JP2002121668A - Thermal cvd apparatus for forming graphite nanofiber thin film - Google Patents

Thermal cvd apparatus for forming graphite nanofiber thin film

Info

Publication number
JP2002121668A
JP2002121668A JP2000313026A JP2000313026A JP2002121668A JP 2002121668 A JP2002121668 A JP 2002121668A JP 2000313026 A JP2000313026 A JP 2000313026A JP 2000313026 A JP2000313026 A JP 2000313026A JP 2002121668 A JP2002121668 A JP 2002121668A
Authority
JP
Japan
Prior art keywords
gas
substrate
mixed gas
thin film
processed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000313026A
Other languages
Japanese (ja)
Other versions
JP4627863B2 (en
Inventor
Yoshiaki Agawa
阿川  義昭
Hiroyuki Fukazawa
博之 深沢
Harukuni Furuse
晴邦 古瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2000313026A priority Critical patent/JP4627863B2/en
Publication of JP2002121668A publication Critical patent/JP2002121668A/en
Application granted granted Critical
Publication of JP4627863B2 publication Critical patent/JP4627863B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Inorganic Fibers (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To constitute a thermal CVD apparatus for forming graphite nanofiber thin film so that a growth speed of the thin film is increased and a thin film having uniform film thickness distribution is formed regardless of a size and an external shape of a substrate to be treated. SOLUTION: An apparatus is provided with a mixed gas supply system 18 to introduce a mixed gas of a carbon containing gas and a hydrogen gas into a vacuum chamber. A mixed gas heating means 21 to heat the mixed gas introduced in the chamber to a prescribed temperature is arranged to the mixed gas supply system. Further, introduction of the mixed gas in the vacuum chamber is conducted through a gas injection nozzle means 19 which is arranged at a lower side than a height position of a substrate S to be treated and encircles the substrate S to be treated near its outer periphery. In this case, the nozzle means has a gas passage in its inside, and plural gas injection ports communicating to the gas passage are arrayed at its upper face.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、基板上にグラファ
イトナノファイバー薄膜を形成するためのCVD装置に
関する。
The present invention relates to a CVD apparatus for forming a graphite nanofiber thin film on a substrate.

【0002】[0002]

【従来の技術】グラファイトナノファイバー薄膜は、例
えば、平面ディスプレー(電界放出型ディスプレー)や
CRTの電子管球の代用として電子発光素子を必要とす
る部品上に形成される。グラファイトナノファイバー薄
膜を形成するには、例えば熱CVD(Chemical vapor d
eposition)装置が使用され、このような熱CVD装置
は特願2000−89468号明細書から知られてい
る。
2. Description of the Related Art A graphite nanofiber thin film is formed on a component requiring an electroluminescent element as a substitute for a flat panel display (field emission display) or an electron tube of a CRT, for example. To form a graphite nanofiber thin film, for example, thermal CVD (Chemical vapor d)
An eposition apparatus is used, and such a thermal CVD apparatus is known from Japanese Patent Application No. 2000-89468.

【0003】該熱CVD装置は真空雰囲気の形成を可能
とする真空チャンバー(成膜室)を備えている。該真空
チャンバーの内部には、ガラスやSiなどの基板であっ
てFeやCoの薄膜が形成されたものが装着される基板
ホルダーが配設されている。また、真空チャンバーの上
部壁面には、基板ホルダーに装着される被処理基板に対
向して石英ガラスなどの耐熱性ガラスからなる赤外線透
過窓が設けられ、この透過窓の外側には加熱手段である
赤外線ランプが配設されている。さらに、真空チャンバ
ーには、例えば一酸化炭素ガスと水素ガスとの混合ガス
を該真空チャンバー内に導入する混合ガス供給系が接続
されている。そして、該赤外線ランプによって被処理基
板を加熱しつつ、真空チャンバーの側壁に設けられた1
箇所のガス導入口から真空チャンバーに常温の混合ガス
を導入することで該基板上にグラファイトナノファイバ
ー薄膜を成長させる。
[0003] The thermal CVD apparatus is provided with a vacuum chamber (film forming chamber) which can form a vacuum atmosphere. Inside the vacuum chamber, there is provided a substrate holder on which a substrate made of glass or Si, on which a thin film of Fe or Co is formed, is mounted. In addition, an infrared transmission window made of heat-resistant glass such as quartz glass is provided on the upper wall surface of the vacuum chamber so as to face the substrate to be processed mounted on the substrate holder, and a heating means is provided outside the transmission window. An infrared lamp is provided. Furthermore, a mixed gas supply system for introducing a mixed gas of, for example, carbon monoxide gas and hydrogen gas into the vacuum chamber is connected to the vacuum chamber. Then, while the substrate to be processed is heated by the infrared lamp, 1 is provided on the side wall of the vacuum chamber.
A graphite nanofiber thin film is grown on the substrate by introducing a mixed gas at normal temperature into the vacuum chamber from the gas inlet at the location.

【0004】[0004]

【発明が解決しようとする課題】ところで、真空チャン
バーに導入される混合ガスは所定の温度(例えば、40
0℃)以上に加熱されることなく基板に到達させる必要
がある。このため、上記装置では、真空チャンバー側壁
に設け得るガス導入口の配設位置を適宜設計しているも
のの、このような混合ガスの導入ではグラファイトナノ
ファイバー薄膜の膜厚分布を制御するのは困難である。
この場合、真空チャンバーの側壁にガス導入口を複数設
け、これらのガス導入口から混合ガスを真空チャンバー
内に導入することが考えられるが、これでは200mm
×200mm程度の略正方形基板やφ200mm程度の
円形基板はともかく、例えば1m×1mサイズのような
大きな被処理基板やA4サイズのような矩形の被処理基
板に対してグラファイトナノファイバー薄膜の膜厚分布
が均一になるようにガス導入口の配設位置を適切に設計
することは困難である。また、上記装置では、常温の混
合ガスを真空チャンバー内に導入しているが、これで
は、被処理基板に到達した混合ガスがその反応温度(約
450℃)まで上昇するのに時間がかかり、グラファイ
トナノファイバーの成長速度が遅いという問題がある。
The mixed gas introduced into the vacuum chamber has a predetermined temperature (for example, 40 ° C.).
(0 ° C.) or more. For this reason, in the above-mentioned apparatus, although the arrangement position of the gas introduction port which can be provided in the vacuum chamber side wall is appropriately designed, it is difficult to control the film thickness distribution of the graphite nanofiber thin film by introducing such a mixed gas. It is.
In this case, it is conceivable to provide a plurality of gas inlets on the side wall of the vacuum chamber and to introduce a mixed gas into the vacuum chamber from these gas inlets.
Regardless of a substantially square substrate having a size of about 200 mm or a circular substrate having a diameter of about 200 mm, for example, a film thickness distribution of a graphite nanofiber thin film with respect to a large substrate having a size of 1 mx 1 m or a rectangular substrate having a size of A4. It is difficult to appropriately design the arrangement position of the gas inlet so that the gas distribution becomes uniform. In the above-described apparatus, the mixed gas at room temperature is introduced into the vacuum chamber. However, in this case, it takes time for the mixed gas that has reached the substrate to be processed to rise to its reaction temperature (about 450 ° C.). There is a problem that the growth rate of the graphite nanofiber is slow.

【0005】そこで、本発明の課題は、上記問題点に鑑
み、グラファイトナノファイバー薄膜の高い成長速度を
達成でき、その上、被処理基板のサイズや外形に関係な
く、膜厚分布の均一なグラファイトナノファイバー薄膜
の形成が可能な熱CVD装置を提供することにある。
In view of the above problems, it is an object of the present invention to achieve a high growth rate of a graphite nanofiber thin film, and furthermore, to obtain a graphite nanofiber having a uniform thickness distribution regardless of the size and outer shape of a substrate to be processed. An object of the present invention is to provide a thermal CVD apparatus capable of forming a nanofiber thin film.

【0006】[0006]

【課題を解決するための手段】この課題を解決するため
に本発明のCVD装置は、炭素含有ガスと水素ガスとの
混合ガスを真空チャンバーに導入する混合ガス供給系を
備え、基板加熱手段で被処理基板を加熱しつつ、真空チ
ャンバー外部のガス源に接続された混合ガス供給系から
混合ガスを導入することで被処理基板上にグラファイト
ナノファイバー薄膜を形成する熱CVD装置であって、
真空チャンバー内における混合ガスの導入が、被処理基
板の高さ位置より下側であって、被処理基板をその外周
の近傍で囲繞するように設けた混合ガス供給系に接続さ
れたガス噴射ノズル手段を介して行われ、ガス噴出ノズ
ル手段はその内部にガス流路を有すると共に、その上面
に、ガス流路に連通する複数のガス噴射口が列設され、
該ガス供給系の真空チャンバーの外側に位置する個所
に、真空チャンバーに導入する混合ガスを所定の温度に
加熱する混合ガス加熱手段を設けたことを特徴とする。
In order to solve this problem, a CVD apparatus according to the present invention includes a mixed gas supply system for introducing a mixed gas of a carbon-containing gas and a hydrogen gas into a vacuum chamber. A thermal CVD apparatus that forms a graphite nanofiber thin film on a substrate to be processed by introducing a mixed gas from a mixed gas supply system connected to a gas source outside the vacuum chamber while heating the substrate to be processed,
A gas injection nozzle connected to a mixed gas supply system provided so as to introduce the mixed gas in the vacuum chamber below the height position of the substrate to be processed and to surround the substrate to be processed in the vicinity of the outer periphery thereof The gas ejection nozzle means has a gas flow path therein, and a plurality of gas injection ports communicating with the gas flow path are arranged on the upper surface thereof,
A mixed gas heating means for heating a mixed gas introduced into the vacuum chamber to a predetermined temperature is provided at a position located outside the vacuum chamber of the gas supply system.

【0007】本発明によれば、混合ガス供給系に設けた
ガス加熱手段によって真空チャンバー内に導入する際の
混合ガス温度を高くすることができ、被処理基板に到達
した混合ガスは反応温度まで速く昇温するので、グラフ
ァイトナノファイバー薄膜の成長速度を高めることがで
きる。他方で、被処理基板をその外周の近傍で囲繞する
ように設けたガス噴出ノズル手段の上面に列設された複
数のガス噴射口から一旦上方に向かって噴出された混合
ガスが、被処理基板の上方全体に亘って均一に拡散し、
次いで、下方に向かって均等に下降し、被処理基板全体
に亘って一様に到達するので、被処理基板が比較的大き
な寸法を有していたり、矩形の外形を有していても、被
処理基板のサイズや外形に関係なく該被処理基板上に膜
厚分布の均一なグラファイトナノファイバー薄膜を形成
できる。
According to the present invention, the temperature of the mixed gas introduced into the vacuum chamber can be raised by the gas heating means provided in the mixed gas supply system, and the mixed gas reaching the substrate to be processed can reach the reaction temperature. Since the temperature rises quickly, the growth rate of the graphite nanofiber thin film can be increased. On the other hand, the mixed gas which has been ejected upward from a plurality of gas ejection ports arranged in a row on the upper surface of the gas ejection nozzle means provided so as to surround the substrate to be processed in the vicinity of the outer periphery thereof, Spread evenly over the entire
Then, the substrate descends uniformly downward and reaches uniformly over the entire substrate to be processed. Therefore, even if the substrate to be processed has a relatively large dimension or a rectangular outer shape, A graphite nanofiber thin film having a uniform film thickness distribution can be formed on the substrate to be processed irrespective of the size and outer shape of the substrate to be processed.

【0008】[0008]

【発明の実施の形態】図1及び図2を参照して、例え
ば、A4サイズの矩形の被処理基板S上にグラファイト
ナノファイバー薄膜を形成する熱CVD装置1は、ロー
ドロック室11と成膜室12とを備え、ロードロック室
11と成膜室12とはゲートバルブ13を介して接続さ
れている。ロードロック室11は、ガラスやSiなどの
被処理基板Sであって、成膜面にFeやCoなどの金属
薄膜が形成されたものを一旦真空雰囲気に曝すことで、
被処理基板S表面の水分等を除去する役割を果たす。こ
のため、該ロードロック室11には、真空ポンプ111
が接続されていると共に、その真空度をモニターする真
空計112が配設されている。また、該ロードロック室
11には、被処理基板Sが装着された基板ホルダー16
を搬送する搬送アーム15が設けられている。該搬送ア
ーム15は、サーボモータ(図示せず)を備えた回転軸
151の上端に固着された第1アーム152と、各第1
アーム152の他端に枢支された第2アーム153と、
該第2アーム153の他端に枢支されると共に、被処理
基板Sが装着され得る基板ホルダー16を下側から支持
するフォーク状の支持部を備えた第3アーム154とか
らなる。そして、第2及び第3の各アーム153、15
4を旋回させることで搬送アーム15は伸縮自在とな
る。また、被処理基板Sを装着した基板ホルダー16の
受渡等のため回転軸151は短いストロークで昇降自在
である。この搬送アーム15によって外部から、基板ホ
ルダー16に装着された被処理基板Sをロードロック室
11に収容し、所定の真空度(例えば、0.01Tor
r程度)まで真空排気した後、ゲートバルブ13を開け
て、所定の真空度(例えば、0.01Torr程度)に
真空排気した成膜室12に被処理基板Sを基板ホルダー
16と共に搬送する。そして、搬送アーム15を再びロ
ードロック室11に戻して、ゲートバルブ13を閉じ
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Referring to FIGS. 1 and 2, for example, a thermal CVD apparatus 1 for forming a graphite nanofiber thin film on an A4-size rectangular substrate to be processed S comprises a load lock chamber 11 and a film forming apparatus. A chamber 12 is provided, and the load lock chamber 11 and the film formation chamber 12 are connected via a gate valve 13. The load lock chamber 11 is a substrate S to be processed made of glass, Si, or the like, in which a metal thin film such as Fe or Co is formed on a film forming surface, and is exposed to a vacuum atmosphere.
It plays a role of removing moisture and the like on the surface of the substrate S to be processed. For this reason, the vacuum pump 111
Are connected, and a vacuum gauge 112 for monitoring the degree of vacuum is provided. The load lock chamber 11 has a substrate holder 16 on which the substrate S to be processed is mounted.
A transfer arm 15 for transferring the image is provided. The transfer arm 15 includes a first arm 152 fixed to an upper end of a rotary shaft 151 having a servomotor (not shown),
A second arm 153 pivotally supported at the other end of the arm 152,
A third arm 154 pivotally supported by the other end of the second arm 153 and having a fork-shaped support portion for supporting the substrate holder 16 on which the substrate S to be processed can be mounted from below. Then, the second and third arms 153, 15
By rotating the transfer arm 4, the transfer arm 15 can be extended and contracted. In addition, the rotary shaft 151 can be moved up and down with a short stroke for delivery of the substrate holder 16 on which the substrate S to be processed is mounted. The substrate S to be processed mounted on the substrate holder 16 is housed in the load lock chamber 11 from the outside by the transfer arm 15 and is subjected to a predetermined degree of vacuum (for example, 0.01 Torr).
After evacuation to about r), the gate valve 13 is opened, and the substrate S to be processed is transported together with the substrate holder 16 to the film forming chamber 12 evacuated to a predetermined degree of vacuum (for example, about 0.01 Torr). Then, the transfer arm 15 is returned to the load lock chamber 11 again, and the gate valve 13 is closed.

【0009】成膜室12の底面には、搬送アーム15に
よって搬送されてきた被処理基板Sを装着した基板ホル
ダー16を載置する3本の支柱121が、該基板ホルダ
ー16の面積に対応して略三角形を形成するように配設
されている。そして、該支柱121のうち、ロードロッ
ク室11側に位置するものが第3アーム154のフォー
ク状の支持部相互の間隙に位置して該搬送アーム15の
ガイドとしての役割を果たす。尚、本実施の形態では、
基板ホルダー16を搬送することとしたが、成膜室12
内の支柱121上に基板ホルダー16を固定しておき、
被処理基板Sを搬送するように構成することもできる。
On the bottom surface of the film forming chamber 12, three columns 121 for mounting a substrate holder 16 on which a substrate S to be processed transferred by the transfer arm 15 is mounted correspond to the area of the substrate holder 16. Are arranged so as to form a substantially triangular shape. Of the columns 121, the column located on the side of the load lock chamber 11 is located in the gap between the fork-shaped support portions of the third arm 154 and serves as a guide for the transport arm 15. In the present embodiment,
Although the substrate holder 16 was transported,
The substrate holder 16 is fixed on the support 121 inside,
The substrate S to be processed may be transported.

【0010】また、成膜室12の上部壁面には、基板ホ
ルダー16に装着される被処理基板Sに対向して石英ガ
ラスなどの耐熱性ガラスからなる赤外線透過窓122が
設けられている。この透過窓122の外側には、所定の
配列を有してなる加熱手段である複数本の赤外線ランプ
17が配設され、被処理基板Sをその全面に亘って均等
に加熱する。そして、該成膜室12にもまた、ロードロ
ック室11と同様に、真空雰囲気の形成が可能であるよ
うに真空ポンプ123が設けられていると共に、その真
空度をモニターする真空計124が配設されている。ま
た、真空ポンプ123をバイパスする配管がバルブ12
3cを介在させて設けられている。
An infrared transmission window 122 made of heat-resistant glass such as quartz glass is provided on the upper wall surface of the film forming chamber 12 so as to face the substrate S to be processed mounted on the substrate holder 16. Outside the transmission window 122, a plurality of infrared lamps 17, which are heating means having a predetermined arrangement, are arranged, and heat the substrate to be processed S uniformly over its entire surface. Similarly to the load lock chamber 11, the film forming chamber 12 is provided with a vacuum pump 123 so that a vacuum atmosphere can be formed, and a vacuum gauge 124 for monitoring the degree of vacuum is provided. Has been established. In addition, a pipe bypassing the vacuum pump 123 is connected to the valve 12.
3c is provided.

【0011】さらに、成膜室12には混合ガス供給系1
8が接続されている。該混合ガス供給系18は、バルブ
181aからガス流量調節器181b、圧力調整器18
1c及びバルブ181dを介して一酸化炭素などの炭素
含有ガスボンベ181eにガス配管にて直列に連なって
いる炭素含有ガス供給系181と、バルブ182aから
ガス流量調節器182b、圧力調整器182c及びバル
ブ182dを介して水素ガスボンベ182eにガス配管
にて直列に連なっている水素ガス供給系182とからな
る。そして、炭素含有ガス供給系181と水素ガス供給
系182とは、バルブ181a、182aと成膜室12
との間で合流し、成膜室12内に炭素含有ガスと水素ガ
スとからなる混合ガスが導入される。ここで、グラファ
イトナノファイバー薄膜を形成するのに、炭素含有ガス
の他に水素ガスを用いるのは、気相反応における希釈及
び触媒作用のためである。
Further, the mixed gas supply system 1 is
8 are connected. The mixed gas supply system 18 includes a valve 181a, a gas flow controller 181b, a pressure controller 18
1c and a carbon-containing gas supply system 181 connected in series with a carbon-containing gas cylinder 181e such as carbon monoxide via a valve via a valve 181d, a valve 182a to a gas flow regulator 182b, a pressure regulator 182c, and a valve 182d. And a hydrogen gas supply system 182 connected in series to the hydrogen gas cylinder 182e via a gas pipe. Further, the carbon-containing gas supply system 181 and the hydrogen gas supply system 182 are connected to the valves 181a and 182a and the film forming chamber 12
And a mixed gas consisting of a carbon-containing gas and a hydrogen gas is introduced into the film forming chamber 12. Here, the reason why the hydrogen gas is used in addition to the carbon-containing gas to form the graphite nanofiber thin film is because of dilution and catalytic action in the gas phase reaction.

【0012】また、混合ガス供給系18を介して混合ガ
スを成膜室12に導入する場合、従来の熱CVD装置の
ように、被処理基板Sの上方に位置して該成膜室12の
側壁に設けた1箇所のガス導入口から混合ガスを導入す
るのでは、比較的大きな基板や矩形の基板に対してグラ
ファイトナノファイバー薄膜の膜厚分布を均一にするの
は困難である。そこで、本実施の形態では、混合ガスの
導入を、被処理基板Sの高さ位置より下側であって、被
処理基板Sをその外周の近傍で囲繞するように設けたガ
ス噴射ノズル手段19を介して行なうこととした。
When a mixed gas is introduced into the film forming chamber 12 through a mixed gas supply system 18, the mixed gas is located above the substrate S to be processed as in a conventional thermal CVD apparatus. If a mixed gas is introduced from one gas inlet provided on the side wall, it is difficult to make the film thickness distribution of the graphite nanofiber thin film uniform on a relatively large substrate or a rectangular substrate. Therefore, in the present embodiment, the introduction of the mixed gas is performed below the height position of the substrate S to be processed, and the gas injection nozzle means 19 provided so as to surround the substrate S near the outer periphery thereof. It was decided to do it through.

【0013】図2及び図3を参照して、環状のガス噴射
ノズル手段19はその内部に混合ガス流路191を備
え、その上面には、該ガス流路191に連通する複数個
のガス噴射口192が列設されている。また、ガス噴射
ノズル手段19の上面には、ガス流路191に通じる継
手を備えた混合ガス供給部193が開設され、該継手に
は混合ガス供給系18のガス配管の一端が接続されてい
る。ここで、このようにガス噴射ノズル手段19を形成
した場合、赤外線ランプ17によって被処理基板Sと共
にガス噴射ノズル手段19自体も加熱され得る。そし
て、該ガス噴射ノズル手段19の表面温度が所定の温度
以上になると、そこにグラファイトナノファイバー薄膜
が成長し得る。グラファイトナノファイバー膜が成長す
るとコンタミネーションの原因になるので、ガス噴射ノ
ズル手段19を頻繁にクリーニング或いは交換する必要
が生じる。このため、本実施の形態では、ガス噴射ノズ
ル手段19を、熱伝導率の高い金属材料である銅から形
成し、冷却可能な成膜室12の底面に面接触させて配設
した。なお、本実施の形態では、ガス噴射ノズル手段1
9を環状としたが、成膜室12内に混合ガスを均一に噴
射し得るものであればその外形は問わない。また、基板
ホルダー16が載置される支柱121の高さ寸法は、ガ
ス噴射ノズル手段19の配設位置に対応して、ガス噴射
ノズル手段19のガス噴射口192から上方に向かって
噴出された混合ガスが赤外線ランプ17で所定温度以上
に加熱されることなく、被処理基板Sに到達するように
定寸されている。
Referring to FIGS. 2 and 3, the annular gas injection nozzle means 19 has a mixed gas flow path 191 therein, and a plurality of gas injection paths communicating with the gas flow path 191 on its upper surface. The mouths 192 are arranged. On the upper surface of the gas injection nozzle means 19, a mixed gas supply unit 193 having a joint communicating with the gas flow path 191 is opened, and one end of a gas pipe of the mixed gas supply system 18 is connected to the joint. . Here, when the gas injection nozzle means 19 is formed as described above, the gas injection nozzle means 19 itself can be heated together with the substrate S to be processed by the infrared lamp 17. Then, when the surface temperature of the gas injection nozzle means 19 becomes higher than a predetermined temperature, a graphite nanofiber thin film can grow thereon. Since the growth of the graphite nanofiber film causes contamination, it is necessary to frequently clean or replace the gas injection nozzle means 19. For this reason, in the present embodiment, the gas injection nozzle means 19 is formed from copper, which is a metal material having high thermal conductivity, and is arranged in surface contact with the bottom surface of the film forming chamber 12 which can be cooled. In the present embodiment, the gas injection nozzle means 1
Although the ring 9 is annular, any shape can be used as long as the mixed gas can be uniformly injected into the film forming chamber 12. The height of the column 121 on which the substrate holder 16 is placed is ejected upward from the gas injection port 192 of the gas injection nozzle means 19 corresponding to the position of the gas injection nozzle means 19. The size is set so that the mixed gas reaches the substrate S without being heated to a predetermined temperature or higher by the infrared lamp 17.

