JPH11354515A - Pressure type heating furnace - Google Patents

Pressure type heating furnace

Info

Publication number
JPH11354515A
JPH11354515A JP15546698A JP15546698A JPH11354515A JP H11354515 A JPH11354515 A JP H11354515A JP 15546698 A JP15546698 A JP 15546698A JP 15546698 A JP15546698 A JP 15546698A JP H11354515 A JPH11354515 A JP H11354515A
Authority
JP
Japan
Prior art keywords
reaction vessel
gas
heating furnace
pressure
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15546698A
Other languages
Japanese (ja)
Inventor
Atsushi Yoshinouchi
淳 芳之内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP15546698A priority Critical patent/JPH11354515A/en
Publication of JPH11354515A publication Critical patent/JPH11354515A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To improve the uniformity of a temperature in a pressure type heating furnace, and to accurately control a pressure. SOLUTION: This pressure type heating furnace is composed of a closed container 1, heater 2 arranged in the closed container 1, reaction container 3 to be heated by the heater 2, and evaporator 4 arranged at the lower part of the reaction container 3 for supplying steam evaporated inside to the reaction container. In this case, in a gas supplying tube 6 for supplying gas to the reaction container 3 and a gas ejecting tube 7 for ejecting gas from the reaction container, a part between a control valve 9 and the reaction container 3 is heated.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明が属する技術分野】本発明は半導体等の熱処理に
用いられる加熱炉に係り、特に液晶ディスプレイやイメ
ージセンサ等を作成するために、ガラス基板上に形成さ
れる薄膜トランジスタの熱処理に用いられる加熱炉に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heating furnace used for heat treatment of semiconductors and the like, and more particularly to a heating furnace used for heat treatment of a thin film transistor formed on a glass substrate for producing a liquid crystal display, an image sensor and the like. About.

【0002】[0002]

【従来の技術】シリコンウエハや基板上に形成された半
導体膜を処理するためのアニール炉、拡散炉、酸化炉、
膜形成するための減圧CVD(Chemical Vapor Deposit
ion )等の加熱炉が従来から多く用いられている。近
年、これらの加熱炉は、装置の省スペース化を図るため
反応管を横置きするタイプにかわり縦置きするタイプ
(例えば、特開平8−8194の図3に開示されてい
る。)が主流となっている。また、酸化炉においては反
応管内ガス雰囲気を高圧にすることによって、圧力に依
存した高いレートを得ることができる(例えば、特開昭
53−112064、特開昭56−24938に開示さ
れている。)ことも知られている。また、近年、液晶デ
ィスプレイ等に大面積角型ガラス基板が用いられるた
め、従来の丸型シリコンウエハに代わって大面積角型ガ
ラス基板を処理する装置が求められている。
2. Description of the Related Art Annealing furnaces, diffusion furnaces, oxidation furnaces, and the like for processing semiconductor films formed on silicon wafers and substrates.
Low pressure CVD (Chemical Vapor Deposit) for film formation
Heating furnaces such as ion) have been widely used. In recent years, the mainstream of these heating furnaces is a type in which a reaction tube is placed vertically instead of a type in which a reaction tube is placed horizontally (for example, disclosed in FIG. 3 of JP-A-8-8194) in order to save space in the apparatus. Has become. In the oxidation furnace, a high pressure-dependent rate can be obtained by increasing the gas atmosphere in the reaction tube to a high pressure (for example, disclosed in JP-A-53-112064 and JP-A-56-24938). It is also known. In recent years, since a large-area square glass substrate is used for a liquid crystal display or the like, an apparatus for processing a large-area square glass substrate instead of a conventional round silicon wafer is required.

