JPH11351740A - Method and system for producing high purity nitrogen - Google Patents

Method and system for producing high purity nitrogen

Info

Publication number
JPH11351740A
JPH11351740A JP16400398A JP16400398A JPH11351740A JP H11351740 A JPH11351740 A JP H11351740A JP 16400398 A JP16400398 A JP 16400398A JP 16400398 A JP16400398 A JP 16400398A JP H11351740 A JPH11351740 A JP H11351740A
Authority
JP
Japan
Prior art keywords
gas
low
purity nitrogen
path
enriched
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16400398A
Other languages
Japanese (ja)
Inventor
Mitsuru Yamashita
満 山下
Hideyuki Honda
秀幸 本田
Atsushi Miura
淳 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Oxygen Co Ltd
Nippon Sanso Corp
Original Assignee
Japan Oxygen Co Ltd
Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Oxygen Co Ltd, Nippon Sanso Corp filed Critical Japan Oxygen Co Ltd
Priority to JP16400398A priority Critical patent/JPH11351740A/en
Publication of JPH11351740A publication Critical patent/JPH11351740A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation By Low-Temperature Treatments (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce high purity nitrogen in which content of low boiling point components, e.g. hydrogen, is reduced at high yield while suppressing increase of power. SOLUTION: The method for producing high purity nitrogen by subjecting material air to low temperature distillation in a single rectifying column 36 comprises a step for extracting a low boiling point components rich gas from the top of the single rectifying column 36 to a passage 41, a step for extracting high purity nitrogen gas from a part several stages below the top of the single rectifying column 36 to a passage 37, a step for extracting oxygen rich gas from the lower part of the single rectifying column 36 to a passage 48 and reducing the pressure thereof, and a step for liquefying the low boiling point components rich gas and/or the high purity nitrogen gas through heat exchange thereof with the oxygen rich gas in a condenser/evaporator 46 to produce descending liquid of the single rectifying column 36 and producing waste gas by liquefying the oxygen rich gas.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高純度窒素製造方
法及び装置に関し、詳しくは、半導体製造工程等で必要
とされる水素等の低沸点成分の含有量が少ない高純度窒
素を、動力の増加を抑えて高い収率で効率よく製造する
ための高純度窒素製造方法及び装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for producing high-purity nitrogen. More specifically, the present invention relates to a method and apparatus for producing high-purity nitrogen having a low content of low-boiling components such as hydrogen required in a semiconductor production process. The present invention relates to a high-purity nitrogen production method and apparatus for efficiently producing a high-purity nitrogen with a small increase.

【0002】[0002]

【従来の技術】工業的に窒素を製造する方法として、空
気を原料としてこれを圧縮,精製,冷却して液化し、そ
の組成分を沸点差を利用して低温蒸留する空気液化分離
方法が多く採用されている。この方法を利用した単一の
単精留塔をもつ窒素製造装置が実用化されており、製造
された窒素は、様々な産業で利用されている。特に、半
導体産業においては、低沸点成分濃度がppbオーダー
の高純度窒素の需要が大きい。低沸点成分とは、水素,
ヘリウム,ネオン等の窒素より沸点が低く、低温蒸留に
よって窒素中に濃縮する成分のことを指すが、このう
ち、特に水素は、反応性の高い成分であるため、高純度
窒素中から除去する必要がある。また、一酸化炭素は、
窒素と沸点が近く、低温蒸留によって分離し難く、その
殆どが窒素中に濃縮されてしまうので、低温蒸留の前段
で除去することが望ましい。
2. Description of the Related Art As a method for industrially producing nitrogen, there are many air liquefaction separation methods in which air is used as a raw material, which is compressed, refined, cooled and liquefied, and the composition is distilled at a low temperature by utilizing a boiling point difference. Has been adopted. A nitrogen production apparatus having a single single rectification column utilizing this method has been put to practical use, and the produced nitrogen is used in various industries. In particular, in the semiconductor industry, there is a great demand for high-purity nitrogen having a low boiling point component concentration of ppb order. Low boiling components are hydrogen,
It is a component that has a lower boiling point than nitrogen, such as helium and neon, and is concentrated in nitrogen by low-temperature distillation. Of these, hydrogen is a highly reactive component and must be removed from high-purity nitrogen. There is. Also, carbon monoxide is
Since its boiling point is close to that of nitrogen, it is difficult to separate by low-temperature distillation, and most of it is concentrated in nitrogen. Therefore, it is desirable to remove it before the low-temperature distillation.

【0003】水素は、原料空気中に数ppm程度含まれ
ているが、酸化触媒と吸着剤とを用いることにより、p
pbオーダーの微量まで除去することができる。しか
し、低温蒸留によって窒素ガスを分離するとき、原料空
気中にppbオーダーで残留した微量の水素は、窒素よ
り揮発しやすいため、単精留塔上部の窒素ガス中に蓄積
し、単精留塔へ導入した原料空気中の濃度以上に濃縮さ
れてしまう。例えば、製品窒素の収率を50%とする
と、製品窒素中の水素は、原料空気中の濃度の約2倍に
濃縮される。
[0003] Hydrogen is contained in the raw material air at about several ppm, but by using an oxidation catalyst and an adsorbent, p is reduced.
It can be removed to a trace amount on the order of pb. However, when nitrogen gas is separated by low-temperature distillation, a small amount of hydrogen remaining on the order of ppb in the raw material air is more easily volatilized than nitrogen, and thus accumulates in the nitrogen gas above the single rectification column. It is concentrated more than the concentration in the raw air introduced into the furnace. For example, assuming that the yield of product nitrogen is 50%, the hydrogen in the product nitrogen is concentrated to about twice the concentration in the raw air.

【0004】このような窒素中における水素等の低沸点
成分の濃縮を防ぐためのプロセスとして、図8に示す構
成のものが知られている(特公平4−12391公報参
照)。このプロセスにおいて、原料空気圧縮機1で圧縮
された圧縮原料空気は、吸着器2へ導入され、含有する
炭酸ガス,水分等を除去された後、経路3を経て主熱交
換器4に導入され、ここで低温戻りガスと熱交換を行う
ことによって圧縮空気の露点に近い温度まで冷やされ、
経路5を経て単精留塔6の塔底部へ導入される。
As a process for preventing the concentration of low-boiling components such as hydrogen in nitrogen as described above, a process having the configuration shown in FIG. 8 is known (see Japanese Patent Publication No. 4-12391). In this process, the compressed raw air compressed by the raw air compressor 1 is introduced into the adsorber 2, from which carbon dioxide gas, moisture and the like are removed, and then introduced into the main heat exchanger 4 via the path 3. Where it is cooled to a temperature close to the dew point of the compressed air by performing heat exchange with the cold return gas,
It is introduced into the bottom of the single rectification column 6 via the path 5.

【0005】単精留塔6では、導入された空気がその組
成分を沸点差を利用して低温蒸留され、単精留塔6を上
昇するにつれて低沸点成分である窒素分や水素等の低沸
点成分が多くなっていき、塔頂にて低沸点成分の濃度が
最大濃度に達する。水素等の低沸点成分が多くなった塔
頂ガスは、経路7に抜出され、その内の少量は、パージ
ガスとして経路8に分岐し、過冷器9や主熱交換器4で
昇温された後、経路10から排出される。残りの塔頂ガ
スは、経路11から凝縮蒸発器12に導入されて凝縮・
液化した後、単精留塔6の頂部へ還流されて塔内の下降
液となる。
In the single rectification column 6, the introduced air is subjected to low-temperature distillation by utilizing the boiling point difference of the composition, and as the single rectification column 6 moves upward, low boiling components such as nitrogen and hydrogen are reduced. As the boiling point components increase, the concentration of the low boiling point components reaches the maximum concentration at the top of the column. The overhead gas having a large amount of low-boiling components such as hydrogen is extracted to a path 7, and a small amount of the overhead gas is branched to a path 8 as a purge gas, and the temperature is increased by a subcooler 9 or a main heat exchanger 4. After that, it is discharged from the path 10. The remaining overhead gas is introduced into the condensing evaporator 12 from the path 11 and condensed.
After liquefaction, it is refluxed to the top of the single rectification column 6 and becomes a descending liquid in the column.

【0006】単精留塔6内の下降液は、低温蒸留によっ
て水素等の低沸点成分が所定の濃度まで除去され、その
一部は、水素等低沸点成分の少ない液化窒素として単精
留塔6の頂部から数段下の精留段部分に接続された経路
13から抜出され、弁14で減圧された後、凝縮蒸発器
12にて気化し、過冷器9や主熱交換器4で昇温され、
製品窒素ガスとして経路15から取出される。
The descending liquid in the single rectification column 6 is subjected to low-temperature distillation to remove low-boiling components such as hydrogen to a predetermined concentration, and a part thereof is converted into liquefied nitrogen having a low low-boiling component such as hydrogen. 6 is withdrawn from a path 13 connected to the rectification stage part several stages below the top, decompressed by a valve 14, vaporized in a condensing evaporator 12, and cooled by a supercooler 9 or a main heat exchanger 4. The temperature rises,
It is withdrawn from line 15 as product nitrogen gas.

【0007】残りの下降液は、単精留塔6内を下降する
につれ、低温蒸留によって酸素濃度が増加していき、塔
底部にて酸素濃度が最大濃度に達する。この酸素分に富
む塔底の酸素富化液は、経路16から過冷器9に導入さ
れて過冷却され、弁17で減圧されて沸点を下げられた
後、前記凝縮蒸発器12で前記塔頂ガスを液化させる寒
冷源として用いられ、自身は気化して廃ガスとなる。こ
の廃ガスは、経路18を経て過冷器9や主熱交換器4で
昇温された後、経路19を経て膨張タービン20に導入
され、膨張して降温し、再び主熱交換器4に導入されて
寒冷を回収された後、経路21から排出される。膨張タ
ービン20には、系内冷却のためのエネルギー排出機構
22が取付けられている。
As the remaining descending liquid descends in the single rectification column 6, the oxygen concentration increases by low-temperature distillation, and the oxygen concentration reaches the maximum concentration at the bottom of the column. The oxygen-enriched liquid at the bottom of the column, which is rich in oxygen, is introduced into the subcooler 9 through the path 16, is supercooled, is depressurized by the valve 17, and its boiling point is lowered. It is used as a cold source to liquefy the top gas and vaporizes itself as waste gas. This waste gas is heated in the subcooler 9 and the main heat exchanger 4 via the path 18, is introduced into the expansion turbine 20 via the path 19, expands and cools down, and returns to the main heat exchanger 4 again. After being introduced and collecting the cold, it is discharged from the path 21. An energy discharge mechanism 22 for cooling the inside of the system is attached to the expansion turbine 20.

【0008】[0008]

【発明が解決しようとする課題】上述のようなプロセス
では、製品窒素ガス中の水素分は、例えば原料空気中の
水素濃度が約1.0ppmで単精留塔6へ導入された場
合、低温蒸留により約40ppbまで除去される。しか
し、経路13から抜出した水素等の低沸点成分の少ない
液化窒素を気化させ、製品窒素ガスとして得るために
は、組成,飽和温度が近い塔頂ガスとの熱交換で気化し
て製品窒素ガスとしなけらばならない。このため、単精
留塔6から抜出した液化窒素は、塔頂ガスとの飽和温度
差をつけるため、弁14で気化できる圧力まで減圧され
る。
In the above-described process, when the hydrogen content in the product nitrogen gas is introduced into the single rectification column 6 when the hydrogen concentration in the raw air is about 1.0 ppm, for example, It is removed to about 40 ppb by distillation. However, in order to vaporize liquefied nitrogen having a low boiling point component such as hydrogen extracted from the passage 13 and obtain it as product nitrogen gas, the product nitrogen gas is vaporized by heat exchange with a top gas having a similar composition and saturation temperature. I have to do. For this reason, the liquefied nitrogen extracted from the single rectification column 6 is reduced to a pressure at which it can be vaporized by the valve 14 in order to provide a saturation temperature difference with the top gas.

【0009】したがって、得られる製品窒素ガスの圧力
は、この減圧分だけ低圧となり、使用先の要求圧力まで
再圧縮する必要があり、減圧による大きな動力ロスの発
生が避けられず、電力原単位が比較的大きくなるという
問題があった。
Therefore, the pressure of the obtained product nitrogen gas is reduced by the reduced pressure, and it is necessary to recompress the pressure to the required pressure of the place of use. Therefore, a large power loss due to the reduced pressure is inevitable, and the power consumption is reduced. There was a problem of becoming relatively large.

【0010】そこで本発明は、動力の増加を抑え、高い
収率で、かつ、水素等の低沸点成分の含有量が少ない高
純度窒素を製造することができる高純度窒素製造方法及
び装置を提供することを目的としている。
Accordingly, the present invention provides a high-purity nitrogen production method and apparatus capable of producing high-purity nitrogen that suppresses an increase in power and has a high yield and a low content of low-boiling components such as hydrogen. It is intended to be.

【0011】[0011]

【課題を解決するための手段】上記目的を達成するた
め、本発明の高純度窒素製造方法は、第1の構成とし
て、圧縮,精製,冷却した原料空気を単精留塔に導入し
て低温蒸留することにより、高純度窒素を採取する高純
度窒素製造方法において、前記単精留塔の頂部から低沸
点成分富化ガスを抜出す工程と、前記単精留塔の頂部よ
り数段下の精留段から低沸点成分の少ない高純度窒素ガ
スを抜出す工程と、前記単精留塔の下部から酸素富化液
を抜出して減圧する工程と、前記低沸点成分富化ガス及
び/又は前記高純度窒素ガスと前記減圧後の酸素富化液
とを熱交換させることにより低沸点成分富化ガス及び/
又は高純度窒素ガスを液化して前記単精留塔の下降液を
生成するとともに、前記酸素富化液を気化して廃ガスを
生成する工程とを有することを特徴としている。
According to a first aspect of the present invention, there is provided a method for producing high-purity nitrogen, wherein compressed, purified and cooled raw material air is introduced into a single rectification column to reduce the temperature. By distillation, in a high-purity nitrogen production method of collecting high-purity nitrogen, a step of extracting low-boiling component-enriched gas from the top of the single rectification column, and several stages below the top of the single rectification column A step of extracting high-purity nitrogen gas having a low boiling point component from the rectification stage, a step of extracting an oxygen-enriched liquid from a lower portion of the single rectification column, and reducing the pressure; and a step of extracting the low-boiling-point-enriched gas and / or By performing heat exchange between the high-purity nitrogen gas and the oxygen-enriched liquid after the pressure reduction, a low-boiling component-enriched gas and / or
Or liquefying high-purity nitrogen gas to generate a descending liquid of the single rectification column, and vaporizing the oxygen-enriched liquid to generate waste gas.

【0012】また、本発明方法の第2の構成は、前記単
精留塔の頂部から低沸点成分富化ガスを抜出す工程と、
前記単精留塔の頂部より数段下の精留段から低沸点成分
の少ない高純度窒素ガスを抜出す工程と、前記単精留塔
の下部から酸素富化液を抜出して減圧する工程と、前記
低沸点成分富化ガス及び/又は前記高純度窒素ガスと前
記減圧後の酸素富化液とを熱交換させることにより低沸
点成分富化ガス及び/又は高純度窒素ガスを液化して前
記単精留塔の下降液を生成するとともに、前記酸素富化
液を気化して循環ガス及び廃ガスを生成する工程と、前
記低沸点成分富化ガスを液化する工程の前段又は後段か
ら低沸点成分富化ガスの一部をパージガスとして導出す
る工程と、前記廃ガスを膨張させて動力及び寒冷を発生
する工程と、前記循環ガスを圧縮して前記単精留塔に再
導入する工程とを有することを特徴としている。
A second configuration of the method of the present invention includes a step of extracting a low-boiling component-enriched gas from the top of the single rectification column,
A step of extracting high-purity nitrogen gas having a low boiling point component from the rectification stage several stages below the top of the single rectification column, and a step of extracting an oxygen-enriched liquid from the lower portion of the single rectification column and reducing the pressure. Heat-exchanging the low-boiling component-enriched gas and / or the high-purity nitrogen gas with the oxygen-enriched liquid after the pressure reduction to liquefy the low-boiling component-enriched gas and / or the high-purity nitrogen gas, A step of generating a descending liquid in the single rectification column, a step of vaporizing the oxygen-enriched liquid to generate a circulating gas and a waste gas, and a step of lowering the boiling point from the first or second step of liquefying the low-boiling component-enriched gas. A step of extracting a part of the component-enriched gas as a purge gas, a step of generating power and cold by expanding the waste gas, and a step of compressing the circulating gas and reintroducing it into the single rectification column. It is characterized by having.

【0013】さらに、本発明方法は、上述の構成におい
て、前記原料空気中の一酸化炭素及び水素を除去したて
から単精留塔に導入すること、前記低沸点成分富化ガス
を液化する際に得られた液を気液分離し、分離した液を
前記単精留塔の頂部に還流するとともに、分離したガス
をパージガスとして抜出すこと、前記廃ガスの一部を中
間温度で膨張させて動力を発生させ、前記廃ガスの残部
の少なくとも一部を常温まで昇温して常温圧縮し、再冷
却後に膨張させて寒冷を発生するとともに、前記循環ガ
スを低温圧縮して再冷却後に前記単精留塔に再導入する
こと、前記循環ガスを一次圧力まで低温圧縮した後、常
温まで昇温して二次圧力まで常温圧縮し、再冷却して前
記単精留塔に再導入することこと、前記廃ガス及び前記
循環ガスの圧縮を前記廃ガスを膨張させる工程で発生し
た動力を用いて行うこと、前記廃ガスの常温圧縮を前記
廃ガスを膨張させて寒冷を発生する工程で得られた動力
を用いて行うこと、前記循環ガスの低温圧縮を前記廃ガ
スを膨張させて動力を発生する工程で得られた動力を用
いて行うこと、前記循環ガスの常温圧縮を前記廃ガスを
膨張させて寒冷を発生する工程で得られた動力を用いて
行うこと、前記パージガスを前記廃ガスを膨張させるタ
ービンの軸受け用シールガス又はベアリングガスとして
用いることを特徴としている。
Further, the method of the present invention is characterized in that, in the above-mentioned structure, carbon monoxide and hydrogen in the raw material air are removed and then introduced into a single rectification column, and the low-boiling component-enriched gas is liquefied. The obtained liquid is subjected to gas-liquid separation, and the separated liquid is refluxed to the top of the single rectification column, and the separated gas is withdrawn as a purge gas.A part of the waste gas is expanded at an intermediate temperature. A power is generated, at least a part of the remaining part of the waste gas is heated to room temperature, compressed at room temperature, expanded after re-cooling and expanded to generate cold, and the circulating gas is compressed at low temperature and re-cooled to form the unit. Re-introducing into the rectification column, compressing the circulating gas at a low temperature to a primary pressure, raising the temperature to room temperature, compressing the room temperature to a secondary pressure, re-cooling, and re-introducing the single gas into the single rectification column. Compressing the waste gas and the circulating gas Performing using the power generated in the step of expanding the waste gas, performing the room temperature compression of the waste gas using the power obtained in the step of expanding the waste gas to generate cold, the circulating gas Low temperature compression is performed using the power obtained in the step of generating power by expanding the waste gas, and the room temperature compression of the circulating gas is obtained in the step of expanding the waste gas to generate cold. The method is characterized in that it is performed using power, and the purge gas is used as a seal gas for bearing of a turbine or a bearing gas for expanding the waste gas.

【0014】また、本発明の高純度窒素製造装置は、第
1の構成として、圧縮,精製,冷却した原料空気を単精
留塔で低温蒸留することにより、高純度窒素を採取する
高純度窒素製造装置において、前記原料空気を低温蒸留
で得られた低温戻りガスと熱交換させて冷却する主熱交
換器と、冷却した原料空気を低温蒸留して低沸点成分富
化ガスと低沸点成分の少ない高純度窒素ガスと酸素富化
液とに分離する単精留塔と、前記低沸点成分富化ガス及
び/又は高純度窒素ガスと前記酸素富化液とを熱交換さ
せる凝縮蒸発器と、該凝縮蒸発器で前記酸素富化液が気
化して生成した廃ガスを膨張させて寒冷を発生する膨張
タービンとを備えるとともに、前記低沸点成分富化ガス
を前記単精留塔の頂部から抜出し、前記凝縮蒸発器を通
して液化し、前記単精留塔の頂部に戻す低沸点成分富化
流体還流経路及び/又は前記高純度窒素ガスを前記単精
留塔の上部から抜出し、前記凝縮蒸発器を通して液化
し、前記単精留塔の上部から頂部の間の位置に戻す高純
度窒素還流経路と、前記低沸点成分富化ガスの一部をパ
ージガスとして前記単精留塔の頂部から又は前記低沸点
成分富化流体還流経路の前記凝縮蒸発器の前流又は後流
から取出し、前記主熱交換器を通して導出するパージガ
ス経路と、前記高純度窒素ガスを製品窒素ガスとして前
記単精留塔の上部から又は前記高純度窒素還流経路の前
記凝縮蒸発器の前流から前記主熱交換器を通して導出す
る製品採取経路と、前記酸素富化液を前記単精留塔の塔
底から抜出し、減圧弁を介して前記凝縮蒸発器に導く酸
素富化液抜出経路と、該酸素富化液抜出経路に接続さ
れ、前記廃ガスを前記主熱交換器を通して前記膨張ター
ビンに導く廃ガス経路と、前記膨張タービンで膨張して
寒冷を発生した廃ガスを前記主熱交換器を通して導出す
る寒冷回収経路とを備えたことを特徴としている。
Further, the high-purity nitrogen producing apparatus of the present invention comprises, as a first configuration, a high-purity nitrogen for collecting high-purity nitrogen by subjecting compressed, purified and cooled raw material air to low-temperature distillation in a single rectification column. In the manufacturing apparatus, a main heat exchanger for cooling the raw material air by heat exchange with the low-temperature return gas obtained by the low-temperature distillation, and a low-boiling component-enriched gas and a low-boiling component of the cooled raw air by cryogenic distillation. A single rectification column that separates a small amount of high-purity nitrogen gas and an oxygen-enriched liquid, a condensing evaporator that performs heat exchange between the low-boiling component-enriched gas and / or high-purity nitrogen gas and the oxygen-enriched liquid, An expansion turbine that expands waste gas generated by vaporization of the oxygen-enriched liquid in the condensing evaporator to generate cold, and withdraws the low-boiling component-enriched gas from the top of the single rectification column. Liquefying through the condensing evaporator, The low-boiling component-enriched fluid reflux path and / or the high-purity nitrogen gas returned to the top of the rectification column is withdrawn from the top of the single rectification column, liquefied through the condensation evaporator, and liquefied through the top of the single rectification column. A high-purity nitrogen reflux path returning to a position between the tops, and the condensing evaporator from the top of the single rectification column or the low-boiling component-enriched fluid reflux path as part of the low-boiling component-enriched gas as a purge gas. A purge gas path which is taken out from the upstream or downstream of the rectifier and led out through the main heat exchanger, and the condensation and evaporation of the high-purity nitrogen gas as product nitrogen gas from the top of the single rectification column or the high-purity nitrogen reflux path. A product sampling path derived from the upstream of the vessel through the main heat exchanger, and an oxygen-enriched liquid extracted from the bottom of the single rectification column through the main heat exchanger, and led to the condensing evaporator via a pressure reducing valve. Withdrawal route and withdrawal of the oxygen-enriched liquid A waste gas path that is connected to the path and guides the waste gas to the expansion turbine through the main heat exchanger; and a cold recovery path that guides the waste gas expanded and cooled by the expansion turbine through the main heat exchanger. It is characterized by having.

