JPH1135941A - Antiferroelectric liquid crystal composition - Google Patents

Antiferroelectric liquid crystal composition

Info

Publication number
JPH1135941A
JPH1135941A JP10139994A JP13999498A JPH1135941A JP H1135941 A JPH1135941 A JP H1135941A JP 10139994 A JP10139994 A JP 10139994A JP 13999498 A JP13999498 A JP 13999498A JP H1135941 A JPH1135941 A JP H1135941A
Authority
JP
Japan
Prior art keywords
liquid crystal
antiferroelectric
crystal composition
antiferroelectric liquid
general formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10139994A
Other languages
Japanese (ja)
Inventor
Takahiro Matsumoto
隆宏 松本
Masahiro Kino
正博 城野
Tomoyuki Yui
知之 油井
Hironori Motoyama
裕規 本山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP10139994A priority Critical patent/JPH1135941A/en
Publication of JPH1135941A publication Critical patent/JPH1135941A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal Substances (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable setting a response speed II freely to some extent while maintaining an antiferroelectric phase over a broad range of temperatures without causing a detrimental effect to a response speed I by adding a swallowtail compound to one or more antiferroelectric liquid crystal compounds and a mixture of phenylester compounds. SOLUTION: A response speed I refers to a response speed from an antiferroelectric state to a ferroelectric state and a response speed II refers to a response speed from a ferroelectric state to an antiferroelectric state. A swallowtail compound is represented by formula I (wherein R<1> is a 4-10C linear alkyl; X is H or F; and (m) is 2 or 3) and an antiferroelectric liquid crystal compound is represented by formula II (wherein R<2> is a 6-12C linear alkyl; Y is H or F; A is -CH3 or -CF3 ; (r) is 0 or 1; and when A is -CH3 , (r) is 0 and (p) is 4-10, when A is -CF3 and (r) is 0, (p) is 6-8, and when A is -CF3 and (r) is 1, S is 5-8 and (p) is 2 or 4) and a phenylester compound is represented by formula III (wherein R<3> is a 5-10C linear alkyl; Z is H or F; and (n) is 5-10).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はスワローテイル型化合物
を含む新規な反強誘電性液晶組成物並びにそれを用いた
液晶表示素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a novel antiferroelectric liquid crystal composition containing a swallow-tail type compound and a liquid crystal display device using the same.

【0002】[0002]

【従来の技術】液晶表示素子は、低電圧作動性、低消費
電力性、薄型表示が可能である事等により、現在までに
各種の小型表示素子に利用されてきた。しかし、昨今の
情報、OA関連機器分野、あるいは、テレビ分野への液
晶表示素子の応用、用途拡大に伴って、これまでのCR
T表示素子を上回る表示容量、表示品質を持つ高性能大
型液晶表示素子の要求が、急速に高まってきた。
2. Description of the Related Art Liquid crystal display devices have been used in various small display devices to date because of their low voltage operation, low power consumption, and thin display. However, with the recent information, the application of liquid crystal display elements to the OA related equipment field, or the television field, and the expansion of applications, the CR
The demand for a high-performance large-sized liquid crystal display device having a display capacity and display quality higher than that of a T display device has been rapidly increasing.

【0003】しかしながら、現在のネマチック液晶を使
用する限りにおいては、液晶テレビ用に採用されている
アクテイブマトリクス駆動液晶表示素子でも、製造プロ
セスの複雑さと歩留りの低さにより、その大型化、低コ
スト化は容易ではない。又、単純マトリクス駆動のST
N型液晶表示素子にしても、大容量駆動は必ずしも容易
ではなく、応答時間にも限界があり動画表示は困難であ
る。更にネマチック液晶を用いた表示素子は、視野角が
狭いということが、大きな問題になってきている。従っ
て、ネマチック液晶表示素子は、上記の高性能大型液晶
表示素子への要求を、満足するものとはいい難いのが実
状である。
However, as long as the current nematic liquid crystal is used, even an active matrix drive liquid crystal display element used for a liquid crystal television has a large size and a low cost due to the complexity of the manufacturing process and low yield. Is not easy. ST of simple matrix drive
Even with N-type liquid crystal display elements, large-capacity driving is not always easy, and the response time is limited, making it difficult to display moving images. Further, a narrow viewing angle of a display element using a nematic liquid crystal has become a serious problem. Therefore, the nematic liquid crystal display element cannot satisfy the demand for the above-mentioned high performance large liquid crystal display element.

【0004】このような状況のなかで、高速液晶表示素
子として注目されているのが、強誘電性液晶を用いた液
晶表示素子である。クラークとラガバールにより発表さ
れた、表面安定化型強誘電性液晶(SSFLC) 素子は、その
従来にない速い応答速度と広い視野角を有する事が注目
され、そのスイッチング特性に関しては詳細に検討され
ており、種々の物性定数を最適化するため、多くの強誘
電性液晶が合成されている。しかしながら、しきい値特
性が不十分である、層の構造がシェブロン構造をしてい
るなどからコントラストが不良である、高速応答が実現
されていない、配向制御が困難で SSFLCの最大の特徴の
1つである双安定性の実現が容易でない、機械的衝撃に
依って配向が破壊されそれの回復が困難であるなどの問
題があり、実用化にはこれらの問題の克服が必要であ
る。
In such a situation, a liquid crystal display element using a ferroelectric liquid crystal has attracted attention as a high-speed liquid crystal display element. The surface-stabilized ferroelectric liquid crystal (SSFLC) device, announced by Clark and Lagabar, has been noted for its unprecedented fast response speed and wide viewing angle, and its switching characteristics have been studied in detail. Many ferroelectric liquid crystals have been synthesized in order to optimize various physical constants. However, the threshold characteristics are insufficient, the layer structure has a chevron structure, the contrast is poor, the high-speed response has not been realized, the orientation control is difficult, and one of the biggest features of SSFLC is However, there are problems such as difficulty in realizing bistability, which is difficult, and difficulty in recovering the orientation due to mechanical shock, and it is necessary to overcome these problems for practical use.

