JPH11124356A - Swallow tail type compound and antiferroelectric liquid crystal composition containing the same compound - Google Patents

Swallow tail type compound and antiferroelectric liquid crystal composition containing the same compound

Info

Publication number
JPH11124356A
JPH11124356A JP28691297A JP28691297A JPH11124356A JP H11124356 A JPH11124356 A JP H11124356A JP 28691297 A JP28691297 A JP 28691297A JP 28691297 A JP28691297 A JP 28691297A JP H11124356 A JPH11124356 A JP H11124356A
Authority
JP
Japan
Prior art keywords
liquid crystal
antiferroelectric
crystal composition
antiferroelectric liquid
general formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28691297A
Other languages
Japanese (ja)
Inventor
Hironori Motoyama
裕規 本山
Masahiro Kino
正博 城野
Tomoyuki Yui
知之 油井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP28691297A priority Critical patent/JPH11124356A/en
Publication of JPH11124356A publication Critical patent/JPH11124356A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a new compound capable of realizing an antiferroelectric liquid crystal display element capable of ensuring antiferroelectric phase in wide temperature range and having high response rate from antiferroelectric state to ferroelectric state and proper response rate from ferroelectric state to antiferroelectric state. SOLUTION: This compound is represented by formula I [R<1> is a 4-10C straight-chain alkyl; (m) is 2-4], e.g. 4-(1-propylbutyloxy)-phenyl=4'- decanoyloxybenzoate of formula II. The compound of formula I is obtained by a method or the like reacting, e.g. p-toluenesulfonic acid chloride with 3- pentanol, reacting the resultant p-toluenesulfonate with p-benzyloxyphenol to provide a benzyl ether substance, subjecting the benzyl ether substance to debenzylation by hydrogenation reaction using Pd as a catalyst and subjecting the product to chlorination reaction with thionyl chloride of an alkanoyloxybenzoic acid.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は新規なスワローテイル型
化合物及びその製造法とそれを含む新規な反強誘電性液
晶組成物並びにそれを用いた液晶表示素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a novel swallow-tail type compound, a method for producing the same, a novel antiferroelectric liquid crystal composition containing the same, and a liquid crystal display device using the same.

【0002】[0002]

【従来の技術】液晶表示素子は、低電圧作動性、低消費
電力性、薄型表示が可能である事等により、現在までに
各種の小型表示素子に利用されてきた。しかし、昨今の
情報、OA関連機器分野、あるいは、テレビ分野への液
晶表示素子の応用、用途拡大に伴って、これまでのCR
T表示素子を上回る表示容量、表示品質を持つ高性能大
型液晶表示素子の要求が、急速に高まってきた。
2. Description of the Related Art Liquid crystal display devices have been used in various small display devices to date because of their low voltage operation, low power consumption, and thin display. However, with the recent information, the application of liquid crystal display elements to the OA related equipment field, or the television field, and the expansion of applications, the CR
The demand for a high-performance large-sized liquid crystal display device having a display capacity and display quality higher than that of a T display device has been rapidly increasing.

【0003】しかしながら、現在のネマチック液晶を使
用する限りにおいては、液晶テレビ用に採用されている
アクテイブマトリックス駆動液晶表示素子でも、製造プ
ロセスの複雑さと歩留りの低さにより、その大型化、低
コスト化は容易ではない。又、単純マトリックス駆動の
STN型液晶表示素子にしても、大容量駆動は必ずしも
容易ではなく、応答時間にも限界があり動画表示は困難
である。更にネマチック液晶を用いた表示素子は、視野
角が狭いということが、大きな問題になってきている。
従って、ネマチック液晶表示素子は、上記の高性能大型
液晶表示素子への要求を、満足するものとはいい難いの
が実状である。
However, as long as the current nematic liquid crystal is used, even an active matrix drive liquid crystal display element used for a liquid crystal television has a large size and a low cost due to the complexity of the manufacturing process and low yield. Is not easy. Even with a simple matrix driven STN type liquid crystal display element, large capacity driving is not always easy, and the response time is limited, making it difficult to display moving images. Further, a narrow viewing angle of a display element using a nematic liquid crystal has become a serious problem.
Therefore, the nematic liquid crystal display element cannot satisfy the demand for the above-mentioned high performance large liquid crystal display element.

【0004】このような状況のなかで、高速液晶表示素
子として注目されているのが、強誘電性液晶を用いた液
晶表示素子である。クラークとラガバールにより発表さ
れた、表面安定化型強誘電性液晶(SSFLC) 素子は、その
従来にない速い応答速度と広い視野角を有する事が注目
され、そのスイッチング特性に関しては詳細に検討され
ており、種々の物性定数を最適化するため、多くの強誘
電性液晶が合成されている。しかしながら、しきい値特
性が不十分である、層の構造がシェブロン構造をしてい
るなどからコントラストが不良である、高速応答が実現
されていない、配向制御が困難で SSFLCの最大の特徴の
1つである双安定性の実現が容易でない、機械的衝撃に
依って配向が破壊されそれの回復が困難であるなどの問
題があり、実用化にはこれらの問題の克服が必要であ
る。
In such a situation, a liquid crystal display element using a ferroelectric liquid crystal has attracted attention as a high-speed liquid crystal display element. The surface-stabilized ferroelectric liquid crystal (SSFLC) device, announced by Clark and Lagabar, has been noted for its unprecedented fast response speed and wide viewing angle, and its switching characteristics have been studied in detail. Many ferroelectric liquid crystals have been synthesized in order to optimize various physical constants. However, the threshold characteristics are insufficient, the layer structure has a chevron structure, the contrast is poor, the high-speed response has not been realized, the orientation control is difficult, and one of the biggest features of SSFLC is However, there are problems such as difficulty in realizing bistability, which is difficult, and difficulty in recovering the orientation due to mechanical shock, and it is necessary to overcome these problems for practical use.

