JPH11354788A - Semiconductor device and its manufacture - Google Patents

Semiconductor device and its manufacture

Info

Publication number
JPH11354788A
JPH11354788A JP16453398A JP16453398A JPH11354788A JP H11354788 A JPH11354788 A JP H11354788A JP 16453398 A JP16453398 A JP 16453398A JP 16453398 A JP16453398 A JP 16453398A JP H11354788 A JPH11354788 A JP H11354788A
Authority
JP
Japan
Prior art keywords
region
semiconductor region
semiconductor
type
depth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16453398A
Other languages
Japanese (ja)
Other versions
JP4000669B2 (en
Inventor
Yasuaki Hayami
泰明 早見
Toshiaki Shinohara
俊朗 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP16453398A priority Critical patent/JP4000669B2/en
Publication of JPH11354788A publication Critical patent/JPH11354788A/en
Application granted granted Critical
Publication of JP4000669B2 publication Critical patent/JP4000669B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7809Vertical DMOS transistors, i.e. VDMOS transistors having both source and drain contacts on the same surface, i.e. Up-Drain VDMOS transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a semiconductor device for preventing the breakdown of a gate electrode when a surge voltage is applied to a drain electrode, and its manufacturing method. SOLUTION: A semiconductor device consists of a U-shaped groove 108 that is formed so that it reaches a low-concentration n-type epitaxial layer 192 from the surface of a p-type base region 105 being formed on the surface of the low-concentration n-type epitaxial layer 102, a U-shaped gate electrode 111 that is formed on the surface of the U-shaped groove 108 via an interlayer insulation film 113, and an n-type source region 107 that is formed at a position in contact with the interlayer insulation film 113 on the surface of the p-type base region 105. In this case, the bottom part of the p-type base region 105 touches the interlayer insulation film 113 at a shallower position than the depth of the U-shaped groove and at the same time, has a deeper part than the depth of the U-shaped groove 108.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体装置および
その製造方法、特にU字型ゲートMOSFET(以下U
MOSという)およびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device and a method of manufacturing the same, and more particularly to a U-shaped gate MOSFET (hereinafter referred to as U-shaped gate MOSFET).
MOS) and a method of manufacturing the same.

【0002】[0002]

【従来の技術】図17から図21は、従来の縦型UMO
Sの製造工程を示す図である。まず、図17に示すよう
に、高濃度n型半導体基板201上面に低濃度n型エピ
タキシャル層202を形成する。次に、図18に示すよ
うに、低濃度n型エピタキシャル層202の表面にp型
不純物をイオン注入し、熱拡散を行い、p型ベース領域
203を形成する。それから、図19に示すように、p
型ベース領域203の表面にn型不純物およびp型不純
物をそれぞれ所定の領域にイオン注入し、熱拡散を行
い、それぞれn型ソース領域204、p型ベースコンタ
クト領域205を形成する。そして、図20に示すよう
に、n型ソース領域204の表面からp型ベース領域2
03を貫通し、低濃度n型エピタキシャル層202に達
する深さまでU字型溝206を形成する。そのU字型溝
206の底面および側面にゲート酸化膜207を形成す
る。その後U字型溝206中を高濃度n型多結晶シリコ
ン208で埋め込み、U字型ゲート電極209を形成す
る。次に、図21に示すように、U字型ゲート電極20
9上面に酸化膜210を形成し、さらに層間絶縁膜21
1を形成する。それからソース電極212をn型ソース
領域204およびp型ベースコンタクト領域205に接
続するように形成する。U字型ゲート電極209中の高
濃度n型多結晶シリコン208とソース電極212とは
キャップ酸化膜210および層間絶縁膜211によって
絶縁される。さらに高濃度n型半導体基板201の下面
にドレイン電極213を形成する。上記工程により形成
されたUMOSは、平面型のDMOSと比較して、JF
ET抵抗分が存在しないため、同じ面積により多くのM
OSを形成できるため、素子の微細化、セル密度の増大
が可能となり、その結果パワーMOSFETの特性とし
て重要なオン抵抗を低減することができる。UMOS
は、U字型ゲート電極209がp型ベース領域203を
貫通する構造になっている。また、p型ベース領域20
3とドレイン領域との接合部には空乏層が広がる。この
空乏層は図21に示すようにU字型ゲート電極209下
のドレイン領域にも広がり、U字型ゲート電極209底
部のコーナ部に電界が集中しないようにしている。しか
しながら、ドレイン電極213にサージ電圧が印加され
た場合、U字型ゲート電極209底部のコーナ部に電界
が集中し、ゲート酸化膜207が破壊される可能性があ
るという問題がある。
2. Description of the Related Art FIGS. 17 to 21 show a conventional vertical UMO.
It is a figure showing the manufacturing process of S. First, as shown in FIG. 17, a low-concentration n-type epitaxial layer 202 is formed on the upper surface of a high-concentration n-type semiconductor substrate 201. Next, as shown in FIG. 18, a p-type impurity is ion-implanted into the surface of the low-concentration n-type epitaxial layer 202, and thermal diffusion is performed to form a p-type base region 203. Then, as shown in FIG.
An n-type impurity and a p-type impurity are ion-implanted into predetermined regions of the surface of the mold base region 203, respectively, and thermally diffused to form an n-type source region 204 and a p-type base contact region 205, respectively. Then, as shown in FIG. 20, from the surface of n-type source region 204 to p-type base region 2
A U-shaped groove 206 is formed to a depth that penetrates through the substrate 03 and reaches the low-concentration n-type epitaxial layer 202. A gate oxide film 207 is formed on the bottom and side surfaces of the U-shaped groove 206. Thereafter, the U-shaped groove 206 is filled with high-concentration n-type polycrystalline silicon 208 to form a U-shaped gate electrode 209. Next, as shown in FIG.
9, an oxide film 210 is formed on the upper surface,
Form one. Then, a source electrode 212 is formed so as to be connected to the n-type source region 204 and the p-type base contact region 205. The high-concentration n-type polycrystalline silicon 208 in the U-shaped gate electrode 209 is insulated from the source electrode 212 by the cap oxide film 210 and the interlayer insulating film 211. Further, a drain electrode 213 is formed on the lower surface of the high-concentration n-type semiconductor substrate 201. The UMOS formed by the above process has a JF
Since there is no ET resistance component, more M
Since an OS can be formed, miniaturization of an element and increase in cell density can be performed, and as a result, on-resistance, which is important as a characteristic of a power MOSFET, can be reduced. UMOS
Has a structure in which a U-shaped gate electrode 209 penetrates the p-type base region 203. Also, the p-type base region 20
A depletion layer spreads at the junction between the drain region 3 and the drain region. This depletion layer also extends to the drain region below the U-shaped gate electrode 209 as shown in FIG. 21 to prevent the electric field from being concentrated at the corner at the bottom of the U-shaped gate electrode 209. However, when a surge voltage is applied to the drain electrode 213, there is a problem that an electric field concentrates on a corner portion at the bottom of the U-shaped gate electrode 209 and the gate oxide film 207 may be broken.