【0014】ところで、成膜室12に導入される混合ガ
スは所定の反応温度(450℃)以上に加熱されること
なく基板に到達させる必要がある。一方で、グラファイ
トナノファイバーの成長速度を高くするには、被処理基
板Sに到達した混合ガスの炭素含有ガスを直ちに解離さ
せることが必要がある。このため、被処理基板Sに到達
すると直ちに反応する温度まで、成膜室12に導入され
る混合ガスの温度を上昇させることが望ましい。そこ
で、本実施の形態では、混合ガス供給系18のうち、炭
素含有ガス供給系181と水素ガス供給系182とが合
流した個所に、混合ガスを加熱する混合ガス加熱手段2
1を介設した。
Incidentally, the mixed gas introduced into the film forming chamber 12 needs to reach the substrate without being heated to a predetermined reaction temperature (450 ° C.) or higher. On the other hand, in order to increase the growth rate of the graphite nanofibers, it is necessary to immediately dissociate the carbon-containing gas of the mixed gas that has reached the target substrate S. For this reason, it is desirable to raise the temperature of the mixed gas introduced into the film formation chamber 12 to a temperature at which the mixed gas immediately reacts upon reaching the substrate S to be processed. Therefore, in the present embodiment, the mixed gas heating unit 2 that heats the mixed gas is provided at a position where the carbon-containing gas supply system 181 and the hydrogen gas supply system 182 in the mixed gas supply system 18 merge.
1 was interposed.

【0015】図4を参照して、混合ガス加熱手段21
は、混合ガスが流通するガス通路211を有し、該ガス
通路内211には、複数本の抵抗加熱コイル212が配
設され、該抵抗加熱コイル212への電流を制御するこ
とで該ガス通路211を流通する混合ガスを所定の温度
に加熱できるように構成されている。尚、本実施の形態
では、ガス通路に抵抗加熱コイル212を設けることと
したが、混合ガスを加熱できるものであれば特に限定は
なく、例えば、ガス通路に沿って外部に赤外線ランプを
設け、該赤外線ランプで混合ガスを所定の温度に加熱す
るように構成することもできる。
Referring to FIG. 4, mixed gas heating means 21
Has a gas passage 211 through which a mixed gas flows. In the gas passage 211, a plurality of resistance heating coils 212 are provided, and by controlling a current to the resistance heating coil 212, the gas passage is formed. It is configured such that the mixed gas flowing through 211 can be heated to a predetermined temperature. In the present embodiment, the resistance heating coil 212 is provided in the gas passage. However, there is no particular limitation as long as it can heat the mixed gas. For example, an infrared lamp is provided outside along the gas passage. The gas mixture may be heated to a predetermined temperature by the infrared lamp.

【0016】次に、上記装置を使用したグラファイトナ
ノファイバー薄膜形成プロセスについて説明する。
Next, a process for forming a graphite nanofiber thin film using the above apparatus will be described.

【0017】被処理基板Sとして、EB蒸着法によりガ
ラス基板上にFeを100nmの厚さで蒸着したものを
使用する。このようにFeが蒸着された被処理基板Sを
基板ホルダー16上に装着したものを、ロードロック室
11の外側から搬送アーム15によって該ロードロック
室11に一旦収納し、真空ポンプ111を起動して真空
計112で測定しながら0.01Torr程度まで真空
排気を行う。それに併せて、成膜室も、真空ポンプ12
3を起動して真空計124で測定しながら0.01To
rr程度になるまで真空排気を行う。そして、ロードロ
ック室11及び成膜室12が所定の真空度に達した後、
所定の時間経過後にゲートバルブ13を開けて成膜室1
2の基板ホルダー用支柱121上に被処理基板Sが装着
された基板ホルダー16を載置する。この状態で、一酸
化炭素ガスボンベ181eと水素ガスボンベ182eと
の元栓を開き、圧力調整器181c、182cにより約
1気圧(絶対圧力)に調整し、そしてバルブ181a、
182aを開き、ガス流量調節器181b、182bに
より、一酸化炭素ガスと水素ガスとの混合ガス(CO:
2=30:70のガス比)を約1000sccm程度
に調整し、ガス加熱手段21を介して350℃に加熱し
た混合ガスを被処理基板ホルダー16の下方から、ガス
噴射ノズル手段19を介して成膜室12に導入し、ガス
置換を行った。この時、真空ポンプ123を停止し、真
空ポンプ123の前後に設けたバルブ123a、123
bを閉状態にしてバイパス配管のバルブ123cを開状
態にしておき、成膜室12がほぼ大気圧(760Tor
r)となるようにした。この場合、赤外線ランプ17を
付勢して被処理基板Sを500℃に加熱した状態で混合
ガスを導入した。
As the substrate S to be processed, a substrate obtained by depositing Fe with a thickness of 100 nm on a glass substrate by an EB evaporation method is used. The substrate S on which the substrate to be processed S on which Fe is deposited is mounted on the substrate holder 16 from the outside of the load lock chamber 11 and temporarily stored in the load lock chamber 11 by the transfer arm 15, and the vacuum pump 111 is started. The vacuum evacuation is performed to about 0.01 Torr while measuring with the vacuum gauge 112. At the same time, the film forming chamber is also equipped with a vacuum pump 12
3 and start measurement with the vacuum gauge 124
Evacuation is performed until the pressure becomes about rr. After the load lock chamber 11 and the film forming chamber 12 reach a predetermined degree of vacuum,
After a predetermined time has elapsed, the gate valve 13 is opened and the film forming chamber 1 is opened.
The substrate holder 16 on which the substrate S to be processed is mounted is placed on the second substrate holder support column 121. In this state, the main stoppers of the carbon monoxide gas cylinder 181e and the hydrogen gas cylinder 182e are opened, the pressure is adjusted to about 1 atm (absolute pressure) by the pressure regulators 181c and 182c, and the valves 181a and 181c are opened.
182a is opened, and a mixed gas of carbon monoxide gas and hydrogen gas (CO: CO:
H 2 = 30: 70 gas ratio) was adjusted to about 1000 sccm, and the mixed gas heated to 350 ° C. via the gas heating means 21 was passed through the gas injection nozzle means 19 from below the substrate holder 16 to be processed. It was introduced into the film forming chamber 12 and gas replacement was performed. At this time, the vacuum pump 123 is stopped, and valves 123a and 123 provided before and after the vacuum pump 123 are provided.
b is closed, the valve 123c of the bypass pipe is opened, and the film forming chamber 12 is almost at atmospheric pressure (760 Torr).
r). In this case, the mixed gas was introduced while the substrate S to be processed was heated to 500 ° C. by energizing the infrared lamp 17.

【0018】そして、成膜室12内の圧力が大気圧にな
った後、500℃で10分間にわたって、熱CVD法に
より該基板上でグラファイトナノファイバーの成長反応
を行った。一酸化炭素ガスが被処理基板S上に達する
と、一酸化炭素が解離し、被処理基板上に蒸着されたF
e薄膜上にのみグラファイトナノファイバー薄膜が形成
された。ここで、予め加熱した混合ガスを導入してグラ
ファイトナノファイバー薄膜を成長させた場合、常温の
混合ガスを導入してグラファイトナノファイバー薄膜を
成長させた場合に比べて、成長速度はほぼ4倍まで向上
した。
After the pressure in the film forming chamber 12 became atmospheric pressure, a growth reaction of graphite nanofibers was performed on the substrate at 500 ° C. for 10 minutes by a thermal CVD method. When the carbon monoxide gas reaches the substrate to be processed S, the carbon monoxide is dissociated, and the F deposited on the substrate to be processed is removed.
The graphite nanofiber thin film was formed only on the e thin film. Here, the growth rate of the graphite nanofiber thin film by introducing a pre-heated mixed gas is almost four times that of growing the graphite nanofiber thin film by introducing a mixed gas at room temperature. Improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の熱CVD装置の構成を概略的に示す図FIG. 1 is a diagram schematically showing a configuration of a thermal CVD apparatus of the present invention.

【図2】図1のII−II線に沿った断面図FIG. 2 is a sectional view taken along the line II-II in FIG.

【図3】ガス噴射ノズル手段の部分斜視図FIG. 3 is a partial perspective view of the gas injection nozzle means.

【図4】図1のA部の拡大断面図FIG. 4 is an enlarged sectional view of a portion A in FIG. 1;

【符号の説明】[Explanation of symbols]

1 熱CVD装置 12 成膜室 17 赤外線ランプ 18 混合ガス
供給系 19 ガス噴射ノズル手段 21 ガス加熱
手段 S 被処理基板
DESCRIPTION OF SYMBOLS 1 Thermal CVD apparatus 12 Film-forming chamber 17 Infrared lamp 18 Mixed gas supply system 19 Gas injection nozzle means 21 Gas heating means S Substrate to be processed

───────────────────────────────────────────────────── フロントページの続き (72)発明者 古瀬 晴邦 神奈川県茅ヶ崎市萩園2500番地 日本真空 技術株式会社内 Fターム(参考) 4G046 CA01 CA02 CB03 CB08 CC06 CC09 4K030 AA14 AA17 BA27 BB12 BB14 CA06 CA17 EA05 EA06 FA10 HA04 JA02 KA22 KA24 4L037 CS04 FA02 PA03 PA06 PA19 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Harukuni Furuse 2500 Hagizono, Chigasaki-shi, Kanagawa Japan Vacuum Engineering Co., Ltd. F-term (reference) 4G046 CA01 CA02 CB03 CB08 CC06 CC09 4K030 AA14 AA17 BA27 BB12 BB14 CA06 CA17 EA05 EA06 FA10 HA04 JA02 KA22 KA24 4L037 CS04 FA02 PA03 PA06 PA19

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 炭素含有ガスと水素ガスとの混合ガスを
真空チャンバーに導入する混合ガス供給系を備え、基板
加熱手段で被処理基板を加熱しつつ、真空チャンバー外
部のガス源に接続された混合ガス供給系から混合ガスを
導入することで被処理基板上にグラファイトナノファイ
バー薄膜を形成する熱CVD装置であって、 真空チャンバー内における混合ガスの導入が、被処理基
板の高さ位置より下側であって、被処理基板をその外周
の近傍で囲繞するように設けた混合ガス供給系に接続さ
れたガス噴射ノズル手段を介して行われ、ガス噴出ノズ
ル手段はその内部にガス流路を有すると共に、その上面
に、ガス流路に連通する複数のガス噴射口が列設され、 該ガス供給系の真空チャンバーの外側に位置する個所
に、真空チャンバーに導入する混合ガスを所定の温度に
加熱する混合ガス加熱手段を設けたことを特徴とする熱
CVD装置。
A mixed gas supply system for introducing a mixed gas of a carbon-containing gas and a hydrogen gas into a vacuum chamber, wherein the mixed gas supply system is connected to a gas source outside the vacuum chamber while heating the substrate to be processed by a substrate heating means. A thermal CVD apparatus for forming a graphite nanofiber thin film on a substrate to be processed by introducing a mixed gas from a mixed gas supply system, wherein the introduction of the mixed gas in the vacuum chamber is lower than a height position of the substrate to be processed. This is performed through gas injection nozzle means connected to a mixed gas supply system provided so as to surround the substrate to be processed near its outer periphery, and the gas injection nozzle means has a gas flow path therein. In addition, a plurality of gas injection ports communicating with the gas flow path are arranged in a row on the upper surface thereof, and are introduced into the vacuum chamber at a position located outside the vacuum chamber of the gas supply system. If the gas thermal CVD apparatus, wherein a provided a mixed gas heating means for heating to a predetermined temperature.
JP2000313026A 2000-10-13 2000-10-13 Thermal CVD equipment for forming graphite nanofiber thin films Expired - Lifetime JP4627863B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000313026A JP4627863B2 (en) 2000-10-13 2000-10-13 Thermal CVD equipment for forming graphite nanofiber thin films

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000313026A JP4627863B2 (en) 2000-10-13 2000-10-13 Thermal CVD equipment for forming graphite nanofiber thin films

Publications (2)

Publication Number Publication Date
JP2002121668A true JP2002121668A (en) 2002-04-26
JP4627863B2 JP4627863B2 (en) 2011-02-09

Family

ID=18792509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000313026A Expired - Lifetime JP4627863B2 (en) 2000-10-13 2000-10-13 Thermal CVD equipment for forming graphite nanofiber thin films

Country Status (1)

Country Link
JP (1) JP4627863B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007022898A (en) * 2005-07-20 2007-02-01 Viko System Co Ltd Active type gas supplying apparatus of carbon nanotube synthesis system
JP5260050B2 (en) * 2005-05-27 2013-08-14 麒麟麦酒株式会社 Gas barrier plastic container manufacturing apparatus and method for manufacturing the container

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05295549A (en) * 1992-04-20 1993-11-09 Hitachi Ltd Heat treatment device
JPH07176526A (en) * 1993-12-20 1995-07-14 Toray Ind Inc Thin film forming device
JP3363759B2 (en) * 1997-11-07 2003-01-08 キヤノン株式会社 Carbon nanotube device and method of manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5260050B2 (en) * 2005-05-27 2013-08-14 麒麟麦酒株式会社 Gas barrier plastic container manufacturing apparatus and method for manufacturing the container
JP2007022898A (en) * 2005-07-20 2007-02-01 Viko System Co Ltd Active type gas supplying apparatus of carbon nanotube synthesis system

Also Published As

Publication number Publication date
JP4627863B2 (en) 2011-02-09

Similar Documents

Publication Publication Date Title
JP4803578B2 (en) Deposition method
JP5247528B2 (en) Substrate processing apparatus, semiconductor device manufacturing method, substrate processing method, and gas introducing means
JP3945519B2 (en) Heat treatment apparatus, heat treatment method and storage medium for object to be processed
JP5619164B2 (en) CVD method and CVD reactor
JP3258885B2 (en) Film processing equipment
JP2004047887A (en) Sheet-fed cvd device
EP2294244B1 (en) Thermal gradient enhanced chemical vapour deposition.
JP2670515B2 (en) Vertical heat treatment equipment
JP2002302770A (en) Substrate treating device
JP4677088B2 (en) Thermal CVD equipment for forming graphite nanofiber thin films
CN111378959A (en) Film forming apparatus and film forming processing method
JP2002121668A (en) Thermal cvd apparatus for forming graphite nanofiber thin film
JP4703844B2 (en) Thermal CVD equipment for forming graphite nanofiber thin films
JP4627861B2 (en) Thermal CVD equipment for forming graphite nanofiber thin films
JP4627860B2 (en) Thermal CVD equipment for forming graphite nanofiber thin films
JP2011003599A (en) Apparatus and method of producing semiconductor
JPH08115883A (en) Film forming apparatus
JP2002093790A (en) Method and device for manufacturing semiconductor device
JP4252142B2 (en) Gas processing device and purge mechanism of raw material supply system used therefor
JP2006186015A (en) Substrate processor
JP4677087B2 (en) Thermal CVD equipment for forming graphite nanofiber thin films
JP3093716B2 (en) Vertical vacuum deposition equipment
JP2597245B2 (en) Exhaust system for CVD system
CA1280055C (en) Vapor deposition apparatus
JPH06140343A (en) Cvd device and film growth method using thereof

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070517

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070517

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071005

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101026

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101109

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4627863

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250