【0005】これとは別に、SSFLC と異なるスイッチン
グ機構の素子の開発も、同時に進められている。反強誘
電相を有する液晶物質(以下「反強誘電性液晶」と記
す)の三安定状態間のスイッチングも、これらの新しい
スイッチング機構の1つである(Japanese Journal of A
pplied Physics, Vol.27, pp.L729, (1988))。反強誘電
性液晶素子は、3つの安定な状態を有する。すなわち、
強誘電性液晶素子で見られる、2つのユニフォ−ム状態
(Ur, Ul)と第三状態である。この第三状態が、反強誘電
相であることをChandaniらが報告している(Japanese Jo
urnal of Applied Physics, Vol.28, pp.L1261, (198
9)、Japanese Journal of Applied Physics, Vol.28, p
p.L1265, (1989))。
[0005] Apart from this, the development of elements having a switching mechanism different from that of SSFLC is also proceeding at the same time. Switching between the tristable states of a liquid crystal material having an antiferroelectric phase (hereinafter referred to as “antiferroelectric liquid crystal”) is one of these new switching mechanisms (Japanese Journal of A).
pplied Physics, Vol. 27, pp. L729, (1988)). The antiferroelectric liquid crystal device has three stable states. That is,
Two uniform states seen in ferroelectric liquid crystal devices
(Ur, Ul) and the third state. Chandani et al. Report that this third state is an antiferroelectric phase (Japanese Jo
urnal of Applied Physics, Vol. 28, pp. L1261, (198
9), Japanese Journal of Applied Physics, Vol. 28, p.
p.L1265, (1989)).

【0006】このような三安定状態間のスイッチング
が、反強誘電性液晶素子の第1の特徴である。反強誘電
性液晶素子の第2の特徴は、印加電圧に対して明確なし
きい値が存在することである。更に、メモリー性を有し
ており、これが反強誘電性液晶素子の第3の特徴であ
る。これらの優れた特徴を利用することにより、応答速
度が速く、コントラストが良好な液晶表示素子を実現で
きる。
[0006] Such switching between the three stable states is the first feature of the antiferroelectric liquid crystal device. A second feature of the antiferroelectric liquid crystal element is that there is a clear threshold value for an applied voltage. Further, it has a memory property, which is the third feature of the antiferroelectric liquid crystal element. By utilizing these excellent features, a liquid crystal display device having a high response speed and good contrast can be realized.

【0007】又、もう一つの大きな特徴として、層構造
が、電界により容易にスイッチングする事があげられる
(Japanese Journal of Applied Physics, Vol.28, pp.L
119,(1989)、Japanese Journal of Applied Physics, V
ol.29, pp.L111, (1990)) 。このことにより、欠陥が極
めて少なく、配向の自己修復能力のある液晶表示素子の
作製が可能となり、コントラストに優れた液晶素子を実
現できる。更に、強誘電性液晶では殆ど不可能である電
圧階調が、反強誘電性液晶では可能であることが実証さ
れ、フルカラー化への道が開け、一層反強誘電性液晶の
重要性が増してきている(第4回強誘電性液晶国際会議
予稿集、77頁、(1993)) 。
Another major feature is that the layer structure is easily switched by an electric field.
(Japanese Journal of Applied Physics, Vol.28, pp.L
119, (1989), Japanese Journal of Applied Physics, V
ol.29, pp.L111, (1990)). This makes it possible to manufacture a liquid crystal display element having a very small number of defects and a self-healing ability for alignment, and to realize a liquid crystal element having excellent contrast. Furthermore, it has been demonstrated that voltage gradation that is almost impossible with ferroelectric liquid crystal is possible with antiferroelectric liquid crystal, opening the way to full color, and the importance of antiferroelectric liquid crystal is further increasing. (Proceedings of the 4th International Conference on Ferroelectric Liquid Crystals, p. 77, (1993)).

【0008】以上のように、反強誘電性液晶の優位性
は、確かなものになりつつあるが、駆動温度範囲の拡大
と応答速度のより一層の向上、更にはスメクチックA相
が存在する反強誘電性液晶の開発が望まれている。応答
速度に関しては、反強誘電性液晶の場合、反強誘電状態
から強誘電状態へ、強誘電状態から反強誘電状態への二
つのスイッチングが存在する。この電圧による二つのス
イッチング速度、即ち、応答速度が表示素子の表示品質
を決める重要な因子となる。
As described above, the superiority of the antiferroelectric liquid crystal is becoming more certain, but the driving temperature range is expanded and the response speed is further improved. The development of ferroelectric liquid crystals is desired. Regarding the response speed, in the case of the antiferroelectric liquid crystal, there are two switchings from the antiferroelectric state to the ferroelectric state and from the ferroelectric state to the antiferroelectric state. The two switching speeds by this voltage, ie, the response speed, are important factors that determine the display quality of the display element.

【0009】反強誘電状態から強誘電状態への応答速度
(以下「応答速度I」と記す)は、例えば、線順次走査
する単純マトリックス駆動に於て、走査線一ライン当り
の書き込み速度となるので一画面を構成する走査線数を
決定することになり重要である。応答速度Iが速ければ
速いほど走査線数を増やすことができ、高精細素子の実
現が可能となる。
The response speed from the anti-ferroelectric state to the ferroelectric state (hereinafter referred to as "response speed I") is, for example, the write speed per scanning line in a simple matrix drive for line-sequential scanning. Therefore, it is important to determine the number of scanning lines constituting one screen. As the response speed I increases, the number of scanning lines can be increased, and a high-definition element can be realized.