【0003】[0003]

【発明が解決しようとする課題】本発明は前記問題を解
決するものである。すなわち、ドレイン電極213にサ
ージ電圧が印加された場合のU字型ゲート電極209の
破壊を防止する構造を有するUMOSの構造および製造
方法を提案するものである。
The present invention solves the above-mentioned problems. That is, the present invention proposes a structure and a manufacturing method of a UMOS having a structure for preventing the destruction of the U-shaped gate electrode 209 when a surge voltage is applied to the drain electrode 213.

【0004】[0004]

【課題を解決するための手段】上記課題を解決するた
め、請求項1記載の発明は、第1導電型のドレイン領域
となる第1半導体領域と、この第1半導体領域の表面に
形成されたベース領域となる第2導電型の第2半導体領
域と、この第2半導体領域の表面から前記第1半導体領
域に達するように形成された複数の第1の溝と、この各
第1の溝の表面に絶縁膜を介して形成されたゲート電極
と、前記第2半導体領域の表面であって、前記絶縁膜に
接する位置に形成されたソース領域となる第1導電型の
第3半導体領域と、からなる半導体装置において、前記
第2半導体領域の底部は、前記溝の深さよりも浅い位置
で前記絶縁膜と接すると共に、前記溝の深さよりも深い
部分を有することを特徴とする。請求項2記載の発明
は、第1導電型のドレイン領域となる第1半導体領域
と、この第1半導体領域の表面に形成されたベース領域
となる第2導電型の第2半導体領域と、この第2半導体
領域の表面から前記第1半導体領域に達するように形成
された複数の第1の溝と、この各第1の溝の表面に絶縁
膜を介して形成されたゲート電極と、前記第2半導体領
域の表面であって、前記絶縁膜に接する位置に形成され
たソース領域となる第1導電型の第3半導体領域と、か
らなる半導体装置において、前記溝の下部の第1半導体
領域の厚さは、他の第1半導体領域の厚さよりも厚いこ
とを特徴とする。請求項3記載の発明は、ドレイン領域
となる第1電動型の第1半導体領域の表面に、第1の深
さとこの第1の深さよりも深い第2の深さを有するベー
ス領域となる第2半導体領域を形成する工程と、前記第
2半導体領域の表面から前記第1半導体領域に達すると
共に、その底部が前記第1の深さよりも深く且つ前記第
2の深さよりも浅い溝を形成する工程と、この第1の溝
の表面に形成した絶縁膜を介してゲート電極を形成する
工程と、前記第2半導体領域の表面であって、前記絶縁
膜に接する位置にソース領域となる第1導電型の第3半
導体領域を形成する工程と、を備えたことを特徴とす
る。請求項4記載の発明は、請求項3記載の半導体装置
の製造方法において、前記第2半導体領域を形成する工
程は、前記第1半導体領域の表面に選択的に第2の溝を
形成する工程と、この第2の溝に不純物が導入された多
結晶半導体を埋め込む工程と、前記不純物を前記第1半
導体領域に拡散する工程と、を有することを特徴とす
る。請求項5記載の発明は、第1導電型のドレイン領域
となる第1半導体領域と、前記第1半導体領域の表面に
選択的に第2の溝を形成し、この第2の溝に不純物が導
入された多結晶半導体を埋め込み、前記不純物を前記第
1半導体領域に拡散することにより形成された、前記第
1半導体領域の表面に、第1の深さとこの第1の深さよ
りも深い第2の深さを有するベース領域となる第2半導
体領域と、この第2半導体領域の表面から前記第1半導
体領域に達するように形成された複数の第1の溝と、こ
の各第1の溝の表面に絶縁膜を介して形成されたゲート
電極と、前記第2半導体領域の表面であって、前記絶縁
膜に接する位置に形成されたソース領域となる第1導電
型の第3半導体領域と、からなる半導体装置において、
前記第2半導体領域の底部は、前記溝の深さよりも浅い
位置で前記絶縁膜と接すると共に、前記溝の深さよりも
深い部分を有することを特徴とする。
According to a first aspect of the present invention, there is provided a semiconductor device comprising: a first semiconductor region serving as a drain region of a first conductivity type; and a first semiconductor region formed on a surface of the first semiconductor region. A second semiconductor region of a second conductivity type serving as a base region; a plurality of first grooves formed so as to reach the first semiconductor region from a surface of the second semiconductor region; A gate electrode formed on the surface via an insulating film, a first conductive type third semiconductor region serving as a source region formed on the surface of the second semiconductor region and in contact with the insulating film; And a bottom portion of the second semiconductor region is in contact with the insulating film at a position shallower than the depth of the groove, and has a portion deeper than the depth of the groove. According to a second aspect of the present invention, a first semiconductor region serving as a drain region of a first conductivity type, a second semiconductor region of a second conductivity type serving as a base region formed on a surface of the first semiconductor region, A plurality of first grooves formed from the surface of the second semiconductor region to the first semiconductor region; a gate electrode formed on the surface of each first groove via an insulating film; And a third semiconductor region of a first conductivity type serving as a source region formed at a position in contact with the insulating film on a surface of the second semiconductor region. It is characterized in that the thickness is larger than the thickness of the other first semiconductor regions. According to a third aspect of the present invention, a first region having a first depth and a second depth greater than the first depth is formed on a surface of the first semiconductor region of the first electric type which is a drain region. Forming two semiconductor regions, and forming a groove reaching the first semiconductor region from the surface of the second semiconductor region and having a bottom portion deeper than the first depth and shallower than the second depth. A step of forming a gate electrode via an insulating film formed on the surface of the first groove; and a step of forming a source region at a position on the surface of the second semiconductor region and in contact with the insulating film. Forming a third semiconductor region of a conductivity type. According to a fourth aspect of the present invention, in the method of manufacturing a semiconductor device according to the third aspect, the step of forming the second semiconductor region includes the step of selectively forming a second groove in a surface of the first semiconductor region. And a step of embedding a polycrystalline semiconductor in which an impurity is introduced into the second groove, and a step of diffusing the impurity into the first semiconductor region. According to a fifth aspect of the present invention, a first semiconductor region serving as a drain region of the first conductivity type and a second groove are selectively formed on a surface of the first semiconductor region, and impurities are contained in the second groove. A first depth and a second depth deeper than the first depth are formed on the surface of the first semiconductor region formed by embedding the introduced polycrystalline semiconductor and diffusing the impurity into the first semiconductor region. A second semiconductor region serving as a base region having a depth of, a plurality of first grooves formed so as to reach the first semiconductor region from the surface of the second semiconductor region, A gate electrode formed on the surface via an insulating film, a first conductive type third semiconductor region serving as a source region formed on the surface of the second semiconductor region and in contact with the insulating film; In a semiconductor device comprising
The bottom of the second semiconductor region is in contact with the insulating film at a position shallower than the depth of the groove, and has a portion deeper than the depth of the groove.