【0015】さらに、本発明装置の第2の構成は、前記
主熱交換器と、前記単精留塔と、前記凝縮蒸発器とに加
えて、該凝縮蒸発器で酸素富化液が気化して生成した廃
ガスの一部を膨張させて寒冷を発生する寒冷タービン
と、前記廃ガスの残部の少なくとも一部を膨張させて動
力を発生する駆動タービンと、前記凝縮蒸発器で前記酸
素富化液が気化して生成した循環ガスを低温で圧縮する
低温圧縮機とを備えるとともに、前記低沸点成分富化ガ
スを前記単精留塔の頂部から抜出し、前記凝縮蒸発器を
通して液化し、前記単精留塔の頂部に戻す低沸点成分富
化流体還流経路及び/又は前記高純度窒素ガスを前記単
精留塔の上部から抜出し、前記凝縮蒸発器を通して液化
し、前記単精留塔の上部から頂部の間の位置に戻す高純
度窒素還流経路と、前記低沸点成分富化ガスの一部をパ
ージガスとして前記単精留塔の頂部から又は前記低沸点
成分富化流体還流経路の前記凝縮蒸発器の前流又は後流
から取出し、前記主熱交換器を通して導出するパージガ
ス経路と、前記高純度窒素ガスを製品窒素ガスとして前
記単精留塔の上部から又は前記高純度窒素還流経路の前
記凝縮蒸発器の前流から前記主熱交換器を通して導出す
る製品採取経路と、前記酸素富化液を前記単精留塔の塔
底を含む下部から抜出し、減圧弁を介して前記凝縮蒸発
器に導く酸素富化液抜出経路と、該酸素富化液抜出経路
に接続され、前記廃ガスを前記主熱交換器を通して前記
寒冷タービン及び駆動タービンに導く廃ガス経路と、前
記寒冷タービン及び駆動タービンで膨張した廃ガスを前
記主熱交換器を通して導出する寒冷回収経路と、前記酸
素富化液抜出経路に接続され、前記循環ガスを前記低温
圧縮機に導く循環ガス取出経路と、前記低温圧縮機で圧
縮された循環ガスを前記単精留塔の下部に導く循環ガス
再導入経路とを備えたことを特徴としている。
Further, in a second configuration of the apparatus according to the present invention, in addition to the main heat exchanger, the single rectification column, and the condensing evaporator, the condensing evaporator vaporizes the oxygen-enriched liquid. A cold turbine that expands at least a part of the remaining waste gas to generate power by expanding at least a part of the waste gas generated at the condensing evaporator; A low-temperature compressor that compresses a circulating gas produced by vaporization of the liquid at a low temperature, and withdraws the low-boiling-point component-enriched gas from the top of the single rectification column, liquefies it through the condensation evaporator, The low-boiling component-enriched fluid reflux path and / or the high-purity nitrogen gas returned to the top of the rectification column is withdrawn from the top of the single rectification column, liquefied through the condensation evaporator, and liquefied through the top of the single rectification column. A high-purity nitrogen reflux path returning to a position between the tops; A part of the low-boiling component-enriched gas is removed as a purge gas from the top of the single rectification column or from the upstream or downstream of the condensing evaporator in the low-boiling component-enriched fluid reflux path, and the main heat exchanger is removed. And a product derived through the main heat exchanger from the top of the single rectification column or from the upstream of the condensing evaporator in the high-purity nitrogen recirculation path as a high-purity nitrogen gas as product nitrogen gas. A sampling path, an oxygen-enriched liquid extraction path for extracting the oxygen-enriched liquid from the lower portion including the bottom of the single rectification column, and leading the oxygen-enriched liquid to the condensing evaporator via a pressure reducing valve; A waste gas path connected to the outlet path and leading the waste gas to the cold turbine and the drive turbine through the main heat exchanger; and a cold path leading the waste gas expanded by the cold turbine and the drive turbine through the main heat exchanger. Times Path, connected to the oxygen-enriched liquid extraction path, a circulating gas extraction path that guides the circulating gas to the low-temperature compressor, And a circulating gas re-introduction path.

【0016】また、本発明装置は、上述の構成におい
て、前記凝縮蒸発器がドライ型熱交換器であり、一体構
成、あるいは、低沸点成分富化ガスを液化するブロック
と、高純度窒素ガスを液化するブロックとに別々に構成
され、あるいは、前記廃ガスを生成するブロックと、前
記循環ガスを生成するブロックとに別々に構成されてい
ること、前記寒冷タービンに導入する廃ガスを常温で圧
縮する廃ガス圧縮機を備えるとともに、前記廃ガス経路
が、前記主熱交換器の中間から前記駆動タービンに廃ガ
スを導く経路と、該経路から分岐して前記主熱交換器を
通り、前記廃ガス圧縮機を経て再び前記主熱交換器を通
り、前記寒冷タービンに接続されていること、前記低温
圧縮機に代えて、前記循環ガスを一次圧力に低温で圧縮
する一次圧縮機と、一次圧縮機で低温圧縮した循環ガス
を常温で二次圧力に圧縮する二次圧縮機とを備えるとと
もに、前記循環ガス再導入経路が、前記一次圧縮機から
前記主熱交換器を通り、前記二次圧縮機を経て再び前記
主熱交換器を通り、前記単精留塔の下部に接続されてい
ること、前記酸素富化液抜出経路が、前記単精留塔の塔
底から前記廃ガス経路に至る経路と、前記単精留塔の下
部から前記循環ガス取出経路に至る経路とにより形成さ
れていることを特徴としている。
Further, in the apparatus according to the present invention, the condensing evaporator is a dry type heat exchanger in the above-mentioned structure, and is constituted integrally or a block for liquefying a gas having a low boiling point component and a high-purity nitrogen gas. It is configured separately with a block that liquefies, or is separately configured with a block that generates the waste gas and a block that generates the circulating gas, and compresses the waste gas to be introduced into the cold turbine at room temperature. A waste gas compressor, wherein the waste gas path includes a path for guiding waste gas from the middle of the main heat exchanger to the drive turbine, and a path that branches off from the path and passes through the main heat exchanger. Again passing through the main heat exchanger via a gas compressor, being connected to the cold turbine, in place of the low temperature compressor, a primary compressor for compressing the circulating gas to a primary pressure at a low temperature, A secondary compressor for compressing the circulating gas, which has been cold-pressed by the secondary compressor, to a secondary pressure at room temperature, and wherein the circulating gas reintroduction path passes from the primary compressor through the main heat exchanger, and Passing through the main heat exchanger again through the next compressor, being connected to the lower part of the single rectification column, and the oxygen-enriched liquid discharging path is provided with the waste gas from the bottom of the single rectification column. It is characterized by being formed by a path leading to a path and a path leading from the lower part of the single rectification column to the circulation gas extraction path.

【0017】[0017]

【発明の実施の形態】図1は、本発明の第1形態例を示
す系統図である。まず、原料空気圧縮機31で圧力7.
6barまで圧縮された原料空気6970Nm/h
は、原料空気中の水素及び一酸化炭素を触媒により水分
や二酸化炭素に添加する触媒装置と、水分や二酸化炭素
等を吸着除去する吸着装置とを備えた精製設備32に導
入され、低温蒸留では除去が不可能な一酸化炭素のほと
んどと、炭酸ガス及び水分のほとんどとが除去されると
ともに、水素分が約0.1ppbまで除去される。精製
設備32で精製された原料空気は、経路33を経て主熱
交換器34に導入され、後述の各種低温戻りガスと熱交
換を行うことにより、該原料空気の露点温度に近い−1
68℃まで冷却された後、経路35を経て単精留塔36
の下部に導入される。
FIG. 1 is a system diagram showing a first embodiment of the present invention. First, a pressure of 7.
6970 Nm 3 / h of raw air compressed to 6 bar
Is introduced into a purification facility 32 equipped with a catalyst device for adding hydrogen and carbon monoxide in the raw material air to water and carbon dioxide with a catalyst and an adsorption device for adsorbing and removing water and carbon dioxide. Most of carbon monoxide which cannot be removed, most of carbon dioxide gas and moisture are removed, and hydrogen is removed to about 0.1 ppb. The raw material air purified by the purification equipment 32 is introduced into a main heat exchanger 34 via a path 33, and performs heat exchange with various low-temperature return gases described later, so that the temperature -1 close to the dew point temperature of the raw material air.
After being cooled to 68 ° C., the single rectification
Introduced at the bottom.

【0018】単精留塔36に導入された原料空気は、塔
内を上昇する上昇ガスとなり、単精留塔36を上昇する
間の低温蒸留によって低沸点成分である窒素分が増加
し、窒素分に富むガスとなる。そして、塔頂より数段下
の位置に達した時点で、その一部3000Nm/hが
製品窒素ガスとして製品採取経路を構成する経路37に
抜出される。
The feed air introduced into the single rectification column 36 becomes an ascending gas that rises in the column, and low-temperature distillation while ascending the single rectification column 36 increases the nitrogen content, which is a low-boiling component, to increase the nitrogen content. It becomes a rich gas. Then, when reaching a position several steps below the top of the tower, 3000 Nm 3 / h of that part is extracted as a product nitrogen gas to a route 37 constituting a product sampling route.

【0019】上述のような低温蒸留において、窒素は、
酸素に比べて揮発度が大きく、かつ、蒸発潜熱が小さい
ため、塔内を上昇する上昇ガスは、次第に窒素分が増加
すると同時にガス量も増加していくが、上昇ガス中に含
まれる水素等の低沸点成分の絶対量はほとんど変化しな
い。したがって、上昇ガス中の水素等の低沸点成分は、
増加する上昇ガス中で徐々に希釈されて次第に濃度が低
下し、塔頂から数段下の前記経路37の位置において約
0.093ppbまで低下する。すなわち、経路37に
抜出す製品窒素ガスに含まれる水素等の低沸点成分の濃
度は0.093ppbとなり、原料空気中の濃度である
約0.1ppbよりも少なくなったことになる。
In cryogenic distillation as described above, nitrogen is
Since the volatility is higher and the latent heat of vaporization is lower than that of oxygen, the rising gas that rises in the tower gradually increases the nitrogen content and the gas amount at the same time. The absolute amount of the low-boiling component of is hardly changed. Therefore, low boiling components such as hydrogen in the rising gas are
The concentration is gradually reduced by being gradually diluted in the rising ascending gas, and falls to about 0.093 ppb at the position of the passage 37 several stages below the top of the tower. That is, the concentration of low-boiling components such as hydrogen contained in the product nitrogen gas extracted to the passage 37 is 0.093 ppb, which is lower than the concentration in the raw material air of about 0.1 ppb.

【0020】このように、水素等の低沸点成分の濃度が
最も少なくなる地点から経路37に抜出された製品窒素
ガスは、減圧されることなく、過冷器38,経路39,
主熱交換器34を経て昇温した後、経路40から取出さ
れる。
As described above, the product nitrogen gas extracted from the point where the concentration of the low-boiling component such as hydrogen is minimized to the passage 37 is not depressurized, and is not depressurized.
After the temperature rises through the main heat exchanger 34, it is removed from the path 40.

【0021】一部を製品として抜出された上昇ガスは、
更に塔内を上昇して水素等の低沸点成分が濃縮され、塔
頂部には、水素等の低沸点成分の最大濃度である約6.
7ppbを含有する低沸点成分富化ガスが生成する。こ
の低沸点成分富化ガスは、塔頂部から経路41に抜出さ
れ、その少量部分60Nm/hがパージガス経路を構
成する経路42に分岐し、過冷器38,経路43,主熱
交換器34を経て経路44からパージガスとして排出さ
れる。
The rising gas extracted as a part of the product is
Further, the low-boiling components such as hydrogen are further concentrated in the column, and the maximum concentration of the low-boiling components such as hydrogen is about 6.
A low-boiling component-enriched gas containing 7 ppb is produced. The low-boiling-point component-enriched gas is withdrawn from the top of the tower through a path 41, and a small portion 60Nm 3 / h of the gas is branched into a path 42 constituting a purge gas path, and is cooled by a subcooler 38, a path 43, and a main heat exchanger. The gas is discharged as a purge gas from a path 44 via the line.

【0022】経路41の低沸点成分富化ガスの大部分
は、経路45から凝縮蒸発器46に導入されて凝縮・液
化し、低沸点成分富化流体還流経路を構成する経路47
から単精留塔36内に還流されて下降液となる。この下
降液は、塔頂部に数段設けられた上部精留部36aを下
降する間に、上昇する窒素ガスとの間で精留が行われ、
下降液中の水素等の低沸点成分が除去される。
Most of the low-boiling component-enriched gas in the path 41 is introduced into the condensing evaporator 46 from the path 45 and condensed and liquefied, thereby forming a low-boiling point component-enriched fluid recirculation path 47.
Is refluxed into the single rectification column 36 to form a descending liquid. This descending liquid is rectified with the rising nitrogen gas while descending the upper rectifying section 36a provided at several stages at the top of the tower,
Low boiling components such as hydrogen in the descending liquid are removed.

【0023】下降液は、塔中部の主精留部36bを下降
するのに伴って高沸点成分である酸素分が増加するとと
もに低沸点成分が減少し、塔底部には、低沸点成分をほ
とんど含まない、酸素濃度約37.4%の酸素富化液が
溜まる。
As the descending liquid descends through the main rectifying section 36b in the middle of the column, the high boiling component, oxygen, increases and the low boiling component decreases, and the low boiling component almost disappears at the bottom of the column. An oxygen-enriched liquid containing no oxygen and having an oxygen concentration of about 37.4% accumulates.

【0024】単精留塔36の塔底の酸素富化液は、酸素
富化液抜出経路を構成する経路48に抜出されて過冷器
38で過冷却され、減圧弁49で約3.6barまで減
圧された後、凝縮蒸発器46に導入され、前記経路45
から導入される低沸点成分富化ガスと熱交換を行い、気
化して廃ガスとなる。
The oxygen-enriched liquid at the bottom of the single rectification column 36 is withdrawn from a path 48 constituting an oxygen-enriched liquid extraction path, is supercooled by a supercooler 38, and is cooled by a pressure reducing valve 49 to about 3 times. After the pressure has been reduced to 0.6 bar, it is introduced into the condensation evaporator 46 and
Heat exchange with the low-boiling-point component-enriched gas introduced from the reactor and evaporates into waste gas.

【0025】生成した廃ガスは、廃ガス経路を構成する
経路50,過冷器38,経路51を経て主熱交換器34
に導入され、約−125℃まで昇温された後、経路52
を経て膨張タービン53に導入され、膨張して寒冷を発
生する。寒冷を発生した廃ガスは、寒冷回収経路を構成
する経路54を通って再び主熱交換器34に導入され、
寒冷を回収されて経路55から排出される。このとき、
膨張タービン53で発生した動力は、該タービン53に
取付けられているエネルギー排出機構56にて消散さ
れ、これによって系内が冷却される。なお、経路51と
経路54との間には、膨張タービン53に導入する廃ガ
ス量を調整するための弁57を有する経路58が設けら
れている。
The generated waste gas passes through a path 50, a subcooler 38, and a path 51 constituting a waste gas path, and passes through the main heat exchanger 34.
After being heated to about −125 ° C.,
, And is introduced into the expansion turbine 53 and expanded to generate cold. The waste gas that has generated the cold is again introduced into the main heat exchanger 34 through a route 54 constituting a cold recovery route,
The cold is collected and discharged from the path 55. At this time,
The power generated by the expansion turbine 53 is dissipated by an energy discharge mechanism 56 attached to the turbine 53, thereby cooling the inside of the system. A path 58 having a valve 57 for adjusting the amount of waste gas introduced into the expansion turbine 53 is provided between the path 51 and the path 54.

【0026】さらに、経路44を流れるパージガスの一
部30Nm/hは、経路44から経路59に分岐し、
膨張タービン53の軸60の軸受けシール用ガスとし
て、また、軸60がベアリング軸受けの場合はベアリン
グガスとして供給される。
Further, 30 Nm 3 / h of the purge gas flowing through the path 44 branches off from the path 44 to the path 59,
The gas is supplied as a bearing sealing gas for the shaft 60 of the expansion turbine 53, or as a bearing gas when the shaft 60 is a bearing.

【0027】上述のような膨張タービン53の軸受けシ
ール用ガス又はベアリングガスは、ドライでかつ清浄で
あることが必要であり、従来は、製品窒素ガスの一部を
用いていたが、本形態例に示すように副生物として得ら
れるドライでかつ清浄なパージガスを使用することによ
り、製品窒素ガスの冗費を避けることができる。
The bearing seal gas or bearing gas of the expansion turbine 53 as described above needs to be dry and clean. Conventionally, a part of the product nitrogen gas was used. By using a dry and clean purge gas obtained as a by-product as shown in (1), redundant use of product nitrogen gas can be avoided.

【0028】このように、本形態例では、製品窒素ガス
を単精留塔36からその圧力のまま減圧せずに採取して
いるので、従来のような窒素分に富む液の減圧による動
力ロスがなく、従来プロセスに比べて電力原単位が向上
する。
As described above, in this embodiment, the product nitrogen gas is collected from the single rectification column 36 at the same pressure without reducing the pressure, so that the power loss due to the decompression of the nitrogen-rich liquid as in the prior art is obtained. Therefore, the power consumption rate is improved as compared with the conventional process.

【0029】また、低沸点成分富化ガスの少量部分を塔
頂部分から経路42にパージガスとして導出しながら、
塔頂より数段下の経路37から製品窒素ガスを抜出すよ
うにしているので、製品窒素ガス中に水素等の低沸点成
分が濃縮することがなく、単精留塔36に導入される原
料空気中の濃度と同程度の低沸点成分の少ない高純度の
製品窒素ガスを得ることができる。
Further, while a small portion of the low-boiling-point component-enriched gas is led out from the top of the column to the passage 42 as a purge gas,
Since the product nitrogen gas is extracted from the passage 37 several stages below the top of the column, low boiling components such as hydrogen are not concentrated in the product nitrogen gas, and the raw material introduced into the single rectification column 36 is not concentrated. It is possible to obtain high-purity product nitrogen gas having a low boiling point component and a low concentration equivalent to that in the air.

【0030】さらに、精製設備32で低温蒸留する前の
原料空気から不純物としての水素及び一酸化炭素を触媒
除去するとともに、低温蒸留においても、水素等の低沸
点成分及び一酸化炭素がより少ない部分から製品窒素を
得るようにしているので、精製設備32の触媒や吸着剤
の経年劣化等の性能低下をカバーすることができる。
Further, hydrogen and carbon monoxide as impurities are removed from the raw air before the low-temperature distillation by the purification equipment 32 as a catalyst, and a low-boiling component such as hydrogen and a portion containing less carbon monoxide are also used in the low-temperature distillation. Since the product nitrogen is obtained from the above, it is possible to cover performance deterioration such as aging of the catalyst and the adsorbent of the purification equipment 32.

【0031】また、凝縮蒸発器46には、浸漬型ではな
く、ドライ型熱交換器を用いることが好ましい。このド
ライ型熱交換器は、構成が簡単で設備費を低減できると
ともに、一体化や分割構成に簡単に対応でき、液保有量
が少ないので起動時間の短縮も図れるという利点があ
る。
It is preferable to use a dry heat exchanger instead of the immersion type as the condensation evaporator 46. This dry heat exchanger has the advantages that the configuration is simple and the equipment cost can be reduced, the integration and the split configuration can be easily performed, and the start-up time can be shortened because the liquid holding amount is small.

【0032】図2は、本発明の第2形態例を示す系統図
である。なお、以下の説明において、前記第1形態例に
おける構成要素と同一の構成要素には同一符号を付して
その詳細な説明は省略する。
FIG. 2 is a system diagram showing a second embodiment of the present invention. In the following description, the same components as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof will be omitted.

【0033】本形態例は、単精留塔36の塔頂から数段
下の前記経路37に抜出した水素等の低沸点成分の濃度
が低い高純度窒素ガスの一部を経路37から経路61に
分岐して前記凝縮蒸発器46に導入し、該凝縮蒸発器4
6で酸素富化液と熱交換させて凝縮・液化した後、高純
度窒素還流経路を構成する経路62により単精留塔36
に還流させるように形成したものである。
In this embodiment, a part of the high-purity nitrogen gas having a low concentration of low-boiling components such as hydrogen extracted from the single rectification tower 36 through the passage 37 several stages below the top is transferred from the passage 37 to the passage 61. Into the condensing evaporator 46 and the condensing evaporator 4
After being condensed and liquefied by heat exchange with the oxygen-enriched liquid in step 6, the single rectification column 36 is passed through a path 62 constituting a high-purity nitrogen reflux path.
It is formed so as to be refluxed.

【0034】このように、凝縮蒸発器46で酸素富化液
を気化させる流体としては、塔頂部から経路41に抜出
した低沸点成分富化ガスと高純度窒素ガスとを併用する
ことができ、さらに、高純度窒素ガスのみを用いること
も可能である。
As described above, as the fluid for vaporizing the oxygen-enriched liquid in the condensation evaporator 46, the low-boiling component-enriched gas and the high-purity nitrogen gas extracted from the top of the tower to the passage 41 can be used in combination. Further, it is also possible to use only high-purity nitrogen gas.

【0035】また、液化した高純度窒素ガス(高純度液
化窒素)の単精留塔36への還流位置は、高純度窒素ガ
スを抜出す経路37の接続位置から塔頂までの間の位置
で任意に選択することができる。
The reflux position of the liquefied high-purity nitrogen gas (high-purity liquefied nitrogen) to the single rectification column 36 is a position between the connection position of the passage 37 for extracting the high-purity nitrogen gas and the top of the tower. It can be arbitrarily selected.

【0036】図3は、本発明の第3形態例を示す系統図
であって、前記第1形態例では外部に排出されていた廃
ガスの一部、すなわち、凝縮蒸発器46で酸素富化液が
気化したガスの一部を循環ガスとし、これを単精留塔3
6に循環再導入するように形成したものである。
FIG. 3 is a system diagram showing a third embodiment of the present invention. In the first embodiment, a part of the waste gas discharged to the outside, that is, the oxygen-enriched gas A part of the gas in which the liquid has been vaporized is used as circulating gas, which is
6 to be recirculated.

【0037】原料空気圧縮機31で圧力7.6barま
で圧縮され、精製設備32で水分,二酸化炭素及び一酸
化炭素のほとんどが除去されるとともに、水素分が約
0.1ppbまで低減された圧縮精製原料空気5915
Nm/hは、主熱交換器34で−167℃まで冷却さ
れた後、経路71を通って単精留塔36の塔底部より5
段上へ導入される。また、単精留塔36の底部には、後
述する循環ガスも導入されている。
The raw material air compressor 31 is compressed to a pressure of 7.6 bar, the purification equipment 32 removes most of water, carbon dioxide and carbon monoxide, and has a hydrogen content reduced to about 0.1 ppb. Raw material air 5915
Nm 3 / h is cooled down to −167 ° C. in the main heat exchanger 34, and then passes through a path 71 from the bottom of the single rectification column 36 to 5 m 3 / h.
It is introduced on the step. In addition, a circulating gas described later is also introduced into the bottom of the single rectification column 36.

【0038】単精留塔36における低温蒸留により、こ
れらの導入ガスは、単精留塔36を上昇するにつれて低
沸点成分である窒素分を増していく。また、凝縮蒸発器
46で凝縮して下降液となり、塔内を下降する液は、塔
内を下降していくにつれて高沸点成分である酸素分を増
していくとともに低沸点成分濃度が低下し、水素等の低
沸点成分の濃度が略ゼロに近いオーダーで、酸素最大濃
度約43.4%の酸素富化液となって塔底に溜まる。
Due to the low temperature distillation in the single rectification column 36, these introduced gases increase the nitrogen content, which is a low boiling point component, as the single rectification column 36 moves upward. Further, the liquid condensed in the condensing evaporator 46 becomes a descending liquid, and the liquid descending in the column increases the oxygen content which is a high boiling component as it descends in the column, and the concentration of the low boiling component decreases, An oxygen-enriched liquid having a maximum oxygen concentration of about 43.4% is stored at the bottom of the column as the concentration of low-boiling components such as hydrogen is on the order of nearly zero.

【0039】単精留塔36の塔底の酸素富化液は、酸素
富化液抜出経路を構成する経路48に抜出されて過冷器
38で過冷却された後、経路72と経路73との2方向
に分岐する。両経路72,73の酸素富化液は、減圧弁
74,75で約3.3barまでそれぞれ減圧された
後、凝縮蒸発器46にて単精留塔頂部の低沸点成分富化
ガスと熱交換を行って気化し、廃ガス経路を構成する経
路76の廃ガスと、循環ガス取出し経路を構成する経路
77の循環ガスとが生成する。
The oxygen-enriched liquid at the bottom of the single rectification column 36 is withdrawn from a path 48 constituting an oxygen-enriched liquid extraction path, and is supercooled by the supercooler 38. Branching in two directions 73. The oxygen-enriched liquid in both paths 72 and 73 is decompressed to about 3.3 bar by pressure reducing valves 74 and 75, respectively, and then heat exchanged with the low-boiling-point component-enriched gas at the top of the single rectification column in the condensation evaporator 46. Is performed, and the waste gas of the path 76 constituting the waste gas path and the circulating gas of the path 77 constituting the circulating gas extraction path are generated.

【0040】経路76の廃ガスは、過冷器38及び主熱
交換器34で約−142.5℃まで昇温した後、再び経
路78と経路79との2方向へ分岐する。経路78の廃
ガスは、駆動タービン80に導入されて膨張し、動力を
発生して経路81に導出する。また、経路79の廃ガス
は、寒冷タービン82で膨張して寒冷を発生し、経路8
3に導出する。両タービン80,82を導出した廃ガス
は、寒冷回収経路を構成する経路84に合流して主熱交
換器34を通り、寒冷を回収されて経路85から排出さ
れる。前記寒冷タービン82には、エネルギー排出機構
86が取付けられており、これにより動力が消散されて
系内が冷却される。
The temperature of the waste gas in the path 76 is raised to about -142.5 ° C. in the subcooler 38 and the main heat exchanger 34, and thereafter, the waste gas is branched in two directions, a path 78 and a path 79. The waste gas in the path 78 is introduced into the drive turbine 80 and expands, generates power, and is led out to the path 81. The waste gas in the path 79 expands in the cold turbine 82 to generate cold, and
3 is derived. The waste gas derived from both turbines 80 and 82 joins a route 84 constituting a cold recovery route, passes through the main heat exchanger 34, recovers cold, and is discharged from a route 85. An energy discharge mechanism 86 is attached to the cold turbine 82, whereby power is dissipated and the system is cooled.

【0041】一方、循環ガス取出経路を構成する前記経
路77の循環ガス1060Nm/hは、過冷器38を
経て経路86を通り、前記駆動タービン80と同軸上に
連結された低温圧縮機87に吸入される。この循環ガス
は、低温圧縮機87において、前記駆動タービン80で
廃ガスが膨張することにより発生した動力で単精留塔3
6の運転圧力まで低温で圧縮される。圧縮後の循環ガス
は、循環ガス再導入経路を構成する経路88を通り、主
熱交換器34で−165.5℃まで冷却され、経路89
を経て単精留塔36に循環再導入される。
On the other hand, the circulating gas 1060 Nm 3 / h of the path 77 constituting the circulating gas extraction path passes through the path 86 via the subcooler 38, and is connected to the low-temperature compressor 87 coaxially with the drive turbine 80. Inhaled. This circulating gas is supplied to the single rectification column 3 by the power generated by the expansion of the waste gas in the drive turbine 80 in the low-temperature compressor 87.
Compressed at low temperature to an operating pressure of 6. The circulating gas after compression passes through a route 88 constituting a circulating gas re-introduction route, is cooled to −165.5 ° C. in the main heat exchanger 34, and passes through a route 89.
And is circulated and re-introduced into the single rectification column 36.

【0042】単精留塔36に再導入された循環ガスは、
窒素収率を向上させる働きをするだけでなく、この循環
ガスは、水素等の低沸点成分の濃度が略ゼロの状態で単
精留塔36の塔底部に再導入されるため、経路71の原
料空気導入段より上の塔内上昇ガス中の水素等の低沸点
成分の濃度を希釈する働きもする。
The circulating gas re-introduced into the single rectification column 36 is
In addition to functioning to improve the nitrogen yield, this circulating gas is reintroduced to the bottom of the single rectification column 36 in a state where the concentration of low boiling components such as hydrogen is substantially zero, It also serves to dilute the concentration of low-boiling components such as hydrogen in the ascending gas in the tower above the feed air introduction stage.

【0043】すなわち、循環ガスは、水素濃度が略ゼロ
で単精留塔36の底部に再導入された後、下部精留部3
6cを上昇する間に水素濃度を徐々に高めていき、約
0.011ppbとなったときに、経路71から導入さ
れる原料空気と合流する。この原料空気は、精製設備3
2で水素分が約0.1ppbまで除去されたものであ
り、両者が合流することにより、水素濃度が約0.08
6ppbとなって塔内を上昇する。主精留部36bを上
昇する間の低温蒸留により、上昇ガスは低沸点成分であ
る窒素分を次第に増していき、窒素濃度が規定値に達し
たときに、その一部が塔頂より数段下の精留段の位置か
ら、製品採取経路を構成する経路37に抜出され、過冷
器38及び主熱交換器34で昇温した後、低沸点成分の
少ない製品高純度窒素ガスとして経路40から採取され
る。
That is, the circulating gas is reintroduced into the bottom of the single rectification column 36 with a hydrogen concentration of substantially zero,
The hydrogen concentration is gradually increased while ascending 6c, and when it reaches about 0.011 ppb, it merges with the raw air introduced from the path 71. This raw material air is supplied to purification equipment 3
The hydrogen content was removed to about 0.1 ppb in step 2, and the two were combined to reduce the hydrogen concentration to about 0.08 ppb.
It becomes 6 ppb and rises in the tower. The rising gas gradually increases the nitrogen content, which is a low-boiling component, by low-temperature distillation while ascending the main rectification section 36b, and when the nitrogen concentration reaches a specified value, a part of the nitrogen is a few steps from the top of the column. From the position of the lower rectification stage, it is extracted to the path 37 constituting the product sampling path, and after the temperature is raised in the subcooler 38 and the main heat exchanger 34, it is passed as a product high-purity nitrogen gas having a small amount of low-boiling components. Collected from 40.

【0044】前述のように、主精留部36bを上昇する
間、上昇ガス中の水素の絶対量はほとんど変化しない
が、上昇ガスは、単精留塔上部へ上昇するにつれて窒素
と酸素との揮発度及び蒸発潜熱の違いにより流量が増加
するため、相対的に水素濃度が低下し、製品窒素ガス中
の水素濃度は約0.079ppbとなる。
As described above, during the ascent of the main rectification section 36b, the absolute amount of hydrogen in the ascending gas hardly changes. Since the flow rate increases due to the difference in volatility and latent heat of evaporation, the hydrogen concentration relatively decreases, and the hydrogen concentration in the product nitrogen gas becomes about 0.079 ppb.

【0045】製品窒素ガスとして一部が抜出された残り
の上昇ガスは、以後塔頂まで水素濃度を高めながら上昇
し、塔頂部では約5.9ppbに達する。この水素分に
富む低沸点成分富化ガスは、その少量部分約60Nm
/hがパージガスとして経路42から排出される他、そ
の大部分は、凝縮蒸発器46で全量が凝縮・液化され、
単精留塔36の塔頂に戻されて塔内を下降する。
The remaining ascending gas, part of which is withdrawn as product nitrogen gas, rises while increasing the hydrogen concentration to the top of the column, and reaches approximately 5.9 ppb at the top of the column. The hydrogen-rich, low-boiling component-enriched gas comprises a small portion of about 60 Nm 3.
/ H is discharged from the passage 42 as a purge gas, and most of the / h is condensed and liquefied in the condensing evaporator 46,
It is returned to the top of the single rectification tower 36 and descends in the tower.

【0046】経路42から過冷器38,主熱交換器34
を経て経路44に導出されたパージガスは、その一部あ
るいは全量が経路90から経路91,92に分岐し、駆
動タービン80及び寒冷タービン82の軸受けシール用
ガス又はベアリングガスとして、それぞれ約30Nm
/hずつ供給される。
From the path 42, the subcooler 38 and the main heat exchanger 34
Part of or the entire amount of the purge gas led to the path 44 via the path 90 branches off from the path 90 to the paths 91 and 92, and is about 30 Nm 3 as a bearing seal gas or a bearing gas for the drive turbine 80 and the cold turbine 82, respectively.
/ H.

【0047】本形態例によれば、単精留塔36に再導入
する循環ガス中には、約56%の窒素分が含まれ、一
方、水素等の低沸点成分はほとんど含まれていないの
で、循環ガス1060Nm/hを単精留塔36に再導
入することにより、1055Nm/hの原料空気を導
入するのに等しい量の製品窒素ガスが得られ、水素等の
低沸点成分がより少ない高純度窒素ガスを効率よく採取
することができる。すなわち、循環ガスを再導入しない
前記第1形態例等に比べて窒素収率が高いため、必要な
原料空気量が少なくてすむとともに、原料空気等と共に
単精留塔36に導入される水素等の低沸点成分も少なく
なる。したがって、第1形態例のものより、更に低沸点
成分の少ない高純度の製品窒素ガスを効率的に得ること
ができる。
According to the present embodiment, the circulating gas reintroduced into the single rectification column 36 contains about 56% of nitrogen, while it contains almost no low-boiling components such as hydrogen. By re-introducing 1060 Nm 3 / h of circulating gas into the single rectification column 36, an amount of product nitrogen gas equivalent to introducing 1055 Nm 3 / h of feed air can be obtained, and low-boiling components such as hydrogen can be further reduced. A small amount of high-purity nitrogen gas can be efficiently collected. That is, since the nitrogen yield is higher than in the first embodiment or the like in which the circulating gas is not reintroduced, the required amount of raw material air can be reduced, and hydrogen and the like introduced into the single rectification column 36 together with the raw material air and the like Of the low boiling point components are also reduced. Therefore, a high-purity product nitrogen gas having a lower boiling point component can be obtained more efficiently than in the first embodiment.

【0048】これにより、高純度窒素の要求純度が更に
厳しくなり、精製設備32における触媒や吸着剤等によ
る処理では到達不可能な純度が要求された場合でも、精
製設備32の性能をカバーすることができる。
As a result, the required purity of high-purity nitrogen becomes even more stringent, and the performance of the purification facility 32 can be covered even when a purity that cannot be achieved by treatment with a catalyst or an adsorbent in the purification facility 32 is required. Can be.

【0049】また、循環ガスを単精留塔36に再導入す
るために必要な低温圧縮機87での圧縮を、駆動タービ
ン80における廃ガスの膨張で得られた動力を用いて行
っているので、動力を有効に利用することができ、原単
位の向上が図れる。
Also, since the compression by the low-temperature compressor 87 necessary for re-introducing the circulating gas into the single rectification column 36 is performed using the power obtained by the expansion of the waste gas in the drive turbine 80. , Power can be used effectively, and the unit consumption can be improved.

【0050】なお、酸素富化液を気化して廃ガスと循環
ガスとを生成する際に、本形態例では、酸素富化液を分
岐してから減圧及び気化をそれぞれ行っているが、1個
の減圧弁で減圧して凝縮蒸発器46で全量を気化させて
から廃ガスと循環ガスとに分岐してもよい。また、凝縮
蒸発器46で酸素富化液と熱交換を行う流体は、低沸点
成分富化ガス及び高純度窒素ガスの両方であってもよ
く、いずれか一方であってもよい。
In this embodiment, when the oxygen-enriched liquid is vaporized to generate waste gas and circulating gas, the oxygen-enriched liquid is branched and then decompressed and vaporized. The pressure may be reduced by a plurality of pressure reducing valves, and the entire amount may be vaporized by the condensing evaporator 46 before branching to waste gas and circulating gas. Further, the fluid that performs heat exchange with the oxygen-enriched liquid in the condensing evaporator 46 may be both a low-boiling-point-component-enriched gas and a high-purity nitrogen gas, or may be one of them.

【0051】図4は、本発明の第4形態例を示す系統図
であって、凝縮蒸発器を複数のブロックに分割形成した
例を示すものである。すなわち、単精留塔36の塔底か
ら経路48に抜出されて経路72と経路73とに分岐
し、減圧弁74,75で減圧した後の酸素富化液の気化
を、別々の凝縮蒸発器ブロック101,102で行うよ
うに形成している。一方の廃ガス側経路に設けられた凝
縮蒸発器ブロック101には、経路37に抜出した高純
度窒素の一部を経路103に分岐して導入し、他方の循
環ガス側経路に設けられた凝縮蒸発器ブロック102に
は、経路41に抜出した低沸点成分富化ガスの大部分を
経路104に分岐して導入している。このように形成す
ることにより、各経路における流量の適正化が図れる。
なお、高純度窒素及び低沸点成分富化ガスをどちらの凝
縮蒸発器ブロックに導入するかは任意である。
FIG. 4 is a system diagram showing a fourth embodiment of the present invention, in which a condensing evaporator is divided into a plurality of blocks. That is, the vaporization of the oxygen-enriched liquid after being extracted from the bottom of the single rectification column 36 to the path 48 and branched into the path 72 and the path 73 and reduced in pressure by the pressure reducing valves 74 and 75 is performed by separate condensation and evaporation. It is formed so as to be performed by the container blocks 101 and 102. A part of the high-purity nitrogen extracted through the passage 37 is introduced into the condensing evaporator block 101 provided on one waste gas side passage by branching to the passage 103, and the condensate provided on the other circulating gas side passage is introduced. Most of the low-boiling-point component-enriched gas extracted through the path 41 is branched into the evaporator block 102 and introduced into the path 104. By forming in this way, the flow rate in each path can be optimized.
It should be noted that it is optional to introduce the high-purity nitrogen and the low-boiling-point component-enriched gas into which of the condensation evaporator blocks.

【0052】図5は、本発明の第5形態例を示す系統図
であって、単精留塔36の塔底から経路48に抜出した
酸素濃度最大の酸素富化液を前記同様に気化させて廃ガ
スとし、塔底より数段上の下降液を経路110に抜出し
て循環ガスを得るように形成したものである。すなわ
ち、塔底の酸素富化液に比べて窒素分が多い液を経路1
10に抜出し、過冷器38,減圧弁111,凝縮蒸発器
46を通して気化させることにより循環ガスとし、この
循環ガスを、前記同様に、過冷器38,低温圧縮機8
7,主熱交換器34を通して経路89から単精留塔36
に循環再導入するように形成している。
FIG. 5 is a system diagram showing a fifth embodiment of the present invention. The oxygen-enriched liquid having the maximum oxygen concentration extracted from the bottom of the single rectification column 36 to the path 48 is vaporized in the same manner as described above. This is formed so that circulating gas is obtained by withdrawing the descending liquid several stages above the bottom of the tower into the passage 110 to obtain waste gas. That is, the liquid having a higher nitrogen content than the oxygen-enriched liquid at the bottom of the column is passed through the path 1
10 and vaporized through a subcooler 38, a pressure reducing valve 111, and a condensing evaporator 46 to form a circulating gas. The circulating gas is supplied to the subcooler 38 and the low-temperature compressor 8 as described above.
7. Single rectification column 36 from path 89 through main heat exchanger 34
It is formed so that it is recirculated to the water.

【0053】さらに、本形態例では、凝縮蒸発器46で
気化して廃ガス経路を構成する経路112に導出された
廃ガスを、主熱交換34の途中で経路113と経路11
4とに分岐し、一方の経路113に分岐した廃ガスは、
前記同様に、駆動タービン80で膨張して動力を発生し
た後、再び主熱交換34を経て排出するとともに、他方
の経路114に分岐して主熱交換34で常温まで昇温し
た廃ガスは、寒冷タービン115と同軸上に連結された
廃ガス圧縮機116で圧縮し、アフタークーラー117
で圧縮熱を除去した後、経路118から主熱交換器34
に導入して中間温度まで冷却し、経路119によって前
記寒冷タービン115に導入し、この寒冷タービン11
5で膨張させて前記廃ガス圧縮機116の動力と寒冷と
を発生させ、最後に、前記駆動タービン80で膨張した
廃ガスと合流させて排出するように形成している。
Further, in the present embodiment, the waste gas which has been vaporized by the condensation evaporator 46 and led to the path 112 constituting the waste gas path is supplied to the path 113 and the path 11 in the course of the main heat exchange 34.
4 and the waste gas branched to one path 113 is
In the same manner as described above, after the power is generated by expansion in the drive turbine 80, the exhaust gas is discharged again through the main heat exchange 34, and the waste gas branched to the other path 114 and heated to the normal temperature in the main heat exchange 34 is Compressed by a waste gas compressor 116 coaxially connected to the cold turbine 115,
After removing the heat of compression in the main heat exchanger 34
And cooled to an intermediate temperature, and introduced into the cold turbine 115 through a path 119, where the cold turbine 11
5 to generate the power and cold of the waste gas compressor 116, and finally merge with the waste gas expanded by the drive turbine 80 and discharge it.

【0054】このように、廃ガスを廃ガス圧縮機116
で圧縮してから寒冷タービン115で膨張させることに
より、寒冷タービン115における膨張比が大きくな
り、単位体積当たりの発生寒冷量が増加するので、寒冷
発生用の廃ガス量が少なくてすみ、その分、駆動タービ
ン80に供給する廃ガスを増量でき、駆動タービン80
で駆動される低温圧縮機87の循環ガス量を増加させる
ことが可能となり、窒素収率を更に向上させることがで
きる。
As described above, the waste gas is supplied to the waste gas compressor 116.
And then expanded by the cold turbine 115, the expansion ratio in the cold turbine 115 is increased, and the amount of cold generated per unit volume is increased. Therefore, the amount of waste gas for generating cold can be reduced, and , The amount of waste gas supplied to the drive turbine 80 can be increased,
It is possible to increase the amount of circulating gas of the low-temperature compressor 87 driven by, and the nitrogen yield can be further improved.

【0055】図6は、本発明の第6形態例を示す系統図
であって、循環ガスの圧縮を二段階で行うようにしたも
のである。前記図3に示した第3形態例と同様に、凝縮
蒸発器46で気化して経路76に導出した循環ガスを、
過冷器38,経路86を経て一次低温圧縮機121に導
入し、低温で一次圧縮して一次圧力とした後、循環ガス
再導入経路を構成する経路122から主熱交換器34に
導入して常温まで昇温し、経路123により二次常温圧
縮機124に導入して常温で単精留塔圧力に略等しい二
次圧力まで圧縮する。圧縮後の循環ガスは、アフターク
ーラー125,経路126を経て主熱交換器34に導入
され、所定温度に冷却された後、経路127から単精留
塔36の底部に導入される。このとき、循環ガスは、一
次低温圧縮機121では駆動タービン80の発生動力で
一次圧縮され、二次常温圧縮機124では寒冷タービン
82の発生動力で二次圧縮される。
FIG. 6 is a system diagram showing a sixth embodiment of the present invention, in which the circulating gas is compressed in two stages. As in the third embodiment shown in FIG. 3, the circulating gas vaporized by the condensing evaporator 46 and led to the path 76 is
After being introduced into the primary low-temperature compressor 121 via the subcooler 38 and the path 86 and subjected to primary compression at a low temperature to a primary pressure, it is introduced into the main heat exchanger 34 from a path 122 constituting a circulation gas re-introduction path. The temperature is raised to room temperature, introduced into a secondary room temperature compressor 124 through a path 123, and compressed at room temperature to a secondary pressure substantially equal to the pressure of the single rectification column. The compressed circulating gas is introduced into the main heat exchanger 34 via an after cooler 125 and a path 126, and after being cooled to a predetermined temperature, is introduced into the bottom of the single rectification column 36 from a path 127. At this time, the circulating gas is primarily compressed by the power generated by the drive turbine 80 in the primary low temperature compressor 121, and is secondarily compressed by the power generated by the cold turbine 82 in the secondary room temperature compressor 124.

【0056】このように循環ガスを二段圧縮することに
より、圧力的に直列に接続された一次低温圧縮機121
と二次常温圧縮機124とにおけるそれぞれの圧縮比を
小さくでき、標準的な圧縮比の圧縮機を選定することが
できるとともに圧縮効率も向上するので、循環ガス量を
増加させることが可能となり、窒素収率の向上が図れ
る。
By thus compressing the circulating gas in two stages, the primary low-temperature compressor 121 connected in pressure series is connected.
And the secondary room-temperature compressor 124 can reduce their respective compression ratios, and can select a compressor having a standard compression ratio and also improve the compression efficiency, so that the amount of circulating gas can be increased, The nitrogen yield can be improved.

【0057】上述の第5,第6形態例に示すように、廃
ガスの膨張により発生した動力を、エネルギー排出機構
を使用せずに、廃ガスや循環ガスの圧縮動力として有効
に用いることにより、動力のロスが抑えられ、第1乃至
第4形態例に示すようなエネルギー排出機構でタービン
発生動力を消費する場合の消費動力が大きくなる欠点を
改善することができる。
As shown in the fifth and sixth embodiments, the power generated by the expansion of the waste gas is effectively used as the compression power of the waste gas and the circulating gas without using the energy discharging mechanism. In addition, the power loss can be suppressed, and the disadvantage that the power consumption when the turbine-generated power is consumed by the energy discharging mechanism as shown in the first to fourth embodiments increases can be improved.

【0058】図7は、本発明の第7形態例を示す要部の
系統図であって、パージガスを気液分離器から抜出すよ
うに形成した例を示すものである。すなわち、単精留塔
36の頂部から経路41に抜出した低沸点成分富化ガス
の全量を凝縮蒸発器46に導入して凝縮させ、凝縮蒸発
器46の出口部に設けた気液分離器131でガスを分離
し、このガスをパージガスとして経路132に導出し、
前記同様にして排出するように形成している。
FIG. 7 is a system diagram of a main part showing a seventh embodiment of the present invention, and shows an example in which a purge gas is formed so as to be extracted from a gas-liquid separator. That is, the entire amount of the low-boiling-point component-enriched gas extracted from the top of the single rectification column 36 to the path 41 is introduced into the condensing evaporator 46 to be condensed, and the gas-liquid separator 131 provided at the outlet of the condensing evaporator 46 is provided. And the gas is led to the path 132 as a purge gas,
It is formed so as to be discharged in the same manner as described above.

【0059】このように、パージガスの抜出しは、凝縮
蒸発器46を導出してから行ってもよく、前記各形態例
に示したように、単精留塔36の頂部に接続した経路4
1から分岐させて行ってもよく、さらに、図示は省略す
るが、経路41とは別にパージガス抜出し専用の経路を
塔頂部に設けて行うこともできる。
As described above, the discharge of the purge gas may be performed after the condensing evaporator 46 is drawn out. As shown in each of the above embodiments, the passage 4 connected to the top of the single rectification column 36 is used.
Alternatively, the flow may be performed by branching off from the line 1, and although not shown, a path dedicated to purge gas extraction may be provided at the top of the tower separately from the path 41.

【0060】また、第2,第4形態例に示したように、
高純度窒素ガスの一部を凝縮蒸発器に導入して凝縮させ
る場合も、経路37に抜出してから分岐するのに代え
て、製品抜出用と凝縮用とに専用の経路を設けて行うこ
とができる。
As shown in the second and fourth embodiments,
When a part of the high-purity nitrogen gas is introduced into the condensing evaporator and condensed, instead of extracting to the path 37 and branching, it is necessary to provide dedicated paths for product extraction and condensation. Can be.

【0061】図1に示した第1形態例及び図3に示した
第3形態例と、図8に示した従来例とにおいて、同量の
製品窒素ガスを得る際の原料空気量,製品窒素ガス中の
水素濃度,窒素収率及び電力原単位を表1に示す。表1
から明らかなように、両形態例共に、前処理段階で水素
等を除去する精製設備を使用したことにより、製品窒素
ガス中の水素濃度が従来例より低くなっている。また、
製品窒素ガスを減圧することなく単精留塔から直接抜出
したことにより、従来の液体窒素の減圧による動力ロス
がなくなり、電力原単位が向上している。さらに、第3
形態例では、単精留塔塔底の酸素富化液を気化させて単
精留塔に循環再導入したことにより、第1形態例よりも
製品窒素ガス中の水素濃度が低下し、窒素収率や電力原
単位が向上している。
In the first embodiment shown in FIG. 1 and the third embodiment shown in FIG. 3 and the conventional example shown in FIG. 8, the raw material air amount and product nitrogen when obtaining the same amount of product nitrogen gas are obtained. Table 1 shows the hydrogen concentration in the gas, the nitrogen yield, and the power consumption unit. Table 1
As is clear from both the examples, the hydrogen concentration in the product nitrogen gas is lower than that of the conventional example due to the use of the purification equipment for removing hydrogen and the like in the pretreatment stage. Also,
By directly extracting the product nitrogen gas from the single rectification column without depressurizing, power loss due to the conventional decompression of liquid nitrogen is eliminated, and the power consumption is improved. In addition, the third
In the embodiment, the oxygen-enriched liquid at the bottom of the single rectification column is vaporized and circulated and reintroduced into the single rectification column, so that the hydrogen concentration in the product nitrogen gas is lower than in the first embodiment, and the nitrogen recovery is reduced. Rates and power consumption have improved.

【0062】[0062]

【表1】 [Table 1]

【0063】[0063]

【発明の効果】以上説明したように、本発明によれば、
水素等の低沸点成分の濃度が低い高純度の窒素ガスを効
率よく得ることができる。特に、圧力が高い状態で採取
することができるので、再圧縮に要していた動力費を削
減できる。また、従来は排出していた廃ガスの一部を循
環ガスとして単精留塔に再導入することにより、製品窒
素ガス中の水素濃度を更に低下させることができるとと
もに、窒素収率や電力原単位も更に向上させることがで
きる。加えて、前処理段階で水素等を除去しておくこと
により、水素等の低沸点成分の濃度をより低下させるこ
とができる。
As described above, according to the present invention,
High-purity nitrogen gas having a low concentration of low-boiling components such as hydrogen can be efficiently obtained. In particular, since sampling can be performed at a high pressure, power costs required for recompression can be reduced. In addition, by re-introducing a part of the waste gas that was conventionally discharged into the single rectification column as circulating gas, the hydrogen concentration in the product nitrogen gas can be further reduced, and the nitrogen yield and power generation The unit can be further improved. In addition, by removing hydrogen and the like in the pretreatment stage, the concentration of low-boiling components such as hydrogen can be further reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の第1形態例を示す系統図である。FIG. 1 is a system diagram showing a first embodiment of the present invention.

【図2】 本発明の第2形態例を示す系統図である。FIG. 2 is a system diagram showing a second embodiment of the present invention.

【図3】 本発明の第3形態例を示す系統図である。FIG. 3 is a system diagram showing a third embodiment of the present invention.

【図4】 本発明の第4形態例を示す系統図である。FIG. 4 is a system diagram showing a fourth embodiment of the present invention.

【図5】 本発明の第5形態例を示す系統図である。FIG. 5 is a system diagram showing a fifth embodiment of the present invention.

【図6】 本発明の第6形態例を示す系統図である。FIG. 6 is a system diagram showing a sixth embodiment of the present invention.

【図7】 本発明の第7形態例を示す系統図である。FIG. 7 is a system diagram showing a seventh embodiment of the present invention.

【図8】 従来の高純度窒素製造プロセスの一例を示す
系統図である。
FIG. 8 is a system diagram showing an example of a conventional high-purity nitrogen production process.

【符号の説明】 31…原料空気圧縮機、32…精製設備、34…主熱交
換器、36…単精留塔、38…過冷器、46…凝縮蒸発
器、49…減圧弁、53…膨張タービン、56…エネル
ギー排出機構、80…駆動タービン、82…寒冷タービ
ン、87…低温圧縮機、101,102…凝縮蒸発器ブ
ロック、115…寒冷タービン、116…廃ガス圧縮
機、121…一次低温圧縮機、124…二次常温圧縮
機、131…気液分離器
[Explanation of Signs] 31: Raw material air compressor, 32: Purification equipment, 34: Main heat exchanger, 36: Single rectification column, 38: Subcooler, 46: Condensation evaporator, 49: Pressure reducing valve, 53 ... Expansion turbine, 56: Energy discharge mechanism, 80: Drive turbine, 82: Cold turbine, 87: Low temperature compressor, 101, 102: Condensation evaporator block, 115: Cold turbine, 116: Waste gas compressor, 121: Primary low temperature Compressor, 124: Secondary room temperature compressor, 131: Gas-liquid separator

Claims (19)

【特許請求の範囲】[Claims] 【請求項1】 圧縮,精製,冷却した原料空気を単精留
塔に導入して低温蒸留することにより、高純度窒素を採
取する高純度窒素製造方法において、前記単精留塔の頂
部から低沸点成分富化ガスを抜出す工程と、前記単精留
塔の頂部より数段下の精留段から低沸点成分の少ない高
純度窒素ガスを抜出す工程と、前記単精留塔の下部から
酸素富化液を抜出して減圧する工程と、前記低沸点成分
富化ガス及び/又は前記高純度窒素ガスと前記減圧後の
酸素富化液とを熱交換させることにより低沸点成分富化
ガス及び/又は高純度窒素ガスを液化して前記単精留塔
の下降液を生成するとともに、前記酸素富化液を気化し
て廃ガスを生成する工程とを有することを特徴とする高
純度窒素製造方法。
1. A high-purity nitrogen production method for collecting high-purity nitrogen by introducing compressed, purified, and cooled raw material air into a single rectification column and subjecting it to low-temperature distillation. A step of extracting a boiling component-enriched gas, a step of extracting high-purity nitrogen gas having a low boiling point component from a rectification stage several stages below the top of the single rectification column, and Extracting the oxygen-enriched liquid and reducing the pressure; and performing a heat exchange between the low-boiling-point-enriched gas and / or the high-purity nitrogen gas and the oxygen-enriched liquid after the decompression to obtain a low-boiling-point-enriched gas and And / or liquefying high-purity nitrogen gas to generate a descending liquid of the single rectification column and vaporizing the oxygen-enriched liquid to generate waste gas. Method.
【請求項2】 圧縮,精製,冷却した原料空気を単精留
塔に導入して低温蒸留することにより、高純度窒素を採
取する高純度窒素製造方法において、前記単精留塔の頂
部から低沸点成分富化ガスを抜出す工程と、前記単精留
塔の頂部より数段下の精留段から低沸点成分の少ない高
純度窒素ガスを抜出す工程と、前記単精留塔の下部から
酸素富化液を抜出して減圧する工程と、前記低沸点成分
富化ガス及び/又は前記高純度窒素ガスと前記減圧後の
酸素富化液とを熱交換させることにより低沸点成分富化
ガス及び/又は高純度窒素ガスを液化して前記単精留塔
の下降液を生成するとともに、前記酸素富化液を気化し
て循環ガス及び廃ガスを生成する工程と、前記低沸点成
分富化ガスを液化する工程の前段又は後段から低沸点成
分富化ガスの一部をパージガスとして導出する工程と、
前記廃ガスを膨張させて動力及び寒冷を発生する工程
と、前記循環ガスを圧縮して前記単精留塔に再導入する
工程とを有することを特徴とする高純度窒素製造方法。
2. A high-purity nitrogen production method for collecting high-purity nitrogen by introducing compressed air, purified and cooled raw material air into a single rectification column and performing low-temperature distillation. A step of extracting a boiling component-enriched gas, a step of extracting high-purity nitrogen gas having a low boiling point component from a rectification stage several stages below the top of the single rectification column, and Extracting the oxygen-enriched liquid and reducing the pressure; and performing a heat exchange between the low-boiling-point-enriched gas and / or the high-purity nitrogen gas and the oxygen-enriched liquid after the decompression to obtain a low-boiling-point-enriched gas and And / or liquefying high-purity nitrogen gas to generate a descending liquid of the single rectification column, and vaporizing the oxygen-enriched liquid to generate a circulating gas and waste gas; Part of the low-boiling-point component-enriched gas from the first or second stage of the liquefaction process Deriving as a purge gas,
A method for producing high-purity nitrogen, comprising: a step of generating power and cold by expanding the waste gas; and a step of compressing and re-introducing the circulating gas into the single rectification column.
【請求項3】 前記原料空気中の不純物の内、一酸化炭
素及び水素を除去した後、前記単精留塔に導入すること
を特徴とする請求項1又は2記載の高純度窒素製造方
法。
3. The method for producing high-purity nitrogen according to claim 1, wherein carbon monoxide and hydrogen among impurities in the raw material air are removed and then introduced into the single rectification column.
【請求項4】 前記低沸点成分富化ガスを液化する際に
得られた液を気液分離し、分離した液を前記単精留塔の
頂部に還流するとともに、分離したガスを前記パージガ
スとして抜出すことを特徴とする請求項1又は2記載の
高純度窒素製造方法。
4. A liquid obtained when the low-boiling component-enriched gas is liquefied is subjected to gas-liquid separation, and the separated liquid is returned to the top of the single rectification column, and the separated gas is used as the purge gas. 3. The method for producing high-purity nitrogen according to claim 1, wherein the nitrogen is extracted.
【請求項5】 前記廃ガスの一部を中間温度で膨張させ
て動力を発生させ、前記廃ガスの残部の少なくとも一部
を常温まで昇温して常温圧縮し、再冷却後に膨張させて
寒冷を発生するとともに、前記循環ガスを低温圧縮して
再冷却後に前記単精留塔に再導入することを特徴とする
請求項2記載の高純度窒素製造方法。
5. A part of the waste gas is expanded at an intermediate temperature to generate power, at least a part of the remaining part of the waste gas is heated to room temperature, compressed at room temperature, expanded after re-cooling, and cooled. 3. The method for producing high-purity nitrogen according to claim 2, wherein the circulating gas is compressed at a low temperature, re-cooled, and re-introduced into the single rectification column.
【請求項6】 前記循環ガスを一次圧力まで低温圧縮し
た後、常温まで昇温して二次圧力まで常温圧縮し、再冷
却して前記単精留塔に再導入することを特徴とする請求
項2記載の高純度窒素製造方法。
6. The method of claim 1, wherein the circulating gas is compressed to a primary pressure at a low temperature, then heated to room temperature, compressed to a secondary pressure at room temperature, recooled, and reintroduced into the single rectification column. Item 4. The method for producing high-purity nitrogen according to Item 2.
【請求項7】 前記廃ガス及び前記循環ガスの圧縮を、
前記廃ガスを膨張させる工程で発生した動力を用いて行
うことを特徴とする請求項5又は6記載の高純度窒素製
造方法。
7. The compression of the waste gas and the circulating gas,
The method for producing high-purity nitrogen according to claim 5, wherein the method is performed using power generated in the step of expanding the waste gas.
【請求項8】 前記廃ガスの常温圧縮を、前記廃ガスを
膨張させて寒冷を発生する工程で得られた動力を用いて
行い、前記循環ガスの低温圧縮を、前記廃ガスを膨張さ
せて動力を発生する工程で得られた動力を用いて行うこ
とを特徴とする請求項5記載の高純度窒素製造方法。
8. The room temperature compression of the waste gas is performed by using the power obtained in the step of expanding the waste gas to generate cold, and the low temperature compression of the circulating gas is performed by expanding the waste gas. 6. The method for producing high-purity nitrogen according to claim 5, wherein the method is performed using power obtained in the step of generating power.
【請求項9】 前記循環ガスの低温圧縮を、前記廃ガス
を膨張させて動力を発生する工程で得られた動力を用い
て行い、前記循環ガスの常温圧縮を、前記廃ガスを膨張
させて寒冷を発生する工程で得られた動力を用いて行う
ことを特徴とする請求項6記載の高純度窒素製造方法。
9. A low-temperature compression of the circulating gas is performed by using power obtained in a step of generating power by expanding the waste gas, and a normal temperature compression of the circulating gas is performed by expanding the waste gas. 7. The method for producing high-purity nitrogen according to claim 6, wherein the method is performed using power obtained in the step of generating cold.
【請求項10】 前記パージガスを、前記廃ガスを膨張
させるタービンの軸受け用シールガス又はベアリングガ
スとして用いることを特徴とする請求項2又は4記載の
高純度窒素製造方法。
10. The method for producing high-purity nitrogen according to claim 2, wherein the purge gas is used as a seal gas or a bearing gas for a bearing of a turbine for expanding the waste gas.
【請求項11】 圧縮,精製,冷却した原料空気を単精
留塔で低温蒸留することにより、高純度窒素を採取する
高純度窒素製造装置において、前記原料空気を低温蒸留
で得られた低温戻りガスと熱交換させて冷却する主熱交
換器と、冷却した原料空気を低温蒸留して低沸点成分富
化ガスと低沸点成分の少ない高純度窒素ガスと酸素富化
液とに分離する単精留塔と、前記低沸点成分富化ガス及
び/又は高純度窒素ガスと前記酸素富化液とを熱交換さ
せる凝縮蒸発器と、該凝縮蒸発器で前記酸素富化液が気
化して生成した廃ガスを膨張させて寒冷を発生する膨張
タービンとを備えるとともに、前記低沸点成分富化ガス
を前記単精留塔の頂部から抜出し、前記凝縮蒸発器を通
して液化し、前記単精留塔の頂部に戻す低沸点成分富化
流体還流経路及び/又は前記高純度窒素ガスを前記単精
留塔の上部から抜出し、前記凝縮蒸発器を通して液化
し、前記単精留塔の上部から頂部の間の位置に戻す高純
度窒素還流経路と、前記低沸点成分富化ガスの一部をパ
ージガスとして前記単精留塔の頂部から又は前記低沸点
成分富化流体還流経路の前記凝縮蒸発器の前流又は後流
から取出し、前記主熱交換器を通して導出するパージガ
ス経路と、前記高純度窒素ガスを製品窒素ガスとして前
記単精留塔の上部から又は前記高純度窒素還流経路の前
記凝縮蒸発器の前流から前記主熱交換器を通して導出す
る製品採取経路と、前記酸素富化液を前記単精留塔の塔
底から抜出し、減圧弁を介して前記凝縮蒸発器に導く酸
素富化液抜出経路と、該酸素富化液抜出経路に接続さ
れ、前記廃ガスを前記主熱交換器を通して前記膨張ター
ビンに導く廃ガス経路と、前記膨張タービンで膨張して
寒冷を発生した廃ガスを前記主熱交換器を通して導出す
る寒冷回収経路とを備えたことを特徴とする高純度窒素
製造装置。
11. A high-purity nitrogen production apparatus for collecting high-purity nitrogen by subjecting compressed, purified, and cooled raw air to low-temperature distillation in a single rectification column. A main heat exchanger that cools by exchanging heat with gas, and a single heat separator that separates the cooled raw material air into low-boiling component-enriched gas, high-purity nitrogen gas with low low-boiling components and oxygen-enriched liquid by low-temperature distillation A distillation column, a condensing evaporator for heat-exchanging the low-boiling component-enriched gas and / or high-purity nitrogen gas with the oxygen-enriched liquid, and the oxygen-enriched liquid vaporized and generated in the condensing evaporator. An expansion turbine that expands waste gas to generate cold, withdraws the low-boiling component-enriched gas from the top of the single rectification column, liquefies it through the condensing evaporator, and forms a top portion of the single rectification column. A low-boiling component-enriched fluid recirculation path and / or Or a high-purity nitrogen reflux path in which the high-purity nitrogen gas is withdrawn from the top of the single rectification column, liquefied through the condensation evaporator, and returned to a position between the top and the top of the single rectification column; A part of the component-enriched gas is withdrawn as a purge gas from the top of the single rectification column or from the upstream or downstream of the condensing evaporator in the low-boiling component-enriched fluid reflux path and is led through the main heat exchanger. A purge gas path, and a product collection path that is led through the main heat exchanger from the upper part of the single rectification column or the upstream of the condensation evaporator of the high purity nitrogen reflux path as the high purity nitrogen gas as product nitrogen gas. Withdrawing the oxygen-enriched liquid from the bottom of the single rectification column, connected to the oxygen-enriched liquid extraction path leading to the condensation evaporator via a pressure reducing valve, and connected to the oxygen-enriched liquid extraction path, Passing the waste gas through the main heat exchanger Serial and waste gas path for guiding the expansion turbine, the expansion turbine in the expansion to high purity nitrogen production device, characterized in that the waste gas generated cold and a refrigeration recovery path for deriving through the main heat exchanger.
【請求項12】 圧縮,精製,冷却した原料空気を単精
留塔で低温蒸留することにより、高純度窒素を採取する
高純度窒素製造装置において、前記原料空気を低温蒸留
で得られた低温戻りガスと熱交換させて冷却する主熱交
換器と、冷却した原料空気を低温蒸留して低沸点成分富
化ガスと低沸点成分の少ない高純度窒素ガスと酸素富化
液とに分離する単精留塔と、前記低沸点成分富化ガス及
び/又は高純度窒素ガスと前記酸素富化液とを熱交換さ
せる凝縮蒸発器と、該凝縮蒸発器で前記酸素富化液が気
化して生成した廃ガスの一部を膨張させて寒冷を発生す
る寒冷タービンと、前記廃ガスの残部の少なくとも一部
を膨張させて動力を発生する駆動タービンと、前記凝縮
蒸発器で前記酸素富化液が気化して生成した循環ガスを
低温で圧縮する低温圧縮機とを備えるとともに、前記低
沸点成分富化ガスを前記単精留塔の頂部から抜出し、前
記凝縮蒸発器を通して液化し、前記単精留塔の頂部に戻
す低沸点成分富化流体還流経路及び/又は前記高純度窒
素ガスを前記単精留塔の上部から抜出し、前記凝縮蒸発
器を通して液化し、前記単精留塔の上部から頂部の間の
位置に戻す高純度窒素還流経路と、前記低沸点成分富化
ガスの一部をパージガスとして前記単精留塔の頂部から
又は前記低沸点成分富化流体還流経路の前記凝縮蒸発器
の前流又は後流から取出し、前記主熱交換器を通して導
出するパージガス経路と、前記高純度窒素ガスを製品窒
素ガスとして前記単精留塔の上部から又は前記高純度窒
素還流経路の前記凝縮蒸発器の前流から前記主熱交換器
を通して導出する製品採取経路と、前記酸素富化液を前
記単精留塔の塔底を含む下部から抜出し、減圧弁を介し
て前記凝縮蒸発器に導く酸素富化液抜出経路と、該酸素
富化液抜出経路に接続され、前記廃ガスを前記主熱交換
器を通して前記寒冷タービン及び駆動タービンに導く廃
ガス経路と、前記寒冷タービン及び駆動タービンで膨張
した廃ガスを前記主熱交換器を通して導出する寒冷回収
経路と、前記酸素富化液抜出経路に接続され、前記循環
ガスを前記低温圧縮機に導く循環ガス取出経路と、前記
低温圧縮機で圧縮された循環ガスを前記単精留塔の下部
に導く循環ガス再導入経路とを備えたことを特徴とする
高純度窒素製造装置。
12. A high-purity nitrogen production apparatus for collecting high-purity nitrogen by subjecting compressed, purified, and cooled raw air to low-temperature distillation in a single rectification column. A main heat exchanger that cools by exchanging heat with gas, and a single heat separator that separates the cooled raw material air into low-boiling component-enriched gas, high-purity nitrogen gas with low low-boiling components and oxygen-enriched liquid by low-temperature distillation A distillation column, a condensing evaporator for heat-exchanging the low-boiling component-enriched gas and / or high-purity nitrogen gas with the oxygen-enriched liquid, and the oxygen-enriched liquid vaporized and generated in the condensing evaporator. A cold turbine that expands a part of the waste gas to generate cold, a drive turbine that expands at least a part of the remaining part of the waste gas to generate power, and that the oxygen-enriched liquid is vaporized by the condensation evaporator. Temperature to compress the circulating gas generated by A low-boiling component-enriched gas reflux path for extracting a low-boiling component-enriched gas from the top of the single rectification column, liquefying the gas through the condensing evaporator, and returning the low-boiling component-enriched gas to the top of the single rectification column. And / or a high-purity nitrogen reflux path in which the high-purity nitrogen gas is withdrawn from the top of the single rectification column, liquefied through the condensation evaporator, and returned to a position between the top and the top of the single rectification column; A part of the low-boiling component-enriched gas is withdrawn as a purge gas from the top of the single rectification column or from the upstream or downstream of the condensing evaporator in the low-boiling component-enriched fluid reflux path and passed through the main heat exchanger. A purge gas path to be led out, and a product sampling to be led out from the upper part of the single rectification column as the product nitrogen gas as the product nitrogen gas or from the upstream of the condensation evaporator in the high purity nitrogen reflux path through the main heat exchanger. Route and before The oxygen-enriched liquid is withdrawn from the lower portion including the bottom of the single rectification column, and is connected to an oxygen-enriched liquid extraction path leading to the condensing evaporator via a pressure reducing valve, and is connected to the oxygen-enriched liquid extraction path. A waste gas path that guides the waste gas to the cold turbine and the drive turbine through the main heat exchanger, a cold recovery path that guides waste gas expanded by the cold turbine and the drive turbine through the main heat exchanger, A circulating gas extraction path connected to the oxygen-enriched liquid extraction path and guiding the circulating gas to the low-temperature compressor; and a circulating gas recirculation path that guides the circulating gas compressed by the low-temperature compressor to a lower portion of the single rectification column. An apparatus for producing high-purity nitrogen, comprising an introduction path.
【請求項13】 前記凝縮蒸発器が、ドライ型熱交換器
であることを特徴とする請求項11又は12記載の高純
度窒素製造装置。
13. The high-purity nitrogen production apparatus according to claim 11, wherein the condensation evaporator is a dry heat exchanger.
【請求項14】 前記凝縮蒸発器が、一体で構成されて
いることを特徴とする請求項11又は12記載の高純度
窒素製造装置。
14. The apparatus for producing high-purity nitrogen according to claim 11, wherein the condensation evaporator is integrally formed.
【請求項15】 前記凝縮蒸発器が、前記低沸点成分富
化ガスを液化するブロックと、前記高純度窒素ガスを液
化するブロックとに別々に構成されていることを特徴と
する請求項11又は12記載の高純度窒素製造装置。
15. The condensation evaporator according to claim 11, wherein a block for liquefying the low-boiling component-enriched gas and a block for liquefying the high-purity nitrogen gas are separately provided. 13. The high-purity nitrogen production apparatus according to 12.
【請求項16】 前記凝縮蒸発器が、前記廃ガスを生成
するブロックと、前記循環ガスを生成するブロックとに
別々に構成されていることを特徴とする請求項12記載
の高純度窒素製造装置。
16. The high-purity nitrogen producing apparatus according to claim 12, wherein the condensing evaporator is separately provided in a block for generating the waste gas and a block for generating the circulating gas. .
【請求項17】 前記寒冷タービンに導入する廃ガスを
常温で圧縮する廃ガス圧縮機を備えるとともに、前記廃
ガス経路が、前記主熱交換器の中間から前記駆動タービ
ンに廃ガスを導く経路と、該経路から分岐して前記主熱
交換器を通り、前記廃ガス圧縮機を経て再び前記主熱交
換器を通り、前記寒冷タービンに接続されていることを
特徴とする請求項12記載の高純度窒素製造装置。
17. A waste gas compressor for compressing waste gas to be introduced into the cold turbine at a normal temperature, wherein the waste gas path includes a path for leading waste gas from the middle of the main heat exchanger to the drive turbine. 13. The high-pressure apparatus according to claim 12, wherein the branch is branched from the path, passes through the main heat exchanger, passes through the waste gas compressor, passes through the main heat exchanger again, and is connected to the cold turbine. Purity nitrogen production equipment.
【請求項18】 前記低温圧縮機に代えて、前記循環ガ
スを一次圧力に低温で圧縮する一次圧縮機と、一次圧縮
機で低温圧縮した循環ガスを常温で二次圧力に圧縮する
二次圧縮機とを備えるとともに、前記循環ガス再導入経
路が、前記一次圧縮機から前記主熱交換器を通り、前記
二次圧縮機を経て再び前記主熱交換器を通り、前記単精
留塔の下部に接続されていることを特徴とする請求項1
2記載の高純度窒素製造装置。
18. A primary compressor for compressing the circulating gas to a primary pressure at a low temperature instead of the low-temperature compressor, and a secondary compression for compressing the circulating gas compressed at a low temperature by the primary compressor to a secondary pressure at a normal temperature. And the circulation gas re-introduction path passes from the primary compressor through the main heat exchanger, passes through the secondary compressor again through the main heat exchanger, and is located at a lower part of the single rectification column. 2. The device according to claim 1, wherein
2. The high-purity nitrogen producing apparatus according to 2.
【請求項19】 前記酸素富化液抜出経路が、前記単精
留塔の塔底から前記廃ガス経路に至る経路と、前記単精
留塔の下部から前記循環ガス取出経路に至る経路とによ
り形成されていることを特徴とする請求項12記載の高
純度窒素製造装置。
19. The oxygen-enriched liquid extraction path includes a path from the bottom of the single rectification column to the waste gas path, and a path from the lower part of the single rectification column to the circulating gas extraction path. The high-purity nitrogen producing apparatus according to claim 12, wherein the apparatus is formed by:
JP16400398A 1998-06-11 1998-06-11 Method and system for producing high purity nitrogen Pending JPH11351740A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16400398A JPH11351740A (en) 1998-06-11 1998-06-11 Method and system for producing high purity nitrogen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16400398A JPH11351740A (en) 1998-06-11 1998-06-11 Method and system for producing high purity nitrogen

Publications (1)

Publication Number Publication Date
JPH11351740A true JPH11351740A (en) 1999-12-24

Family

ID=15784921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16400398A Pending JPH11351740A (en) 1998-06-11 1998-06-11 Method and system for producing high purity nitrogen

Country Status (1)

Country Link
JP (1) JPH11351740A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010243143A (en) * 2009-03-16 2010-10-28 Jfe Steel Corp Method and device of separating component of air
CN113654302A (en) * 2021-08-12 2021-11-16 乔治洛德方法研究和开发液化空气有限公司 Low-temperature air separation device and method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010243143A (en) * 2009-03-16 2010-10-28 Jfe Steel Corp Method and device of separating component of air
CN113654302A (en) * 2021-08-12 2021-11-16 乔治洛德方法研究和开发液化空气有限公司 Low-temperature air separation device and method
CN113654302B (en) * 2021-08-12 2023-02-24 乔治洛德方法研究和开发液化空气有限公司 Low-temperature air separation device and method

Similar Documents

Publication Publication Date Title
US20220325952A1 (en) Method and apparatus for producing product nitrogen gas and product argon
JP5655104B2 (en) Air separation method and air separation device
JP5417054B2 (en) Air separation method and apparatus
CN110803689A (en) Argon recovery method and device for removing carbon monoxide and integrating high-purity nitrogen by rectification method
JP5032407B2 (en) Nitrogen production method and apparatus
JP3719832B2 (en) Ultra high purity nitrogen and oxygen production equipment
JP2893562B2 (en) Ultra high purity nitrogen production method and apparatus
KR101238063B1 (en) Nitrogen generating device and apparatus for use therefor
JPH0933166A (en) Method and apparatus for producing ultrahigh-purity nitrogen
US4530708A (en) Air separation method and apparatus therefor
JP2006284075A (en) Air separating method and its device
JPH11351740A (en) Method and system for producing high purity nitrogen
JP2992750B2 (en) Nitrogen production method and apparatus
JP4230094B2 (en) Nitrogen production method and apparatus
JP3748677B2 (en) Method and apparatus for producing low purity oxygen
JP4447501B2 (en) Air liquefaction separation method and apparatus
JP5005708B2 (en) Air separation method and apparatus
JP4150107B2 (en) Nitrogen production method and apparatus
JP4177507B2 (en) Method and apparatus for producing low purity oxygen
JP4577977B2 (en) Air liquefaction separation method and apparatus
US20130139547A1 (en) Air separation method and apparatus
JPH11173753A (en) Method and device for manufacturing nitrogen and argon from air
CN211198612U (en) Argon recovery device for removing carbon monoxide and integrating high-purity nitrogen by rectification method
CN211198611U (en) Argon recovery device for removing carbon monoxide by rectification method
JP2000130928A (en) Method and apparatus for manufacturing oxygen

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050530

A977 Report on retrieval

Effective date: 20071211

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071218

A02 Decision of refusal

Effective date: 20080527

Free format text: JAPANESE INTERMEDIATE CODE: A02