【0010】強誘電状態から反強誘電状態への応答速度
(以下「応答速度II」と記す)は、素子の駆動方法の設
計により必要とされる速度は変わる。例えば、オフセッ
ト電圧の設定電圧によって変わるものである。しかし、
余りにも応答速度IIが速い場合は強誘電状態を維持(明
或は暗状態の維持)できず、一定の輝度を維持できない
ことになり、コントラストの面で問題が生ずる。逆に、
応答速度IIが余りにも遅い場合には強誘電状態から反強
誘電状態への変化(明或は暗状態から暗或は明状態への
書換え)が起こらず駆動不能となるし、また、1フレー
ム内で強誘電状態への変化が完全に終了しない場合は次
のフレームまで変化が持ち越され、そのような状態が累
積される結果、十分な暗状態が得られずコントラストが
低下してしまう。従って、応答速度IIは、表示品質にか
なり影響を与える事になる。応答速度IIは、駆動方法を
決定した後に最適な値を設定することになるが、そのた
めに応答速度IIはある程度自由に変えられる事が望まし
い。種々の駆動方式を考慮した上で、応答時間IIは 1〜
5 ミリ秒の間に設定する事が望ましい。
The required response speed from the ferroelectric state to the antiferroelectric state (hereinafter referred to as "response speed II") varies depending on the design of the element driving method. For example, it changes depending on the set voltage of the offset voltage. But,
If the response speed II is too fast, the ferroelectric state cannot be maintained (maintaining a bright or dark state), and a constant luminance cannot be maintained, which causes a problem in contrast. vice versa,
If the response speed II is too slow, no change from the ferroelectric state to the antiferroelectric state (rewriting from a bright or dark state to a dark or bright state) occurs and driving becomes impossible. If the change to the ferroelectric state is not completely completed within the above, the change is carried over to the next frame, and as a result of accumulating such states, a sufficient dark state cannot be obtained and the contrast decreases. Therefore, the response speed II has a considerable effect on display quality. The response speed II is set to an optimum value after the drive method is determined. For this purpose, it is desirable that the response speed II can be freely changed to some extent. After considering various driving methods, response time II is 1 ~
It is desirable to set within 5 milliseconds.

【0011】[0011]

【発明が解決しようとする課題】実用上、反強誘電性液
晶は、より一層の応答速度の向上と適切な応答速度の設
定、反強誘電相の温度範囲の拡大ならびにスメクチック
A相が存在する事などが望ましい。応答速度Iは、M. N
akagawa によれば反強誘電性液晶の場合、液晶分子の回
転粘性に依存することが示されている(Masahiro Nakaga
wa, Japanese Journal ofApplied Physics, 30, 1759
(1991))。即ち、粘性が低いほど応答速度は速くなる。
また、温度に対する応答速度の変化を見ると、室温付近
を境にしてそれ以下の温度では指数関数的に応答速度は
低下していく。反強誘電性液晶は、液晶相がスメクチッ
ク相であるが故に粘性が高く、そのために低温側で粘性
が急激に増大しその粘性抵抗のために応答速度が急激に
低下していくものと考えられている。
In practice, the antiferroelectric liquid crystal has a further improved response speed and an appropriate response speed, has a wider temperature range of the antiferroelectric phase, and has a smectic A phase. Things are desirable. The response speed I is M. N
According to Akagawa, antiferroelectric liquid crystals depend on the rotational viscosity of liquid crystal molecules (Masahiro Nakaga
wa, Japanese Journal of Applied Physics, 30, 1759
(1991)). That is, the lower the viscosity, the faster the response speed.
Looking at the change of the response speed with respect to the temperature, the response speed decreases exponentially at a temperature lower than the room temperature and below. The antiferroelectric liquid crystal is considered to have a high viscosity because the liquid crystal phase is a smectic phase, so that the viscosity increases rapidly at low temperatures and the response speed decreases rapidly due to the viscous resistance. ing.

【0012】この問題解決のための具体策の一つとして
は、比較的低粘性の化合物を液晶組成物に添加し、組成
物全体の粘性を低下させ、もって応答速度Iの改善を計
ろうとする試みが考えられる。この方法が、現在のとこ
ろ最も現実的な解決策になり得ると考えらるが、この方
法は反強誘電相の上限温度を低下させる傾向があり、応
答速度は改善されても反強誘電相の温度範囲の面で問題
が生じて来る。
As one of concrete measures for solving this problem, a compound having a relatively low viscosity is added to a liquid crystal composition to lower the viscosity of the whole composition and thereby to improve the response speed I. Attempts are possible. Although this method seems to be the most realistic solution at present, this method tends to lower the maximum temperature of the antiferroelectric phase, and although the response speed is improved, the antiferroelectric phase is improved. A problem arises in terms of the temperature range.

【0013】一般にディスプレーとしての反強誘電性液
晶素子を考えたとき、バックライトにより素子の温度は
少なくとも40℃ぐらいになると考えられる。従って、正
常な素子の駆動のためには反強誘電相の上限温度は少な
くとも40℃以上必要である。また、低温側では少なくと
も10℃で素子は駆動できることが必要である。従って、
反強誘電相の下限温度は少なくとも0℃であることが望
ましい。従って、応答速度Iの改善は反強誘電相の温度
範囲に注目しつつ、改善していかなければならない。
In general, when considering an antiferroelectric liquid crystal device as a display, it is considered that the temperature of the device becomes at least about 40 ° C. due to the backlight. Therefore, the upper limit temperature of the antiferroelectric phase needs to be at least 40 ° C. or higher for normal operation of the device. On the low-temperature side, it is necessary that the element can be driven at least at 10 ° C. Therefore,
The lower limit temperature of the antiferroelectric phase is desirably at least 0 ° C. Therefore, the response speed I must be improved while paying attention to the temperature range of the antiferroelectric phase.

【0014】一方、応答速度IIの制御に関する知見は殆
どない。応答速度IIは、応答速度Iと同様に粘性依存性
があると思われるが、その依存性は小さいと考えられて
いる。従来の、応答速度IIの制御は、適当な応答速度II
を有する反強誘電性液晶を混合して行うのが普通であっ
たが、応答速度II以外の特性とのバランスが難しくある
程度の自由度をもって応答速度IIを設定する事は困難で
あった。本発明はこの様な観点からなされたものであ
り、特定のスワローテイル型化合物を特定の反強誘電性
液晶混合物に添加したとき、広い温度範囲で反強誘電相
を確保でき、かつ、応答速度Iに悪影響を及ぼさず、応
答速度IIをある程度自由に設定できる事を見いだし、本
発明を完成したものである。
On the other hand, there is almost no knowledge about the control of the response speed II. Although the response speed II seems to have viscosity dependency similarly to the response speed I, the dependency is considered to be small. Conventional control of response speed II
It is common to mix antiferroelectric liquid crystals having the following characteristics, but it is difficult to balance with characteristics other than response speed II, and it is difficult to set response speed II with a certain degree of freedom. The present invention has been made from such a viewpoint, and when a specific swallow tail type compound is added to a specific antiferroelectric liquid crystal mixture, an antiferroelectric phase can be secured in a wide temperature range, and the response speed can be improved. It has been found that the response speed II can be freely set to some extent without adversely affecting I, and the present invention has been completed.