【0005】[0005]

【作用】上記半導体装置の製造方法により、ベース領域
底部に凸状の部分を有する構造のUMOSを形成するこ
とができる。このUMOSは、ドレイン電極にサージ電
圧が印加された場合に、ドレイン電極からの距離の短い
ベース領域底部の凸状の部分に電界を集中させることに
より、ゲート電極底部のコーナ部の電界集中を抑制し、
ゲート電極の破壊を防止することが可能になる。
According to the method of manufacturing a semiconductor device, a UMOS having a structure having a convex portion at the bottom of the base region can be formed. In this UMOS, when a surge voltage is applied to the drain electrode, the electric field is concentrated at the convex portion at the bottom of the base region, which is short from the drain electrode, thereby suppressing the electric field concentration at the corner at the bottom of the gate electrode. And
Destruction of the gate electrode can be prevented.

【0006】[0006]

【発明の実施の形態】以下に本発明の実施の形態を説明
する。図1から図6は本発明実施の形態1の製造工程を
示す図である。これは縦型UMOSの製造工程を示す図
である。
Embodiments of the present invention will be described below. FIGS. 1 to 6 are views showing the manufacturing process of the first embodiment of the present invention. This is a view showing a manufacturing process of the vertical UMOS.

【0007】まず、図1に示すように、高濃度n型半導
体基板101上に低濃度n型エピタキシャル層102を
形成する。次に、図2に示すように、低濃度n型エピタ
キシャル層102表面に不純物導入用溝103を形成す
る。
First, as shown in FIG. 1, a low-concentration n-type epitaxial layer 102 is formed on a high-concentration n-type semiconductor substrate 101. Next, as shown in FIG. 2, an impurity introduction groove 103 is formed on the surface of the low-concentration n-type epitaxial layer 102.

【0008】そして、図3に示すように、不純物導入用
溝103の底面および側面に、p型不純物を導入し、p
型不純物の含まれた領域104を形成する。p型不純物
の含まれた領域104を形成する方法としては、例え
ば、不純物導入用溝103の底面および側面にボロンガ
ラスを形成し熱拡散する方法等が考えられる。次に、図
4に示すように、熱処理を行い、p型不純物の含まれた
領域104かの不純物拡散によりp型ベース領域105
を形成する。さらに、不純物導入用溝103の内部に、
高濃度p型多結晶シリコン106を埋め込む。
Then, as shown in FIG. 3, a p-type impurity is introduced into the bottom and side surfaces of the impurity
A region 104 containing a type impurity is formed. As a method of forming the region 104 containing the p-type impurity, for example, a method of forming boron glass on the bottom surface and side surfaces of the impurity introduction groove 103 and thermally diffusing the same may be considered. Next, as shown in FIG. 4, heat treatment is performed, and the p-type base region 105 is formed by impurity diffusion in the region 104 containing the p-type impurity.
To form Further, inside the impurity introduction groove 103,
A high concentration p-type polycrystalline silicon 106 is buried.