【0003】また、ガラス基板を処理する場合、ガラス
基板に影響を及ぼさないような温度で処理する必要があ
る。通常、半導体デバイスへの不純物の影響を考慮して
無アルカリガラスが用いられる。無アルカリガラスには
バリウムホウケイ酸ガラス、ホウケイ酸ガラス、アルミ
ノホウケイ酸ガラス、アルミノケイ酸ガラス等が用いら
れる。しかし、このようなガラス基板の歪点は593〜
700℃程度であり、実際に使用できる温度は600℃
以下であるので、600℃以下で処理することが求めら
れている。
Further, when processing a glass substrate, it is necessary to process at a temperature that does not affect the glass substrate. Usually, non-alkali glass is used in consideration of the influence of impurities on the semiconductor device. As the alkali-free glass, barium borosilicate glass, borosilicate glass, aluminoborosilicate glass, aluminosilicate glass, or the like is used. However, the strain point of such a glass substrate is 593 to
About 700 ° C, the actual usable temperature is 600 ° C
Therefore, processing at 600 ° C. or lower is required.

【0004】[0004]

【発明が解決しようとする課題】このような加圧式加熱
炉において、導入するガスは通常室温で供給されるの
で、導入口付近は温度が低下して、炉内の均熱性が悪く
なってしまう。また、加熱炉の反応容器内に水蒸気を導
入する場合、給排気口近傍や、ガス排出管内で結露が起
りやすい。たとえば、加熱炉内を25気圧に加圧する
と、そのときの飽和蒸気温度は223℃であり、この温
度以下では水蒸気は凝縮して結露するので、給排気口近
傍やガス排出管内で容易に結露してしまう。そして結露
が起ると、水蒸気の体積が急減するので、水蒸気をいく
ら供給しても昇圧することができず、圧力制御ができな
くなってしまう。
In such a pressurized heating furnace, the gas to be introduced is usually supplied at room temperature, so that the temperature near the inlet decreases and the uniformity in the furnace deteriorates. . In addition, when introducing steam into the reaction vessel of the heating furnace, dew condensation is likely to occur in the vicinity of the supply / exhaust port or in the gas discharge pipe. For example, when the inside of the heating furnace is pressurized to 25 atm, the saturated steam temperature at that time is 223 ° C. Below this temperature, the steam condenses and forms dew. Resulting in. Then, when dew condensation occurs, the volume of the steam is rapidly reduced, so that no matter how much steam is supplied, the pressure cannot be increased, and the pressure cannot be controlled.

【0005】本発明は、以上述べた従来技術の問題点に
鑑み案出されたもので、加圧式加熱炉の炉内の均熱性を
改善するとともに、水蒸気を用いた薄膜トランジスタ等
の熱処理において、圧力制御を容易、かつ、正確に行う
ことができる加熱式加熱炉を提供することを目的とす
る。
The present invention has been devised in view of the above-mentioned problems of the prior art. The present invention has been proposed to improve the uniformity of heat in a furnace of a pressurized heating furnace and to reduce the pressure in a heat treatment of a thin film transistor or the like using steam. It is an object of the present invention to provide a heating type heating furnace which can be controlled easily and accurately.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
本発明の加圧式加熱炉は、密閉容器と、該密閉容器内に
配置されるヒータと、該ヒータにより加熱される反応容
器と、該反応容器にガスを給排気する制御弁付きガス供
給管およびガス排出管と、該反応容器の下方に設けられ
内部で蒸発した水蒸気を反応容器内に供給する蒸発器
と、該蒸発器に純水を供給する純水供給管とを有してな
る加圧式加熱炉であって、該ガス供給管と該ガス排出管
とは制御弁と反応容器との間が加熱されている。
In order to achieve the above object, a pressurized heating furnace according to the present invention comprises a closed vessel, a heater disposed in the closed vessel, a reaction vessel heated by the heater, A gas supply pipe and a gas exhaust pipe with a control valve for supplying and exhausting gas to and from the reaction vessel, an evaporator provided below the reaction vessel to supply water vapor evaporated inside into the reaction vessel, and pure water Pressurized heating furnace having a pure water supply pipe for supplying gas, wherein the gas supply pipe and the gas discharge pipe are heated between a control valve and a reaction vessel.

【0007】上記蒸発器に純水を供給する純水供給管も
制御弁と蒸発器の間を加熱するようにすれば、蒸発器に
おける気激な温度変化が避けられるので好ましい。
It is preferable that the pure water supply pipe for supplying pure water to the evaporator also heats the space between the control valve and the evaporator, since an abrupt temperature change in the evaporator can be avoided.