【0005】これとは別に、SSFLC と異なるスイッチン
グ機構の素子の開発も、同時に進められている。反強誘
電相を有する液晶物質(以下「反強誘電性液晶」と記
す)の三安定状態間のスイッチングも、これらの新しい
スイッチング機構の1つである(Japanese Journal of A
pplied Physics, Vol.27, pp.L729, (1988))。反強誘電
性液晶素子は、3つの安定な状態を有する。すなわち、
強誘電性液晶素子で見られる、2つのユニフォ−ム状態
(Ur, Ul)と第三状態である。この第三状態が、反強誘電
相であることをChandaniらが報告している(Japanese Jo
urnal of Applied Physics, Vol.28, pp.L1261, (198
9)、Japanese Journal of Applied Physics, Vol.28, p
p.L1265, (1989))。
[0005] Apart from this, the development of elements having a switching mechanism different from that of SSFLC is also proceeding at the same time. Switching between the tristable states of a liquid crystal material having an antiferroelectric phase (hereinafter referred to as “antiferroelectric liquid crystal”) is one of these new switching mechanisms (Japanese Journal of A).
pplied Physics, Vol. 27, pp. L729, (1988)). The antiferroelectric liquid crystal device has three stable states. That is,
Two uniform states seen in ferroelectric liquid crystal devices
(Ur, Ul) and the third state. Chandani et al. Report that this third state is an antiferroelectric phase (Japanese Jo
urnal of Applied Physics, Vol. 28, pp. L1261, (198
9), Japanese Journal of Applied Physics, Vol. 28, p.
p.L1265, (1989)).

【0006】このような三安定状態間のスイッチング
が、反強誘電性液晶素子の第1の特徴である。反強誘電
性液晶素子の第2の特徴は、印加電圧に対して明確なし
きい値が存在することである。更に、メモリー性を有し
ており、これが反強誘電性液晶素子の第3の特徴であ
る。これらの優れた特徴を利用することにより、応答速
度が速く、コントラストが良好な液晶表示素子を実現で
きる。
[0006] Such switching between the three stable states is the first feature of the antiferroelectric liquid crystal device. A second feature of the antiferroelectric liquid crystal element is that there is a clear threshold value for an applied voltage. Further, it has a memory property, which is the third feature of the antiferroelectric liquid crystal element. By utilizing these excellent features, a liquid crystal display device having a high response speed and good contrast can be realized.

【0007】又、もう一つの大きな特徴として、層構造
が、電界により容易にスイッチングする事があげられる
(Japanese Journal of Applied Physics, Vol.28, pp.L
119,(1989)、Japanese Journal of Applied Physics, V
ol.29, pp.L111, (1990)) 。このことにより、欠陥が極
めて少なく、配向の自己修復能力のある液晶表示素子の
作製が可能となり、コントラストに優れた液晶素子を実
現できる。更に、強誘電性液晶では殆ど不可能である電
圧階調が、反強誘電性液晶では可能であることが実証さ
れ、フルカラー化への道が開け、一層反強誘電性液晶の
重要性が増してきている(第4回強誘電性液晶国際会議
予稿集、77頁、(1993)) 。
Another major feature is that the layer structure is easily switched by an electric field.
(Japanese Journal of Applied Physics, Vol.28, pp.L
119, (1989), Japanese Journal of Applied Physics, V
ol.29, pp.L111, (1990)). This makes it possible to manufacture a liquid crystal display element having a very small number of defects and a self-healing ability for alignment, and to realize a liquid crystal element having excellent contrast. Furthermore, it has been demonstrated that voltage gradation that is almost impossible with ferroelectric liquid crystal is possible with antiferroelectric liquid crystal, opening the way to full color, and the importance of antiferroelectric liquid crystal is further increasing. (Proceedings of the 4th International Conference on Ferroelectric Liquid Crystals, p. 77, (1993)).

【0008】以上のように、反強誘電性液晶の優位性
は、確かなものになりつつあるが、駆動温度範囲の拡大
と応答速度のより一層の向上、更にはスメクチックA相
が存在する反強誘電性液晶の開発が望まれている。応答
速度に関しては、反強誘電性液晶の場合、反強誘電状態
から強誘電状態へ、強誘電状態から反強誘電状態への二
つのスイッチングが存在する。この電圧による二つのス
イッチング速度、即ち、応答速度が表示素子の表示品質
を決める重要な因子となる。
As described above, the superiority of the antiferroelectric liquid crystal is becoming more certain, but the driving temperature range is expanded and the response speed is further improved. The development of ferroelectric liquid crystals is desired. Regarding the response speed, in the case of the antiferroelectric liquid crystal, there are two switchings from the antiferroelectric state to the ferroelectric state and from the ferroelectric state to the antiferroelectric state. The two switching speeds by this voltage, ie, the response speed, are important factors that determine the display quality of the display element.

【0009】反強誘電状態から強誘電状態への応答速度
(以下「応答速度I」と記す)は、例えば、線順次走査
する単純マトリクス駆動において、走査線一ライン当り
の書き込み速度となるので一画面を構成する走査線数を
決定することになり重要である。応答速度Iが速ければ
速いほど走査線数を増やすことができ、高精細素子の実
現が可能となる。
The response speed from the antiferroelectric state to the ferroelectric state (hereinafter referred to as "response speed I") is, for example, the writing speed per scanning line in a simple matrix drive in which line-sequential scanning is performed. It is important to determine the number of scanning lines constituting the screen. As the response speed I increases, the number of scanning lines can be increased, and a high-definition element can be realized.

【0010】強誘電状態から反強誘電状態への応答速度
(以下「応答速度II」と記す)は、素子の駆動方法の設
計により必要とされる速度は変わる。例えば、オフセッ
ト電圧の設定電圧によって変わるものである。しかし、
余りにも応答速度IIが速い場合は強誘電状態を維持(明
或は暗状態の維持)できず、一定の輝度を維持できない
ことになり、コントラストの面で問題が生ずる。逆に、
応答速度IIが余りにも遅い場合には強誘電状態から反強
誘電状態への変化(明或は暗状態から暗或は明状態への
書換え)が起こらず駆動不能となるし、また、1フレー
ム内で強誘電状態への変化が完全に終了しない場合は次
のフレームまで変化が持ち越され、そのような状態が累
積される結果、十分な暗状態が得られずコントラストが
低下してしまう。従って、応答速度IIは、表示品質にか
なり影響を与える事になる。応答速度IIは、駆動方法を
決定した後に最適な値を設定することになるが、そのた
めに応答速度IIはある程度自由に変えられる事が望まし
い。種々の駆動方式を考慮した上で、応答時間IIは 1〜
5 ミリ秒の間に設定する事が望ましい。
The required response speed from the ferroelectric state to the antiferroelectric state (hereinafter referred to as "response speed II") varies depending on the design of the element driving method. For example, it changes depending on the set voltage of the offset voltage. But,
If the response speed II is too fast, the ferroelectric state cannot be maintained (maintaining a bright or dark state), and a constant luminance cannot be maintained, which causes a problem in contrast. vice versa,
If the response speed II is too slow, no change from the ferroelectric state to the antiferroelectric state (rewriting from a bright or dark state to a dark or bright state) occurs and driving becomes impossible. If the change to the ferroelectric state is not completely completed within the above, the change is carried over to the next frame, and as a result of accumulating such states, a sufficient dark state cannot be obtained and the contrast decreases. Therefore, the response speed II has a considerable effect on display quality. The response speed II is set to an optimum value after the drive method is determined. For this purpose, it is desirable that the response speed II can be freely changed to some extent. After considering various driving methods, response time II is 1 ~
It is desirable to set within 5 milliseconds.

【0011】[0011]

【発明が解決しようとする課題】実用上、反強誘電性液
晶は、より一層の応答速度の向上と適切な応答速度の設
定、反強誘電相の温度範囲の拡大ならびにスメクチック
A相が存在する事などが望ましい。応答速度Iは、M. N
akagawa によれば反強誘電性液晶の場合、液晶分子の回
転粘性に依存することが示されている(Masahiro Nakaga
wa, Japanese Journal ofApplied Physics, 30, 1759
(1991))。即ち、粘性が低いほど応答速度は速くなる。
また、温度に対する応答速度の変化を見ると、室温付近
を境にしてそれ以下の温度では指数関数的に応答速度は
低下していく。反強誘電性液晶は、液晶相がスメクチッ
ク相であるが故に粘性が高く、そのために低温側で粘性
が急激に増大しその粘性抵抗のために応答速度が急激に
低下していくものと考えられている。
In practice, the antiferroelectric liquid crystal has a further improved response speed and an appropriate response speed, has a wider temperature range of the antiferroelectric phase, and has a smectic A phase. Things are desirable. The response speed I is M. N
According to Akagawa, antiferroelectric liquid crystals depend on the rotational viscosity of liquid crystal molecules (Masahiro Nakaga
wa, Japanese Journal of Applied Physics, 30, 1759
(1991)). That is, the lower the viscosity, the faster the response speed.
Looking at the change of the response speed with respect to the temperature, the response speed decreases exponentially at a temperature lower than the room temperature and below. The antiferroelectric liquid crystal is considered to have a high viscosity because the liquid crystal phase is a smectic phase, so that the viscosity increases rapidly at low temperatures and the response speed decreases rapidly due to the viscous resistance. ing.

【0012】この問題の解決のための具体策の一つとし
ては、比較的低粘性の化合物を液晶組成物に添加し、組
成物全体の粘性を低下させ、もって応答速度Iの改善を
計ろうとする試みが考えられる。この方法が、現在のと
ころ最も現実的な解決策になり得ると考えらるが、この
方法は反強誘電相の上限温度を低下させる傾向があり、
応答速度は改善されても反強誘電相の温度範囲の面で問
題が生じて来る。
As one of concrete measures for solving this problem, a compound having a relatively low viscosity is added to a liquid crystal composition to lower the viscosity of the whole composition and thereby to improve the response speed I. An attempt to do so is conceivable. Although this method seems to be the most realistic solution at present, it tends to lower the maximum temperature of the antiferroelectric phase,
Even if the response speed is improved, a problem occurs in the temperature range of the antiferroelectric phase.

【0013】一般にディスプレーとしての反強誘電性液
晶素子を考えたとき、バックライトにより素子の温度は
少なくとも40℃ぐらいになると考えられる。従って、正
常な素子の駆動のためには反強誘電相の上限温度は少な
くとも40℃以上必要である。また、低温側では少なくと
も10℃で素子は駆動できることが必要である。従って、
反強誘電相の下限温度は少なくとも0℃であることが望
ましい。従って、応答速度Iの改善は反強誘電相の温度
範囲に注目しつつ、改善していかなければならない。
In general, when considering an antiferroelectric liquid crystal device as a display, it is considered that the temperature of the device becomes at least about 40 ° C. due to the backlight. Therefore, the upper limit temperature of the antiferroelectric phase needs to be at least 40 ° C. or higher for normal operation of the device. On the low-temperature side, it is necessary that the element can be driven at least at 10 ° C. Therefore,
The lower limit temperature of the antiferroelectric phase is desirably at least 0 ° C. Therefore, the response speed I must be improved while paying attention to the temperature range of the antiferroelectric phase.