【0009】それから、図5に示すように、n型ソース
領域107をイオン注入および熱拡散により形成した
後、U字型ゲート電極111を形成する。U字型ゲート
電極111の形成は、まずU字型溝108を形成し、そ
のU字型溝108の底面および側面にゲート酸化膜10
9を形成し、それからU字型溝108に高濃度n型多結
晶シリコン110を形成する。そして、図6に示すよう
に、高濃度n型多結晶シリコン110の表面を酸化し、
キャップ酸化膜112を形成し、さらに層間絶縁膜11
3を形成する。そして、ソース電極114をn型ソース
領域107および高濃度p型多結晶シリコン106に接
続されるように形成する。また、高濃度n型半導体基板
101の下面にドレイン電極115を形成する。
Then, as shown in FIG. 5, after forming an n-type source region 107 by ion implantation and thermal diffusion, a U-shaped gate electrode 111 is formed. To form the U-shaped gate electrode 111, first, a U-shaped groove 108 is formed, and the gate oxide film 10 is formed on the bottom and side surfaces of the U-shaped groove 108.
9 is formed, and then a high-concentration n-type polysilicon 110 is formed in the U-shaped groove 108. Then, as shown in FIG. 6, the surface of the high-concentration n-type polycrystalline silicon 110 is oxidized,
Forming a cap oxide film 112;
Form 3 Then, source electrode 114 is formed so as to be connected to n-type source region 107 and high-concentration p-type polycrystalline silicon 106. Further, a drain electrode 115 is formed on the lower surface of the high-concentration n-type semiconductor substrate 101.

【0010】ここで不純物導入用溝103およびp型ベ
ース領域105は以下の条件を満たすように形成する。
まず、不純物導入用溝103の深さはU字型ゲート電極
111の深さ以下でなければならない。不純物導入用溝
103の深さがU字型ゲート電極111の深さよりも深
い場合、図7に示すようにU字型ゲート電極111がp
型ベース領域105を貫通しない構造になる。この構造
ではU字型ゲート電極111に所定の電圧を与えてもチ
ャネルが開かず、UMOSとしての動作を示さない。ま
た、p型ベース領域105について、その横方向の拡散
距離はU字型ゲート電極111の側面に到達し、UMO
Sの所定の閾値電圧を得るように形成する。p型ベース
領域105がU字型ゲート電極111の側面に到達しな
い場合、図8に示すようにドレイン電極115とソース
電極114との間はn型領域で繋がってしまい、UMO
Sとして動作しない。一方、縦方向の拡散距離はU字型
ゲート電極111の底部のコーナ部に電界が集中しない
ように、ある深さ以上なければならない。ただし深すぎ
る場合は素子の耐圧が低下してしまう。したがってp型
ベース領域105の縦方向の拡散距離はある範囲に規定
される。
Here, the impurity introducing groove 103 and the p-type base region 105 are formed so as to satisfy the following conditions.
First, the depth of the impurity introducing groove 103 must be less than the depth of the U-shaped gate electrode 111. When the depth of the impurity introducing groove 103 is deeper than the depth of the U-shaped gate electrode 111, as shown in FIG.
The structure does not penetrate the mold base region 105. In this structure, even when a predetermined voltage is applied to the U-shaped gate electrode 111, the channel does not open and does not operate as a UMOS. The lateral diffusion distance of the p-type base region 105 reaches the side surface of the U-shaped gate electrode 111, and
It is formed so as to obtain a predetermined threshold voltage of S. When the p-type base region 105 does not reach the side surface of the U-shaped gate electrode 111, the drain electrode 115 and the source electrode 114 are connected by an n-type region as shown in FIG.
Does not operate as S. On the other hand, the diffusion distance in the vertical direction must be a certain depth or more so that the electric field does not concentrate on the corner at the bottom of the U-shaped gate electrode 111. However, if it is too deep, the breakdown voltage of the element will decrease. Therefore, the vertical diffusion distance of p-type base region 105 is defined in a certain range.

【0011】p型ベース領域105の縦方向、横方法の
拡散距離は不純物導入用溝103の幅と深さ(深さはU
字型ゲート電極111の深さ以下)拡散工程等により制
御する。
The diffusion distance in the vertical and horizontal directions of the p-type base region 105 is determined by the width and depth of the impurity introducing groove 103 (the depth is U
The depth is controlled by a diffusion step or the like.

【0012】上記製造方法によって形成された縦型UM
OSは、p型ベース領域105底部が凸状に形成され
る。これによってドレイン電極115にサージ電圧が印
加された場合、電界はこの凸状の部分に集中する。した
がってU字型ゲート電極111の底部のコーナ部に電界
が集中することによるゲートの破壊を防止することがで
きる。
The vertical UM formed by the above manufacturing method
In the OS, the bottom of the p-type base region 105 is formed in a convex shape. As a result, when a surge voltage is applied to the drain electrode 115, the electric field concentrates on this convex portion. Therefore, it is possible to prevent the gate from being broken due to the concentration of the electric field at the bottom corner of the U-shaped gate electrode 111.

【0013】また図1から図6は縦型UMOSの製造工
程について示したが、横型UMOSについて適用しても
同様の効果を得ることができる。図9は本実施の形態の
製造方法を横型UMOSについて適用した場合のデバイ
ス構造を示す図である。この場合はドレイン電極119
とソース電極120とが高濃度n型半導体基板の同じ面
側に形成されている。ここで116は低濃度p型半導体
基板、117は高濃度n型埋め込み層、118は高濃度
ドレインコンタクト領域である。ドレイン電極119は
高濃度n型ドレインコンタクト領域118に接続されて
いる。
Although FIGS. 1 to 6 show the steps of manufacturing a vertical UMOS, the same effects can be obtained by applying the invention to a horizontal UMOS. FIG. 9 is a diagram showing a device structure when the manufacturing method of the present embodiment is applied to a horizontal UMOS. In this case, the drain electrode 119
And a source electrode 120 are formed on the same surface side of the high-concentration n-type semiconductor substrate. Here, 116 is a low concentration p-type semiconductor substrate, 117 is a high concentration n-type buried layer, and 118 is a high concentration drain contact region. The drain electrode 119 is connected to the high-concentration n-type drain contact region 118.

