to the H-shaped steel web 12 at the center of the steel column 1 in the height direction. The beam steel frame 6 is attached at a substantially right angle to the flange 11. In this case, the beam main reinforcing bars 5 are inserted and arranged in holes (not shown) provided in the web 12 of the column steel frame 1. Note that the beam main reinforcement 5 is not fixed to the column steel frame 1. In some cases, the main beam 5 may not be penetrated through the column steel frame 1 and may be mechanically fixed and bent and fixed before the column steel frame 1. In this attachment, the beam main bars 5 protruding from both sides of the column member (precast member) P1 (both sides of the web 12 of the column steel frame 1) are not connected. In this case, the beam steel frame 6 is joined to the flange 11 of the column steel frame 1 by welding.
The steel column 1 has such a configuration, and as shown in FIG. 4, both sides of the H-shaped steel web 12 are arranged in the width direction center of the column member P1 in the covering concrete 3 so as to face the width direction of the column member P1. A portion (substantially lower half) of the reinforcing bar 41 attached to the end plate 4 at the upper end of the steel column 1 and a mechanical reinforcing bar attached to the end plate 4 at the lower end of the steel column 1 The upper portion (substantially upper half) of the reinforcing bar 41 fixed to the covering concrete 3 together with the coupling coupler 42 (see FIGS. 2 and 3) and attached to the end plate 4 at the upper end of the steel column 1 is substantially upper half. It protrudes from the upper surface of the covering concrete 3.

複数の鉄筋2はそれぞれ、図4に示すように、下端の機械式鉄筋継手用カプラ23の長さを含めて、各鉄筋2が被覆コンクリート3の上面から突出される分だけ鉄骨柱1の長さよりも長く形成される。これらの鉄筋2は鉄骨柱1の両側に所定の間隔で並列に配筋され、その周囲には枠状をなす複数のせん断補強筋24が水平の状態に上下方向に所定の間隔で配筋される。
複数の鉄筋2はかかる構成からなり、被覆コンクリート3内で鉄骨柱1の両側に配筋され、せん断補強筋24とともに鉄骨柱1の周囲に略扁平の柱状に組まれて、被覆コンクリート3に定着され、各鉄筋2の上端部21が所定の長さだけ被覆コンクリート3の上面から突出され、各鉄筋2下端部の機械式鉄筋継手用カプラ23の下端開口230が被覆コンクリート3の下面に開口される。
As shown in FIG. 4, each of the plurality of reinforcing bars 2 includes the length of the steel reinforcing column 1 by the amount that each reinforcing bar 2 protrudes from the upper surface of the covering concrete 3, including the length of the mechanical reinforcing bar joint coupler 23 at the lower end. It is formed longer than this. These reinforcing bars 2 are arranged in parallel at predetermined intervals on both sides of the steel column 1, and a plurality of frame-shaped shear reinforcing bars 24 are arranged at predetermined intervals in the vertical direction in a horizontal state around the reinforcing bars 2. The
The plurality of reinforcing bars 2 have such a configuration, and are arranged on both sides of the steel column 1 in the covering concrete 3, and are assembled to the covering concrete 3 by being assembled into a substantially flat column shape around the steel column 1 together with the shear reinforcing bars 24. The upper end 21 of each reinforcing bar 2 is projected from the upper surface of the coated concrete 3 by a predetermined length, and the lower end opening 230 of the mechanical reinforcing bar joint coupler 23 at the lower end of each reinforcing bar 2 is opened on the lower surface of the coated concrete 3. The

被覆コンクリート3は、図4(b)、図5に示すように、鉄骨1及び複数の鉄筋2と一体に打設され、全体として鉄骨柱1と略同じ高さで縦に長く、厚さ寸法に対して幅寸法が大きい略直方体形の柱状に形成されて、扁平の略矩形状の断面を有している。この断面の長辺方向と短辺方向の比は、既述のとおり、2.5〜5.5倍にしてある。
被覆コンクリート3はかかる構成からなり、既述のとおり被覆コンクリート3の上面から複数の鉄筋2の上端部21が突出され、また、被覆コンクリート3の両側面の上下方向中央から梁主筋5が突出され、被覆コンクリート3の一方の大きな面の中心から梁鉄骨6が突出される。
As shown in FIG. 4B and FIG. 5, the covering concrete 3 is cast integrally with the steel frame 1 and the plurality of reinforcing bars 2, and as a whole is substantially the same height as the steel column 1 and is vertically long and has a thickness dimension. Is formed in a substantially rectangular parallelepiped column shape having a large width dimension, and has a flat, substantially rectangular cross section. The ratio of the long side direction to the short side direction of this cross section is 2.5 to 5.5 times as described above.
The covering concrete 3 has such a configuration, and as described above, the upper end portions 21 of the plurality of reinforcing bars 2 protrude from the upper surface of the covering concrete 3, and the beam main reinforcing bars 5 protrude from the vertical center of both side surfaces of the covering concrete 3. The beam steel frame 6 protrudes from the center of one large surface of the covering concrete 3.

このようにして柱部材P1は構成され、図1に示すように、複数の柱部材P1が上下に、各柱部材P1相互間で鉄骨柱1が直接接合されることなく、下側一方の柱部材P1の各鉄筋2の上端部21が上側他方の柱部材P1の機械式鉄筋継手用カプラ23に挿入されるとともに、下側一方の柱部材P1のエンドプレート4から突出される各鉄筋41が上側他方の柱部材P1のエンドプレート4を通して各機械式鉄筋継手用カプラ42に挿入され(図3参照)、それぞれのカプラ23、42内にモルタルなどのグラウト材7(図3参照)が充填されて接合され、プレキャスト工法により組み立てられる。なお、各柱部材P1の両側面から突出される梁主筋5には鉄筋コンクリート造(RC造)の梁が設けられ、各柱部材P1の一方の大きな面の中心から突出される梁鉄骨6には鉄骨造(S造)の梁が設けられる。   Thus, the column member P1 is configured, and as shown in FIG. 1, the plurality of column members P1 are vertically moved, and the steel column 1 is not directly joined between the column members P1, and the lower one column is formed. The upper end portion 21 of each reinforcing bar 2 of the member P1 is inserted into the mechanical reinforcing bar joint coupler 23 of the other upper column member P1, and each reinforcing bar 41 protruding from the end plate 4 of the lower one column member P1 is provided. It is inserted into each mechanical rebar joint coupler 42 through the end plate 4 of the other upper pillar member P1 (see FIG. 3), and the grout material 7 (see FIG. 3) such as mortar is filled in each coupler 23, 42. And assembled by the precast method. The beam reinforcement 5 protruding from both side surfaces of each column member P1 is provided with a reinforced concrete (RC) beam, and the beam steel frame 6 protruding from the center of one large surface of each column member P1 Steel frame (S) beams are provided.

また、かかる柱部材P1の接合構造により、各柱部材P1に外力により発生した曲げモーメントは各柱部材P1の接合部間で各鉄筋2、41により伝達される。
図6に各柱部材P1の鉄骨柱1間の接合部での力の流れを示している。図6に示すように、各柱部材P1に曲げモーメントが発生すると、これが各鉄筋2、41から被覆コンクリート3を介してエンドプレート4へ、エンドプレート4からH形鋼のフランジ11に伝達され、各柱部材P1の接合部間で曲げモーメントの伝達が可能となる。このように各柱部材P1の接合部間で曲げモーメントの伝達を可能としたことで、図7に示すように、反曲点が各鉄骨柱1間の接合部中央にある場合でもない場合でも、各鉄骨柱1に十分な耐力と変形性能が得られる。また、このように各柱部材P1の接合部間で曲げモーメントの伝達が可能なため、接合部の構造性能を確保するための曲げ補強筋は不要となる。
In addition, due to the joining structure of the pillar members P1, the bending moment generated by the external force on each pillar member P1 is transmitted by the reinforcing bars 2 and 41 between the joining portions of the pillar members P1.
FIG. 6 shows the flow of force at the joint between the steel pillars 1 of each pillar member P1. As shown in FIG. 6, when a bending moment is generated in each column member P <b> 1, this is transmitted from each rebar 2, 41 to the end plate 4 through the covering concrete 3, and from the end plate 4 to the H-shaped steel flange 11. A bending moment can be transmitted between the joints of the column members P1. As described above, since the bending moment can be transmitted between the joints of the column members P1 as shown in FIG. 7, the inflection point may or may not be at the center of the joint between the steel columns 1 or not. Sufficient proof stress and deformation performance can be obtained for each steel column 1. Further, since the bending moment can be transmitted between the joint portions of the column members P1 as described above, a bending reinforcing bar for securing the structural performance of the joint portion is not necessary.

以上説明したように、このSRCの柱Pでは、複数の分割された柱部材P1を上下に、各柱部材P1相互間で鉄骨柱1を直接接合することなく、下側一方の柱部材P1の各鉄筋2、41の上端部を上側他方の柱部材P1の機械式鉄筋継手用カプラ23、42に挿入して接合するようにしたことで、鉄骨鉄筋コンクリート造の柱Pをプレキャスト化することができる。そして、この柱Pをプレキャスト工法により施工するので、鉄骨鉄筋コンクリート造の柱の施工の省力化、省人化を図ることができる。また、各柱部材P1の鉄骨柱1の接合部で鉄筋2、41を介して曲げモーメントの伝達を可能にしたので、反曲点が接合部にない場合でも、十分な耐力、変形性能を持たせることができ、各柱部材P1の接合部間の構造性能を確保するための曲げ補強筋を不要にすることができる。
したがって、この鉄骨鉄筋コンクリート造の柱Pによれば、建物の外周面の位置に配置される外周柱(壁柱)の施工を簡略化して、工期の短縮を図ることができる。
As described above, in the column P of this SRC, a plurality of divided column members P1 are vertically moved, and the steel column 1 is not directly joined between the respective column members P1, so that the lower one column member P1 is formed. By inserting the upper end portions of the reinforcing bars 2 and 41 into the mechanical reinforcing bar joint couplers 23 and 42 of the upper column member P1 and joining them, it is possible to precast the steel reinforced concrete column P. . And since this pillar P is constructed by a precast construction method, labor saving and labor saving of construction of a steel reinforced concrete pillar can be achieved. Further, since the bending moment can be transmitted through the reinforcing bars 2 and 41 at the joint portion of the steel column 1 of each column member P1, even when the inflection point is not present at the joint portion, sufficient strength and deformation performance are provided. The bending reinforcement for securing the structural performance between the joint portions of each column member P1 can be eliminated.
Therefore, according to this steel reinforced concrete column P, the construction of the outer peripheral column (wall column) arranged at the position of the outer peripheral surface of the building can be simplified, and the construction period can be shortened.

図8にこのSRCの柱Pを用いた建物Bを例示している。
図8に示すように、この建物Bは、外壁面となる位置に外周柱B1が配設され、外周柱B1間に外周梁B2が架設されて、地震力を負担する耐震要素が建物Bの外周部にあり、建物Bの内部は大きな空間を確保するために大スパン化され、外周柱B1から内部梁B3が建物B内部方向に向けて架設される(言い換えれば、建物Bの内部を挟んで相互に対向する外周柱B1間に内部梁B3が架設される。)。
FIG. 8 illustrates a building B using the pillar P of the SRC.
As shown in FIG. 8, in this building B, an outer peripheral column B1 is disposed at a position to be an outer wall surface, an outer peripheral beam B2 is installed between the outer peripheral columns B1, and the seismic element that bears the seismic force is the building B. Located in the outer periphery, the inside of the building B has a large span to secure a large space, and the inner column B1 extends from the outer column B1 toward the inside of the building B (in other words, sandwiches the inside of the building B) The internal beam B3 is installed between the outer peripheral columns B1 facing each other.

この建物Bの外周柱B1に既述のSRC造の柱Pが採用され、外周梁B2は鉄筋コンクリート造の梁(RC造の梁)とし、内部梁B3は鉄骨造の梁(S造の梁)としてある。   The SRC column P described above is adopted as the outer peripheral column B1 of the building B, the outer peripheral beam B2 is a reinforced concrete beam (RC beam), and the inner beam B3 is a steel beam (S beam). It is as.

この建物Bでは、既述のとおり、各外周柱B1の鉄骨鉄筋コンクリート造の柱Pを、複数の柱部材P1を上下に、各柱部材P1相互間で鉄骨柱1を直接接合することなく、下側一方の柱部材P1の各鉄筋2、41の上端部を上側他方の柱部材P1の機械式鉄筋継手用カプラ23、42に挿入して接合することでプレキャスト化し、プレキャスト工法により形成することができ、プレキャスト工法の採用により、施工の省力化、省人化を図ることができる。また、この鉄骨鉄筋コンクリート造の柱Pの構造から、各柱部材P1の鉄骨柱1の接合部で鉄筋2、41を介して曲げモーメントの伝達が可能となり、反曲点が接合部にない場合でも、十分な耐力、変形性能を持たせることができる。さらに、各柱部材P1の鉄骨柱1の接合部で曲げモーメントの伝達を可能としたことで、各柱部材P1の接合部間の構造性能を確保するための曲げ補強筋が不要となる。
したがって、この種の建物Bの外周柱B1に鉄骨鉄筋コンクリート造の柱Pを用いることにより、鉄骨鉄筋コンクリート造の柱の施工を簡略化して、工期の短縮を図ることができる。
In this building B, as described above, the steel-framed reinforced concrete columns P of the outer peripheral columns B1 can be moved downward without directly joining the steel columns 1 between the column members P1 up and down the plurality of column members P1. The upper ends of the rebars 2 and 41 of the one side column member P1 are precast by inserting and joining the mechanical rebar joint couplers 23 and 42 of the upper side column member P1 and formed by a precast method. In addition, by adopting the precast construction method, labor and labor can be saved. Further, from the structure of the steel reinforced concrete column P, the bending moment can be transmitted through the reinforcing bars 2 and 41 at the joint portion of the steel column 1 of each pillar member P1, and even when the inflection point is not in the joint portion. , Sufficient proof stress and deformation performance can be given. Furthermore, since the bending moment can be transmitted at the joints of the steel columns 1 of the column members P1, bending reinforcement bars for securing the structural performance between the joints of the column members P1 become unnecessary.
Therefore, by using the steel-framed reinforced concrete column P for the outer peripheral column B1 of this type of building B, the construction of the steel-framed reinforced concrete column can be simplified and the construction period can be shortened.

なお、上記各実施の形態では、各柱部材P1の両側面から突出される梁主筋5に鉄筋コンクリート造(RC造)の梁が設けられるものとしたが、梁主筋に代えて、図9に示すように、略スパン中央までの長さのプレキャスト部材(プレキャスト梁)が取り付けられてもよい。
また、上記各実施の形態では、被覆コンクリート3内の各鉄筋2は上端部が被覆コンクリート3の上面から所定の長さだけ突出され、下端部に所定の長さを有する筒形形状の機械式鉄筋継手用カプラ23が連接されて被覆コンクリート3内に埋め込まれ、各機械式鉄筋継手用カプラ23の開口230が被覆コンクリートの下面に開口されるものとしたが、これとは反対に、被覆コンクリート内の各鉄筋は下端部が被覆コンクリートの下面から所定の長さだけ突出され、上端部に所定の長さを有する筒形形状の機械式鉄筋継手用カプラが連接されて被覆コンクリート内に埋め込まれ、各機械式鉄筋継手用カプラの開口が被覆コンクリートの上面に開口されて、複数の柱部材が上下に、一方の柱部材の各鉄筋の端部が他方の柱部材の機械式鉄筋継手用カプラに挿入されて接合されるものとしてもよい。
同様に、上記各実施の形態では、各鉄骨柱1の上端部のエンドプレート4の両側の鉄筋貫通用の孔40に所定の長さの鉄筋41が上下に貫通して取り付けられ、各鉄骨柱1の下端部のエンドプレート4の両側の上面に鉄筋貫通用の孔40に連通して、上端部のエンドプレート4の各鉄筋41が挿通可能な所定の長さを有する機械式鉄筋継手用カプラ42が取り付けられ、各柱部材P1間で鉄筋41が機械式鉄筋継手用カプラ42に挿入されて各柱部材P1間の各エンドプレート4が接続されるものとしたが、これとは反対に、各鉄骨柱の下端部のエンドプレートの両側の鉄筋貫通用の孔に所定の長さの鉄筋が上下に貫通して取り付けられ、各鉄骨柱の上端部のエンドプレートの両側の下面に鉄筋貫通用の孔に連通して、下端部のエンドプレートの各鉄筋が挿通可能な所定の長さを有する機械式鉄筋継手用カプラが取り付けられ、各柱部材間で鉄筋が機械式鉄筋継手用カプラに挿入されて各柱部材間の各エンドプレートが接続されるものとしてもよい。
さらに、上記各実施の形態では、鉄骨鉄筋コンクリート造の柱Pを、外壁面となる位置に外周柱が配設され、外周柱間に外周梁が架設されて、地震力を負担する耐震要素が建物の外周部にあり、建物の内部は大きな空間を確保するために大スパン化され、外周柱から内部梁が建物B内部方向に向けて架設される建物に適用するものとして例示したが、この鉄骨鉄筋コンクリート造の柱Pを一般の建物の現場打ちの鉄骨鉄筋コンクリート造の柱に代えて用いることができることは言うまでもない。
In each of the above-described embodiments, the reinforced concrete (RC) beam is provided on the beam main bar 5 protruding from both side surfaces of each column member P1, but the beam main bar is shown in FIG. In this way, a precast member (precast beam) having a length approximately up to the center of the span may be attached.
Further, in each of the above embodiments, each reinforcing bar 2 in the covering concrete 3 has a cylindrical shape with an upper end protruding from the upper surface of the covering concrete 3 by a predetermined length and a lower end having a predetermined length. The reinforced joint coupler 23 is connected and embedded in the coated concrete 3, and the opening 230 of each mechanical reinforced joint coupler 23 is opened on the lower surface of the coated concrete. Each reinforcing bar has a lower end protruding from the lower surface of the coated concrete by a predetermined length, and a cylindrical-shaped mechanical rebar coupler coupler having a predetermined length is connected to the upper end to be embedded in the coated concrete. The opening of each mechanical rebar joint coupler is opened on the upper surface of the coated concrete, the plurality of column members are vertically and the end of each rebar of one column member is the mechanical rebar joint of the other column member. Or as being joined are inserted into Couplers.
Similarly, in each of the above-described embodiments, a reinforcing bar 41 having a predetermined length is vertically attached to and attached to the reinforcing bar penetration holes 40 on both sides of the end plate 4 at the upper end of each steel column 1. 1 is connected to a hole 40 for reinforcing bar penetration on the upper surface of both ends of the end plate 4 at the lower end of the first end, and has a predetermined length through which each reinforcing bar 41 of the end plate 4 at the upper end can be inserted. 42 is attached, and the reinforcing bar 41 is inserted into the mechanical rebar coupling coupler 42 between the column members P1 and the end plates 4 between the column members P1 are connected. Reinforcing bars penetrated on the bottom of both ends of the end plate at the upper end of each steel column, and a reinforcing bar of a predetermined length is attached to the holes for rebar penetration on both sides of the end plate at the lower end of each steel column. The lower end of the end play A coupler for mechanical rebar joints with a predetermined length that can be inserted through each rebar is attached, and the rebar is inserted into the mechanical rebar joint coupler between each column member to connect each end plate between each column member It is good also as what is done.
Further, in each of the above-described embodiments, the steel-framed reinforced concrete column P is provided with an outer peripheral column at a position to be an outer wall surface, and an outer peripheral beam is installed between the outer peripheral columns, so that the seismic element that bears seismic force is a building It was illustrated as being applied to a building in which the inside of the building has a large span in order to secure a large space, and the inner beam extends from the outer column to the inside of the building B. Needless to say, the reinforced concrete column P can be used in place of a steel-framed reinforced concrete column cast in a general building.

P 鉄骨鉄筋コンクリート造の柱
P1 柱部材
1 鉄骨柱
11 フランジ
12 ウェブ
2 鉄筋
21 上端部
22 下端部
23 筒形形状の機械式鉄筋継手用カプラ
230 開口
24 せん断補強筋
3 被覆コンクリート
4 エンドプレート
40 孔
41 鉄筋
42 筒形形状の機械式鉄筋継手用カプラ
5 梁主筋
6 梁鉄骨
7 グラウト材
B 建物
B1 外周柱
B2 外周梁
B3 内部梁
P Steel column reinforced concrete column P1 Column member 1 Steel column 11 Flange 12 Web 2 Reinforcement 21 Upper end 22 Lower end 23 Cylindrical mechanical coupler coupler 230 Opening 24 Shear reinforcement 3 Covered concrete 4 End plate 40 Hole 41 Reinforcement 42 Cylindrical mechanical joint coupler 5 Beam main reinforcement 6 Beam steel 7 Grout material B Building B1 Outer column B2 Outer beam B3 Inner beam

Claims (9)

複数の分割された柱部材からなり、
前記各柱部材は、芯部に軸方向に向けて鉄骨柱が配置され、前記鉄骨柱の周囲に軸方向に向けて複数の鉄筋が配筋され、前記鉄骨柱及び前記各鉄筋に被覆コンクリートが一体に打設されて、扁平の断面略矩形状で、当該矩形状の長辺方向と短辺方向の比が略1.5〜5.5倍のプレキャスト部材として形成され、前記被覆コンクリート内の前記各鉄筋は上下いずれか一方の端部が前記被覆コンクリートの上下いずれか一方の面から所定の長さだけ突出され、上下いずれか他方の端部に所定の長さを有する筒形形状の機械式鉄筋継手用カプラが連接されて前記被覆コンクリート内に埋め込まれ、当該各機械式鉄筋継手用カプラの開口が前記被覆コンクリートの上下いずれか他方の面に開口されてなり、
前記複数の柱部材が上下に、前記各柱部材相互間で前記鉄骨柱が直接接合されることなく、一方の前記柱部材の前記各鉄筋の端部が他方の前記柱部材の前記機械式鉄筋継手用カプラに挿入されて接合され、プレキャスト工法により組み立てられる、
ことを特徴とする鉄骨鉄筋コンクリート造の柱。
It consists of multiple divided pillar members,
Each pillar member is arranged steel columns in the axial direction to the core portion, a plurality of reinforcing bars in the axial direction around the steel column is reinforcement, coated concrete to the steel columns and the respective rebar Are integrally formed and formed as a precast member having a flat rectangular cross section and a ratio of the long side direction to the short side direction of the rectangular shape of about 1.5 to 5.5 times . Each of the reinforcing bars has a cylindrical shape in which either one of the upper and lower ends protrudes from the upper or lower surface of the coated concrete by a predetermined length, and the upper or lower end has a predetermined length. Mechanical rebar couplers are connected and embedded in the coated concrete, and the opening of each mechanical rebar coupler coupler is opened on either the upper or lower surface of the coated concrete,
The plurality of column members are vertically joined, and the steel column is not directly joined between the column members, and the end of each reinforcing bar of one of the column members is the mechanical reinforcing bar of the other column member. Inserted into a coupler for coupling and joined, assembled by a precast method,
A steel-framed reinforced concrete column.
各柱部材は鉄骨柱が概ね階高中央で分断可能に形成される請求項1に記載の鉄骨鉄筋コンクリート造の柱。 The steel column reinforced concrete column according to claim 1, wherein each column member is formed so that a steel column can be divided substantially at the center of the floor . 各柱部材は鉄骨柱の上下端部にエンドプレートが取り付けられ、前記各柱部材間で前記前記エンドプレート同士が鉄筋を介して接続される請求項1又は2に記載の鉄骨鉄筋コンクリート造の柱。 Each column member is a steel reinforced concrete column according to claim 1 or 2 , wherein end plates are attached to upper and lower ends of the steel column, and the end plates are connected between the column members via reinforcing bars . エンドプレートは鉄骨柱の上下端部で鉄骨柱の両側に水平方向に延び、両側に鉄筋貫通用の孔が穿設されて、前記各鉄骨柱の上下いずれか一方の端部の前記エンドプレートの両側の前記鉄筋貫通用の孔に所定の長さの鉄筋が上下に貫通して取り付けられ、前記各鉄骨柱の上下いずれか他方の端部の前記エンドプレートの両側の内側面に前記鉄筋貫通用の孔に連通して、前記上下いずれか一方の端部のエンドプレートの前記各鉄筋が挿通可能な所定の長さを有する機械式鉄筋継手用カプラが取り付けられ、前記各柱部材間で前記鉄筋が前記機械式鉄筋継手用カプラに挿入されて前記各柱部材間の前記各エンドプレートが接続される請求項3に記載の鉄骨鉄筋コンクリート造の柱。 End plates extend horizontally on both sides of the steel columns at the upper and lower ends of the steel columns, and holes for penetrating reinforcing bars are drilled on both sides, so that the end plates of the upper and lower ends of each steel column A reinforcing bar having a predetermined length is vertically attached to the holes for penetrating the reinforcing bars on both sides, and the reinforcing bars are penetrated on the inner side surfaces on both sides of the end plate at the other end of each steel column. A mechanical rebar coupling coupler having a predetermined length through which the reinforcing bars of the end plate at either one of the upper and lower ends can be inserted, and the reinforcing bars are connected between the column members. The steel reinforced concrete column according to claim 3, wherein said end plate is connected to said column member by being inserted into said coupler for mechanical rebar joint . 各柱部材は高さ方向略中央に鉄骨柱から建物の外周方向に向けて梁主筋又はプレキャスト梁が突設される請求項1乃至のいずれかに記載の鉄骨鉄筋コンクリート造の柱。 Each pillar member Steel reinforced concrete pillars according to any of claims 1 to 4 in which the beam main reinforcement or precast beam toward the outer circumferential direction of the building in the height direction approximately steel columns in the center is projected. 各柱部材は高さ方向略中央に鉄骨柱から建物の内部方向に向けて梁鉄骨が突設される請求項1乃至5のいずれかに記載の鉄骨鉄筋コンクリート造の柱。 The steel reinforced concrete column according to any one of claims 1 to 5, wherein each column member has a steel beam projecting from the steel column toward the inside of the building at substantially the center in the height direction . 建物外壁面となる位置に外周柱が配設され、前記外周壁間に外周梁が架設されてなる建物であって、
前記外周柱に請求項1乃至6のいずれかに記載の鉄骨鉄筋コンクリート造の柱が採用される、
ことを特徴とする建物
An outer peripheral column is disposed at a position to be an outer wall surface of the building, and an outer peripheral beam is constructed between the outer peripheral walls,
The steel reinforced concrete column according to any one of claims 1 to 6 is adopted as the outer peripheral column.
A building characterized by that .
外周梁は鉄筋コンクリート造の梁とする請求項7に記載の建物。 The building according to claim 7, wherein the outer circumferential beam is a reinforced concrete beam . 外周柱から建物内部方向に向けて架設される内部梁は鉄骨造の梁とする請求項7又は8に記載の建物。 The building according to claim 7 or 8, wherein the internal beam constructed from the outer peripheral column toward the inside of the building is a steel beam .
JP2015090490A 2015-04-27 2015-04-27 Steel-framed reinforced concrete columns and buildings using the same Active JP6574336B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015090490A JP6574336B2 (en) 2015-04-27 2015-04-27 Steel-framed reinforced concrete columns and buildings using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015090490A JP6574336B2 (en) 2015-04-27 2015-04-27 Steel-framed reinforced concrete columns and buildings using the same

Publications (2)

Publication Number Publication Date
JP2016205054A JP2016205054A (en) 2016-12-08
JP6574336B2 true JP6574336B2 (en) 2019-09-11

Family

ID=57487456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015090490A Active JP6574336B2 (en) 2015-04-27 2015-04-27 Steel-framed reinforced concrete columns and buildings using the same

Country Status (1)

Country Link
JP (1) JP6574336B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020020193A (en) * 2018-08-02 2020-02-06 大成建設株式会社 Wall column building structure of steel framed reinforced concrete construction

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0751817B2 (en) * 1986-08-06 1995-06-05 清水建設株式会社 Structure of unbonded filled steel pipe concrete column
JP2005155036A (en) * 2003-11-20 2005-06-16 Sumitomo Mitsui Construction Co Ltd Column of building and rigid-frame structure using this column
JP2005200994A (en) * 2004-01-19 2005-07-28 Artes Corp Joining structure of closed cross-sectional member
KR100797194B1 (en) * 2007-04-26 2008-01-29 (주)엠씨에스공법 Composite concrete column and construction method using the same
JP6013028B2 (en) * 2012-05-24 2016-10-25 清水建設株式会社 Outer shell structure

Also Published As

Publication number Publication date
JP2016205054A (en) 2016-12-08

Similar Documents

Publication Publication Date Title
KR20100106259A (en) The remodeling earthquake resistant connection details by using precast concrete member for old reinforced beam-column building structures and the remodeling construction method using the same
JP2009249851A (en) Seismic strengthening method for existing building
KR20130012898A (en) Joint of steel column
JP5620462B2 (en) Seismic reinforcement method for existing buildings
JP6424075B2 (en) REINFORCED CONCRETE COLUMN STEEL BEAM JOINTING MEMBER, ITS MANUFACTURING METHOD, AND BUILDING CONSTRUCTION METHOD
KR101216126B1 (en) Arch structure construction method using axial and longitudinal connection rebar
JP2009046829A (en) Aseismatic reinforcing wall
JP6574336B2 (en) Steel-framed reinforced concrete columns and buildings using the same
JP2017014713A (en) Existing concrete structure reinforcement structure
JP5750246B2 (en) Composite beam, building, and composite beam construction method
KR20180098938A (en) Hinged connected CFT column
JP4447632B2 (en) Beam and beam-column joint structure and method of joining the same
KR200469319Y1 (en) Construction structure for joining steel or reinforced steel concrete column and beam with reinforcing end part
JP6712448B2 (en) Precast members for reinforced concrete beam-column joints
JP5726675B2 (en) Reinforcement structure of existing building
KR101685632B1 (en) Shear connector to increase strength and ductility
KR101612637B1 (en) Hollow PC column for saving construction period, SRC column with the hollow PC, joint structure of SRC and beam and method for constructing frame of buildings
JP6850143B2 (en) Joint structure of precast concrete members
JP6248470B2 (en) Seismic reinforcement structure and method for existing frame
JP5870455B2 (en) Precast concrete wall and joint structure between column and beam
JP6839921B2 (en) Column-beam joint structure
KR102349442B1 (en) Coupling structure of column and girder having single girder in lateral direction, double girder in backward direction and concrete part around the column
JP7059488B2 (en) Outer wall structure
JP6684088B2 (en) Seismic retrofitting structure and method for existing buildings
JP6590571B2 (en) Precast concrete beam end joint structure and precast concrete beam column frame

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190212

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20190411

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190730

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190816

R150 Certificate of patent or registration of utility model

Ref document number: 6574336

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531