【0008】反応容器は内部の清浄性を保つため、石英
等で作られているので、内外の圧力差を無くすため密閉
容器と反応容器内の圧力はほぼ等しくなるように制御さ
れており、酸化などの反応速度を高めるため圧力は1〜
50気圧にする。
Since the reaction vessel is made of quartz or the like in order to maintain the internal cleanliness, the pressure in the closed vessel and the pressure in the reaction vessel are controlled so as to be substantially equal in order to eliminate the pressure difference between the inside and the outside. Pressure to increase the reaction rate
Adjust to 50 atm.

【0009】次に本発明の作用を説明する。反応容器内
にガスを供給するガス供給管を加熱することにより、導
入するガスの温度を反応容器内の温度に近づけるので、
反応容器内の温度の均一性を良好に保つことができる。
Next, the operation of the present invention will be described. By heating the gas supply pipe that supplies gas into the reaction vessel, the temperature of the gas to be introduced approaches the temperature inside the reaction vessel,
Good uniformity of temperature in the reaction vessel can be maintained.

【0010】反応容器内からガスを排出するガス排出管
を加熱しているので、ガス排出管内での結露を防ぎ、凝
縮による体積の減少を防げるので、これにより反応容器
内の圧力の制御を容易に、かつ、正確に行うことができ
る。
[0010] Since the gas discharge pipe for discharging gas from the inside of the reaction vessel is heated, dew condensation in the gas discharge pipe is prevented and the volume due to condensation can be prevented, so that the pressure in the reaction vessel can be easily controlled. And accurately.

【0011】[0011]

【発明の実施の形態】以下本発明の1実施形態につい
て、図面を参照しつつ説明する。図1は本発明の加圧式
加熱炉のフローを示す概略断面図である。図において、
1は密閉容器であり、ステンレス鋼製であり、上部容器
1aと下部容器1bからなり、それらの間に気密用シー
ル5を挟持している。2は円筒状のヒータで、密閉容器
1内に配置されており、カンタル線等の発熱体を耐火れ
んが等に埋設したものである。3は反応容器で、石英等
で製作されており、ヒータ2により加熱され、上部容器
3aと下部容器3bとからなり、それらの間に気密シー
ル5を挟持している。反応容器3内にはガラス基板等を
収容する図示しない基板ホルダが設けられている。4は
反応容器3の下方に設けられ、内部で蒸発した水蒸気を
反応容器3内に供給する蒸発器であり、蒸発缶4aとそ
の上に配置された過熱管4bとこれらを囲繞して設けら
れたヒータ4cとからなる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic sectional view showing the flow of the pressurized heating furnace of the present invention. In the figure,
Reference numeral 1 denotes an airtight container, which is made of stainless steel and comprises an upper container 1a and a lower container 1b, between which an airtight seal 5 is sandwiched. Reference numeral 2 denotes a cylindrical heater, which is disposed in the closed vessel 1 and has a heating element such as a Kanthal wire embedded in a refractory brick or the like. Reference numeral 3 denotes a reaction vessel, which is made of quartz or the like, is heated by the heater 2, is composed of an upper vessel 3a and a lower vessel 3b, and holds an airtight seal 5 therebetween. A substrate holder (not shown) that accommodates a glass substrate or the like is provided in the reaction container 3. Reference numeral 4 denotes an evaporator which is provided below the reaction vessel 3 and supplies the water vapor evaporated therein into the reaction vessel 3. The evaporator 4 is provided with an evaporator 4 a and a superheater tube 4 b disposed thereon and surrounding them. Heater 4c.

【0012】6は反応容器3内にガスを供給するガス供
給管であり、ガスボンベ10により減圧弁11、フロー
メータ12および制御弁9を介して反応用のガスを供給
する。7は反応容器3からガスを排出するガス排出管で
あり、出口側に制御弁9が設けられている。
Reference numeral 6 denotes a gas supply pipe for supplying a gas into the reaction vessel 3. The gas supply pipe supplies a reaction gas via a pressure reducing valve 11, a flow meter 12 and a control valve 9 by a gas cylinder 10. Reference numeral 7 denotes a gas discharge pipe for discharging gas from the reaction vessel 3, and a control valve 9 is provided on the outlet side.

【0013】8は蒸発器4に純水を供給する純水供給管
であり、ポンプ13により制御弁9を介して純水を供給
する。
Reference numeral 8 denotes a pure water supply pipe for supplying pure water to the evaporator 4. The pure water is supplied by a pump 13 through a control valve 9.

【0014】14はヒータである。ガス供給管6とガス
排出管7とは、制御弁9と反応容器3との間がヒータ1
4により加熱されており、純水供給管8は制御弁9と蒸
発器4との間がヒータ14により加熱されている。
Reference numeral 14 denotes a heater. The gas supply pipe 6 and the gas discharge pipe 7 are connected between the control valve 9 and the reaction vessel 3 by the heater 1.
The pure water supply pipe 8 is heated by the heater 14 between the control valve 9 and the evaporator 4.

【0015】15は反応容器3の内外の圧力差を無くす
ために、密閉容器1に加圧用空気を供給する空気供給管
であり空気ボンベ17により減圧弁11、フローメータ
12および制御弁9を介して加圧用空気を供給する。1
6は密閉容器1から加圧用空気を排出する空気排出管で
あり、出口側に制御弁9が設けられている。
Reference numeral 15 denotes an air supply pipe for supplying pressurized air to the closed vessel 1 in order to eliminate a pressure difference between the inside and outside of the reaction vessel 3. To supply pressurized air. 1
Reference numeral 6 denotes an air discharge pipe for discharging pressurized air from the closed container 1, and a control valve 9 is provided on the outlet side.

【0016】次に、本実施形態の作用を説明する。ガラ
ス基板などを本加熱炉により熱処理するには、密閉容器
1および反応容器3を開いて図示しない基板ホルダを反
応容器3内に収容する。水蒸気によりガラス基板を酸化
処理する場合には、ポンプ13により制御弁9を介して
純水供給管8により純水を蒸発器4の蒸発缶4aに供給
する。ヒータ4cにより加熱されて蒸発缶4a内で蒸発
した水蒸気は、過熱管4bにより過熱蒸気となり、反応
容器3内に供給される。反応容器3内はヒータ2により
300〜600℃に加熱されていて、ガラス基板の熱処
理が行われる。ガラス基板を窒素などの不活性なガス雰
囲気で熱処理する場合は、ガスボンベ10から減圧弁1
1、フローメータ12および制御弁9を経てガス供給管
6により窒素ガスを反応容器内に供給する。
Next, the operation of the present embodiment will be described. In order to heat-treat a glass substrate or the like by the main heating furnace, the closed vessel 1 and the reaction vessel 3 are opened, and a substrate holder (not shown) is accommodated in the reaction vessel 3. When the glass substrate is oxidized by steam, pure water is supplied to the evaporator 4 a of the evaporator 4 by the pump 13 via the control valve 9 and the pure water supply pipe 8. The water vapor heated by the heater 4c and evaporated in the evaporator 4a becomes superheated steam by the superheat pipe 4b, and is supplied into the reaction vessel 3. The inside of the reaction vessel 3 is heated to 300 to 600 ° C. by the heater 2 and heat treatment of the glass substrate is performed. When a glass substrate is heat-treated in an inert gas atmosphere such as nitrogen, a pressure reducing valve 1
1. Nitrogen gas is supplied into the reaction vessel through the gas supply pipe 6 via the flow meter 12 and the control valve 9.

【0017】反応容器3は、ガラス基板の汚染を防ぐた
め、石英等で製作されており、高圧に耐えられないので
密閉容器1内の圧力を反応容器3内と同じ1〜50気圧
の圧力に加圧する。そのため空気ボンベ17から減圧弁
11、フローメータ12および制御弁9を経て空気供給
管15により加圧用空気を供給する。
The reaction vessel 3 is made of quartz or the like in order to prevent contamination of the glass substrate, and cannot withstand high pressure. Therefore, the pressure in the closed vessel 1 is reduced to the same pressure of 1 to 50 atm as in the reaction vessel 3. Apply pressure. Therefore, pressurized air is supplied from the air cylinder 17 through the pressure reducing valve 11, the flow meter 12, and the control valve 9 through the air supply pipe 15.

【0018】熱処理が完了したら、制御弁9により圧力
を調整しつつガス排気管7および空気排気管16を通じ
て排気して、反応容器3および密閉容器1内を減圧し、
容器内が大気圧になってから容器を開いてガラス基板を
収容した基板ホルダを取り出す。
When the heat treatment is completed, the pressure inside the reaction vessel 3 and the closed vessel 1 is reduced by exhausting the gas through the gas exhaust pipe 7 and the air exhaust pipe 16 while adjusting the pressure by the control valve 9.
After the pressure in the container reaches the atmospheric pressure, the container is opened and the substrate holder containing the glass substrate is taken out.

【0019】本発明では、反応容器3内にガスを供給す
るガス供給管6を加熱して、導入するガスの温度を反応
容器3内の温度に近づけるので、反応容器内の温度の均
一性を良好に保つことができる。
In the present invention, the gas supply pipe 6 for supplying gas into the reaction vessel 3 is heated to bring the temperature of the gas to be introduced close to the temperature inside the reaction vessel 3, so that the temperature uniformity within the reaction vessel 3 is improved. Can be kept good.

【0020】反応容器3内からガスを排出するガス排出
管7を加熱するので、ガス排出管7内での結露を防ぐこ
とができ、これにより反応容器内の圧力制御を容易に、
かつ、正確に行うことができる。
Since the gas discharge pipe 7 for discharging gas from the reaction vessel 3 is heated, dew condensation in the gas discharge pipe 7 can be prevented, thereby easily controlling the pressure in the reaction vessel.
And it can be performed accurately.

【0021】本発明は、以上説明した実施形態に限定さ
れるものではなく、発明の要旨を逸脱しない範囲で種々
の変更が可能である。
The present invention is not limited to the embodiment described above, and various changes can be made without departing from the gist of the invention.

【0022】[0022]

【発明の効果】以上述べたように、本発明の加圧式加熱
炉は反応容器にガスを供給するガス供給管を加熱してい
るので、反応容器内の温度の均一性を保つことができる
し、反応容器からガスを排気するガス排出管を加熱して
いるのでガス排出管内で結露することが無く、反応容器
内の圧力制御を容易に、かつ、正確に行うことができる
などの優れた効果を有する。
As described above, the pressurized heating furnace of the present invention heats the gas supply pipe for supplying gas to the reaction vessel, so that the temperature inside the reaction vessel can be kept uniform. Because the gas exhaust pipe that exhausts gas from the reaction vessel is heated, there is no condensation in the gas exhaust pipe, and excellent pressure control in the reaction vessel can be easily and accurately performed. Having.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の加圧式加熱炉のフローを示す概略断面
図である。
FIG. 1 is a schematic sectional view showing the flow of a pressurized heating furnace of the present invention.

【符号の説明】[Explanation of symbols]

1 密閉容器 2 ヒータ 3 反応容器 4 蒸発器 6 ガス供給管 7 ガス排出管 8 純水供給管 9 制御弁 DESCRIPTION OF SYMBOLS 1 Closed container 2 Heater 3 Reaction container 4 Evaporator 6 Gas supply pipe 7 Gas discharge pipe 8 Pure water supply pipe 9 Control valve

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 密閉容器と、該密閉容器内に配置される
ヒータと、該ヒータにより加熱される反応容器と、該反
応容器にガスを給排気する制御弁付きガス供給管および
ガス排出管と、該反応容器の下方に設けられ内部で蒸発
した水蒸気を反応容器内に供給する蒸発器と、該蒸発器
に純水を供給する純水供給管とを有してなる加圧式加熱
炉であって、該ガス供給管と該ガス排出管とは制御弁と
反応容器との間が加熱されていることを特徴とする加圧
式加熱炉。
1. A closed vessel, a heater disposed in the closed vessel, a reaction vessel heated by the heater, a gas supply pipe with a control valve for supplying and exhausting gas to and from the reaction vessel, and a gas exhaust pipe. A pressurized heating furnace having an evaporator provided below the reaction vessel to supply water vapor evaporated inside into the reaction vessel, and a pure water supply pipe for supplying pure water to the evaporator. The pressurized heating furnace wherein the gas supply pipe and the gas discharge pipe are heated between the control valve and the reaction vessel.
【請求項2】 上記蒸発器に純水を供給する純水供給管
は制御弁と蒸発器の間が加熱されている請求項1記載の
加圧式加熱炉。
2. The pressurized heating furnace according to claim 1, wherein the pure water supply pipe for supplying pure water to the evaporator is heated between a control valve and the evaporator.
【請求項3】 密閉容器と反応容器内の圧力はほぼ等し
くなるように制御されており、該圧力は1〜50気圧で
ある請求項1または請求項2記載の加圧式加熱炉。
3. The pressurized heating furnace according to claim 1, wherein the pressure in the closed vessel and the pressure in the reaction vessel are controlled to be substantially equal, and the pressure is 1 to 50 atm.
JP15546698A 1998-06-04 1998-06-04 Pressure type heating furnace Pending JPH11354515A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15546698A JPH11354515A (en) 1998-06-04 1998-06-04 Pressure type heating furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15546698A JPH11354515A (en) 1998-06-04 1998-06-04 Pressure type heating furnace

Publications (1)

Publication Number Publication Date
JPH11354515A true JPH11354515A (en) 1999-12-24

Family

ID=15606677

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15546698A Pending JPH11354515A (en) 1998-06-04 1998-06-04 Pressure type heating furnace

Country Status (1)

Country Link
JP (1) JPH11354515A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006165304A (en) * 2004-12-08 2006-06-22 Ishikawajima Harima Heavy Ind Co Ltd Vapor anneal device and vapor introduction method therein
JP2008010727A (en) * 2006-06-30 2008-01-17 Dainippon Printing Co Ltd Device and method for vapor processing
JP2008053258A (en) * 2006-08-22 2008-03-06 Ihi Corp Heat treatment equipment, heat treatment method, and heat treatment control device
JP2009539231A (en) * 2006-02-10 2009-11-12 プンサン マイクロテック カンパニー リミティッド High pressure gas annealing apparatus and method
KR20200032269A (en) * 2017-08-18 2020-03-25 어플라이드 머티어리얼스, 인코포레이티드 High pressure and high temperature annealing chamber
JP2020522881A (en) * 2017-06-02 2020-07-30 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Improving the quality of films deposited on substrates
US11177128B2 (en) 2017-09-12 2021-11-16 Applied Materials, Inc. Apparatus and methods for manufacturing semiconductor structures using protective barrier layer
US11361978B2 (en) 2018-07-25 2022-06-14 Applied Materials, Inc. Gas delivery module
US11527421B2 (en) 2017-11-11 2022-12-13 Micromaterials, LLC Gas delivery system for high pressure processing chamber
US11581183B2 (en) 2018-05-08 2023-02-14 Applied Materials, Inc. Methods of forming amorphous carbon hard mask layers and hard mask layers formed therefrom
US11610773B2 (en) 2017-11-17 2023-03-21 Applied Materials, Inc. Condenser system for high pressure processing system
US11694912B2 (en) 2017-08-18 2023-07-04 Applied Materials, Inc. High pressure and high temperature anneal chamber
US11749555B2 (en) 2018-12-07 2023-09-05 Applied Materials, Inc. Semiconductor processing system
US11881411B2 (en) 2018-03-09 2024-01-23 Applied Materials, Inc. High pressure annealing process for metal containing materials
US11901222B2 (en) 2020-02-17 2024-02-13 Applied Materials, Inc. Multi-step process for flowable gap-fill film

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006165304A (en) * 2004-12-08 2006-06-22 Ishikawajima Harima Heavy Ind Co Ltd Vapor anneal device and vapor introduction method therein
JP2009539231A (en) * 2006-02-10 2009-11-12 プンサン マイクロテック カンパニー リミティッド High pressure gas annealing apparatus and method
JP2008010727A (en) * 2006-06-30 2008-01-17 Dainippon Printing Co Ltd Device and method for vapor processing
JP2008053258A (en) * 2006-08-22 2008-03-06 Ihi Corp Heat treatment equipment, heat treatment method, and heat treatment control device
JP2020522881A (en) * 2017-06-02 2020-07-30 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Improving the quality of films deposited on substrates
US11462417B2 (en) 2017-08-18 2022-10-04 Applied Materials, Inc. High pressure and high temperature anneal chamber
US11694912B2 (en) 2017-08-18 2023-07-04 Applied Materials, Inc. High pressure and high temperature anneal chamber
JP2020532106A (en) * 2017-08-18 2020-11-05 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Annealing chamber under high pressure and high temperature
CN111095513B (en) * 2017-08-18 2023-10-31 应用材料公司 High-pressure high-temperature annealing chamber
KR20200032269A (en) * 2017-08-18 2020-03-25 어플라이드 머티어리얼스, 인코포레이티드 High pressure and high temperature annealing chamber
US11469113B2 (en) 2017-08-18 2022-10-11 Applied Materials, Inc. High pressure and high temperature anneal chamber
CN111095513A (en) * 2017-08-18 2020-05-01 应用材料公司 High-pressure high-temperature annealing chamber
US11177128B2 (en) 2017-09-12 2021-11-16 Applied Materials, Inc. Apparatus and methods for manufacturing semiconductor structures using protective barrier layer
US11527421B2 (en) 2017-11-11 2022-12-13 Micromaterials, LLC Gas delivery system for high pressure processing chamber
US11756803B2 (en) 2017-11-11 2023-09-12 Applied Materials, Inc. Gas delivery system for high pressure processing chamber
US11610773B2 (en) 2017-11-17 2023-03-21 Applied Materials, Inc. Condenser system for high pressure processing system
US11881411B2 (en) 2018-03-09 2024-01-23 Applied Materials, Inc. High pressure annealing process for metal containing materials
US11581183B2 (en) 2018-05-08 2023-02-14 Applied Materials, Inc. Methods of forming amorphous carbon hard mask layers and hard mask layers formed therefrom
US11361978B2 (en) 2018-07-25 2022-06-14 Applied Materials, Inc. Gas delivery module
US11749555B2 (en) 2018-12-07 2023-09-05 Applied Materials, Inc. Semiconductor processing system
US11901222B2 (en) 2020-02-17 2024-02-13 Applied Materials, Inc. Multi-step process for flowable gap-fill film

Similar Documents

Publication Publication Date Title
JPH11354515A (en) Pressure type heating furnace
US7313931B2 (en) Method and device for heat treatment
US6863732B2 (en) Heat treatment system and method
KR101010072B1 (en) Film formation apparatus and method for semiconductor process and computer-readable medium
US20080153314A1 (en) Substrate processing apparatus, method of manufacturing semiconductor device, and heating apparatus
JPH0786174A (en) Film deposition system
JP3551609B2 (en) Heat treatment equipment
JP2002009072A (en) Method and apparatus for forming silicon nitride film
JP4806856B2 (en) Heat treatment method and heat treatment apparatus
JP2005039123A (en) Chemical vapor deposition device
JP2012099723A (en) Substrate processing apparatus
JP5571157B2 (en) Semiconductor device manufacturing method, cleaning method, and substrate processing apparatus
JP2001308085A (en) Heat-treating method
JP2009016426A (en) Manufacturing method for semiconductor device, and board processing apparatus
JP2001345314A (en) Device and method for heat treatment
JP2007324478A (en) Substrate processing apparatus
JP2000323419A (en) Heater
JP3791648B2 (en) High pressure furnace and operating method thereof
JP2000012476A (en) Heating furnace
JP2004304128A (en) Manufacturing method of semiconductor device
JP2008205246A (en) Substrate processing device
JP2002319579A (en) Method for heat treating article and batch heat treating system
JPH10326789A (en) Heating furnace
JP2008071939A (en) Substrate treatment device
JP2002121668A (en) Thermal cvd apparatus for forming graphite nanofiber thin film

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050112

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20050530

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20060704

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20061031

Free format text: JAPANESE INTERMEDIATE CODE: A02