【0015】[0015]

【課題を解決するための手段】すなわち、本発明は、下
記一般式(1) で表されるスワローテイル型化合物、並び
に該スワローテイル型化合物を下記一般式(2) で示され
る反強誘電性液晶化合物の1種或いは2種以上の混合物
に添加してなる反強誘電性液晶組成物である。本発明で
は、該一般式(1) において、R1は炭素数9の直鎖アルキ
ル基、mが3、Xが水素原子であるスワローテイル型化
合物が好ましい反強誘電性液晶組成物を与える。反強誘
電性液晶またはその混合物としては、該一般式(2) にお
いて、Aが-CF3でrが1、Yがフッ素原子であるもの、
または、Aが-CH3、pが4〜6の整数、Yがフッ素原子
であるであるものが好ましく、特にこの両者を混合した
ものが、諸物性のバランスの上から特に好ましい。
That is, the present invention provides a swallow-tail type compound represented by the following general formula (1) and an antiferroelectric compound represented by the following general formula (2). An antiferroelectric liquid crystal composition obtained by adding to one or a mixture of two or more liquid crystal compounds. In the present invention, a swallow-tail type compound in which R 1 is a straight-chain alkyl group having 9 carbon atoms, m is 3, and X is a hydrogen atom in the general formula (1) gives a preferable antiferroelectric liquid crystal composition. As the antiferroelectric liquid crystal or a mixture thereof, in the general formula (2), A is -CF 3 , r is 1, and Y is a fluorine atom;
Alternatively, A is preferably —CH 3 , p is an integer of 4 to 6, and Y is a fluorine atom, and a mixture of both is particularly preferred in view of a balance of various physical properties.

【0016】[0016]

【化3】 (式(1) 中、R1は炭素数 4〜10の直鎖アルキル基、mは
2〜4 の整数である。式(2) 中、R2は炭素数 6〜12の直
鎖アルキル基、Yは水素原子またはフッ素原子、Aは-C
H3または-CF3、rは0または1であり、Aが-CH3のと
き、rが0でpが 4〜10の整数、Aが-CF3でrが0のと
き、pは 6〜8 の整数、またはAが-CF3でrが1のと
き、sは5〜8の整数、pは2もしくは4の整数であ
る。)
Embedded image (In the formula (1), R 1 is a linear alkyl group having 4 to 10 carbon atoms, m is
It is an integer of 2 to 4. In the formula (2), R 2 is a linear alkyl group having 6 to 12 carbon atoms, Y is a hydrogen atom or a fluorine atom, and A is -C
H 3 or —CF 3 , r is 0 or 1, and when A is —CH 3 , r is 0 and p is an integer of 4 to 10. When A is —CF 3 and r is 0, p is 6 When A is -CF 3 and r is 1, s is an integer of 5 to 8, and p is an integer of 2 or 4. )

【0017】本発明の反強誘電性液晶組成物において、
該一般式(1) で表されるスワローテイル型化合物が、反
強誘電性液晶組成物の 1〜60モル%であり、得られた反
強誘電性液晶組成物は、反強誘電相よりも高温側に少な
くともスメクチックA相を有し、反強誘電相の上限温度
が40℃以上で下限温度が0℃以下であることが実用上好
ましい。そして、本反強誘電性液晶組成物を、走査電極
と信号電極をマトリックス状に配置した1対の電極基板
間に配置してなる単純マトリックス液晶表示素子とされ
る。
In the antiferroelectric liquid crystal composition of the present invention,
The swallow tail type compound represented by the general formula (1) accounts for 1 to 60 mol% of the antiferroelectric liquid crystal composition, and the obtained antiferroelectric liquid crystal composition has an antiferroelectric phase higher than that of the antiferroelectric phase. It is practically preferable to have at least a smectic A phase on the high temperature side, and have an upper limit temperature of 40 ° C. or higher and a lower limit temperature of 0 ° C. or lower of the antiferroelectric phase. The antiferroelectric liquid crystal composition is a simple matrix liquid crystal display device in which a scanning electrode and a signal electrode are arranged in a matrix between a pair of electrode substrates.

【0018】本発明で用いられる一般式(1) で示される
スワローテイル型化合物は、すでに本発明者らが示した
方法に準じて簡便に製造できる(特願平8-312012号)。
例えば、 m=2 の場合、次のような方法によって製造さ
れる。 (イ) CH3-Ph-SO2Cl + C2H5CH(OH)C2H5
CH3-Ph-SO3CH(C2H5)2 (ロ) (イ) + HO-Ph-OCH2-Ph → Ph-CH2O-Ph
-OCH(C2H5)2 (ハ) (ロ) + (H2/Pd) → HO-Ph-OCH
(C2H5)2 (ニ) R2COO-Ph-COOH + SO2Cl → R2COO-Ph-C
OCl (ホ) (ハ) + (ニ) → 目的物 式中、Ph- はフェニル基、-Ph-は1,4-フェニレン基を示
す。
The swallow tail type compound represented by the general formula (1) used in the present invention can be easily produced according to the method shown by the present inventors (Japanese Patent Application No. 8-312012).
For example, when m = 2, it is manufactured by the following method. (B) CH 3 -Ph-SO 2 Cl + C 2 H 5 CH (OH) C 2 H 5
CH 3 -Ph-SO 3 CH (C 2 H 5 ) 2 (b) (b) + HO-Ph-OCH 2 -Ph → Ph-CH 2 O-Ph
-OCH (C 2 H 5 ) 2 (c) (b) + (H 2 / Pd) → HO-Ph-OCH
(C 2 H 5 ) 2 (d) R 2 COO-Ph-COOH + SO 2 Cl → R 2 COO-Ph-C
OCl (e) (c) + (d) → target compound In the formula, Ph- represents a phenyl group, and -Ph- represents a 1,4-phenylene group.

【0019】上記製造法を簡単に説明すると次の通りで
ある。(イ) は、p-トルエンスルホン酸クロライドと3-ペ
ンタノールとの反応である。(ロ) は、p-トルエンスルホ
ン酸エステル(イ) とp-ベンジルオキシフェノールとの反
応である。(ハ) は、ベンジルエーテル体(ロ) のPd を触
媒とする水添反応による脱ベンジル化である。(ニ) は、
アルカノイルオキシ安息香酸の塩化チオニルによる塩素
化反応である。(ホ) は、目的物の生成反応である。
The above-mentioned manufacturing method is briefly described as follows. (A) is a reaction between p-toluenesulfonic acid chloride and 3-pentanol. (B) shows the reaction between p-toluenesulfonic acid ester (a) and p-benzyloxyphenol. (C) shows the debenzylation of a benzyl ether compound (b) by hydrogenation using Pd as a catalyst. (D)
This is a chlorination reaction of alkanoyloxybenzoic acid with thionyl chloride. (E) is a reaction for producing the target substance.

【0020】また、本発明において用いられる一般式
(2) で示される反強誘電性液晶化合物は、すでに、本発
明者らが示した方法によって簡便に製造することができ
る(特開平4-198155号)。例えば、A=-CF3, r=1, s
=5, p=2 の場合、次のような方法によって製造され
る。 (1) AcO-Ph(Y)-COOH + SOCl2 → AcO-Ph(Y)-C
OCl (2) (1) + HOC*H(CF3)(CH2)5OC2H5 → AcO-Ph(Y)-CO
OC*H(CF3)(CH2)5OC2H5 (3) (2) + Ph-CH2NH2 → HO-Ph(Y)-CO
OC*H(CF3)(CH2)5OC2H5 (4) R2O-Ph-Ph-COOH + SOCl2 → R2O-Ph-Ph-C
OCl (5) (3) + (4) → 反強誘電性液晶化
合物 式中、-Ph-は1,4-フェニレン基、-Ph(Y)- はF置換して
いてもよい1,4-フェニレン基、Ph- はフェニル基、C*は
不斉炭素を示す。
The general formula used in the present invention
The antiferroelectric liquid crystal compound represented by the formula (2) can be easily produced by the method shown by the present inventors (JP-A-4-198155). For example, A = -CF 3 , r = 1, s
= 5, p = 2, it is manufactured by the following method. (1) AcO-Ph (Y) -COOH + SOCl 2 → AcO-Ph (Y) -C
OCl (2) (1) + HOC * H (CF 3 ) (CH 2 ) 5 OC 2 H 5 → AcO-Ph (Y) -CO
OC * H (CF 3 ) (CH 2 ) 5 OC 2 H 5 (3) (2) + Ph-CH 2 NH 2 → HO-Ph (Y) -CO
OC * H (CF 3 ) (CH 2 ) 5 OC 2 H 5 (4) R 2 O-Ph-Ph-COOH + SOCl 2 → R 2 O-Ph-Ph-C
OCl (5) (3) + (4) → antiferroelectric liquid crystal compound In the formula, -Ph- is a 1,4-phenylene group, and -Ph (Y)-is 1,4- A phenylene group, Ph- indicates a phenyl group, and C * indicates an asymmetric carbon.

【0021】上記製造法について、以下に簡単に説明す
る。(1) は、フッ素置換あるいは無置換のp-アセトキシ
安息香酸の塩化チオニルによる塩素化反応である。(2)
は、塩素化物(1) とアルコールとの反応によるエステル
化である。(3) は、エステル(2) の脱アセチル化であ
る。(4) は、アルキルオキシビフェニルカルボン酸の塩
素化反応である。(5) は、フェノール(3) と酸クロライ
ド(4) との反応による液晶の生成である。
The above manufacturing method will be briefly described below. (1) is a chlorination reaction of fluorine-substituted or unsubstituted p-acetoxybenzoic acid with thionyl chloride. (2)
Is esterification by reaction of chlorinated product (1) with alcohol. (3) is the deacetylation of ester (2). (4) is a chlorination reaction of alkyloxybiphenylcarboxylic acid. (5) is the formation of liquid crystal by the reaction between phenol (3) and acid chloride (4).

【0022】[0022]

【実施例】次に、実施例及び比較例を掲げて本発明を更
に具体的に説明するが、本発明はもちろんこれに限定さ
れるものではない。 実施例1 (式(1) : R =C9H19, m=3 (E1))
4-(1- プロピルブチルオキシ) フェニル=4'-デカノイ
ルオキシベゾエートの製造。 (1) p-トルエンスルホン酸(1−プロピル)ブチルの製
造。 4-ヘプタノール 3.5g とピリジン 15ml(ミリリットル) を反応
容器に入れ、−20℃に冷却した。攪拌しながら、p-トル
エンスルホニルクロライド 6.3g を一度に加えて、この
温度で30分間攪拌した後、4時間室温で攪拌を続けた。
反応混合物を氷水に注ぎ、ジクロロメタンで抽出した。
有機層を水洗した後、無水硫酸ナトリウムで乾燥した。
溶媒を留去して目的物 5.0g を得た。
Next, the present invention will be described more specifically with reference to examples and comparative examples, but the present invention is of course not limited thereto. Example 1 (Equation (1): R = C 9 H 19 , m = 3 (E1))
Production of 4- (1-propylbutyloxy) phenyl = 4'-decanoyloxybezoate (1) Production of (1-propyl) butyl p-toluenesulfonate. 3.5 g of 4-heptanol and 15 ml (milliliter) of pyridine were placed in a reaction vessel and cooled to -20 ° C. While stirring, 6.3 g of p-toluenesulfonyl chloride was added at a time, and the mixture was stirred at this temperature for 30 minutes and then at room temperature for 4 hours.
The reaction mixture was poured into ice water and extracted with dichloromethane.
The organic layer was washed with water and dried over anhydrous sodium sulfate.
The solvent was distilled off to obtain 5.0 g of the desired product.

【0023】(2) 4-ベンジルオキシフェニル−1-プロピ
ルブチルエーテルの製造。 上記(1) で得た化合物 5g、ヒドロキノンモノベンジル
エーテル 4.5g、水酸化カリウム 2.4g およびエタノー
ル 28ml を反応容器に入れ、室温で 2時間攪拌した。そ
の後、さらに 1時間加熱還流した。反応混合物を水に注
ぎ、ジクロロメタンで抽出し、有機層を1N塩酸、ついで
水で洗浄し、無水硫酸ナトリウムで乾燥した。溶媒を留
去し、粗生成物を得た。粗生成物をシリカゲルカラムク
ロマトグラフィー (溶出液 ヘキサン/酢酸エチル=92
5/75) で精製し、13.5g の目的物を得た。
(2) Production of 4-benzyloxyphenyl-1-propylbutyl ether. 5 g of the compound obtained in the above (1), 4.5 g of hydroquinone monobenzyl ether, 2.4 g of potassium hydroxide and 28 ml of ethanol were placed in a reaction vessel and stirred at room temperature for 2 hours. Thereafter, the mixture was heated and refluxed for another 1 hour. The reaction mixture was poured into water, extracted with dichloromethane, and the organic layer was washed with 1N hydrochloric acid, then with water, and dried over anhydrous sodium sulfate. The solvent was distilled off to obtain a crude product. The crude product was subjected to silica gel column chromatography (eluent hexane / ethyl acetate = 92
5/75) to give 13.5 g of the desired product.

【0024】(3) 4-(1-プロピルブチル) フェノールの
製造。 反応容器に10%パラジウム炭素触媒 0.2g を入れた後、
系内を窒素置換した。この中に、上記(2) で得た化合物
4.5g およびエタノール 30ml を加え、系内を水素置換
した。ガスビュウレットより水素を補給しながら 8時間
反応を行った。系内を窒素置換した後、触媒をろ過分離
し、溶媒を留去し目的物 2.8g を得た。
(3) Production of 4- (1-propylbutyl) phenol. After putting 0.2g of 10% palladium carbon catalyst in the reaction vessel,
The system was replaced with nitrogen. Among them, the compound obtained in the above (2)
4.5 g and 30 ml of ethanol were added, and the inside of the system was replaced with hydrogen. The reaction was carried out for 8 hours while supplying hydrogen from the gas burette. After purging the system with nitrogen, the catalyst was separated by filtration, and the solvent was distilled off to obtain 2.8 g of the desired product.

【0025】(4) 4-(1-プロピルブチルオキシ) フェニ
ル=4'-デカノイルオキシベゾエートの製造。 反応容器に、4-デカノイルオキシ安息香酸 1.0g と塩化
チオニル 20ml とを入れ、4時間加熱還流した。過剰の
塩化チオニルを減圧下留去した。得られた4-デカノイル
オキシ安息香酸クロライドに、ジクロロメタン 20ml お
よび上記(3) で得た化合物 0.5g を入れ、 5時間攪拌し
た。ついで、反応液を塩酸、水酸化ナトリウム水溶液、
水で洗浄した。溶媒を留去し、得られた粗生成物をシリ
カゲルカラムクロマトグラフィー (溶出液 ヘキサン/
酢酸エチル=94/6) で精製し、0.5gの目的物を得た。得
られた目的物の式を化4に、NMR スペクトルデーターを
表1に示した。
(4) Production of 4- (1-propylbutyloxy) phenyl = 4'-decanoyloxybezoate A reaction vessel was charged with 1.0 g of 4-decanoyloxybenzoic acid and 20 ml of thionyl chloride and heated under reflux for 4 hours. Excess thionyl chloride was distilled off under reduced pressure. 20 ml of dichloromethane and 0.5 g of the compound obtained in the above (3) were added to the obtained 4-decanoyloxybenzoic acid chloride, and the mixture was stirred for 5 hours. Then, the reaction solution was hydrochloric acid, aqueous sodium hydroxide solution,
Washed with water. The solvent was distilled off, and the obtained crude product was subjected to silica gel column chromatography (eluent: hexane / hexane).
Purification by ethyl acetate = 94/6) gave 0.5 g of the desired product. The formula of the obtained target product is shown in Chemical formula 4, and the NMR spectrum data is shown in Table 1.

【0026】[0026]

【化4】 Embedded image

【0027】[0027]

【表1】水素原子番号 1 2 3 4 5 6 化学シフト 2.6 6.9 7.1 7.2 8.2 4.2 [Table 1] Hydrogen atom number 1 2 3 4 5 6 Chemical shift 2.6 6.9 7.1 7.2 8.2 4.2

【0028】実施例2 実施例1で得た化合物(E1)を、本発明の一般式(2) に相
当する下記に示した反強誘電性液晶(2A, 2B)の混合物
に、下記に記載の割合で混合し、反強誘電性液晶組成物
を調製した。 E1 : C9H19-COO-Ph-COO-Ph-O-CH(C3H7)2 20 モル% 2A : C9H19-O-Ph-Ph-COO-Ph(3F)-COO-C*H(CF3)(CH2)5OC2H5 56 〃 2B : C8H17-O-Ph-Ph-COO-Ph(3F)-COO-C*H(CH3)C5H11 24 〃 式中、-Ph-は1,4-フェニレン基、-Ph(3F)-は3位(Y) に
フッ素置換した1,4-フェニレン基、C*は不斉炭素を示
す。
Example 2 The compound (E1) obtained in Example 1 was added to a mixture of the following antiferroelectric liquid crystals (2A, 2B) corresponding to the general formula (2) of the present invention. And an antiferroelectric liquid crystal composition was prepared. E1: C 9 H 19 -COO-Ph-COO-Ph-O-CH (C 3 H 7 ) 2 20 mol% 2A: C 9 H 19 -O-Ph-Ph-COO-Ph (3F) -COO- C * H (CF 3 ) (CH 2 ) 5 OC 2 H 5 56 〃 2B: C 8 H 17 -O-Ph-Ph-COO-Ph (3F) -COO-C * H (CH 3 ) C 5 H 11 24 中 In the formula, -Ph- represents a 1,4-phenylene group, -Ph (3F)-represents a 1,4-phenylene group substituted with fluorine at the 3-position (Y), and C * represents an asymmetric carbon.

【0029】調製した組成物の相系列、また、この液晶
組成物の30℃での応答時間を求めた結果を表1に示し
た。なお、応答時間は次のようにして求めた。ラビング
処理したポリイミド薄膜(30nm)を有する ITO電極付の液
晶セル(セル厚 2μm)に、上記化合物を等方相の状態
で充填した。このセルを、毎分 1.0℃で徐冷して、液晶
を配向させた。セルを直交する偏向板間に液晶の層方向
がアナライザーまたはポーラライザーと平行になるよう
に設置した。光透過率の最低を0%、最高を 100%と
し、応答時間I は、30℃で 30V, 10Hzの電圧を印加し、
光透過率が10%から90%に変化するに要する時間、応答
時間IIは光透過率が90%から10%に変化するに要する時
間と定義して求めた。
Table 1 shows the results of the phase series of the prepared composition and the response time at 30 ° C. of the liquid crystal composition. The response time was obtained as follows. A liquid crystal cell (cell thickness 2 μm) having an ITO electrode and having a rubbed polyimide thin film (30 nm) was filled with the above compound in an isotropic phase. The cell was gradually cooled at 1.0 ° C./min to align the liquid crystal. The cell was placed between the orthogonal polarizing plates so that the layer direction of the liquid crystal was parallel to the analyzer or the polarizer. The minimum of the light transmittance is 0% and the maximum is 100%. The response time I is 30 ° C, applying a voltage of 30V, 10Hz,
The time required for the light transmittance to change from 10% to 90%, and the response time II were determined and defined as the time required for the light transmittance to change from 90% to 10%.

【0030】比較例1 実施例2において、一般式(2) に相当する反強誘電性液
晶化合物(2A, 2B)を2A/2B=6/4(モル比)の割合で混合
して実施例1と同様にして物性を測定した結果を表1に
示した。実施例1と比較例1の結果から明らかのよう
に、スワローテイル型化合物を添加する事によって応答
時間I を速くし、応答時間IIを望ましい速度に設定する
事ができた。
Comparative Example 1 In Example 2, an antiferroelectric liquid crystal compound (2A, 2B) corresponding to the general formula (2) was mixed at a ratio of 2A / 2B = 6/4 (molar ratio). Table 1 shows the results of measuring the physical properties in the same manner as in Example 1. As is clear from the results of Example 1 and Comparative Example 1, the addition of the swallow-tail type compound accelerated the response time I and could set the response time II to a desired speed.

【0031】[0031]

【表2】 応答時間 (μ秒) 相 系 列 I II 実施例1 Cr(<-20)SCA*(64)SA(83)I 46 2200 比較例1 Cr(<-10)SCA*(58)SC*(101)SA(111)I 106 15000 相系列の記載において、()内は相転移温度 (℃) 、Crは
結晶相、SCA*は反強誘電相、SC* 相は強誘電相、SAはス
メクチックA相、I は等方相をそれぞれ示す。
Table 2 Response time (μsec) Phase Sequence I II Example 1 Cr (<− 20) SCA * (64) SA (83) I 46 2200 Comparative Example 1 Cr (<− 10) SCA * (58) In the description of the SC * (101) SA (111) I 106 15000 phase series, () indicates the phase transition temperature (° C), Cr indicates the crystalline phase, SCA * indicates the antiferroelectric phase, SC * phase indicates the ferroelectric phase, SA indicates a smectic A phase, and I indicates an isotropic phase.

【0032】[0032]

【発明の効果】本発明は、新規な反強誘電性液晶組成物
を提供する。本発明により提供された新規な反強誘電性
液晶組成物は、広い温度範囲で反強誘電相を有しかつ反
強誘電状態から強誘電状態へ転移する際の応答速度Iが
高速で、強誘電状態から反強誘電状態へ転移する際の応
答速度IIが適切な速度を有する事ができ、そのため表示
品質の高い反強誘電性液晶表示素子を実現できる。
The present invention provides a novel antiferroelectric liquid crystal composition. The novel antiferroelectric liquid crystal composition provided by the present invention has an antiferroelectric phase over a wide temperature range, and has a high response speed I when transitioning from an antiferroelectric state to a ferroelectric state, The response speed II at the time of transition from the dielectric state to the antiferroelectric state can have an appropriate speed, so that an antiferroelectric liquid crystal display device with high display quality can be realized.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 下記一般式(1) で表わされるスワローテ
イル型化合物。 【化1】 (式中、R は炭素数 4〜10の直鎖アルキル基、mは 2〜4
の整数である。)
1. A swallow tail compound represented by the following general formula (1). Embedded image (Wherein, R is a linear alkyl group having 4 to 10 carbon atoms, m is 2 to 4
Is an integer. )
【請求項2】 下記一般式(1) で表されるスワローテイ
ル型化合物を、下記一般式(2) で示される反強誘電性液
晶化合物の1種或いは2種以上の混合物に添加してなる
反強誘電性液晶組成物。 【化2】 (式(1) 中、R1は炭素数 4〜10の直鎖アルキル基、mは
2〜4 の整数である。式(2) 中、R2は炭素数 6〜12の直
鎖アルキル基、Yは水素原子またはフッ素原子、Aは-C
H3または-CF3、rは0または1であり、Aが-CH3のと
き、rが0でpが 4〜10の整数、Aが-CF3でrが0のと
き、pは 6〜8 の整数、またはAが-CF3でrが1のと
き、sは5〜8の整数、pは2もしくは4の整数であ
る。)
2. A swallow tail type compound represented by the following general formula (1) is added to one or a mixture of two or more antiferroelectric liquid crystal compounds represented by the following general formula (2). Antiferroelectric liquid crystal composition. Embedded image (In the formula (1), R 1 is a linear alkyl group having 4 to 10 carbon atoms, m is
It is an integer of 2 to 4. In the formula (2), R 2 is a linear alkyl group having 6 to 12 carbon atoms, Y is a hydrogen atom or a fluorine atom, and A is -C
H 3 or —CF 3 , r is 0 or 1, and when A is —CH 3 , r is 0 and p is an integer of 4 to 10. When A is —CF 3 and r is 0, p is 6 When A is -CF 3 and r is 1, s is an integer of 5 to 8, and p is an integer of 2 or 4. )
【請求項3】 該一般式(1) において、R1は炭素数9の
直鎖アルキル基、mが3、Xが水素原子である請求項2
記載の反強誘電性液晶組成物。
3. In the general formula (1), R 1 is a straight-chain alkyl group having 9 carbon atoms, m is 3, and X is a hydrogen atom.
The antiferroelectric liquid crystal composition according to the above.
【請求項4】 該一般式(2) において、Aが-CF3でrが
1、Yがフッ素原子である請求項2記載の反強誘電性液
晶組成物。
4. The antiferroelectric liquid crystal composition according to claim 2, wherein in the general formula (2), A is —CF 3 , r is 1, and Y is a fluorine atom.
【請求項5】 該一般式(2) において、Aが-CH3、pが
4〜6の整数、Yがフッ素原子である請求項2記載の反
強誘電性液晶組成物。
5. The antiferroelectric liquid crystal composition according to claim 2, wherein in the general formula (2), A is —CH 3 , p is an integer of 4 to 6, and Y is a fluorine atom.
【請求項6】 該一般式(1) で表されるスワローテイル
型化合物が、反強誘電性液晶組成物の 1〜60モル%であ
る請求項2記載の反強誘電性液晶組成物。
6. The antiferroelectric liquid crystal composition according to claim 2, wherein the swallow tail type compound represented by the general formula (1) is 1 to 60 mol% of the antiferroelectric liquid crystal composition.
【請求項7】 反強誘電相よりも高温側に少なくともス
メクチックA相を有し、反強誘電相の上限温度が40℃以
上で下限温度が0℃以下である請求項2記載の反強誘電
性液晶組成物。
7. The antiferroelectric substance according to claim 2, wherein the antiferroelectric phase has at least a smectic A phase on a higher temperature side than the antiferroelectric phase, and has an upper limit temperature of 40 ° C. or higher and a lower limit temperature of 0 ° C. or lower. Liquid crystal composition.
【請求項8】 請求項2記載の反強誘電性液晶組成物
を、走査電極と信号電極をマトリックス状に配置した1
対の電極基板間に配置してなる単純マトリックス液晶表
示素子。
8. The antiferroelectric liquid crystal composition according to claim 2, wherein a scanning electrode and a signal electrode are arranged in a matrix.
A simple matrix liquid crystal display device arranged between a pair of electrode substrates.
JP28691297A 1997-10-20 1997-10-20 Swallow tail type compound and antiferroelectric liquid crystal composition containing the same compound Pending JPH11124356A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28691297A JPH11124356A (en) 1997-10-20 1997-10-20 Swallow tail type compound and antiferroelectric liquid crystal composition containing the same compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28691297A JPH11124356A (en) 1997-10-20 1997-10-20 Swallow tail type compound and antiferroelectric liquid crystal composition containing the same compound

Publications (1)

Publication Number Publication Date
JPH11124356A true JPH11124356A (en) 1999-05-11

Family

ID=17710601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28691297A Pending JPH11124356A (en) 1997-10-20 1997-10-20 Swallow tail type compound and antiferroelectric liquid crystal composition containing the same compound

Country Status (1)

Country Link
JP (1) JPH11124356A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6197389B1 (en) * 1998-07-24 2001-03-06 Mitsubishi Gas Chemical Company Inc Ferrielectric liquid crystal compound

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6197389B1 (en) * 1998-07-24 2001-03-06 Mitsubishi Gas Chemical Company Inc Ferrielectric liquid crystal compound

Similar Documents

Publication Publication Date Title
EP0829468B1 (en) Swallow-tailed compound and ferrielectric liquid crystal composition containing the same
EP0780456B1 (en) Anti-ferroelectric liquid crystal compound and anti-ferroelectric liquid crystal composition
JPH10279534A (en) Racemic compound and antiferroelectric liquid crystal composition containing the same
JPH0669988B2 (en) Ester compound and liquid crystal composition containing the same
JP2901717B2 (en) Fluorine-containing optically active compound and liquid crystal composition containing the compound
JPH11124356A (en) Swallow tail type compound and antiferroelectric liquid crystal composition containing the same compound
EP0844294B1 (en) Racemic compound and anti-ferroelectric liquid crystal composition containing the compound
US6217954B1 (en) Phenyl triester compound and anti-ferroelectric liquid crystal composition containing the same
KR980010491A (en) Optically active compound, Liquid crystal composition containing this optically active compound, And liquid crystal display element
JP3732255B2 (en) Antiferroelectric liquid crystal compound and antiferroelectric liquid crystal composition containing the compound
JPH1135941A (en) Antiferroelectric liquid crystal composition
JPH1053562A (en) Optically active compound and antiferroelectric liquid crystal composition containing the compound
JPH10109958A (en) Optically active compound, and antiferroelectric liquid crystal composition containing the same
JP4553418B2 (en) Phenylcyclohexyl compound, liquid crystal material, liquid crystal composition, and liquid crystal element
JP2858427B2 (en) Liquid crystal compound
JP2869236B2 (en) Fluorine-containing optically active compound and liquid crystal composition
JPH093008A (en) Bicyclic phenyl ester compound and antiferroelectric liquid crystal composition containing the same
JPH10330321A (en) Racemic compound and ferrielectric liquid crystal composition containing the same
JPH09157223A (en) Cyclohexane compound and antiferroelectric liquid crystal composition containing the same
JPH10204038A (en) Racemic compound and antiferroelectric liquid crystal composition containing the same
JPH10338660A (en) Racemic compound and ferroelectric liquid crystal composition
JPH10204035A (en) Racemic compound and antiferroelectric liquid crystal composition containing the same
JPH1087570A (en) Racemic compound, and antiferroelectric liquid crystal composition containing the same compound
JPH10316626A (en) Ferrielectric liquid crystal compound
JP2000186064A (en) Phenyl tri-ester compound and antiferroelectric liquid crystal composition including the same