【0014】一方、応答速度IIの制御に関する知見は殆
どない。応答速度IIは、応答速度Iと同様に粘性依存性
があると思われるが、その依存性は小さいと考えられて
いる。従来の、応答速度IIの制御は、適当な応答速度II
を有する反強誘電性液晶を混合して行うのが普通であっ
たが、応答速度II以外の特性とのバランスが難しくある
程度の自由度をもって応答速度IIを設定する事は困難で
あった。本発明はこの様な観点からなされたものであ
り、特定のスワローテイル型化合物を特定の反強誘電性
液晶混合物に添加したとき、広い温度範囲で反強誘電相
を確保でき、かつ、応答速度Iに悪影響を及ぼさず、応
答速度IIをある程度自由に設定できる事を見いだし、本
発明を完成したものである。
On the other hand, there is almost no knowledge about the control of the response speed II. Although the response speed II seems to have viscosity dependency similarly to the response speed I, the dependency is considered to be small. Conventional control of response speed II
It is common to mix antiferroelectric liquid crystals having the following characteristics, but it is difficult to balance with characteristics other than response speed II, and it is difficult to set response speed II with a certain degree of freedom. The present invention has been made from such a viewpoint, and when a specific swallow tail type compound is added to a specific antiferroelectric liquid crystal mixture, an antiferroelectric phase can be secured in a wide temperature range, and the response speed can be improved. It has been found that the response speed II can be freely set to some extent without adversely affecting I, and the present invention has been completed.

【0015】[0015]

【課題を解決するための手段】すなわち、本発明は、下
記一般式(1) で表されるスワローテイル型化合物を、下
記一般式(2) で示される反強誘電性液晶化合物の1種或
いは2種以上および下記一般式(3) で示されるフェニル
エステル化合物の混合物に添加してなる反強誘電性液晶
組成物である。
That is, the present invention provides a swallow-tail type compound represented by the following general formula (1) and one or more antiferroelectric liquid crystal compounds represented by the following general formula (2). An antiferroelectric liquid crystal composition obtained by adding to a mixture of two or more phenyl ester compounds represented by the following general formula (3).

【0016】[0016]

【化2】 (式(1) において、R1は炭素数 4〜10の直鎖アルキル
基、Xは水素原子またはフッ素原子、mは2または3の
整数である。式(2) において、R2は炭素数 6〜12の直鎖
アルキル基、Yは水素原子またはフッ素原子、Aは-CH3
または-CF3、rは0または1であり、Aが-CH3のとき、
rが0でpが 4〜10の整数、Aが-CF3でrが0のとき、
pは 6〜8 の整数、またはAが-CF3でrが1のとき、s
は5〜8の整数、pは2もしくは4の整数である。式
(3) において、R3は炭素数 5〜10の直鎖アルキル基、Z
は水素原子またはフッ素原子、nは 5〜10の整数であ
る)
Embedded image (In the formula (1), R 1 is a linear alkyl group having 4 to 10 carbon atoms, X is a hydrogen atom or a fluorine atom, m is an integer of 2 or 3. In the formula (2), R 2 is a carbon atom. 6 to 12 linear alkyl groups, Y is a hydrogen atom or a fluorine atom, A is -CH 3
Or -CF 3 , r is 0 or 1, and when A is -CH 3 ,
When r is 0 and p is an integer of 4 to 10, A is -CF 3 and r is 0,
p is an integer of 6 to 8, or when A is -CF 3 and r is 1, s
Is an integer of 5 to 8, and p is an integer of 2 or 4. formula
In (3), R 3 is a linear alkyl group having 5 to 10 carbon atoms, Z
Is a hydrogen atom or a fluorine atom, and n is an integer of 5 to 10.)

【0017】本発明では、該一般式(1) において、R1
炭素数9の直鎖アルキル基、mが2、Xがフッ素原子で
あるスワローテイル型化合物が、好ましい反強誘電性液
晶組成物を与える。反強誘電性液晶またはその混合物と
しては、該一般式(2) において、Aが-CF3でrが1、Y
がフッ素原子であるもの、または、Aが-CH3、pが4〜
6の整数、Yがフッ素原子であるであるものが好まし
く、特にこの両者を混合したものが、諸物性のバランス
の上から特に好ましい。また、該一般式(3) において、
R3は炭素数9の直鎖アルキル基、nが8、Zがフッ素原
子であるフェニルエステル化合物を選択することが好ま
しい。
In the present invention, in the general formula (1), a swallow-tail type compound in which R 1 is a straight-chain alkyl group having 9 carbon atoms, m is 2, and X is a fluorine atom is a preferable antiferroelectric liquid crystal composition. Give things. As the antiferroelectric liquid crystal or a mixture thereof, in the general formula (2), A is -CF 3 , r is 1, Y is
Is a fluorine atom, or A is —CH 3 , and p is 4 to
It is preferable that the integer of 6 and Y be a fluorine atom, and a mixture of both is particularly preferable in view of the balance of various physical properties. In the general formula (3),
It is preferable to select a phenyl ester compound in which R 3 is a straight-chain alkyl group having 9 carbon atoms, n is 8, and Z is a fluorine atom.

【0018】本発明の反強誘電性液晶組成物において、
該一般式(1) で表されるスワローテイル型化合物が、反
強誘電性液晶組成物の 1〜60モル%、より好ましくは10
〜40モル%であり、該一般式(2) は、30〜80モル%、よ
り好ましくは40〜70モル%、該一般式(3) は、 1〜30モ
ル%、より好ましくは 5〜20モル%の範囲から選択され
る。得られた反強誘電性液晶組成物は、反強誘電相より
も高温側に少なくともスメクチックA相を有し、反強誘
電相の上限温度が40℃以上で下限温度が0℃以下である
ことが実用上好ましい。そして、本反強誘電性液晶組成
物を、走査電極と信号電極をマトリクス状に配置した1
対の電極基板間に配置してなる単純マトリクス液晶表示
素子とされる。
In the antiferroelectric liquid crystal composition of the present invention,
The swallow tail type compound represented by the general formula (1) is used in an amount of 1 to 60 mol%, more preferably 10 to 60 mol% of the antiferroelectric liquid crystal composition.
The general formula (2) is 30 to 80 mol%, more preferably 40 to 70 mol%, and the general formula (3) is 1 to 30 mol%, more preferably 5 to 20 mol%. It is selected from the range of mol%. The obtained antiferroelectric liquid crystal composition has at least a smectic A phase on a higher temperature side than the antiferroelectric phase, and the upper limit temperature of the antiferroelectric phase is 40 ° C or higher and the lower limit temperature is 0 ° C or lower. Is practically preferable. Then, the antiferroelectric liquid crystal composition was prepared by disposing a scanning electrode and a signal electrode in a matrix.
It is a simple matrix liquid crystal display element arranged between a pair of electrode substrates.

【0019】本発明で用いられる一般式(1) で示される
スワローテイル型化合物は、すでに本発明者らが示した
方法にて簡便に製造できる(特願平8-243393号)。例え
ば、m=2 の場合、次のような方法によって製造される。 (イ) R1COCl + HO-Ph-COOH → R1COO
-Ph-COOH (ロ) (イ) + SOCl2 → R1COO
-Ph-COCl (ハ) (C2H5)2CHOH + HO-Ph(X)-COCl → HO-Ph
(X)-COOCH(C2H5)2 (ニ) (ロ) + (ハ) → 目的物 式中、-Ph-は1,4-フェニレン基、-Ph(X)- は2位にF置
換していてもよい1,4-フェニレン基を示す。
The swallowtail type compound represented by the general formula (1) used in the present invention can be easily produced by the method shown by the present inventors (Japanese Patent Application No. 8-243393). For example, when m = 2, it is manufactured by the following method. (B) R 1 COCl + HO-Ph-COOH → R 1 COO
-Ph-COOH (b) (b) + SOCl 2 → R 1 COO
-Ph-COCl (c) (C 2 H 5 ) 2 CHOH + HO-Ph (X) -COCl → HO-Ph
(X) -COOCH (C 2 H 5 ) 2 (d) (b) + (c) → target compound In the formula, -Ph- is a 1,4-phenylene group, -Ph (X)-is a 2-position F It represents a 1,4-phenylene group which may be substituted.

【0020】上記製造法を簡単に説明すると次の通りで
ある。(イ) は、脂肪酸クロライドとp-ヒドロキシ安息香
酸との反応である。(ロ) は、酸クロライドの生成であ
る。(ハ) は、脂肪族アルコールとp-ヒドロキシ安息香酸
クロライドとの反応である。(ニ) は、目的物の生成反応
である。
The above-mentioned manufacturing method is briefly described as follows. (A) shows the reaction between fatty acid chloride and p-hydroxybenzoic acid. (B) is the production of acid chloride. (C) is a reaction between an aliphatic alcohol and p-hydroxybenzoic acid chloride. (D) is a reaction for producing the target substance.

【0021】また、本発明において用いられる一般式
(2) で示される反強誘電性液晶化合物は、すでに、本発
明者らが示した方法によって簡便に製造することができ
る(特開平4-198155号)。例えば、A=-CF3, r=1, s
=5, p=2 の場合、次のような方法によって製造され
る。 (1) AcO-Ph(Y)-COOH + SOCl2 → AcO-Ph(Y)
-COCl (2) (1) + HOC*H(CF3)(CH2)5OC2H5 → AcO-Ph(Y)-CO
OC*H(CF3)(CH2)5OC2H5 (3) (2) + Ph-CH2NH2 → HO-Ph(Y)-CO
OC*H(CF3)(CH2)5OC2H5 (4) R2O-Ph-Ph-COOH + SOCl2 → R2O-Ph-P
h-COCl (5) (3) + (4) → 反強誘電性
液晶化合物 式中、-Ph-は1,4-フェニレン基、-Ph(Y)- はフッ素置換
していてもよい1,4-フェニレン基、Ph- はフェニル基、
C*は不斉炭素原子を示す。
The general formula used in the present invention
The antiferroelectric liquid crystal compound represented by the formula (2) can be easily produced by the method shown by the present inventors (JP-A-4-198155). For example, A = -CF 3 , r = 1, s
= 5, p = 2, it is manufactured by the following method. (1) AcO-Ph (Y) -COOH + SOCl 2 → AcO-Ph (Y)
-COCl (2) (1) + HOC * H (CF 3 ) (CH 2 ) 5 OC 2 H 5 → AcO-Ph (Y) -CO
OC * H (CF 3 ) (CH 2 ) 5 OC 2 H 5 (3) (2) + Ph-CH 2 NH 2 → HO-Ph (Y) -CO
OC * H (CF 3 ) (CH 2 ) 5 OC 2 H 5 (4) R 2 O-Ph-Ph-COOH + SOCl 2 → R 2 O-Ph-P
h-COCl (5) (3) + (4) → antiferroelectric liquid crystal compound, wherein -Ph- is a 1,4-phenylene group, and -Ph (Y)-is a fluorine-substituted 1, 4-phenylene group, Ph- is phenyl group,
C * represents an asymmetric carbon atom.

【0022】上記製造法について、以下に簡単に説明す
る。(1) は、フッ素置換あるいは無置換のp-アセトキシ
安息香酸の塩化チオニルによる塩素化反応である。(2)
は、塩素化物(1) とアルコールとの反応によるエステル
化である。(3) は、エステル(2) の脱アセチル化であ
る。(4) は、アルキルオキシビフェニルカルボン酸の塩
素化反応である。(5) は、フェノール(3) と酸クロライ
ド(4) との反応による液晶の生成である。
The above manufacturing method will be briefly described below. (1) is a chlorination reaction of fluorine-substituted or unsubstituted p-acetoxybenzoic acid with thionyl chloride. (2)
Is esterification by reaction of chlorinated product (1) with alcohol. (3) is the deacetylation of ester (2). (4) is a chlorination reaction of alkyloxybiphenylcarboxylic acid. (5) is the formation of liquid crystal by the reaction between phenol (3) and acid chloride (4).

【0023】[0023]

【実施例】次に、実施例及び比較例を掲げて本発明を更
に具体的に説明するが、本発明はもちろんこれに限定さ
れるものではない。 実施例1 本発明の一般式(1) 、(2) および(3) に相当する下記の
化合物を、それぞれ下記に記載の割合で混合し、反強誘
電性液晶組成物を調製した。 式(1): C9H19-COO-Ph-COO-Ph(3F)-COO-CH(C2H5)2 30 モル% 式(2): C9H19-O-Ph-Ph-COO-Ph(3F)-COO-C*H(CF3)(CH2)5OC2H5 37.5 式(2): C8H17-O-Ph-Ph-COO-Ph(3F)-COO-C*H(CH3)C5H11 22.5 式(3): C9H19-COO-Ph-COO-Ph(3F)-COO-C8H17 10 式中、-Ph-は1,4-フェニレン基、-Ph(3F)-は3位にフッ
素置換した1,4-フェニレン基、C*は不斉炭素を示す。
Next, the present invention will be described more specifically with reference to examples and comparative examples, but the present invention is of course not limited thereto. Example 1 The following compounds corresponding to the general formulas (1), (2) and (3) of the present invention were mixed in the following proportions, respectively, to prepare an antiferroelectric liquid crystal composition. Formula (1): C 9 H 19 -COO-Ph-COO-Ph (3F) -COO-CH (C 2 H 5 ) 2 30 mol% Formula (2): C 9 H 19 -O-Ph-Ph- COO-Ph (3F) -COO-C * H (CF 3 ) (CH 2 ) 5 OC 2 H 5 37.5 Formula (2): C 8 H 17 -O-Ph-Ph-COO-Ph (3F) -COO -C * H (CH 3 ) C 5 H 11 22.5 Formula (3): C 9 H 19 -COO-Ph-COO-Ph (3F) -COO-C 8 H 17 10 where -Ph- is 1, 4-phenylene group, -Ph (3F)-is a 1,4-phenylene group substituted with fluorine at the 3-position, and C * is an asymmetric carbon.

【0024】調製した組成物の相系列を表1に示した。
また、この液晶組成物の30℃での応答時間を求めた結果
を表1に示した。なお、応答時間は次のようにして求め
た。ラビング処理したポリイミド薄膜(30nm)を有する I
TO電極付の液晶セル(セル厚 2μm)に、上記化合物を
等方相の状態で充填した。このセルを、毎分 1.0℃で徐
冷して、液晶を配向させた。セルを直交する偏向板間に
液晶の層方向がアナライザーまたはポーラライザーと平
行になるように設置した。光透過率の最低を0%、最高
を 100%とし、応答時間I は、30℃で 50V, 10Hzの電圧
を印加し、光透過率が10%から90%に変化するに要する
時間、応答時間IIは光透過率が90%から10%に変化する
に要する時間と定義して求めた。
The phase sequence of the prepared composition is shown in Table 1.
Table 1 shows the results of measuring the response time at 30 ° C. of the liquid crystal composition. The response time was obtained as follows. I with rubbed polyimide thin film (30nm) I
A liquid crystal cell with a TO electrode (cell thickness 2 μm) was filled with the above compound in an isotropic phase. The cell was gradually cooled at 1.0 ° C./min to align the liquid crystal. The cell was placed between the orthogonal polarizing plates so that the layer direction of the liquid crystal was parallel to the analyzer or the polarizer. The minimum response of light transmittance is 0% and the maximum response is 100%. Response time I is the time required to change the light transmittance from 10% to 90% by applying a voltage of 50V and 10Hz at 30 ° C. II was defined as the time required for the light transmittance to change from 90% to 10%.

【0025】比較例1 実施例1において、一般式(1) に相当する化合物に代え
て、下記のラセミ化合物を用いる他は同様とした結果を
表1に示した。 C9H19-COO-Ph-COO-Ph(3F)-COO-CH(CH3)C8H17 (ラセミ体) 表1の実施例1と比較例1の結果から明らかのように、
スワローテイル型化合物を用いる事によって応答時間I
の特性を損なうことなく、応答時間IIを望ましい速度に
設定する事ができた。 比較例2 実施例1において、一般式(1) に相当する化合物を40モ
ル%とし、一般式(3)に相当する化合物を用いない他は
同様とした結果を表1に示した。
Comparative Example 1 Table 1 shows the same results as in Example 1, except that the following racemic compound was used instead of the compound corresponding to the general formula (1). C 9 H 19 -COO-Ph-COO-Ph (3F) -COO-CH (CH 3 ) C 8 H 17 (racemic) As is clear from the results of Example 1 and Comparative Example 1 in Table 1,
Response time I by using swallow tail type compound
The response time II can be set to a desired speed without deteriorating the characteristics of the above. Comparative Example 2 Table 1 shows the same results as in Example 1 except that the compound corresponding to the general formula (1) was set to 40 mol% and the compound corresponding to the general formula (3) was not used.

【0026】実施例2 本発明の一般式(1) 、(2) および(3) に相当する下記の
化合物を、それぞれ下記に記載の割合で混合し、反強誘
電性液晶組成物を調製し、実施例1と同様にした結果を
表1に示した。 式(1): C9H19-COO-Ph-COO-Ph(3F)-COO-CH(C2H5)2 15 モル% 式(2): C9H19-O-Ph-Ph-COO-Ph(3F)-COO-C*H(CF3)(CH2)5OC2H5 52.5モル% 式(2): C8H17-O-Ph-Ph-COO-Ph(3F)-COO-C*H(CH3)C5H11 22.5モル% 式(3): C9H19-COO-Ph-COO-Ph(3F)-COO-C8H17 10 モル% 式中、-Ph-は1,4-フェニレン基、-Ph(3F)-は3位にフッ
素置換した1,4-フェニレン基、C*は不斉炭素を示す。
Example 2 The following compounds corresponding to the general formulas (1), (2) and (3) of the present invention were mixed in the following proportions, respectively, to prepare an antiferroelectric liquid crystal composition. The results obtained in the same manner as in Example 1 are shown in Table 1. Formula (1): C 9 H 19 -COO-Ph-COO-Ph (3F) -COO-CH (C 2 H 5 ) 2 15 mol% Formula (2): C 9 H 19 -O-Ph-Ph- COO-Ph (3F) -COO-C * H (CF 3 ) (CH 2 ) 5 OC 2 H 5 52.5 mol% Formula (2): C 8 H 17 -O-Ph-Ph-COO-Ph (3F) -COO-C * H (CH 3 ) C 5 H 11 22.5 mol% Formula (3): C 9 H 19 -COO-Ph-COO-Ph (3F) -COO-C 8 H 17 10 mol% -Ph- represents a 1,4-phenylene group, -Ph (3F)-represents a 1,4-phenylene group substituted by fluorine at the 3-position, and C * represents an asymmetric carbon.

【0027】[0027]

【表1】 相 系 列 応答時間I 応答時間II 実施例1 Cr(<-20)SCA*(63)SA(84)I 14.9μ秒 1100μ秒 比較例1 Cr(<-10)SCA*(65)SA(85)I 17.1 9900 比較例2 Cr(<-20)SCA*(72)SC*(74)SA(96)I 22 4800 実施例2 Cr(<-20)SCA*(72)SC*(77)SA(92)I 16.0 1800 相系列の記載において、()内は相転移温度 (℃) 、Crは
結晶相、SCA*は反強誘電相、SAはスメクチックA相、I
は等方相をそれぞれ示す。
[Table 1] Phase sequence Response time I Response time II Example 1 Cr (<-20) SCA * (63) SA (84) I 14.9μs 1100μs Comparative Example 1 Cr (<-10) SCA * (65 ) SA (85) I 17.1 9900 Comparative Example 2 Cr (<-20) SCA * (72) SC * (74) SA (96) I 22 4800 Example 2 Cr (<-20) SCA * (72) SC * (77) SA (92) I 16.0 1800 In the description of the phase series, () indicates the phase transition temperature (° C.), Cr is the crystal phase, SCA * is the antiferroelectric phase, SA is the smectic A phase, I
Indicates an isotropic phase, respectively.

【0028】[0028]

【発明の効果】本発明は、新規な反強誘電性液晶組成物
を提供する。本発明により提供された新規な反強誘電性
液晶組成物は、広い温度範囲で反強誘電相を有しかつ反
強誘電状態から強誘電状態へ転移する際の応答速度Iが
高速で、強誘電状態から反強誘電状態へ転移する際の応
答速度IIが適切な速度を有する事ができ、そのため表示
品質の高い反強誘電性液晶表示素子を実現できる。
The present invention provides a novel antiferroelectric liquid crystal composition. The novel antiferroelectric liquid crystal composition provided by the present invention has an antiferroelectric phase over a wide temperature range, and has a high response speed I when transitioning from an antiferroelectric state to a ferroelectric state, The response speed II at the time of transition from the dielectric state to the antiferroelectric state can have an appropriate speed, so that an antiferroelectric liquid crystal display device with high display quality can be realized.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 本山 裕規 茨城県つくば市和台22番地 三菱瓦斯化学 株式会社総合研究所内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Hiroki Motoyama 22nd Wadai, Tsukuba, Ibaraki Pref. Mitsubishi Gas Chemical Company, Ltd.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 下記一般式(1) で表されるスワローテイ
ル型化合物を、下記一般式(2) で示される反強誘電性液
晶化合物の1種或いは2種以上および下記一般式(3) で
示されるフェニルエステル化合物の混合物に添加してな
る反強誘電性液晶組成物。 【化1】 (式(1) において、R1は炭素数 4〜10の直鎖アルキル
基、Xは水素原子またはフッ素原子、mは2または3の
整数である。式(2) において、R2は炭素数 6〜12の直鎖
アルキル基、Yは水素原子またはフッ素原子、Aは-CH3
または-CF3、rは0または1であり、Aが-CH3のとき、
rが0でpが 4〜10の整数、Aが-CF3でrが0のとき、
pは 6〜8 の整数、またはAが-CF3でrが1のとき、s
は5〜8の整数、pは2もしくは4の整数である。式
(3) において、R3は炭素数 5〜10の直鎖アルキル基、Z
は水素原子またはフッ素原子、nは 5〜10の整数であ
る)
1. A swallow tail type compound represented by the following general formula (1) is replaced with one or more antiferroelectric liquid crystal compounds represented by the following general formula (2) and the following general formula (3) An antiferroelectric liquid crystal composition obtained by adding to a mixture of phenyl ester compounds represented by the formula: Embedded image (In the formula (1), R 1 is a linear alkyl group having 4 to 10 carbon atoms, X is a hydrogen atom or a fluorine atom, m is an integer of 2 or 3. In the formula (2), R 2 is a carbon atom. 6 to 12 linear alkyl groups, Y is a hydrogen atom or a fluorine atom, A is -CH 3
Or -CF 3 , r is 0 or 1, and when A is -CH 3 ,
When r is 0 and p is an integer of 4 to 10, A is -CF 3 and r is 0,
p is an integer of 6 to 8, or when A is -CF 3 and r is 1, s
Is an integer of 5 to 8, and p is an integer of 2 or 4. formula
In (3), R 3 is a linear alkyl group having 5 to 10 carbon atoms, Z
Is a hydrogen atom or a fluorine atom, and n is an integer of 5 to 10.)
【請求項2】 該一般式(1) において、R1は炭素数9の
直鎖アルキル基、mが2、Xがフッ素原子である請求項
1記載の反強誘電性液晶組成物。
2. The antiferroelectric liquid crystal composition according to claim 1, wherein in the general formula (1), R 1 is a straight-chain alkyl group having 9 carbon atoms, m is 2, and X is a fluorine atom.
【請求項3】 該一般式(2) において、Aが-CF3、rが
1、Yがフッ素原子である請求項1記載の反強誘電性液
晶組成物。
3. The antiferroelectric liquid crystal composition according to claim 1, wherein in the general formula (2), A is —CF 3 , r is 1, and Y is a fluorine atom.
【請求項4】 該一般式(2) において、Aが-CH3、pが
4〜6の整数、Yがフッ素原子である請求項1記載の反
強誘電性液晶組成物。
4. The antiferroelectric liquid crystal composition according to claim 1, wherein in the general formula (2), A is —CH 3 , p is an integer of 4 to 6, and Y is a fluorine atom.
【請求項5】 該一般式(3) において、R3は炭素数9の
直鎖アルキル基、nが8、Zがフッ素原子である請求項
1記載の反強誘電性液晶組成物。
5. The antiferroelectric liquid crystal composition according to claim 1, wherein in the general formula (3), R 3 is a straight-chain alkyl group having 9 carbon atoms, n is 8, and Z is a fluorine atom.
【請求項6】 該一般式(1) で表されるスワローテイル
型化合物が、反強誘電性液晶組成物の 1〜60モル%であ
る請求項1記載の反強誘電性液晶組成物。
6. The antiferroelectric liquid crystal composition according to claim 1, wherein the swallow tail type compound represented by the general formula (1) is 1 to 60 mol% of the antiferroelectric liquid crystal composition.
【請求項7】 反強誘電相よりも高温側に少なくともス
メクチックA相を有し、反強誘電相の上限温度が40℃以
上で下限温度が0℃以下である請求項1記載の反強誘電
性液晶組成物。
7. The antiferroelectric material according to claim 1, wherein the antiferroelectric phase has at least a smectic A phase at a higher temperature than the antiferroelectric phase, and the upper limit temperature of the antiferroelectric phase is 40 ° C. or more and the lower limit temperature is 0 ° C. or less. Liquid crystal composition.
【請求項8】 請求項1に記載の反強誘電性液晶組成物
を、走査電極と信号電極をマトリクス状に配置した1対
の電極基板間に配置してなる単純マトリクス液晶表示素
子。
8. A simple matrix liquid crystal display device comprising the antiferroelectric liquid crystal composition according to claim 1 arranged between a pair of electrode substrates in which scanning electrodes and signal electrodes are arranged in a matrix.
JP10139994A 1997-05-22 1998-05-21 Antiferroelectric liquid crystal composition Pending JPH1135941A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10139994A JPH1135941A (en) 1997-05-22 1998-05-21 Antiferroelectric liquid crystal composition

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP13248597 1997-05-22
JP9-132485 1997-05-22
JP10139994A JPH1135941A (en) 1997-05-22 1998-05-21 Antiferroelectric liquid crystal composition

Publications (1)

Publication Number Publication Date
JPH1135941A true JPH1135941A (en) 1999-02-09

Family

ID=26467050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10139994A Pending JPH1135941A (en) 1997-05-22 1998-05-21 Antiferroelectric liquid crystal composition

Country Status (1)

Country Link
JP (1) JPH1135941A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6217954B1 (en) * 1998-10-12 2001-04-17 Mitsubishi Gas Chemical Co Inc Phenyl triester compound and anti-ferroelectric liquid crystal composition containing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6217954B1 (en) * 1998-10-12 2001-04-17 Mitsubishi Gas Chemical Co Inc Phenyl triester compound and anti-ferroelectric liquid crystal composition containing the same

Similar Documents

Publication Publication Date Title
EP0879869B1 (en) Anti-ferroelectric liquid crystal composition
JPH1087571A (en) Swallowtail type compound and ferridielectric liquid crystal composition containing the same
JPH10279534A (en) Racemic compound and antiferroelectric liquid crystal composition containing the same
JPH1135941A (en) Antiferroelectric liquid crystal composition
JP2901717B2 (en) Fluorine-containing optically active compound and liquid crystal composition containing the compound
EP0994097B1 (en) Novel phenyl triester compound and anti-ferroelectric liquid crystal composition containing the same
KR980010491A (en) Optically active compound, Liquid crystal composition containing this optically active compound, And liquid crystal display element
JP3591042B2 (en) Antiferroelectric liquid crystal composition
JPH1150054A (en) Ferridielectric liquid crystal composition
JPH08253768A (en) Antiferroelectric liquid crystal composition
JPH11124356A (en) Swallow tail type compound and antiferroelectric liquid crystal composition containing the same compound
JPH10120629A (en) Phenyl ester compound and ferridielectric liquid crystal composition containing the same
JPH10121046A (en) Antiferroelectric liquid crystal composition
JPH09302345A (en) Antiferroelectric liquid crystal composition
JP2002088366A (en) Antiferroelectric liquid crystal composition
JPH08218069A (en) Antiferroelectric liquid crystal composition
JPH093008A (en) Bicyclic phenyl ester compound and antiferroelectric liquid crystal composition containing the same
JP2002088367A (en) Antiferroelectric liquid crystal composition
JPH08218070A (en) Antiferroelectric liquid crystal composition
JPH09302341A (en) Antiferroelectric liquid crystal composition
JPH1025478A (en) Antiferroelectric liquid crystal composition
JPH10121047A (en) Antiferroelectric liquid crystal composition
JPH10109958A (en) Optically active compound, and antiferroelectric liquid crystal composition containing the same
KR19980081160A (en) Racemic Compound and Antiferroelectric Liquid Crystal Composition Containing the Same
JPH10330753A (en) Antiferroelectric liquid crystal composition