【0014】また図10から図15は本発明実施の形態
2の製造工程を示す図である。この構成は実施の形態1
の製造工程において、p型ベース領域105の形成方法
を変更したものである。すなわち、図12に示すように
不純物導入用溝103中に高濃度p型多結晶シリコン1
21を埋め込む。図13で熱処理を施すことにより、高
濃度p型多結晶シリコン121からの固層拡散により、
p型ベース領域122を形成する。また図15でソース
電極114はn型ソース領域107と高濃度p型多結晶
シリコン121に接続する。このような構成をとること
で、実施の形態1の場合に比べて、工程数の削減が可能
となる。
FIGS. 10 to 15 are views showing a manufacturing process according to the second embodiment of the present invention. This configuration corresponds to the first embodiment.
In the manufacturing process, the method of forming the p-type base region 105 is changed. That is, as shown in FIG. 12, high-concentration p-type polysilicon 1
Embed 21. By performing the heat treatment in FIG. 13, the solid layer diffusion from the high-concentration p-type polycrystalline silicon 121 causes
A p-type base region 122 is formed. In FIG. 15, source electrode 114 is connected to n-type source region 107 and high-concentration p-type polycrystalline silicon 121. With such a configuration, the number of steps can be reduced as compared with the case of the first embodiment.

【0015】また図16は本発明実施の形態3のUMO
Sの製造工程により製造されるデバイス構造を示す図で
ある。本実施の形態は実施の形態2に対して、p型ベー
スコンタクト領域123の形成工程を付加したものであ
る。p型ベース領域122において長い拡散距離が必要
な場合、高濃度p型多結晶シリコン121の表面濃度が
低下してしまい、ソース電極114との接合においてオ
ーミック特性が得られなくなる。しかしその場合でもp
型ベースコンタクト領域123の形成工程を付加するこ
とによって、ソース電極114と高濃度p型多結晶シリ
コン121とのオーミック接合を実現することができ
る。また実施の形態1においてもp型ベースコンタクト
領域の形成工程を付加することにより、ソース電極11
4と高濃度p型多結晶シリコン106とのコンタクトの
オーミック性の向上とコンタクト抵抗の低減とを図るこ
とができる。
FIG. 16 shows a UMO according to a third embodiment of the present invention.
It is a figure showing the device structure manufactured by the manufacturing process of S. This embodiment is different from the second embodiment in that a step of forming a p-type base contact region 123 is added. When a long diffusion distance is required in the p-type base region 122, the surface concentration of the high-concentration p-type polycrystalline silicon 121 is reduced, and ohmic characteristics cannot be obtained at the junction with the source electrode 114. But even in that case p
By adding the step of forming the mold base contact region 123, an ohmic junction between the source electrode 114 and the high-concentration p-type polycrystalline silicon 121 can be realized. Also in the first embodiment, a source electrode 11 can be formed by adding a step of forming a p-type base contact region.
4 and the high-concentration p-type polycrystalline silicon 106 can be improved in ohmic contact and reduced in contact resistance.

【0016】[0016]

【発明の効果】本発明により、以下のような効果が得ら
れる。第一に、UMOSにおいてn型ドレイン領域とな
るn型半導体基板の第1主面表面に、不純物拡散用溝を
形成し、その不純物拡散用溝の底面および側面をp型不
純物を導入し、その後の熱拡散により凸状の底部を有す
るp型ベース領域を形成することにより、ドレイン電極
にサージ電圧が印加された場合のU字型ゲート電極の底
部のコーナ部の電界集中によるゲート破壊を防止するこ
とができる。また第二に、不純物拡散用溝に高濃度p型
多結晶シリコンを埋め込み、熱処理を行う、つまり高濃
度p型多結晶シリコンからの固層拡散によりp型ベース
領域の形成を行うことにより、不純物導入用溝の底面お
よび側面にボロンガラスを形成し熱拡散する等、何らか
の方法により不純物導入用溝の底面および側面にp型不
純物を導入し、その後に不純物拡散用溝に高濃度p型多
結晶シリコンを埋め込む方法等と比較して、工程数の削
減が可能となる。また第三に、上記構成において、p型
ベースコンタクト領域を形成する工程を付加することに
よってソース電極とp型ベース領域との間の接合のオー
ミック性向上とコンタクト抵抗の削減とを図ることがで
きる。
According to the present invention, the following effects can be obtained. First, an impurity diffusion groove is formed on the first main surface of an n-type semiconductor substrate serving as an n-type drain region in a UMOS, and p-type impurities are introduced into the bottom and side surfaces of the impurity diffusion groove. Forming a p-type base region having a convex bottom by thermal diffusion prevents gate breakdown due to electric field concentration at the bottom corner of the U-shaped gate electrode when a surge voltage is applied to the drain electrode. be able to. Second, by implanting high-concentration p-type polycrystalline silicon in the impurity diffusion trenches and performing heat treatment, that is, by forming a p-type base region by solid-phase diffusion from high-concentration p-type polycrystalline silicon, P-type impurities are introduced into the bottom and side surfaces of the impurity introduction groove by any method, such as forming boron glass on the bottom surface and side surfaces of the introduction groove and thermally diffusing the same. The number of steps can be reduced as compared with the method of embedding silicon. Third, in the above structure, by adding a step of forming a p-type base contact region, it is possible to improve the ohmic property of the junction between the source electrode and the p-type base region and reduce the contact resistance. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明実施の形態1のUMOSの製造工程を示
す図である。
FIG. 1 is a diagram showing a manufacturing process of a UMOS according to a first embodiment of the present invention.

【図2】実施の形態1のUMOSの製造工程を示す図で
ある。
FIG. 2 is a view showing a manufacturing process of the UMOS according to the first embodiment;

【図3】実施の形態1のUMOSの製造工程を示す図で
ある。
FIG. 3 is a view showing a manufacturing process of the UMOS according to the first embodiment;

【図4】実施の形態1のUMOSの製造工程を示す図で
ある。
FIG. 4 is a diagram illustrating a manufacturing process of the UMOS according to the first embodiment;

【図5】実施の形態1のUMOSの製造工程を示す図で
ある。
FIG. 5 is a diagram showing a manufacturing process of the UMOS of the first embodiment.

【図6】実施の形態1のUMOSの製造工程を示す図で
ある。
FIG. 6 is a diagram illustrating a manufacturing process of the UMOS according to the first embodiment;

【図7】p型ベース領域を形成する条件を説明する図で
ある。
FIG. 7 is a diagram illustrating conditions for forming a p-type base region.

【図8】p型ベース領域を形成する条件を説明する図で
ある。
FIG. 8 is a diagram illustrating conditions for forming a p-type base region.

【図9】実施の形態1のUMOSの製造工程を横型UM
OSに適用した場合に製造されるデバイス構造を示す図
である。
FIG. 9 is a cross-sectional view of a UMOS manufacturing process
FIG. 3 is a diagram illustrating a device structure manufactured when applied to an OS.

【図10】実施の形態2のUMOSの製造工程を示す図
である。
FIG. 10 is a diagram showing a manufacturing process of the UMOS according to the second embodiment.

【図11】実施の形態2のUMOSの製造工程を示す図
である。
FIG. 11 is a view showing a manufacturing process of the UMOS according to the second embodiment;

【図12】実施の形態2のUMOSの製造工程を示す図
である。
FIG. 12 is a diagram showing a manufacturing process of the UMOS according to the second embodiment.

【図13】実施の形態2のUMOSの製造工程を示す図
である。
FIG. 13 is a diagram showing a manufacturing process of the UMOS according to the second embodiment.

【図14】実施の形態2のUMOSの製造工程を示す図
である。
FIG. 14 is a diagram illustrating a manufacturing process of the UMOS according to the second embodiment;

【図15】実施の形態2のUMOSの製造工程を示す図
である。
FIG. 15 is a diagram illustrating a manufacturing process of the UMOS according to the second embodiment;

【図16】実施の形態3のUMOSの製造工程により製
造されるデバイス構造を示す図である。
FIG. 16 is a diagram showing a device structure manufactured by the UMOS manufacturing process of the third embodiment.

【図17】従来の技術のUMOSの製造工程を示す図で
ある。
FIG. 17 is a view showing a manufacturing process of a conventional UMOS.

【図18】従来の技術のUMOSの製造工程を示す図で
ある。
FIG. 18 is a view showing a manufacturing process of a conventional UMOS.

【図19】従来の技術のUMOSの製造工程を示す図で
ある。
FIG. 19 is a diagram showing a manufacturing process of a conventional UMOS.

【図20】従来の技術のUMOSの製造工程を示す図で
ある。
FIG. 20 is a diagram showing a manufacturing process of a conventional UMOS.

【図21】従来の技術のUMOSの製造工程を示す図で
ある。
FIG. 21 is a diagram showing a manufacturing process of a conventional UMOS.

【符号の説明】[Explanation of symbols]

101 高濃度n型半導体基板 102 低濃度n型エピタキシャル層 103 不純物導入用溝 104 p型不純物の含まれた領域 105 p型ベース領域 106 高濃度p型多結晶シリコン 107 n型ソース領域 108 U字型溝 109 ゲート酸化膜 110 高濃度n型多結晶シリコン 111 U字型ゲート電極 112 キャップ酸化膜 113 層間絶縁膜 114 ソース電極 115 ドレイン電極 116 低濃度p型半導体基板 117 高濃度n型埋め込み層 118 高濃度ドレインコンタクト領域 119 ドレイン電極 120 ソース電極 121 高濃度p型多結晶シリコン 122 p型ベース領域 123 p型ベースコンタクト領域 201 高濃度n型半導体基板 202 低濃度n型エピタキシャル層 203 p型ベース領域 204 n型ソース領域 205 p型ベースコンタクト領域 206 U字型溝 207 ゲート酸化膜 208 高濃度n型多結晶シリコン 209 U字型ゲート電極 210 キャップ酸化膜 211 層間絶縁膜 212 ソース電極 213 ドレイン電極 DESCRIPTION OF SYMBOLS 101 High-concentration n-type semiconductor substrate 102 Low-concentration n-type epitaxial layer 103 Impurity introduction groove 104 P-type impurity-containing region 105 p-type base region 106 high-concentration p-type polycrystalline silicon 107 n-type source region 108 U-shaped Groove 109 Gate oxide film 110 High-concentration n-type polycrystalline silicon 111 U-shaped gate electrode 112 Cap oxide film 113 Interlayer insulating film 114 Source electrode 115 Drain electrode 116 Low-concentration p-type semiconductor substrate 117 High-concentration n-type buried layer 118 High-concentration Drain contact region 119 drain electrode 120 source electrode 121 high-concentration p-type polycrystalline silicon 122 p-type base region 123 p-type base contact region 201 high-concentration n-type semiconductor substrate 202 low-concentration n-type epitaxial layer 203 p-type base region 204 n-type Source area 05 p-type base contact region 206 U-shaped groove 207 gate oxide film 208 high-concentration n-type polycrystalline silicon 209 U-shaped gate electrode 210 cap oxide film 211 interlayer insulating film 212 source electrode 213 drain electrode

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 第1導電型のドレイン領域となる第1半
導体領域と、 この第1半導体領域の表面に形成されたベース領域とな
る第2導電型の第2半導体領域と、 この第2半導体領域の表面から前記第1半導体領域に達
するように形成された複数の第1の溝と、 この各第1の溝の表面に絶縁膜を介して形成されたゲー
ト電極と、 前記第2半導体領域の表面であって、前記絶縁膜に接す
る位置に形成されたソース領域となる第1導電型の第3
半導体領域と、からなる半導体装置において、 前記第2半導体領域の底部は、前記溝の深さよりも浅い
位置で前記絶縁膜と接すると共に、前記溝の深さよりも
深い部分を有することを特徴とする半導体装置。
A first semiconductor region serving as a drain region of a first conductivity type; a second semiconductor region of a second conductivity type serving as a base region formed on a surface of the first semiconductor region; A plurality of first grooves formed from the surface of the region to the first semiconductor region; a gate electrode formed on the surface of each first groove via an insulating film; and the second semiconductor region A third region of the first conductivity type which is a source region formed at a position in contact with the insulating film on the surface of
A semiconductor region comprising a semiconductor region, wherein a bottom of the second semiconductor region is in contact with the insulating film at a position shallower than the depth of the groove, and has a portion deeper than the depth of the groove. Semiconductor device.
【請求項2】 第1導電型のドレイン領域となる第1半
導体領域と、 この第1半導体領域の表面に形成されたベース領域とな
る第2導電型の第2半導体領域と、 この第2半導体領域の表面から前記第1半導体領域に達
するように形成された複数の第1の溝と、 この各第1の溝の表面に絶縁膜を介して形成されたゲー
ト電極と、 前記第2半導体領域の表面であって、前記絶縁膜に接す
る位置に形成されたソース領域となる第1導電型の第3
半導体領域と、からなる半導体装置において、 前記溝の下部の第1半導体領域の厚さは、他の第1半導
体領域の厚さよりも厚いことを特徴とする半導体装置。
A first semiconductor region serving as a drain region of the first conductivity type; a second semiconductor region of a second conductivity type serving as a base region formed on a surface of the first semiconductor region; A plurality of first grooves formed from the surface of the region to the first semiconductor region; a gate electrode formed on the surface of each first groove via an insulating film; and the second semiconductor region A third region of the first conductivity type which is a source region formed at a position in contact with the insulating film on the surface of
A semiconductor device comprising a semiconductor region, wherein a thickness of the first semiconductor region below the trench is larger than a thickness of another first semiconductor region.
【請求項3】 ドレイン領域となる第1電動型の第1半
導体領域の表面に、第1の深さとこの第1の深さよりも
深い第2の深さを有するベース領域となる第2半導体領
域を形成する工程と、 前記第2半導体領域の表面から前記第1半導体領域に達
すると共に、その底部が前記第1の深さよりも深く且つ
前記第2の深さよりも浅い溝を形成する工程と、 この第1の溝の表面に形成した絶縁膜を介してゲート電
極を形成する工程と、 前記第2半導体領域の表面であって、前記絶縁膜に接す
る位置にソース領域となる第1導電型の第3半導体領域
を形成する工程と、を備えたことを特徴とする半導体装
置の製造方法。
3. A second semiconductor region serving as a base region having a first depth and a second depth greater than the first depth, on a surface of the first electric type first semiconductor region serving as a drain region. Forming a groove reaching the first semiconductor region from the surface of the second semiconductor region and having a bottom deeper than the first depth and shallower than the second depth; Forming a gate electrode via an insulating film formed on the surface of the first groove; and forming a source region at a position on the surface of the second semiconductor region in contact with the insulating film, the first conductive type being a source region. Forming a third semiconductor region.
【請求項4】 前記第2半導体領域を形成する工程は、 前記第1半導体領域の表面に選択的に第2の溝を形成す
る工程と、 この第2の溝に不純物が導入された多結晶半導体を埋め
込む工程と、 前記不純物を前記第1半導体領域に拡散する工程と、を
有することを特徴とする請求項3記載の半導体装置の製
造方法。
4. The step of forming the second semiconductor region, the step of selectively forming a second groove in the surface of the first semiconductor region, and the step of: forming a polycrystalline structure in which impurities are introduced into the second groove. 4. The method of manufacturing a semiconductor device according to claim 3, further comprising: burying a semiconductor; and diffusing the impurity into the first semiconductor region.
【請求項5】 第1導電型のドレイン領域となる第1半
導体領域と、 前記第1半導体領域の表面に選択的に第2の溝を形成
し、この第2の溝に不純物が導入された多結晶半導体を
埋め込み、前記不純物を前記第1半導体領域に拡散する
ことにより形成された、前記第1半導体領域の表面に、
第1の深さとこの第1の深さよりも深い第2の深さを有
するベース領域となる第2半導体領域と、 この第2半導体領域の表面から前記第1半導体領域に達
するように形成された複数の第1の溝と、 この各第1の溝の表面に絶縁膜を介して形成されたゲー
ト電極と、 前記第2半導体領域の表面であって、前記絶縁膜に接す
る位置に形成されたソース領域となる第1導電型の第3
半導体領域と、からなる半導体装置において、 前記第2半導体領域の底部は、前記溝の深さよりも浅い
位置で前記絶縁膜と接すると共に、前記溝の深さよりも
深い部分を有することを特徴とする半導体装置。
5. A first semiconductor region serving as a drain region of a first conductivity type, and a second groove is selectively formed on a surface of the first semiconductor region, and an impurity is introduced into the second groove. A surface of the first semiconductor region, which is formed by embedding a polycrystalline semiconductor and diffusing the impurity into the first semiconductor region,
A second semiconductor region serving as a base region having a first depth and a second depth greater than the first depth; and a second semiconductor region formed to reach the first semiconductor region from a surface of the second semiconductor region. A plurality of first trenches; a gate electrode formed on the surface of each first trench via an insulating film; and a gate electrode formed on a surface of the second semiconductor region and in contact with the insulating film. Third of the first conductivity type serving as a source region
A semiconductor region comprising a semiconductor region, wherein a bottom of the second semiconductor region is in contact with the insulating film at a position shallower than the depth of the groove, and has a portion deeper than the depth of the groove. Semiconductor device.
JP16453398A 1998-06-12 1998-06-12 Semiconductor device and manufacturing method thereof Expired - Fee Related JP4000669B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16453398A JP4000669B2 (en) 1998-06-12 1998-06-12 Semiconductor device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16453398A JP4000669B2 (en) 1998-06-12 1998-06-12 Semiconductor device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH11354788A true JPH11354788A (en) 1999-12-24
JP4000669B2 JP4000669B2 (en) 2007-10-31

Family

ID=15794979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16453398A Expired - Fee Related JP4000669B2 (en) 1998-06-12 1998-06-12 Semiconductor device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4000669B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002176177A (en) * 2000-12-07 2002-06-21 Denso Corp Semiconductor device and its manufacturing method
JP2002190595A (en) * 2000-12-21 2002-07-05 Denso Corp Semiconductor device and method of manufacturing the same
WO2005088695A1 (en) * 2004-03-03 2005-09-22 Koninklijke Philips Electronics N.V. Trench field effect transistor and method of making it
JP4860858B2 (en) * 1999-06-03 2012-01-25 ゼネラル セミコンダクター,インク. High voltage power MOSFET with low on-resistance
US8169023B2 (en) 2008-07-16 2012-05-01 Kabushiki Kaisha Toshiba Power semiconductor device
WO2014061367A1 (en) * 2012-10-18 2014-04-24 三菱電機株式会社 Silicon carbide semiconductor device and method for manufacturing same
WO2015019731A1 (en) * 2013-08-07 2015-02-12 住友電気工業株式会社 Silicon carbide semiconductor device
JP2016171341A (en) * 2016-05-26 2016-09-23 ローム株式会社 Semiconductor device
CN105990434A (en) * 2014-09-12 2016-10-05 株式会社东芝 Semiconductor device and manufacturing method thereof

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4860858B2 (en) * 1999-06-03 2012-01-25 ゼネラル セミコンダクター,インク. High voltage power MOSFET with low on-resistance
JP2002176177A (en) * 2000-12-07 2002-06-21 Denso Corp Semiconductor device and its manufacturing method
JP2002190595A (en) * 2000-12-21 2002-07-05 Denso Corp Semiconductor device and method of manufacturing the same
WO2005088695A1 (en) * 2004-03-03 2005-09-22 Koninklijke Philips Electronics N.V. Trench field effect transistor and method of making it
US8169023B2 (en) 2008-07-16 2012-05-01 Kabushiki Kaisha Toshiba Power semiconductor device
WO2014061367A1 (en) * 2012-10-18 2014-04-24 三菱電機株式会社 Silicon carbide semiconductor device and method for manufacturing same
JP5791821B2 (en) * 2012-10-18 2015-10-07 三菱電機株式会社 Silicon carbide semiconductor device and manufacturing method thereof
JPWO2014061367A1 (en) * 2012-10-18 2016-09-05 三菱電機株式会社 Silicon carbide semiconductor device and manufacturing method thereof
US9954072B2 (en) 2012-10-18 2018-04-24 Mitsubishi Electric Corporation Silicon-carbide semiconductor device and manufacturing method thereof
WO2015019731A1 (en) * 2013-08-07 2015-02-12 住友電気工業株式会社 Silicon carbide semiconductor device
CN105990434A (en) * 2014-09-12 2016-10-05 株式会社东芝 Semiconductor device and manufacturing method thereof
JP2016171341A (en) * 2016-05-26 2016-09-23 ローム株式会社 Semiconductor device

Also Published As

Publication number Publication date
JP4000669B2 (en) 2007-10-31

Similar Documents

Publication Publication Date Title
KR100305978B1 (en) Field-effect trench transistors with lightly doped epitaxial regions on the surface of transistors
US6501129B2 (en) Semiconductor device
JP4192281B2 (en) Silicon carbide semiconductor device
KR100912995B1 (en) Method for fabricating a high voltage power mosfet having a voltage sustaining region that includes doped columns formed by rapid diffusion
JP4028482B2 (en) Power MOSFET having trench gate electrode and manufacturing method thereof
JP4225711B2 (en) Semiconductor device and manufacturing method thereof
KR100958421B1 (en) Power device and method for manufacturing the same
JP2003324196A (en) Vertical mosfet and method for manufacturing the same
KR20030070264A (en) High voltage LDMOS transistor and method for fabricating the same
JP2009065117A (en) Semiconductor device and manufacturing method of same
US8133788B2 (en) Method of manufacturing semiconductor device
KR100948663B1 (en) Method of forming device comprising a plurality of trench mosfet cells, and method of forming shallow and deep dopant implants
US6326292B1 (en) Semiconductor component and manufacturing method for semiconductor component
JP2003224277A (en) Silicon carbide semiconductor device and its manufacturing method
JP4000669B2 (en) Semiconductor device and manufacturing method thereof
KR20020083672A (en) High Voltage Device and Method for the Same
JP2001127285A (en) Vertical field-effect transistor
US9190480B2 (en) Method and contact structure for coupling a doped body region to a trench electrode of a semiconductor device
JP2004200441A (en) Semiconductor device and its manufacturing method
JP3448015B2 (en) Semiconductor device and manufacturing method thereof
JP2808871B2 (en) Method for manufacturing MOS type semiconductor device
JP2020191327A (en) Semiconductor device and manufacturing method thereof
US20220130997A1 (en) Gate trench power semiconductor devices having improved deep shield connection patterns
JP2001127290A (en) Vertical field effect transistor and its manufacturing method
JP2006140239A (en) Semiconductor device and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070515

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070626

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070626

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070724

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070806

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100824

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110824

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120824

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120824

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130824

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees