JP3273357B2 - Seismic building structure - Google Patents
Seismic building structureInfo
- Publication number
- JP3273357B2 JP3273357B2 JP21264697A JP21264697A JP3273357B2 JP 3273357 B2 JP3273357 B2 JP 3273357B2 JP 21264697 A JP21264697 A JP 21264697A JP 21264697 A JP21264697 A JP 21264697A JP 3273357 B2 JP3273357 B2 JP 3273357B2
- Authority
- JP
- Japan
- Prior art keywords
- earthquake
- resistant
- resistant wall
- frame
- floor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Buildings Adapted To Withstand Abnormal External Influences (AREA)
Description
【0001】[0001]
【産業上の利用分野】 本発明は、例えば集合住宅建築に
適用される耐震構造に関するものである。[Industrial applications] The present invention is applicable to, for example, apartment buildings.
It is about the seismic structure to be applied.
【0002】[0002]
【従来技術】複数階を有する集合住宅建築などに適用さ
れる耐震構造は、従来、耐震壁を連層配置したものが一
般的である。図16はそうした耐震壁構造による集合住
宅の基準階の一例を示す。2. Description of the Related Art Conventionally, an earthquake-resistant structure applied to an apartment building having a plurality of floors generally has a structure in which earthquake-resistant walls are arranged in layers. FIG. 16 shows an example of a reference floor of an apartment house having such a earthquake-resistant wall structure.
【0003】図中符号Aは所要の間隔をおいて直立する
柱、Bは柱によって囲まれる住戸空間、Cは住戸空間B
の一側に設けられる共用廊下、Dは住戸空間の他側に設
けられるバルコニーである。片側廊下方式のこの建築物
は、図中矢印Xで示す桁行方向には、住戸空間Bと共用
廊下CもしくはバルコニーDとの境界面にラーメン骨組
が互いに対向するように配置される(梁は図示しな
い)。また、矢印Yで示すはり間方向には、各住戸の戸
境壁を耐震壁Eとすることによって上階から最下階まで
鉄筋コンクリート造の耐震壁構造が連層配置される。[0003] In the drawing, reference numeral A denotes a pillar standing upright at a required interval, B denotes a dwelling unit space surrounded by the pillar, and C denotes a dwelling unit space B.
Is a shared corridor provided on one side of the house, and D is a balcony provided on the other side of the dwelling unit space. In this one-side corridor type building, in the girder direction indicated by an arrow X in the figure, a ramen frame is arranged so as to face a boundary surface between a dwelling unit space B and a common corridor C or a balcony D (beams are illustrated). do not do). Further, in the direction between the beams indicated by the arrow Y, the reinforced concrete-made earthquake-resistant wall structure is continuously arranged from the upper floor to the lowermost floor by setting the door boundary wall of each dwelling unit as the earthquake-resistant wall E.
【0004】耐震壁構造は柱と梁の骨組と壁とが一体化
されることで、鉛直荷重及び水平力に対しては骨組と壁
とが一体となって抵抗する。したがって、地震時に各階
に作用する水平力は骨組と一体化された耐震壁の水平耐
力によって抵抗され、耐震壁構造はこの種の水平荷重に
対して骨組の変形を防いで建物全体の剛性を高める。In the earthquake-resistant wall structure, the frame and the wall are integrally united against vertical load and horizontal force by integrating the frame of the column and the beam with the wall. Therefore, the horizontal force acting on each floor during an earthquake is resisted by the horizontal strength of the shear wall integrated with the frame, and the shear wall structure prevents the frame from deforming against this kind of horizontal load and increases the rigidity of the whole building .
【0005】[0005]
【発明が解決しようとする課題】ところが、耐震壁構造
建築物の場合、最上階から最下階に至るまで全ての階を
耐震壁構造にしてこれを連層配置する必要がある。途中
階や下階に耐震壁を持たない階を形成すると、同一架構
面内でこの部分の水平耐力が極端に低くなり、当該階の
骨組に応力が集中しあるいは骨組が過大な軸力に耐えら
れなくなって建物の崩壊を招き易いからである。例えば
図17に見られるような連層耐震壁構造体Fの下部に直
立柱Hと上梁G及び支持梁Iとから成るラーメン骨組J
を接合した場合、地震時に、上部の連層耐震壁構造体F
は上記したように骨組と一体化した耐震壁Eの水平耐力
で抵抗する一方、下部のラーメン骨組Jは直立柱Hの水
平耐力で抵抗する機構となる。連層耐震壁構造体側端の
柱Aから下階のラーメン骨組Jの直立柱Hに大きな軸力
が加わる状況下では、ラーメン骨組Jにおいて直立柱H
の曲げ耐力またはせん断耐力によって決定される水平耐
力は上階の耐震壁構造体Fの水平耐力に比較して極端に
小さいという傾向がある。したがって、こうした複合構
造物は上部と下部とで水平剛性、水平耐力のバランスが
悪い骨組となり、地震時には下階のラーメン骨組Jで激
しく揺れ、柱が破壊し、建物の崩壊をもたらすことが多
くなる。However, in the case of a building with an earthquake-resistant wall structure, it is necessary to make all the floors from the top floor to the lowest floor have a earthquake-resistant wall structure and arrange them in layers. If a floor without a seismic wall is formed on a middle floor or a lower floor, the horizontal strength of this part becomes extremely low within the same frame, stress is concentrated on the frame of the floor, or the frame withstands excessive axial force. This is because the building cannot be collapsed and the building collapses easily. For example, as shown in FIG. 17, a rigid frame J composed of an upright column H, an upper beam G and a support beam I is provided below a multi-story shear wall structure F.
When an earthquake occurs, the upper multi-story shear wall structure F
Is a mechanism that resists with the horizontal strength of the earthquake-resistant wall E integrated with the frame as described above, while the lower frame frame J resists with the horizontal strength of the upright column H. Under the situation where a large axial force is applied from the column A at the side end of the multi-story earthquake-resistant wall structure to the upright column H of the ramen frame J on the lower floor, the upright column H is used in the ramen frame J.
The horizontal strength, which is determined by the bending strength or the shear strength, tends to be extremely small as compared with the horizontal strength of the earthquake-resistant wall structure F on the upper floor. Therefore, such a composite structure has a frame with poor balance of horizontal rigidity and horizontal strength between the upper part and the lower part, and in the event of an earthquake, violently shakes at the ramen frame J on the lower floor, the columns are destroyed, and the building collapses in many cases. .
【0006】ラーメン骨組Jの柱Hの水平断面積を連層
耐震壁Eの柱Aの水平断面積の数倍にしてラーメン骨組
Jの水平剛性を上階の連層耐震壁構造体Fと同等にする
ことも考えられるが、実際の設計ではこのような大きな
柱にすることは困難である。しかも、建物が高層化、大
型化するに連れて、ラーメン骨組Jに加わる地震時の荷
重が大きくなり、柱の大きさ、耐力を極端に高めること
は困難となるばかりでなく、構造体のコストも高くな
る。The horizontal rigidity of the frame J is equal to that of the multi-story shear wall structure F on the upper floor by making the horizontal sectional area of the column H of the rigid frame J several times the horizontal sectional area of the column A of the multi-story shear wall E. However, it is difficult to make such a large pillar in an actual design. Moreover, as the building becomes higher and larger, the load applied to the frame J during the earthquake increases, and it becomes difficult not only to increase the size and strength of the column extremely, but also to reduce the cost of the structure. Will also be higher.
【0007】このため、耐震壁構造を連層させた集合住
宅のような建築物では、住宅とは異なる例えば事務所、
店舗、駐車場あるいはピロティや吹き抜きといった耐震
壁を持たない骨組部を途中階や下階に混在させにくく、
その分、設計の自由度が制限される。また、従来の耐震
壁構造において耐震壁を持たない階をあえて組み入れた
場合には、耐震壁構造物とはいえ十分な水平剛性を持た
ない構造体になる。[0007] For this reason, in a building such as an apartment house having a multi-layered earthquake-resistant wall structure, for example, an office,
It is difficult to mix stores, parking lots, or frame parts that do not have earthquake-resistant walls such as piloties and blow-offs on middle floors and lower floors,
This limits the degree of freedom in design. In addition, if a floor having no earthquake-resistant wall is intentionally incorporated into the conventional earthquake-resistant wall structure, the structure will not have sufficient horizontal rigidity even though it is a earthquake-resistant wall structure.
【0008】本発明の目的は、複数階を有する耐震壁構
造体に耐震壁を持たない階を連層的に配置しながらも経
済性を損なうことなく水平耐力や水平剛性あるいは靱性
等の構造的特性に富み、建築設計の融通性を大幅に向上
させる、耐震建築構造を提供することにある。An object of the present invention is to provide a multi-story earthquake-resistant wall structure in which floors having no earthquake-resistant walls are arranged in a multi-layered manner, but without impairing economical efficiency, such as horizontal strength, horizontal rigidity or toughness. An object of the present invention is to provide an earthquake-resistant building structure that is rich in characteristics and greatly improves the flexibility of architectural design.
【0009】[0009]
【課題を解決するための手段】本発明は、上記した目的
を達成するために次の構成を備える。すなわち、請求項
1の発明は、複数階を有する耐震壁構造体の下部に、耐
震壁を持たない階を少なくとも一部に有するラーメン構
造体を接合して成る。耐震壁構造体は、各階が、各階の
対向する2本の直立柱と上下階の枠梁とから成る骨組に
単一の耐震壁を一体化させた耐震壁構造を成している。
そして、少なくとも一部の階の耐震壁構造は、2本の直
立柱間の中間部に鉛直部材を持たない開口部を形成する
とともにこの開口部の上辺に境界梁を設けることによ
り、開口部左右の耐震壁同士を上記境界梁を介して構造
部材として一体化して成る。一方、ラーメン構造体は、
耐震壁構造体と同一架構面内で間隔を置き外方に向けて
末広がりに傾斜した一対の傾斜柱を有し、これらの傾斜
柱の柱頭部が上記耐震壁構造体の脚部に連結され、ま
た、耐震壁構造体との境に耐震壁構造体の梁よりも耐力
の大きな軸材から成る上梁が架設され、この上梁と基礎
梁等の下梁と一対の前記した傾斜柱とによって略台形状
の骨組が形成されるようになっている。The present invention has the following configuration to achieve the above object. That is, the invention of claim 1 is configured by joining a ramen structure having at least a portion of a floor having no earthquake-resistant wall to a lower portion of the earthquake-resistant wall structure having a plurality of floors. The earthquake-resistant wall structure has an earthquake-resistant wall structure in which each floor is formed by integrating a single earthquake-resistant wall into a framework composed of two upright columns facing each floor and frame beams on the upper and lower floors.
The earthquake-resistant wall structure of at least some floors has an opening having no vertical member at an intermediate portion between the two upright columns, and a boundary beam is provided on an upper side of the opening, so that the left and right of the opening can be formed. Are integrated as structural members via the above-mentioned boundary beams. On the other hand, the ramen structure
The seismic wall structure has a pair of inclined columns which are spaced apart in the same frame surface as the earthquake-resistant wall structure and are inclined outward and divergent toward the outside, and the column heads of these inclined columns are connected to the legs of the earthquake-resistant wall structure, Further, an upper beam made of a shaft material having a higher strength than the beam of the earthquake-resistant wall structure is erected at the boundary with the earthquake-resistant wall structure, and the upper beam, a lower beam such as a foundation beam, and a pair of the above-mentioned inclined columns are used. A substantially trapezoidal frame is formed.
【0010】請求項2の発明は、耐震壁構造に形成され
る開口部の位置が請求項1とは異なり、耐震壁の側端部
(一側端部と両側端部)に設けられる。また、請求項3
の発明は、請求項1もしくは2記載の耐震建築構造を前
提とし、前記ラーメン構造体の下部に耐震壁構造体を更
に接合することにより、上下の耐震壁構造体の間にラー
メン構造体が配設されている点に特徴がある。[0010] According to the second aspect of the present invention, the position of the opening formed in the earthquake-resistant wall structure is different from that of the first aspect, and is provided at the side end (one side end and both side ends) of the earthquake-resistant wall. Claim 3
According to the invention of the above, the earthquake-resistant building structure according to claim 1 or 2 is premised, and a shear-resistant wall structure is further joined to a lower portion of the rigid-frame structure so that the frame structure is disposed between the upper and lower earthquake-resistant wall structures. The feature is that it is set up.
【0011】上記した開口部によって分断された耐震壁
あるいは耐震壁と直立柱とを構造的に連結する境界梁
は、せん断耐力に有効な断面仕様とするが、構造上、低
降伏点鋼によって形成するものであっても良い。The above-mentioned shear wall or the boundary beam structurally connecting the upright column and the earthquake-resistant wall divided by the opening has a sectional specification effective for shear strength, but is structurally formed of low yield point steel. You may do.
【0012】ラーメン構造体は、その全体を耐震壁を持
たない骨組とし、あるいは一部の階に耐震壁を持つ骨組
とすることもでき、耐震壁構造体との境に位置する上梁
と基礎梁等の下梁と一対の前記した傾斜柱とによって略
台形状を成す。また、ラーメン構造体の傾斜柱と耐震壁
構造体の脚部との接合位置は、耐震壁構造体の直立柱直
下が望ましいがそれよりも内側に位置させる場合には耐
震壁構造体の直立柱の軸線上に傾斜柱とは別に支持柱を
連結するのが望ましい。更に、ラーメン構造体の両傾斜
柱の傾斜角度は、両傾斜柱の軸線を延長した交点(頂
点)が地震による建物への水平荷重の合力の作用点とそ
の高さ位置においてほぼ等しいかこれよりも上方に位置
するように設定するのが構造上望ましい。上記頂点が作
用点よりも下方に位置する場合には作用点にできるだけ
近い位置になるように両傾斜柱の傾斜角度を設定する。[0012] The ramen structure may be a frame having no earthquake-resistant wall as a whole, or a frame having a earthquake-resistant wall on some floors. The upper beam and the foundation located at the boundary with the earthquake-resistant wall structure may be used. A substantially trapezoidal shape is formed by the lower beam, such as a beam, and the pair of inclined columns. The joint position between the inclined column of the ramen structure and the leg of the earthquake-resistant wall structure is desirably directly below the upright column of the earthquake-resistant wall structure. It is desirable to connect a supporting column separately from the tilting column on the axis of. Furthermore, the inclination angle of both inclined columns of the ramen structure is such that the intersection (vertex) extending the axis of both inclined columns is approximately equal to or greater than the point of application of the resultant force of the horizontal load on the building due to the earthquake. It is structurally desirable to set the upper position also. When the apex is located below the point of action, the inclination angles of both inclined columns are set so as to be as close as possible to the point of action.
【0013】[0013]
【発明の実施の形態】以下、本発明を図示した実施例に
基づいて詳説する。 実施例1 図1は、上記従来例と同じ片廊下方式集合住宅のはり間
方向の構造物に本発明を適用した場合の実施例を示す。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail based on illustrated embodiments. Embodiment 1 FIG. 1 shows an embodiment in which the present invention is applied to a beam-to-beam direction structure of a single-hall corridor apartment house which is the same as the above-mentioned conventional example.
【0014】この構造物は、14階建ての構造物本体1
とそれを支持する基礎構造物2から成る。基礎構造物2
は所定の間隔(L1)を離して構築される複数の基礎2
1と、その基礎21を支持するために地盤中に打設する
複数の杭22と、基礎21を水平に連結する地中梁23
より成る。This structure is a 14-story structure body 1
And a substructure 2 that supports it. Substructure 2
Are a plurality of foundations 2 constructed at a predetermined interval (L1) apart.
1, a plurality of piles 22 that are driven into the ground to support the foundation 21, and an underground beam 23 that horizontally connects the foundation 21
Consisting of
【0015】構造物本体1は、はり間方向を1スパンで
構成され、最上階から4階までが住居階に、また3階か
ら1階までが非住居階にそれぞれ割り当てられている。
住居階は各階全て耐震壁構造になっており全体として耐
震壁構造体3を構成している。また、非住居階は耐震壁
を持たない骨組から成るラーメン構造体4によって構成
されている。上記した「スパン」とは対向配置される2
本の柱間の単位のことで、1スパンとはそれが1単位、
つまり柱が2本の場合のことである。また、スパン長さ
とは柱間の直線状の距離、スパン数とはスパンの数をそ
れぞれ意味する。The structure main body 1 has a span of one beam in the direction between the beams, and the top floor to the fourth floor are allocated to the residential floor, and the third floor to the first floor are allocated to the non-residential floor.
The dwelling floors have an earthquake-resistant wall structure on each floor, and constitute the earthquake-resistant wall structure 3 as a whole. The non-residential floor is constituted by a ramen structure 4 composed of a frame having no earthquake-resistant wall. 2 which is arranged opposite to the above “span”
It is a unit between pillars of a book, and one span is one unit,
That is, this is a case where there are two columns. The span length means the linear distance between the columns, and the number of spans means the number of spans.
【0016】耐震壁構造体3は、所定の間隔をおいて対
向配置された2本の直立柱31と、各階の床位置(屋上
階を含む)で上記柱間に水平方向に架設される複数の枠
梁32と、前記直立柱31と上下階の枠梁32によって
囲まれ、これらと一体化された耐震壁33とより成る。
各階の耐震壁33の中央には開口部34が設けられ、柱
間の1スパンで左右2個の耐震壁33L,33Rに分割
されている。開口部34の上下には境界梁35が設けら
れている。開口部34は、略長方形で、その高さは階高
から上下階の境界梁35の梁成を控除したものになって
いる。開口部の形状、高さ及び幅は左右の2個の耐震壁
33L,33Rとの関係を考慮して水平剛性、水平耐力
等の構造性能上の観点または通路として必要な幅員とい
う建築計画上の観点から任意に決定できる。図1では、
枠梁32と耐震壁33が最上階から4階まで上下方向に
連層的に配置され、全体として1つの連層耐震壁を構成
している。この連層耐震壁に設けられた開口部34も連
層的に配置されて1つの連層開口部を形成している。The earthquake-resistant wall structure 3 is composed of two upright columns 31 which are arranged opposite to each other at a predetermined interval, and a plurality of columns vertically installed between the columns at the floor positions (including the roof floor) of each floor. And the upright pillar 31 and the frame beams 32 of the upper and lower floors, and an earthquake-resistant wall 33 integrated therewith.
An opening 34 is provided at the center of the earthquake-resistant wall 33 on each floor, and is divided into two left and right earthquake-resistant walls 33L and 33R at one span between the columns. Boundary beams 35 are provided above and below the opening 34. The opening 34 is substantially rectangular, and its height is obtained by subtracting the height of the boundary beams 35 on the upper and lower floors from the floor height. The shape, height and width of the opening are considered in terms of structural performance such as horizontal rigidity and horizontal strength or the width required as a passage in the architectural planning considering the relationship between the left and right two shear walls 33L and 33R. It can be arbitrarily determined from the viewpoint. In FIG.
The frame beam 32 and the earthquake-resistant wall 33 are vertically arranged in layers from the top floor to the fourth floor, forming a single-layer earthquake-resistant wall as a whole. The openings 34 provided in the multi-story earthquake-resistant wall are also arranged in a multi-story manner to form one multi-story opening.
【0017】直立柱31は各住戸の耐震壁33の両側端
にあって最上階から途中階(4階床位置)まで鉛直方向
に真っ直ぐに延びている。スパン長さ(L2)は各住戸
の室内所要スペース条件を満たすように建築計画で決定
される。柱31の横断面形状は、矩形、長方形、円形等
が良く用いられるが、柱として機能を発揮することがで
きればどのような形状でもよい。これは、後述する傾斜
柱でも同様である。The upright pillars 31 are provided at both ends of the earthquake-resistant wall 33 of each dwelling unit, and extend straight vertically from the top floor to the middle floor (fourth floor position). The span length (L2) is determined by a building plan so as to satisfy the required space requirement of each dwelling unit. The cross-sectional shape of the column 31 is often a rectangle, a rectangle, a circle, or the like, but any shape may be used as long as the column 31 can function as a column. This is the same for the later-described inclined column.
【0018】枠梁32は、各階の床版の鉛直荷重を支え
ると共に、左右の耐震壁33L,33Rと互いに一体的
に接合され、耐震壁33の補強梁として機能する。補強
梁としての効果を高めるために枠梁32の梁幅を耐震壁
33の壁厚よりも大きくすることが多い。枠梁32の梁
幅を耐震壁の壁厚と等しくした場合には、壁面から梁型
が突出せず、型枠工事が簡素化し、完成後の居室内の美
観に優れ、家具の収納の障害物が無くなる。The frame beam 32 supports the vertical load of the floor slab of each floor, and is integrally joined to the left and right earthquake-resistant walls 33L and 33R to function as a reinforcing beam for the earthquake-resistant wall 33. In order to enhance the effect as a reinforcing beam, the beam width of the frame beam 32 is often made larger than the wall thickness of the earthquake-resistant wall 33. When the beam width of the frame beam 32 is made equal to the wall thickness of the earthquake-resistant wall, the beam form does not protrude from the wall surface, the formwork is simplified, the appearance of the completed living room is excellent, and the storage of furniture is obstructed. Things are gone.
【0019】耐震壁33は任意の壁厚を有する面状の構
造部材で、主として地震力などの水平力に対して有効に
応力を分担する。耐震壁33は各住戸間の境界を区画す
るために戸境壁として建築計画上配置されることが多い
が、その他に構造計画上から配置されることがある。そ
の壁厚は隣接する住戸間の遮音性能、構造部材としての
耐力、水平剛性から決定される。構造種別は鉄筋コンク
リート造(以下「RC造」と称す。)が一般的である
が、その壁体内部に鉄骨ブレースを内蔵することもあ
る。また、鉄骨のブレースで鉄骨造の耐震壁とすること
もできる。各階の図中左右2個の耐震壁33L,33R
は、柱31と上下階の枠梁32(補強梁)によって周囲
3辺が囲まれているが、開口部34に面している1辺は
鉛直荷重を下階まで伝達することができる鉛直部材に支
持されていないので、境界梁35によって2個の耐震壁
33L,33Rが一体化されることにより骨組として機
能する。The earthquake-resistant wall 33 is a planar structural member having an arbitrary wall thickness and effectively shares stress mainly against horizontal force such as seismic force. The earthquake-resistant wall 33 is often arranged on a building plan as a door boundary wall in order to divide the boundary between each dwelling unit, but may be arranged on a structural plan. The wall thickness is determined from the sound insulation performance between adjacent dwelling units, the strength as a structural member, and the horizontal rigidity. The structure type is generally a reinforced concrete structure (hereinafter referred to as “RC structure”), but a steel brace may be built in the wall body. In addition, a steel frame brace can be used as a steel-framed earthquake-resistant wall. Left and right two earthquake-resistant walls 33L, 33R in each floor
Is a vertical member capable of transmitting a vertical load to the lower floor while one side facing the opening 34 is surrounded by columns 31 and frame beams 32 (reinforcement beams) on the upper and lower floors. Since the two shear walls 33L and 33R are integrated by the boundary beam 35, they function as a frame.
【0020】境界梁35の構造種別はRC造、鉄骨鉄筋
コンクリート造(SRC造)鉄骨コンクリート造(SC
造)、鉄骨造のいづれでも良い。地震時には境界梁35
に大きな曲げモーメントとせん断力が発生するので、特
にせん断耐力に有効な断面仕様とする。RC造では、あ
ばら筋の鉄筋経を太くし間隔を密にすることが必要であ
るが、高強度の鉄筋、X字型のせん断補強筋を使用すれ
ば更に効果的である。SRC造、SC造、鉄骨造では鉄
骨部材としてH形鋼、鋼材種別としては一般用鋼材(例
えば、SN400B,SN490B等)が良く用いられ
る。耐震壁構造体3とラーメン構造体4をRC造または
SRC造で、また境界梁35を鉄骨造で構成する構造物
は、境界梁35の変形性能を利用して構造物の靱性を高
めることができる。鉄骨造は靱性に富むので、地震時に
境界梁35の材端部が降伏しても変形性能を保持し、エ
ネルギーを吸収することによる。The structural type of the boundary beam 35 is RC, steel reinforced concrete (SRC) or steel concrete (SC).
Construction) or steel construction. Boundary beam 35 during an earthquake
Since a large bending moment and a shearing force are generated, the cross-sectional specifications are particularly effective for the shear strength. In RC construction, it is necessary to increase the stirrup diameter of stirrups and increase the spacing, but it is more effective to use high-strength reinforcing bars and X-shaped shear reinforcing bars. In SRC, SC and steel structures, H-shaped steel is often used as a steel frame member, and general steel (for example, SN400B, SN490B, etc.) is often used as a steel material type. In the structure in which the earthquake-resistant wall structure 3 and the rigid frame structure 4 are made of RC or SRC and the boundary beam 35 is made of steel, the toughness of the structure can be increased by utilizing the deformation performance of the boundary beam 35. it can. Since the steel structure is rich in toughness, even if the end of the material of the boundary beam 35 yields during an earthquake, it retains its deformation performance and absorbs energy.
【0021】境界梁35を靱性鋼材による鉄骨造とする
場合、靱性性能に優れた低降伏点鋼とするのが良い。一
般用鋼材の伸び性能は破断時で20%であるが、靱性鋼
材の伸び性能は破断時で40%以上である。しかも、靱
性鋼材の降伏点強度は一般用鋼材よりも小さい値を示
す。即ち、靱性鋼材は低い強度で降伏するが、降伏後破
断まで靱性に富んだ性能を発揮する。図示しないが、境
界梁35にH形鋼を使用する場合、フランジとウエブの
いづれか一方が靱性鋼材で他方が一般鋼材であっても良
い。靱性鋼材は上記H形鋼、鉄骨造に限定されるもので
はなく、他の形状の部材断面、構造種別(SRC造、S
C造等)であっても良い。床版の鉛直荷重は、枠梁32
と2個の耐震壁33L,33Rを介して両端の柱31に
伝達される。地震力が加わったときは、別々に挙動しよ
うとする2個の耐震壁33L,33Rを境界梁35が連
結し一体化するので、左右の耐震壁33L,33Rが1
つの構造部材として成立する。When the boundary beam 35 is made of a steel structure made of a tough steel material, it is preferable to use a low yield point steel having excellent toughness performance. The elongation performance of a general-purpose steel material is 20% at break, while the elongation performance of a tough steel material is 40% or more at break. In addition, the yield point strength of the tough steel material is smaller than that of the general steel material. That is, the tough steel material yields with a low strength, but exhibits high toughness until fracture after yielding. Although not shown, when an H-beam is used for the boundary beam 35, one of the flange and the web may be a tough steel material and the other may be a general steel material. The toughness steel material is not limited to the above-mentioned H-section steel and steel structure, but the member cross-section and structure type (SRC structure, S
C). The vertical load of the floor slab is
Is transmitted to the columns 31 at both ends via the two earthquake-resistant walls 33L and 33R. When seismic force is applied, the boundary beam 35 connects and integrates the two seismic walls 33L and 33R that are going to behave separately, so that the left and right seismic walls 33L and 33R become one.
It is established as one structural member.
【0022】図示しないが、境界梁35は、各階毎にで
はなく任意の階に設けることができる。例えば耐震壁構
造体3の最上階(図1では屋根)と最下階(図1では3
階)の2カ所に大きなものを設け、途中階には配置しな
いこともできる。数階毎に1箇所設けるようにしても良
い。耐震壁構造体3の最下部の支点が鉛直方向に移動す
るのを防ぐことのできる鉛直支持部材の機能を有する機
構であれば良い。Although not shown, the boundary beams 35 can be provided not on each floor but on any floor. For example, the uppermost floor (the roof in FIG. 1) and the lowermost floor (3 in FIG. 1) of the earthquake-resistant wall structure 3
Large ones can be provided at two places (floor) and not located on the middle floor. One place may be provided every several floors. Any mechanism having a function of a vertical support member that can prevent the lowermost fulcrum of the earthquake-resistant wall structure 3 from moving in the vertical direction may be used.
【0023】ラーメン構造体4は、前記耐震壁構造体3
の下階に接続され、傾斜柱41と支持梁42を有する。
傾斜柱41は所定の間隔をおいて2本対向して配設さ
れ、その頭部を耐震壁構造体3の柱31の脚部に接合し
て連結してある。傾斜柱41の脚部は耐震壁構造体3と
同一架構面内を外方に向けて末広がりに傾斜し、耐震壁
構造体3のスパン長L2よりも広い間隔L1で配設され
た前記基礎2上に固定されている。従って、左右の傾斜
柱41と、両傾斜柱41,41を基端において連結する
前記地中梁23(基礎梁)と、傾斜柱41の柱頭部を連
結する上梁42’(上記耐震壁構造体との境に位置する
梁で本実施例の場合には4階の梁)とは、互いに接合さ
れて略台形状のラーメン骨組を形成する。上梁42’は
耐震壁構造体3の他の梁材32よりも耐力のある骨組み
材によって形成される。後述するように地震時の作用力
によって大きな軸力がかかるからである。The ramen structure 4 includes the earthquake-resistant wall structure 3
, And has an inclined column 41 and a support beam 42.
The two inclined columns 41 are disposed facing each other at a predetermined interval, and their heads are joined to and connected to the legs of the columns 31 of the earthquake-resistant wall structure 3. The legs of the inclined column 41 are inclined so as to diverge outwardly in the same frame surface as the earthquake-resistant wall structure 3, and are disposed at intervals L1 wider than the span length L2 of the earthquake-resistant wall structure 3. Fixed on top. Therefore, the left and right inclined columns 41, the underground beam 23 (foundation beam) connecting the two inclined columns 41, 41 at the base end, and the upper beam 42 ′ connecting the column head of the inclined column 41 (the above-mentioned earthquake-resistant wall structure) (A beam on the fourth floor in the case of this embodiment) which is located at the boundary with the body) and is joined to each other to form a substantially trapezoidal frame frame. The upper beam 42 ′ is formed of a framing material having higher strength than the other beam members 32 of the earthquake-resistant wall structure 3. This is because a large axial force is applied by the acting force at the time of the earthquake as described later.
【0024】また、このラーメン構造体4は、2本の傾
斜柱41の材軸線が八の字状を成し、その延長線の交点
が耐震壁構造体の中途に位置して頂点Tを形成する(図
2〜図7参照)。この頂点Tを含む耐震壁33と2本の
傾斜柱41と前記地中梁23が描く三角形は仮想のトラ
ス構造となる。このため、本ラーメン構造体4はラーメ
ン骨組の特性にトラス構造を加味した複合構造になって
いる。更に、傾斜柱間には各階の床位置で水平方向に支
持梁42が架設されている。これらの支持梁42は傾斜
柱41と一体的に接合した場合には同様にラーメン骨組
を構成する。各階の床版の鉛直荷重を支えるだけであれ
ば、支持梁42はその材端を傾斜柱41にピン接合する
ものであっても良い。また、支持梁は傾斜柱の態様ある
いは高さいかん等によっては必ずしも設ける必要はな
い。図示しないが、支持梁のスパン長が大きくなるとき
は、スパン中間部の任意位置に中間柱を立設することも
ある。Further, in this ramen structure 4, the material axis of the two inclined columns 41 forms an eight-shape, and the intersection of the extension lines is located in the middle of the earthquake-resistant wall structure to form a vertex T. (See FIGS. 2 to 7). The triangle drawn by the earthquake-resistant wall 33 including the apex T, the two inclined columns 41, and the underground beam 23 has a virtual truss structure. For this reason, the present ramen structure 4 has a composite structure in which the truss structure is added to the characteristics of the ramen frame. Further, between the inclined columns, a support beam 42 is erected horizontally at the floor position of each floor. When these support beams 42 are integrally joined to the inclined columns 41, they similarly constitute a frame frame. As long as the vertical load of the floor slab of each floor is only supported, the support beam 42 may be one in which the material end is pin-joined to the inclined column 41. Further, the support beam is not necessarily required to be provided depending on the mode of the inclined column or the height. Although not shown, when the span length of the support beam increases, an intermediate column may be erected at an arbitrary position in the middle of the span.
【0025】ラーメン構造体4は上記のようにしてその
内側に大きな空間Sを有する。この空間Sは建築計画の
要請にしたがって例えば駐車場、集会室、広場、公園、
遊技場等の幅広い用途に供される。尚、図中符号5は耐
震壁構造体の両側に張り出し形成した手摺付きの片持ち
スラブで図中右側は共用廊下として、また左側はバルコ
ニーとして利用される。The ramen structure 4 has a large space S inside as described above. This space S is, for example, a parking lot, a meeting room, a plaza, a park,
Used for a wide range of applications such as amusement arcades. Reference numeral 5 in the figure denotes a cantilevered slab with handrails formed on both sides of the earthquake-resistant wall structure, and the right side in the figure is used as a common corridor, and the left side is used as a balcony.
【0026】地震力が作用したときの図1の構造物の構
造的な特徴を図2から図7を参照しつつ説明する。これ
らの図において、地震力はいずれも簡略化された構造物
モデルの右側から各階に加わる水平力の合力として10
階床位置に集中荷重として加えている。そして、作用点
Pを前記した仮想のトラス構造の頂点Tとの関係で3態
様に変化させてある。図2と図3は上記作用点Pと頂点
Tとを一致させた場合、図4と図5は作用点Pを頂点T
よりも下側に位置させた場合、また図6と図7は作用点
Pを頂点Tよりも上側に位置させた場合である。関連し
て図8と図9に、耐震壁構造体3の下階(3階相当分)
に耐震壁を持たない直立柱と梁による骨組構造体4を接
合した従来構造物について、地震作用力によって生じる
構造的変化を対比的に示した。なお、図2から図7の構
造物モデルの傾斜柱の傾斜角度は一定である。The structural features of the structure shown in FIG. 1 when seismic force is applied will be described with reference to FIGS. In these figures, the seismic force is a total of 10 as the sum of the horizontal forces applied to each floor from the right side of the simplified structure model.
A concentrated load is applied to the floor. The action point P is changed into three modes in relation to the above-described vertex T of the virtual truss structure. FIGS. 2 and 3 show the case where the action point P coincides with the vertex T. FIGS.
6 and 7 show the case where the action point P is located above the vertex T. FIG. 8 and 9 show the lower floor of the earthquake-resistant wall structure 3 (corresponding to the third floor).
The structural changes caused by the seismic force of a conventional structure in which a framed structure 4 composed of upright columns and beams having no earthquake-resistant wall are shown in FIG. Note that the inclination angles of the inclined columns of the structure models in FIGS. 2 to 7 are constant.
【0027】先ず、従来例(図8,9)を見るに、地震
力によって構造物に水平荷重が加わると、図8の曲げモ
ーメント図(以下、M図と称する)に見られるように直
立柱には軸力とせん断力が働くと共に曲げモーメントが
生じる。これらの力はそのまま骨組構造体を図9に示す
ように水平方向にずれるように大きく変形させ、耐震壁
構造体3の上部に激しい揺れを生じさせる。耐震壁構造
体3が大きな水平耐力や水平剛性を有するとしてもその
下部にあるラーメン骨組構造体の水平剛性や耐力が低い
ために、この構造物は上記作用力に耐えきれずに崩壊す
る。First, referring to a conventional example (FIGS. 8 and 9), when a horizontal load is applied to a structure by seismic force, as shown in a bending moment diagram (hereinafter referred to as an M diagram) in FIG. , An axial force and a shear force act and a bending moment is generated. These forces directly deform the skeleton structure so as to be shifted in the horizontal direction as shown in FIG. 9, and cause severe shaking at the upper part of the earthquake-resistant wall structure 3. Even if the earthquake-resistant wall structure 3 has a large horizontal strength and a horizontal rigidity, this structure collapses without being able to withstand the above-described acting force because the horizontal rigidity and the strength of the ramen frame structure thereunder are low.
【0028】図2は地震力の作用点がトラス構造の頂点
と一致する場合のM図である。この場合、地震力は前記
頂点Tに水平力のみとして加わる。従って、傾斜柱には
軸力だけが生じ、曲げモーメントは生じない。同様に上
梁及び基礎梁にも軸力のみの負荷がかかるにすぎない。
特に上梁は耐震壁構造体3の梁材に比べて大きな耐力の
骨組み材を使用してあるためにこの部分での変形や破断
を生じさせない。また、ラーメン構造体4はトラス構造
として機能する。傾斜柱の軸力変形は、ラーメン構造体
に対しては僅かな水平変形を生じさせ、耐震壁構造体3
に対しては支点の回転変形として働く。図3に見られる
ように耐震壁構造体3は作用力の方向に傾くがその量は
ほんの僅かであり、構造物全体は上部において大きな揺
れを生じることはなく安定している。FIG. 2 is an M diagram when the point of action of the seismic force coincides with the vertex of the truss structure. In this case, the seismic force is applied to the apex T only as a horizontal force. Therefore, only the axial force is generated on the inclined column, and no bending moment is generated. Similarly, only the axial force is applied to the upper beam and the foundation beam.
In particular, since the upper beam uses a skeleton material having a higher strength than the beam material of the earthquake-resistant wall structure 3, no deformation or breakage occurs in this portion. The ramen structure 4 functions as a truss structure. The axial force deformation of the inclined column causes slight horizontal deformation of the rigid frame structure, and the shear wall structure 3
Acts as a rotational deformation of the fulcrum. As can be seen in FIG. 3, the shear wall structure 3 tilts in the direction of the acting force, but the amount is only slight, and the entire structure is stable without significant shaking at the upper part.
【0029】図4は、作用点Pが頂点TよりもH/14
だけ低い位置(Hは建物の高さ)にあるときのM図であ
る。地震力は前記頂点に水平力だけでなく反時計方向の
曲げモーメントとして加わる。従って、傾斜柱には軸力
及び曲げモーメントが生じる(各図のラーメン構造体参
照)。こうした作用力に対してラーメン構造体4はラー
メン骨組及びトラス構造の複合構造として機能する。図
5は、図4に対応した構造体の変形状態を示す。傾斜柱
の柱頭部では、図2,3の場合に生じる水平変形に、傾
斜柱の曲げモーメントによって地震力の荷重方向への水
平変形が加算される。作用点が頂点から離れるにしたが
って変形の度合いは大きくなる。しかし、耐震壁構造体
3はラーメン構造体4に対して作用力と逆方向に傾くよ
うに変形し、構造物全体としての揺れは比較的に小さく
抑えられている。FIG. 4 shows that the action point P is higher than the vertex T by H / 14.
FIG. 3 is an M diagram when the camera is at a lower position (H is the height of a building). The seismic force is applied to the apex not only as a horizontal force but also as a counterclockwise bending moment. Therefore, an axial force and a bending moment are generated in the inclined column (see the rigid frame structure in each drawing). The ramen structure 4 functions as a composite structure of the ramen frame and the truss structure against such an acting force. FIG. 5 shows a deformed state of the structure corresponding to FIG. At the column head of the inclined column, horizontal deformation in the load direction of the seismic force is added by the bending moment of the inclined column to the horizontal deformation generated in the case of FIGS. The degree of deformation increases as the point of action moves away from the vertex. However, the earthquake-resistant wall structure 3 is deformed so as to incline in a direction opposite to the acting force with respect to the rigid frame structure 4, and the swing of the whole structure is relatively suppressed.
【0030】図6は、地震力の作用点を前記頂点より高
くした場合であり、作用点Pが頂点TよりもH/14だ
け高い位置にあるときのM図である。地震力は仮想のト
ラス構造の頂点に水平力及び時計方向の曲げモーメント
として加わる。従って、傾斜柱には軸力及び曲げモーメ
ントが生じ、ラーメン構造体4はラーメン骨組及びトラ
ス構造の複合構造として機能する。しかし、上記曲げモ
ーメントは時計方向に回転する力としてラーメン構造体
に働くので、傾斜柱の柱頭部の水平変形は、図1と2に
おける水平変形から曲げモーメントによる水平変形を控
除したものとなる。従って、上記曲げモーメントの値に
よっては、ラーメン構造体は僅かではあるが地震力の逆
方向に押し戻されるように変形し、架構としての水平剛
性は負の値(換言すれば無限大の水平剛性)を示す。し
かし、図7に見られるように上記した図5の場合とは異
なり、ラーメン構造体4の上部に位置する耐震壁構造体
3は上記作用力によって同作用力の方向に振られるの
で、作用点が上記頂点よりも大きく離れる場合には揺れ
が激しくなる。従って、作用点を仮想トラスの頂点より
も高い位置に設定するときには極力、作用点を頂点に近
い位置に選ぶ方が良い。FIG. 6 is an M diagram when the point of action of the seismic force is higher than the apex and the point of action P is higher than the apex T by H / 14. The seismic force is applied to the top of the virtual truss structure as a horizontal force and a clockwise bending moment. Therefore, an axial force and a bending moment are generated in the inclined column, and the rigid frame structure 4 functions as a composite structure of the rigid frame and the truss structure. However, since the bending moment acts on the rigid frame structure as a clockwise rotating force, the horizontal deformation of the column head of the inclined column is the horizontal deformation in FIGS. 1 and 2 minus the horizontal deformation due to the bending moment. Therefore, depending on the value of the bending moment, the ramen structure is slightly deformed so as to be pushed back in the opposite direction of the seismic force, and the horizontal rigidity of the frame is a negative value (in other words, infinite horizontal rigidity). Is shown. However, as seen in FIG. 7, unlike the case of FIG. 5 described above, the earthquake-resistant wall structure 3 located above the rigid frame structure 4 is swung in the direction of the same acting force by the above acting force. Is farther than the top, the shaking becomes severe. Therefore, when setting the action point higher than the vertex of the virtual truss, it is better to select the action point as close to the vertex as possible.
【0031】このようにして上記構造物は、耐震壁構造
体3の下部に接合されるラーメン構造体4がラーメン骨
組及びトラス構造の複合構造として機能するために、ラ
ーメン構造体4の水平剛性、水平耐力が柱を単に直立し
た従来のラーメン骨組(図8,9の例参照)に比べて極
めて高いものになり、上階に位置する耐震壁構造体3の
水平剛性に比肩し得る値を示す。この結果、耐震壁構造
体3にラーメン構造体4を接合した構造でありながら、
上下方向の水平剛性、水平耐力上のバランスが良い構造
物となる。In this manner, the above-mentioned structure has the horizontal rigidity of the rigid frame structure 4 because the rigid frame structure 4 joined to the lower part of the earthquake-resistant wall structure 3 functions as a composite structure of the rigid frame structure and the truss structure. The horizontal strength is much higher than that of a conventional rigid frame with columns simply standing upright (see examples in FIGS. 8 and 9), indicating a value comparable to the horizontal rigidity of the earthquake-resistant wall structure 3 located on the upper floor. . As a result, although the ramen structure 4 is joined to the earthquake-resistant wall structure 3,
The structure has a good balance of vertical rigidity and horizontal strength.
【0032】ラーメン構造体4は傾斜柱の傾斜角度を調
整することによって仮想トラス構造の形状が変化する。
したがって、傾斜角度の変更によってラーメン構造体4
の水平剛性を自由に調節できる。耐震壁構造体3よりも
大きな水平剛性を持たせることも勿論可能である。ま
た、傾斜柱の傾斜角度調整によるトラス構造の形状変化
は、前記した図2から図7の説明からも明らかなよう
に、構造物全体の耐震性能に大きく影響を与える。すな
わち、ラーメン構造体4がラーメン骨組とトラス構造の
複合構造としての機能を発揮し、その特徴を耐震壁構造
体3との組合せにおいて最大限に活かすためには、仮想
トラスの頂点と地震力作用点とが一致するかあるいは仮
想トラス頂点が地震力作用点よりも上位に位置するよう
ラーメン構造体4の傾斜柱の傾斜角度を設定するのが良
い。傾斜柱の傾斜角度がより鋭角になって仮想トラス頂
点が地震作用点よりも下位にある場合にも、構造力学上
のバランスの良さという点では従来例(図8と9)に勝
るものであるが、耐震性という点では仮想トラス頂点が
地震作用点になるべく近い位置になるように傾斜柱の傾
斜角度を設定するのが望ましい。The shape of the virtual truss structure of the ramen structure 4 changes by adjusting the inclination angle of the inclined column.
Therefore, the ramen structure 4 can be changed by changing the inclination angle.
You can freely adjust the horizontal rigidity. Of course, it is also possible to have a horizontal rigidity greater than that of the earthquake-resistant wall structure 3. Further, the change in the shape of the truss structure due to the adjustment of the inclination angle of the inclined column greatly affects the seismic performance of the entire structure, as is clear from the description of FIGS. That is, in order for the ramen structure 4 to function as a composite structure of the ramen frame and the truss structure, and to make the most of the features in combination with the earthquake-resistant wall structure 3, the top of the virtual truss and the seismic force It is preferable to set the inclination angle of the inclined column of the ramen structure 4 so that the point coincides or the virtual truss vertex is located higher than the seismic force action point. Even in the case where the inclination angle of the inclined column becomes sharper and the virtual truss vertex is lower than the seismic action point, it is superior to the conventional example (FIGS. 8 and 9) in terms of good structural mechanics balance. However, in terms of earthquake resistance, it is desirable to set the inclination angle of the inclined column so that the vertex of the virtual truss is as close to the seismic action point as possible.
【0033】上記した実施例の構造物は次のような付随
する特徴点を備える。本構造物は傾斜柱41に生じる地
震時の応力は軸力が支配的となることから、傾斜柱41
の部材断面を小さくすることが可能となる。傾斜柱41
を設けることによって構造物の最下階の両端の柱間長さ
を大きくできるので、構造物の塔状比(=構造物の高さ
/柱間長さ)を小さくできる。従って、地震時に建物を
転倒させようとする曲げモーメントによって、基礎に生
じる鉛直力(引抜力または圧縮力)が小さくなるので、
基礎及び杭を小さくでき、建物の高層化も可能となる。The structure of the above embodiment has the following additional features. In this structure, the axial force prevails in the stress generated in the inclined column 41 during the earthquake.
Can be made smaller. Inclined pillar 41
The tower length of the structure (= height of the structure)
/ Pole length) can be reduced. Therefore, the vertical force (pulling force or compressive force) generated on the foundation is reduced by the bending moment that tries to overturn the building during an earthquake,
The foundation and piles can be made smaller, and the building can be made higher.
【0034】 図10は、2階分に相当する耐震壁構造体
を抽出し、簡単なモデルに置換し、図中右向きの地震力
が加わった時の一般的な変形図を示したものである。2
個の耐震壁33L,33Rはせん断力を負担して水平変
形及び回転変形する。しかし、開口部34に面する辺で
は鉛直方向の変形を拘束するのは境界梁35の戻し効果
しかない。従って、耐震壁構造体3は、境界梁35に大
きな応力(曲げモーメント及びせん断力)が発生する
が、そのエネルギーを吸収する。境界梁35の断面の大
きさ、耐力を調整することで、耐震壁33のせん断耐
力、水平剛性を実質的に調整することができる。即ち、
開口部34、耐震壁33、境界梁35の3つの要素の性
能、形状等を調整することによって、耐震壁構造の構造
的性能が決定される。換言すれば、本耐震壁構造では耐
震壁33にせん断力を負担させるとして、骨組としての
水平剛性、水平耐力は境界梁35で調整する。従って、
本構造物では、境界梁35を設けたことによって、上記
した傾斜柱を有するラーメン構造体と耐震壁構造体との
組合せによる構造的特徴に加えて、強固な耐震壁に靱性
が加味されている。このため、傾斜柱41によってラー
メン骨組の水平剛性、耐力が高められており、建物全体
としては上下方向に水平剛性、耐力のバランスの良いも
のになっている。[0034] Figure 10 shows a two-story earthquake-resistant wall structure
Is extracted and replaced with a simple model.
FIG. 3 shows a general deformed view when "" is added. 2
The three shear walls 33L and 33R bear horizontal shear
Deforms shape and rotation. However, on the side facing the opening 34
Is the effect of returning the boundary beam 35 to restrain the vertical deformation
There is only. Therefore, the earthquake-resistant wall structure 3 is large on the boundary beam 35.
Stress (bending moment and shear force)
Absorb that energy. Large cross section of boundary beam 35
By adjusting the size and strength, the shear strength of the
Force, horizontal rigidity can be adjusted substantially. That is,
The nature of the three elements: opening 34, shear wall 33, and boundary beam 35
By adjusting the performance and shape, the structure of the earthquake-resistant wall structure
Performance is determined. In other words, the earthquake resistant wall structure
Assuming that the shear wall 33 bears the shearing force,
The horizontal rigidity and the horizontal strength are adjusted by the boundary beam 35. Therefore,
In this structure, the provision of the boundary beams 35
Between the rigid frame structure with the inclined columns and the shear wall structure
In addition to the structural features of the combination, the toughness of strong shear walls
Is added. For this reason, the inclination column 41
The horizontal rigidity and strength of the frame are increased, and the entire building
It has a good balance of horizontal rigidity and proof strength in the vertical direction
It has become
【0035】耐震壁構造体3とラーメン構造体4から成
る構造物本体1の構造種別はRC造、SRC造、SC
造、鉄骨造が一般的であるが、本発明はこれらの構造種
別に限定されるのではなく、それぞれの機能を発揮でき
るものであれば他のものでも良い。The structural type of the structure body 1 composed of the earthquake-resistant wall structure 3 and the rigid frame structure 4 is RC type, SRC type, SC type.
Although the structure and the steel structure are generally used, the present invention is not limited to these structural types, and other structures may be used as long as they can exhibit their respective functions.
【0036】本発明に係る耐震壁構造体とラーメン構造
体の複合構造は、種々の変形例を採ることができる。以
下、更に説明する。 第2実施例 図11は本発明の実施例2を示す。この実施例では、耐
震壁構造体103の下部に傾斜柱141を有するラーメ
ン構造体104を接合し、更にラーメン構造体104の
下部に耐震壁構造体203を接合してある。すなわち、
構造物本体101は、1スパン、7階建ての規模で、最
上階から順に耐震壁構造体103(7階から5階)、ラ
ーメン構造体104(4階)、耐震壁構造体203(3
階から1階)が配設されている。The composite structure of the earthquake-resistant wall structure and the rigid frame structure according to the present invention can take various modifications. This will be further described below. Second Embodiment FIG. 11 shows a second embodiment of the present invention. In this embodiment, a rigid frame structure 104 having an inclined column 141 is joined to a lower portion of the earthquake-resistant wall structure 103, and an earthquake-resistant wall structure 203 is joined to a lower portion of the rigid frame structure 104. That is,
The structure body 101 is a 1-span, 7-storey scale, and in order from the top floor, the earthquake-resistant wall structure 103 (7th to 5th floors), the ramen structure 104 (4th floor), and the earthquake-resistant wall structure 203 (3
From the first floor to the first floor).
【0037】上部及び下部の耐震壁構造体103,20
3は、共に上記した実施例1と同様に直立する柱間に各
階で耐震壁133,233を固定してある。上部の耐震
壁構造体103の耐震壁には中央に境界梁135を持つ
開口部134が形成され、下部の耐震壁構造体203の
耐震壁233にはその一側(図中左側)に境界梁235
を持つ開口部234が形成されている。上部の耐震壁構
造体103と中間のラーメン構造体104の関係は上記
した実施例1と同様である。ラーメン構造体104の傾
斜柱141は実施例1の仮想トラスと地震力作用点との
関係に基づいて傾斜角度が設定されている。ラーメン構
造体104と上部耐震壁構造体103の境部に位置する
梁材142’は、耐震壁構造体103の枠梁材132よ
りも高耐力の骨組み材を使用してある。The upper and lower earthquake-resistant wall structures 103, 20
No. 3, the earthquake-resistant walls 133 and 233 are fixed on each floor between the upright columns as in the first embodiment. An opening 134 having a boundary beam 135 in the center is formed in the shear wall of the upper shear wall structure 103, and a boundary beam is provided on one side (left side in the figure) of the shear wall 233 of the lower shear wall structure 203. 235
Is formed. The relationship between the upper earthquake-resistant wall structure 103 and the intermediate ramen structure 104 is the same as in the first embodiment. The inclination angle of the inclined column 141 of the ramen structure 104 is set based on the relationship between the virtual truss of Embodiment 1 and the point of action of the seismic force. The beam 142 ′ located at the boundary between the rigid frame structure 104 and the upper earthquake-resistant wall structure 103 uses a frame material having higher strength than the frame beam 132 of the earthquake-resistant wall structure 103.
【0038】下部耐震壁構造体203は、ラーメン構造
体104の傾斜柱141の脚部に直立柱231を剛接合
してラーメン構造体104と一体化してある。ラーメン
構造体の傾斜柱141の柱脚部は柱頭部よりも間隔が広
くなるため、上部耐震壁構造体103のスパン長さより
も下部耐震壁構造体203のスパン長さの方を長くでき
る。これにより、ラーメン構造体104を挟んで上下階
の住戸プランを異なるものに選定でき、更に設計の自由
度が広がる。本実施例の構造体は、上下の耐震壁構造体
103,203の中間部に耐震壁を持たない階を有する
が、この階が傾斜柱141を持つラーメン構造体104
によって骨組み形成され、上下部の耐震壁構造体10
3,203と同等の水平剛性、水平耐性、靱性を具える
ため、全体が連層耐震壁構造とした構造物以上の耐震構
造となる。The lower earthquake-resistant wall structure 203 is integrated with the rigid frame structure 104 by rigidly connecting the upright columns 231 to the legs of the inclined columns 141 of the rigid frame structure 104. Since the column bases of the inclined columns 141 of the ramen structure are wider than the column caps, the span length of the lower earthquake-resistant wall structure 203 can be longer than the span length of the upper earthquake-resistant wall structure 103. As a result, different dwelling unit plans can be selected for the upper and lower floors with the ramen structure 104 interposed therebetween, and the degree of freedom in design further increases. The structure according to the present embodiment has a floor without an earthquake-resistant wall in the middle of the upper and lower earthquake-resistant wall structures 103 and 203, and this floor has a ramen structure 104 having an inclined column 141.
And the upper and lower earthquake-resistant wall structures 10
In order to provide horizontal rigidity, horizontal resistance, and toughness equivalent to that of 3,203, the entire structure has a seismic structure more than a structure with a multi-story shear wall structure.
【0039】実施例3 図12は本発明の実施例3に係る構造物の正面図であ
る。この建物は14階建てで、最上階から4階までを住
居空間が形成された住居階に、またその下部の3階を非
住居階にしてある。本構造物は3スパンで構成されてい
る。柱位置での通り符号を左側から右側に順に、I通、
II通、III通、IV通で表示する。即ち、第1スパンはI
通〜II通間、第2スパンはII通〜III通間、第3スパン
はIII通〜IV通間を示す。Third Embodiment FIG. 12 is a front view of a structure according to a third embodiment of the present invention. This building has 14 floors, with the top floor to the fourth floor being the residential floor where the living space is formed, and the lower three floors being the non-residential floor. This structure is composed of three spans. The street signs at the pillar position are in order from left to right, I through,
Displayed as II, III, IV. That is, the first span is I
The second span indicates between II and III, and the third span indicates between III and IV.
【0040】第1スパン及び第3スパンでは、最上階か
ら4階まで耐震壁構造体303(303R,303L)
が中廊下306を挟んで構築されている。図中左右の耐
震壁構造体303R,303Lは、耐震壁333のそれ
ぞれ外側寄りに開口334が形成されている。左右の耐
震壁構造体303R,303Lは第2スパンの中廊下3
06によって接続されている。In the first span and the third span, from the top floor to the fourth floor, the earthquake-resistant wall structures 303 (303R, 303L)
Is built across the central corridor 306. In the left and right earthquake-resistant wall structures 303R and 303L in the figure, openings 334 are formed near the outer sides of the earthquake-resistant wall 333, respectively. The left and right earthquake-resistant wall structures 303R and 303L are in the middle corridor 3 of the second span.
06.
【0041】本構造物は、3階から1階までがラーメン
構造体304となっている。耐震壁構造体303のI通
の直立柱とIV通の直立柱の脚部に柱頭部を剛接合された
ラーメン構造体304の傾斜柱341は、外方に向けて
末広がりに延びて基礎に至っている。両傾斜柱341の
柱頭部相互を連結する上梁342’(耐震壁構造体30
3の最下階の梁に相当)は、耐震壁構造体303の各階
の枠梁332あるいはラーメン構造体304の他の支持
梁342に比べて大きな耐力を有する骨組み材によって
形成されている。両傾斜柱341と上梁342’と基礎
梁323とは接合され、外形が略台形状を成す。また、
本構造物は、ラーメン構造体内部空間のII通とIII通に
補強柱307が立設され、これらの柱頭部をII通もしく
はIII通の耐震壁構造体303の直立柱の基部に接合し
てある。In this structure, a ramen structure 304 is provided from the third floor to the first floor. The inclined column 341 of the rigid frame structure 304 whose column capitals are rigidly connected to the legs of the I-standing upright pillar and the IV-standing upright pillar of the earthquake-resistant wall structure 303 extends outward to the base and extends to the foundation. I have. Upper beam 342 ′ (shear-resistant wall structure 30) connecting the capitals of both inclined columns 341 to each other
3 is formed of a framing material having a higher strength than the frame beams 332 of each floor of the earthquake-resistant wall structure 303 or the other support beams 342 of the rigid frame structure 304. The two inclined columns 341, the upper beam 342 ′, and the foundation beam 323 are joined, and the outer shape is substantially trapezoidal. Also,
In this structure, reinforcing columns 307 are erected at the II and III passages in the inner space of the ramen structure, and these column heads are joined to the bases of the upright columns of the II or III shear wall structure 303. is there.
【0042】本実施例によれば、図1の実施例と同様な
ラーメン構造体304と耐震壁構造体303の組合せに
よる構造的特徴を有するばかりでなく、中廊下を有する
比較的大きな建築物に耐震性に優れた本発明を適用でき
るものである。また、耐震壁構造体自体も開口に境界梁
を設けてあるので靱性に優れる。なお、本実施例では、
左右の耐震壁構造体303R,303Lに同一形状、同
一位置の開口部334を設けているが、本発明は必ずし
もこれに限定されるものではなく、異なる形状、異なる
位置に開口部を設けることもできる。According to the present embodiment, not only the same structure as the embodiment of FIG. 1 but also the combination of the rigid frame structure 304 and the earthquake-resistant wall structure 303, as well as a relatively large building having a central corridor. The present invention which is excellent in earthquake resistance can be applied. Also, the shear wall structure itself has excellent toughness because the boundary beam is provided at the opening. In this embodiment,
Although the left and right earthquake-resistant wall structures 303R and 303L are provided with openings 334 of the same shape and the same position, the present invention is not necessarily limited to this, and openings of different shapes and different positions may be provided. it can.
【0043】上記した各実施例以外に本発明は各種の変
形が可能である。耐震壁構造体の耐震壁に形成される開
口部の場合、設置位置は構造物の設計計画に応じて多様
に選択可能である。例えば、図13に示すように各階に
おいて一方の直立柱に接して1箇所設け(図中符号43
4参照)、あるいは図14に示すように各階において両
方の直立柱にそれぞれ接するように2箇所設ける(符号
534参照)ようにしても良く、また図15に見られる
ように途中階まで設けて(符号634参照)他の階を無
開口とすることもできる。これらの開口部はいずれも上
記した3つの実施例と同様な構造を有する。The present invention can be variously modified in addition to the above embodiments. In the case of the opening formed in the earthquake-resistant wall of the earthquake-resistant wall structure, the installation position can be variously selected according to the design plan of the structure. For example, as shown in FIG. 13, one place is provided on each floor in contact with one of the upright columns (reference numeral 43 in the figure).
4), or two places may be provided so as to be in contact with both upright pillars on each floor as shown in FIG. 14 (see reference numeral 534), or as far as the middle floor as shown in FIG. Reference numeral 634) Other floors may be left unopened. Each of these openings has the same structure as the above-described three embodiments.
【0044】ラーメン構造体についていえば、傾斜柱は
前記した略三角形の仮想のトラス構造を形成するもので
あれば種々の断面形状のものを採用し得る。図示しない
が、例えば、柱の見付け幅を柱頭部から1階の柱脚部に
向かうにつれて直線状に狭くした変断面材でも良い。逆
に柱の見付け幅を柱頭部から柱脚部に向かう程直線状に
広くした変断面材でも良い。また、柱の見付け幅は柱頭
部から屋外に面する外形線を傾斜させているが、内部に
面する外形線を鉛直にした変断面材を使用することもで
きる。With regard to the ramen structure, the inclined column may have various cross-sectional shapes as long as it forms the above-mentioned substantially triangular virtual truss structure. Although not shown, for example, a variable section material in which the width of the pillar is narrowed linearly from the column cap toward the column base on the first floor may be used. Conversely, a material having a variable cross section in which the width of the pillar is increased linearly from the column head toward the column base may be used. Further, although the found width of the pillar is such that the outer shape line facing the outside from the column head is inclined, a variable cross-section material in which the outer shape line facing the inside is vertical may be used.
【0045】ラーメン構造体の傾斜柱はその柱頭部を耐
震壁構造体の直立柱の脚部に直接接続する必要はなく、
耐震壁構造体全体の脚部に接合すれば良い。図示しない
が、耐震壁構造体の直立柱をそのまま下方に延長して傾
斜柱の柱脚部と交差する位置に接続させ、傾斜柱の柱頭
部を直立柱の内方で耐震壁構造体の底部(例えば図1の
実施例で最下階である4階の耐震壁の側端位置)に接合
する。このように構成することで、傾斜柱が建物の外壁
面から突出しなくなり建物の外観が良くなる利点があ
る。なお、直立柱は上階の耐震壁構造体の両側の柱から
伝わる長期柱軸力を支持するためのもので、地震力には
余り抵抗しない。地震力は殆ど傾斜柱によって負担され
る。The inclined column of the ramen structure does not need to directly connect its column cap to the leg of the upright column of the earthquake-resistant wall structure.
What is necessary is just to join to the leg part of the whole earthquake-resistant wall structure. Although not shown, the upright column of the earthquake-resistant wall structure is extended downward as it is and connected to a position intersecting the column base of the inclined column, and the column head of the inclined column is located inside the upright column at the bottom of the earthquake-resistant wall structure. (For example, the side end position of the fourth floor which is the lowest floor in the embodiment of FIG. 1). With this configuration, there is an advantage that the inclined pillar does not protrude from the outer wall surface of the building and the appearance of the building is improved. The upright columns are intended to support the long-term axial force transmitted from the columns on both sides of the upper floor earthquake-resistant wall structure, and do not significantly resist seismic forces. The seismic force is mostly borne by the inclined columns.
【0046】また、ラーメン構造体は耐震壁を持たない
空間を少なくとも1つの階に有することが必要である
(上記した実施例ではいずれも傾斜柱によって囲まれた
階の全てを耐震壁のない階にしてある)。必要によって
は特定の階に耐震壁を組み込むようにしても良い。更
に、ラーメン構造体の傾斜柱の柱脚部の下に地下構造体
を設けることもできる。地下構造体は地下駐車場、機械
室、倉庫等に使用される。地下構造体のスパン長を住戸
階のスパン長より大きくして、駐車場計画を容易にする
ことができる利点がある。Further, it is necessary for the ramen structure to have at least one space having no earthquake-resistant wall on all floors. It is). If necessary, an earthquake-resistant wall may be incorporated at a specific floor. Further, an underground structure can be provided under the column base of the inclined column of the ramen structure. The underground structure is used for an underground parking lot, a machine room, a warehouse, and the like. There is an advantage that the span length of the underground structure is longer than the span length of the dwelling unit floor, so that parking lot planning can be facilitated.
【0047】上記した実施例はいずれも本発明を集合住
宅のはり間方向の構造物に適用したが、本発明はこれに
限定されるものではなく集合住宅のはり間方向以外の構
造物にも適用可能である。集合住宅の基準階の平面形式
は片廊下方式、中廊下方式に限定されず、中空コアー方
式、雁行方式等でも良い。また建物の用途も集合住宅に
限定されず、事務所、ホテル等の他の用途の建物の構造
物にも幅広く適用できる。更に基礎構造体は杭基礎につ
いて説明したが、本発明は勿論これに限定されるもので
はなく、直接基礎であっても良い。In each of the above-described embodiments, the present invention is applied to the structure of the apartment house in the direction between the beams. However, the present invention is not limited to this. Applicable. The floor type of the standard floor of the apartment complex is not limited to the one-way corridor type or the middle-type corridor type, but may be a hollow core type, a geese type or the like. In addition, the use of the building is not limited to the condominium, but can be widely applied to structures of buildings for other uses such as offices and hotels. Furthermore, although the foundation structure has been described with reference to a pile foundation, the present invention is not limited to this, and may be a direct foundation.
【0048】[0048]
【発明の効果】以上述べたように本発明によれば、耐震
壁構造体の下階に末広がりに延びる傾斜柱を持つラーメ
ン構造体を接続してあり、ラーメン構造体はラーメン骨
組の特性に仮想のトラス構造を加味した複合構造を成
し、極めて高い水平剛性と水平耐力を有するので、耐震
壁を持たない階を耐震壁構造体の下方に配置する構造で
ありながら、水平剛性、水平耐力の点で上下にバランス
のとれた構造体を提供できる。また、耐震壁構造体は任
意の階の耐震壁に境界梁を備える開口部を有しているの
で、開口部の形状、位置、あるいは境界梁の部材性能を
変えることによって耐震壁構造体の構造的性能を適正に
調整できる。しかも、高い水平剛性と耐力を有する耐震
壁構造体に対して開口部及び境界梁を設けることによっ
て、地震応答値を低減し、変形性能に優れた構造靱性を
付与できるので、全体として水平剛性、水平耐力、及び
靱性に優れた構造体を提供できる。As described above, according to the present invention, a ramen structure having an inclined column extending divergently is connected to the lower floor of the earthquake-resistant wall structure, and the ramen structure is imagined based on the characteristics of the ramen frame. The truss structure has a very high level of horizontal rigidity and horizontal strength, and the floor without the earthquake-resistant wall is located below the earthquake-resistant wall structure. It is possible to provide a structure that is balanced in terms of points. Also, since the earthquake-resistant wall structure has an opening provided with a boundary beam on the earthquake-resistant wall of any floor, the structure of the earthquake-resistant wall structure is changed by changing the shape, position, or member performance of the boundary beam. Target performance can be adjusted appropriately. In addition, by providing openings and boundary beams for the earthquake-resistant wall structure having high horizontal rigidity and strength, the seismic response value can be reduced and structural toughness with excellent deformation performance can be imparted. A structure excellent in horizontal proof stress and toughness can be provided.
【0049】また、本発明によれば、地震時に傾斜柱に
作用する応力は軸力が支配的で曲げモーメントやせん断
力が少なくなるので、地震時にはこの部分での揺れが少
なく、上階の耐震壁構造体の揺れも抑えることができ、
耐震壁構造体とラーメン構造体とが構造上有機的に結合
することによって柱を健全な状態に確保し、建物の耐震
性を向上させることができる。Further, according to the present invention, since the stress acting on the inclined column during the earthquake is dominated by the axial force and the bending moment and the shearing force are reduced, the shaking at this portion during the earthquake is small, and The shaking of the wall structure can be suppressed,
The structurally organic coupling between the earthquake-resistant wall structure and the ramen structure secures the pillars in a healthy state, thereby improving the earthquake resistance of the building.
【0050】また、ラーメン構造体は、その内部空間を
駐車場、集会室、広場、遊戯場、あるいはピロティ、吹
き抜きといった住宅とは異なる様々な用途空間として利
用できるので、設計の自由度あるいは融通性に富む構造
体を構築できる。Further, the ramen structure can be used as a parking space, a meeting room, a plaza, a playground, or a variety of use spaces different from a house such as a piloti and a blown-out space, so that the degree of freedom or design flexibility can be improved. A structure with rich properties can be constructed.
【0051】更に、ラーメン構造体は、傾斜柱の材軸の
傾斜角度を変えることによって仮想のトラス構造の形を
変更できるので、水平剛性の調節を自由に行うことがで
きる。構造物の最下階の両端の柱間長さを大きくするこ
とで、構造物の塔状比(=構造物の高さ/柱間長さ)を
小さくすることができ、これにより地震時の転倒モーメ
ントによる基礎に生じる鉛直力(引抜力または圧縮力)
が小さくなるので、基礎及び杭を小さくすることがで
き、建物の高層化も可能となる。これらはいずれも傾斜
柱の断面性能を大きくすることなく傾斜させることによ
ってもたらされる効果であり、コストも比較的に低く抑
えることができる。Furthermore, in the rigid frame structure, the shape of the virtual truss structure can be changed by changing the inclination angle of the axis of the inclined column, so that the horizontal rigidity can be freely adjusted. By increasing the length between the columns at both ends of the lowest floor of the structure, the tower ratio (= structure height / length between columns) of the structure can be reduced, which allows Vertical force (pulling force or compressive force) generated on the foundation due to overturning moment
The size of the foundation can be reduced, and the size of the foundation and the pile can be reduced. These are all effects brought by inclining the inclined column without increasing the cross-sectional performance thereof, and the cost can be kept relatively low.
【図1】本発明の実施例1に係るはり間方向構造物の正
面図。FIG. 1 is a front view of an inter-beam direction structure according to a first embodiment of the present invention.
【図2】図1の構造物の地震時における挙動を示す説明
図で、仮想トラス構造の頂点と地震作用点とが一致して
いる場合のM図。FIG. 2 is an explanatory diagram showing a behavior of the structure of FIG. 1 during an earthquake, and is an M diagram in a case where a vertex of a virtual truss structure coincides with an earthquake action point.
【図3】図2の場合の構造物の変形状態を示す図。FIG. 3 is a diagram showing a deformed state of the structure in the case of FIG. 2;
【図4】図1の構造物の地震時における挙動を示す説明
図で、仮想トラス構造の頂点が地震作用点よりもH/1
4だけ上方に位置している場合のM図。FIG. 4 is an explanatory diagram showing the behavior of the structure of FIG. 1 during an earthquake, wherein the top of the virtual truss structure is H / 1 higher than the point of seismic action;
FIG. 8 is an M diagram in a case where it is located only 4 above.
【図5】図4の場合の構造物の変形状態を示す図。FIG. 5 is a diagram showing a deformed state of the structure in the case of FIG. 4;
【図6】図1の構造物の地震時における挙動を示す説明
図で、仮想トラス構造の頂点が地震作用点よりもH/1
4だけ下方に位置している場合のM図。FIG. 6 is an explanatory diagram showing the behavior of the structure of FIG. 1 during an earthquake, wherein the vertex of the virtual truss structure is H / 1 higher than the point of seismic action;
FIG. 8 is an M diagram when the device is located only 4 below.
【図7】図6の場合の構造物の変形状態を示す図。FIG. 7 is a view showing a deformed state of the structure in the case of FIG. 6;
【図8】図16(従来例)の構造物に地震作用力が負荷
されたときのM図。FIG. 8 is an M diagram when a seismic force is applied to the structure of FIG. 16 (conventional example).
【図9】図8の場合の構造物の変形状態を示す図。FIG. 9 is a diagram showing a deformed state of the structure in the case of FIG. 8;
【図10】図1の構造物の2階分の耐震壁構造体におけ
る地震時の挙動を示す説明図。FIG. 10 is an explanatory view showing the behavior of the two-story earthquake-resistant wall structure of the structure of FIG. 1 during an earthquake.
【図11】本発明の実施例2に係るはり間方向構造物の
正面図。FIG. 11 is a front view of an inter-beam direction structure according to a second embodiment of the present invention.
【図12】本発明の実施例3に係るはり間方向構造物の
正面図。FIG. 12 is a front view of an inter-beam direction structure according to a third embodiment of the present invention.
【図13】耐震壁に形成される開口部の位置の変形例を
示すはり間方向構造物の正面図。FIG. 13 is a front view of the inter-beam structure showing a modification of the position of the opening formed in the earthquake-resistant wall.
【図14】耐震壁に形成される開口部の位置の別の変形
例を示すはり間方向構造物の正面図。FIG. 14 is a front view of an inter-beam direction structure showing another modification of the position of the opening formed in the earthquake-resistant wall.
【図15】耐震壁に形成される開口部の位置の更に別の
変形例を示すはり間方向構造物の正面図。FIG. 15 is a front view of an inter-beam direction structure showing still another modified example of the position of the opening formed in the earthquake-resistant wall.
【図16】従来例における基準階の平面図。FIG. 16 is a plan view of a reference floor in a conventional example.
【図17】従来例のはり間方向構造物の正面図。FIG. 17 is a front view of a conventional structure between beams.
1・・・・・・・・・・・・・・構造物本体 2・・・・・・・・・・・・・・基礎構造物 3,103,203,303・・耐震壁構造体 4、104,304・・・・・・ラーメン構造体 31,231・・・・・・・・・直立柱 32,332・・・・・・・・・枠梁 33,133,333・・・・・耐震壁 34,334、434,534,634・・・・開口部 41,141,341・・・・・傾斜柱 35,135,335・・・・・境界梁 1 Structure main body 2 Basic structure 3, 103, 203, 303-Earthquake-resistant wall structure 4 , 104, 304 ... ramen structure 31, 231 ... upright column 32, 332 ... frame beam 33, 133, 333 ...・ Earthquake-resistant wall 34,334,434,534,634 ・ ・ ・ ・ Opening 41,141,341 ・ ・ ・ ・ ・ ・ Slope column 35,135,335 ・ ・ ・ ・ ・ ・ ・ Boundary beam
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭60−212537(JP,A) 特開 平8−338154(JP,A) 特開 平9−13739(JP,A) 特開 平1−125474(JP,A) 実開 平2−150309(JP,U) 実開 昭53−134714(JP,U) (58)調査した分野(Int.Cl.7,DB名) E04H 9/02 E04B 1/20 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-60-212537 (JP, A) JP-A-8-338154 (JP, A) JP-A-9-13739 (JP, A) JP-A-1 125474 (JP, A) JP-A 2-150309 (JP, U) JP-A 53-134714 (JP, U) (58) Fields investigated (Int. Cl. 7 , DB name) E04H 9/02 E04B 1 / 20
Claims (7)
震壁を持たない階を少なくとも一部に有するラーメン構
造体を接合して成り、 上記耐震壁構造体は、各階が、各階の対向する2本の直
立柱と上下階の枠梁とから成る骨組に単一の耐震壁を一
体化させた耐震壁構造を成し、 少なくとも一部の階の耐震壁構造は、2本の直立柱間の
中間部に鉛直部材を持たない開口部を形成するとともに
この開口部の上辺に境界梁を設けることにより、開口部
左右の耐震壁同士を上記境界梁を介して構造部材として
一体化して成り、 一方、上記ラーメン構造体は、耐震壁構造体と同一架構
面内で間隔を置き外方に向けて末広がりに傾斜した一対
の傾斜柱を有し、これらの傾斜柱の柱頭部が上記耐震壁
構造体の脚部に連結され、また、耐震壁構造体との境に
耐震壁構造体の梁よりも耐力の大きな軸材から成る上梁
が架設され、この上梁と基礎梁等の下梁と一対の前記し
た傾斜柱とによって略台形状の骨組が形成される、 ことを特徴とする耐震建築構造。An earthquake-resistant wall structure having a plurality of floors is joined to a ramen structure having a floor having no earthquake-resistant wall in at least a part thereof at a lower portion thereof. A seismic wall structure is formed by integrating a single earthquake-resistant wall into a frame composed of two upright columns facing each other and frame beams on the upper and lower floors. At least some floors have two earthquake-resistant wall structures. By forming an opening without a vertical member in the middle part between the standing columns and providing a boundary beam on the upper side of this opening, the earthquake-resistant walls on the left and right of the opening are integrated as a structural member via the boundary beam On the other hand, the ramen structure has a pair of inclined columns which are spaced apart in the same frame surface as the earthquake-resistant wall structure and inclined outward and divergent toward the outside, and the column heads of these inclined columns are Connected to the legs of the wall structure, and at the boundary with the earthquake-resistant wall structure An upper beam made of a shaft material having a greater strength than the beam of the diaphragm wall structure is erected, and a substantially trapezoidal frame is formed by the upper beam, a lower beam such as a foundation beam, and a pair of the inclined columns, An earthquake-resistant building structure characterized by the following.
震壁を持たない階を少なくとも一部に有するラーメン構
造体を接合して成り、 上記耐震壁構造体は、各階が、各階の対向する2本の直
立柱と上下階の枠梁とから成る骨組に耐震壁を一体化さ
せた耐震壁構造を成し、 少なくとも一部の階の耐震壁構造は、直立柱に近接する
耐震壁側端部に耐震壁側端部がわに鉛直部材を持たない
開口部を形成するとともにこの開口部の上辺に境界梁を
設けることにより、耐震壁と直立柱とを上記境界梁を介
して構造部材として一体化して成り、 一方、上記ラーメン構造体は、耐震壁構造体と同一架構
面内で間隔を置き外方に向けて末広がりに傾斜した一対
の傾斜柱を有し、これらの傾斜柱の柱頭部が上記耐震壁
構造体の脚部に連結され、また、耐震壁構造体との境に
耐震壁構造体の梁よりも耐力の大きな軸材から成る上梁
が架設され、この上梁と基礎梁等の下梁と一対の前記し
た傾斜柱とによって略台形状の骨組が形成される、 ことを特徴とする耐震建築構造。2. A seismic wall structure having a plurality of floors, and a ramen structure having at least a part of a floor without a seismic wall is joined to a lower portion of the seismic wall structure. An anti-seismic wall structure is formed by integrating an anti-seismic wall into a framework consisting of two opposing upright columns and frame beams on the upper and lower floors. By forming an opening at the side end that does not have a vertical member with an alligator on the side end, and providing a boundary beam on the upper side of this opening, the earthquake-resistant wall and the upright column are structured via the boundary beam. On the other hand, the ramen structure has a pair of inclined columns which are spaced apart in the same frame surface as the earthquake-resistant wall structure and are inclined outward and divergently outward. The column capital is connected to the leg of the above-mentioned earthquake-resistant wall structure, and An upper beam made of a shaft material having a higher strength than the beam of the earthquake-resistant wall structure is erected at the boundary with the body, and a substantially trapezoidal frame is formed by the upper beam, a lower beam such as a foundation beam, and a pair of the inclined columns. A seismic building structure, characterized in that:
おいて、 前記ラーメン構造体の下部に耐震壁構造体を更に接合す
ることにより、上下の耐震壁構造体の間に上記ラーメン
構造体が配設されている、 ことを特徴とする耐震建築構造。3. The earthquake-resistant building structure according to claim 1 or 2, wherein the earthquake-resistant wall structure is further joined to a lower portion of the frame structure, so that the frame structure is arranged between the upper and lower earthquake-resistant wall structures. An earthquake-resistant building structure, which is provided.
鋼によって形成されている、 請求項1から請求項3のいずれかに記載の耐震建築構
造。4. The earthquake-resistant building structure according to claim 1, wherein the boundary beam of the opening is formed of a low yield point steel having high toughness.
を、両傾斜柱の軸線を延長した交点が地震による建物へ
の水平荷重の合力の作用点とその高さ位置においてほぼ
等しいかこれよりも上方に位置するように設定した、 請求項1から請求項3のいずれかに記載の耐震建築構
造。5. The inclination angle of the two inclined columns of the rigid frame structure is substantially equal to or equal to the height of the point of application of the horizontal load to the building due to the earthquake at the intersection where the axes of the both inclined columns are extended. The earthquake-resistant building structure according to any one of claims 1 to 3, wherein the building is set so as to be positioned higher than the building.
を、両傾斜柱の軸線を延長した交点が地震による建物へ
の水平荷重の合力の作用点よりも下方位置で当該作用点
に近接するように設定した、 請求項1から請求項3のいずれかに記載の耐震建築構
造。6. The angle of inclination of both the inclined columns of the ramen structure, the intersection of the axes of the both inclined columns being closer to the point of application than the point of application of the resultant force of the horizontal load on the building due to the earthquake. The earthquake-resistant building structure according to any one of claims 1 to 3, wherein the building is set to perform the following.
震壁の壁厚と等しい、 ことを特徴とする請求項1から請求項3のいずれかに記
載の耐震建築構造。7. The earthquake-resistant building structure according to claim 1, wherein a beam width of the frame beam is equal to a wall thickness of the earthquake-resistant wall connected to the frame beam.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21264697A JP3273357B2 (en) | 1997-07-23 | 1997-07-23 | Seismic building structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21264697A JP3273357B2 (en) | 1997-07-23 | 1997-07-23 | Seismic building structure |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH1136651A JPH1136651A (en) | 1999-02-09 |
JP3273357B2 true JP3273357B2 (en) | 2002-04-08 |
Family
ID=16626088
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21264697A Expired - Fee Related JP3273357B2 (en) | 1997-07-23 | 1997-07-23 | Seismic building structure |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3273357B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006316420A (en) * | 2005-05-10 | 2006-11-24 | Sumitomo Fudosan Kk | Building |
JP4667960B2 (en) * | 2005-05-25 | 2011-04-13 | 積水化学工業株式会社 | Building with a piloti floor |
JP4994191B2 (en) * | 2007-11-02 | 2012-08-08 | 大成建設株式会社 | Structure |
CN106368322B (en) * | 2016-09-27 | 2018-12-04 | 北京市机械施工有限公司 | A kind of installation method for the bi-directional symmetrical inclination steel column between super high-rise building conversion layer |
CN116110683A (en) * | 2022-12-02 | 2023-05-12 | 江苏思源赫兹互感器有限公司 | High shock-resistant transformer |
-
1997
- 1997-07-23 JP JP21264697A patent/JP3273357B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH1136651A (en) | 1999-02-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3273357B2 (en) | Seismic building structure | |
JP4423640B2 (en) | Building structure | |
JP5711897B2 (en) | Seismic strengthening method and seismic strengthening frame for existing buildings | |
JP3725863B2 (en) | Buildings for mixed use | |
JP5873194B2 (en) | Seismic strengthening method and seismic strengthening frame for existing buildings | |
JP3356419B2 (en) | Seismic building structure | |
JPH1136650A (en) | Aseismatic building structure | |
JP2914187B2 (en) | Bending deformation control type vibration control frame | |
JP3397749B2 (en) | Seismic frame structure | |
JP3517352B2 (en) | Apartment house | |
JP2002161580A (en) | Multiple dwelling house structure | |
JP3211164B2 (en) | Seismic building structure | |
JP3357352B2 (en) | Seismic building structure | |
JPH08277587A (en) | Framework bearing wall and frame work construction method based on its application | |
JPH10219827A (en) | Framing structure of multistoried building | |
JPH02128035A (en) | Method for earthquake-resistant reinforcement for opening of reinforced concrete structure | |
JP3518414B2 (en) | Medium to high-rise building structure | |
JPH0235136A (en) | Precast and prestressed concrete low-story house and its manufacture | |
JPH10219819A (en) | Structure of multiple dwelling house | |
JP2651505B2 (en) | Frame structure of high-rise building | |
JPH0463947B2 (en) | ||
McMullin | Concrete Lateral Design | |
Sarkar et al. | Survey and assessment of seismic safety of multi-storeyed buildings in Guwahati, India | |
Kowalczyh | Tall Buildings: Past, Present & Future Developments | |
JPH0469690B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080201 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110201 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120201 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120201 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130201 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140201 Year of fee payment: 12 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |