JPH11351700A - Plate-type evaporator of absorption refrigerating machine and absorber - Google Patents

Plate-type evaporator of absorption refrigerating machine and absorber

Info

Publication number
JPH11351700A
JPH11351700A JP10158857A JP15885798A JPH11351700A JP H11351700 A JPH11351700 A JP H11351700A JP 10158857 A JP10158857 A JP 10158857A JP 15885798 A JP15885798 A JP 15885798A JP H11351700 A JPH11351700 A JP H11351700A
Authority
JP
Japan
Prior art keywords
plate
flow
plates
gap
inter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10158857A
Other languages
Japanese (ja)
Other versions
JP3305653B2 (en
Inventor
Akio Chikasawa
明夫 近沢
Toshikuni Ohashi
俊邦 大橋
Kaoru Watabe
薫 渡部
Eiko Hideshima
英光 秀島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NHK Spring Co Ltd
Osaka Gas Co Ltd
Original Assignee
NHK Spring Co Ltd
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=15680926&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH11351700(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by NHK Spring Co Ltd, Osaka Gas Co Ltd filed Critical NHK Spring Co Ltd
Priority to JP15885798A priority Critical patent/JP3305653B2/en
Publication of JPH11351700A publication Critical patent/JPH11351700A/en
Application granted granted Critical
Publication of JP3305653B2 publication Critical patent/JP3305653B2/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain high evaporator performance and absorption-type performance while simplifying the structure. SOLUTION: In the plate-type evaporator or absorber of an absorption refrigerating machine for evaporating while allowing a flow-down refrigerant liquid Rw to exchange heat with a flowing fluid to be cooled at the gap between plates by allowing the refrigerant liquid Rw or an absorption liquid Lc to flow down in a membrane form along each outer surface of a flow-down plate 26 or for absorbing by a surrounding refrigerant steam while allowing the flow- down absorption liquid Lc to exchange heat with a fluid for flow cooling at the gap between plates with the gap between two flow-down plates 26 as the channel of a fluid to be cooled or a fluid for cooling. In the plate-type evaporator and absorber, a number of recessed parts 33 are formed on the flow-down plate 26 while they are dispersed in the direction of the plate surface, projecting parts at the side of the gap between plats of the recessed parts 33 of one flow- down plate 26 and those of the other flow-down plate 26 are allowed to oppose and touch each other, thus subdividing the channel of the fluid to be cooled and that of the fluid for cooling at the gap between plates.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、吸収式冷凍機で用
いるプレート型蒸発器及びプレート型吸収器に関し、詳
しくは、板面どうしを対向させた2枚の流下板どうしの
間の板間隙間を被冷却流体の流路とし、かつ、これら流
下板夫々の外側表面を冷媒液の流下面として、冷媒液供
給部からの供給冷媒液を前記流下板夫々の外側表面に沿
わせ膜状に流下させることで、その流下冷媒液を前記板
間隙間における流動被冷却流体と熱交換させながら蒸発
させる吸収式冷凍機のプレート型蒸発器、及び、板面ど
うしを対向させた2枚の流下板どうしの間の板間隙間を
冷却用流体の流路とし、かつ、これら流下板夫々の外側
表面を吸収液の流下面として、吸収液供給部からの供給
吸収液を前記流下板夫々の外側表面に沿わせ膜状に流下
させることで、その流下吸収液を前記板間隙間における
流動冷却用流体と熱交換させながら周囲の冷媒蒸気に対
し吸収作用させる吸収式冷凍機のプレート型吸収器に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a plate-type evaporator and a plate-type absorber used in an absorption refrigerator, and more particularly, to a gap between two flow-down plates whose plate surfaces face each other. Is used as the flow path of the fluid to be cooled, and the outer surface of each of the flow-down plates is used as the lower surface of the refrigerant liquid, and the refrigerant liquid supplied from the refrigerant liquid supply unit flows down along the outer surface of each of the flow-down plates in a film form. The plate-type evaporator of the absorption refrigerator in which the flowing refrigerant liquid is evaporated while exchanging heat with the fluid to be cooled in the gap between the plates, and the two flowing plates having the plate surfaces facing each other The gap between the plates as the flow path of the cooling fluid, and the outer surface of each of these falling plates as the lower surface of the absorbing liquid, the supply of the absorbing liquid from the absorbing liquid supply unit to the outer surface of each of the flowing plates. By flowing down along the membrane The falling absorbing fluid about the plate type absorber absorption chiller to absorption to the refrigerant vapor around while flowing cooling fluid and the heat exchange in the plates gap.

【0002】[0002]

【従来の技術】従来、この種のプレート型蒸発器やプレ
ート型吸収器では、図5に示す如く、、対向させる2枚
の流下板26どうしの間の板間隙間にデッキプレート状
の芯材Xを縦溝姿勢で介装することにより、その芯材X
による流路の細分化をもって板間隙間における被冷却流
体Cや冷却用流体Wの流れに乱れを与え、これにより、
流下板26を伝熱壁とする熱交換の伝熱性を高めて蒸発
器性能や吸収器性能の向上を図り、また、この芯材Xを
両側の流下板26の夫々に対しロウ付け連結することに
より、板間隙間と両流下板26の外側域(すなわち、蒸
発器では流下冷媒液Rwの蒸発域、吸収器では流下吸収
液Lcの冷媒蒸気Rvに対する吸収作用域)との間での
発生差圧に対する耐圧性を高く確保するようにしたもの
がある(特願平9−25057号参照)。
2. Description of the Related Art Conventionally, in a plate-type evaporator or a plate-type absorber of this type, as shown in FIG. 5, a deck plate-shaped core material is provided between two opposed falling plates 26. By interposing X in the vertical groove position, its core material X
The flow of the cooling fluid C and the cooling fluid W in the gap between the plates is disturbed by the subdivision of the flow path due to
Improving the evaporator performance and absorber performance by increasing the heat transfer performance of the heat exchange using the falling plate 26 as a heat transfer wall, and brazing the core material X to each of the two falling plates 26 on both sides. As a result, the difference between the gap between the plates and the outer region of the two downstream plates 26 (that is, the evaporation region of the flowing refrigerant liquid Rw in the evaporator, and the absorption region of the flowing absorbing liquid Lc for the refrigerant vapor Rv in the absorber). There is one that ensures high pressure resistance against pressure (see Japanese Patent Application No. 9-25057).

【0003】[0003]

【発明が解決しようとする課題】しかし、上記の従来構
造では、流下板とは別部材の芯材を両流下板の間に介装
する為、部品点数が多くなって組み立て製作が煩雑にな
るとともに製作コストが高く付き、また、蒸発器や吸収
器としての組み立てユニットが重量化して吸収式冷凍機
の重量化を招く問題があった。
However, in the above-mentioned conventional structure, the core material, which is separate from the downflow plate, is interposed between the downflow plates. There is a problem that the cost is high and the weight of an assembly unit as an evaporator or an absorber is increased, resulting in an increase in the weight of the absorption refrigerator.

【0004】以上の実情に対し、本発明の主たる課題
は、流下板に対する簡単な改良により、上記問題を効果
的に解消する点にある。
[0004] In view of the above circumstances, a main object of the present invention is to solve the above-mentioned problem effectively by a simple improvement to the falling plate.

【0005】[0005]

【課題を解決するための手段】〔1〕請求項1に係る発
明では、板面どうしを対向させた2枚の流下板どうしの
間の板間隙間を被冷却流体の流路とし、かつ、これら流
下板夫々の外側表面を冷媒液の流下面として、冷媒液供
給部からの供給冷媒液を流下板夫々の外側表面に沿わせ
膜状に流下させることで、その流下冷媒液を板間隙間に
おける流動被冷却流体と熱交換させながら蒸発させる吸
収式冷凍機のプレート型蒸発器において、流下板に、外
側表面では凹部となって板間隙間の側で凸部となる窪み
部を板面方向に分散させて多数形成し、そして、一方の
流下板における窪み部の板間隙間側凸部と他方の流下板
における窪み部の板間隙間側凸部とを対向接触させて、
又は、一方の流下板における窪み部の板間隙間側凸部を
他方の流下板の平面部分に接触させて、板間隙間におけ
る被冷却流体の流路を細分化する。
Means for Solving the Problems [1] In the invention according to the first aspect, a gap between the two flow-down plates whose plate surfaces face each other is used as a flow path of the fluid to be cooled, and By setting the outer surface of each of these falling plates as the lower surface of the refrigerant liquid, the supply refrigerant liquid from the refrigerant liquid supply unit is caused to flow down along the outer surface of each of the falling plates in a film form, so that the flowing refrigerant liquid is formed between the plates. In the plate type evaporator of the absorption refrigerator in which the heat is exchanged with the fluid to be cooled in the plate-type evaporator, the flow-down plate is provided with a concave portion on the outer surface and a convex portion on the side between the plate gaps in the surface direction. A large number is formed by dispersing in, and the inter-plate gap-side convex portion of the dent portion of the one falling plate and the inter-plate gap side convex portion of the dent portion of the other falling plate are brought into facing contact with each other,
Alternatively, the flow path of the fluid to be cooled in the gap between the plates is made by contacting the inter-plate gap side convex portion of the depression in one of the falling plates with the flat portion of the other falling plate.

【0006】つまり、この構成では、板間隙間における
被冷却流体の流路を上記の如く細分化することで、板間
隙間における被冷却流体の流れに乱れを与え、これによ
り、その板間隙間を流れる被冷却流体と流下板の外側表
面を膜状に流下する冷媒液との間での熱交換の伝熱性を
高めて、蒸発器性能を効果的に向上させることができ
る。
That is, in this configuration, the flow of the fluid to be cooled in the gap between the plates is subdivided as described above, thereby disturbing the flow of the fluid to be cooled in the gap between the plates. The heat transfer of heat exchange between the fluid to be cooled flowing through the cooling medium and the refrigerant liquid flowing down on the outer surface of the falling plate in a film form can be enhanced, and the evaporator performance can be effectively improved.

【0007】そして、その細分化にあたっては、流下板
に窪み部を多数形成して、一方の流下板における窪み部
の板間隙間側凸部と他方の流下板における窪み部の板間
隙間側凸部とを対向接触させることで、又は、一方の流
下板における窪み部の板間隙間側凸部を他方の流下板の
平面部分に接触させることで、板間隙間における被冷却
流体の流路を細分化するから、先述の従来構造の如く2
枚の流下板の間に別部材の芯材を介装することで板間隙
間における被冷却流体の流路を細分化するに比べ、その
ような芯材を不要にして部品点数を少なくすることがで
き、これにより、製作を容易にするとともに製作コスト
を安価にすることができ、また、蒸発器としての組み立
てユニットを軽小化することができて、吸収式冷凍機の
軽小化も可能になる。
[0007] In the subdivision, a number of depressions are formed in the falling plate, and the inter-plate gap side projection of the depression in the one falling plate and the inter-plate gap side projection of the depression in the other falling plate. By contacting the portion with the portion, or by contacting the inter-plate gap side convex portion of the recessed portion of one of the flow-down plates with the flat portion of the other flow-down plate, the flow path of the fluid to be cooled in the inter-plate gap. Since it is subdivided, it is 2
By interposing a core material of another member between the falling plates, the flow path of the fluid to be cooled in the gap between the plates can be reduced, and such a core material is unnecessary and the number of parts can be reduced. Thereby, the production can be facilitated and the production cost can be reduced, the assembly unit as an evaporator can be reduced in size, and the absorption refrigerator can be reduced in size. .

【0008】しかも、外側表面では凹部となって板間隙
間の側で凸部となる窪み部を板面方向に分散させて流下
板に多数形成することから、流下板の大型化を伴うこと
なく伝熱面積も増大させることができて、上記板間隙間
流路の細分化による伝熱性の向上と相まって蒸発器性能
を一層効果的に高めることができ、この蒸発器性能の向
上により蒸発器の小型化が可能になることからも、上記
の如き芯材の不要化による蒸発器の軽小化と相まって、
吸収式冷凍機の軽小化を一層効果的に達成できる。
In addition, since a large number of depressions, which become concave portions on the outer surface and become convex on the side between the plate gaps, are dispersed in the plate surface direction and formed on the flow-down plate, the size of the flow-down plate is not increased. The heat transfer area can also be increased, and the evaporator performance can be more effectively enhanced in combination with the improvement of the heat conductivity due to the subdivision of the inter-plate gap flow path. Because the miniaturization becomes possible, coupled with the lightening of the evaporator due to the elimination of the core material as described above,
The size of the absorption refrigerator can be reduced more effectively.

【0009】〔2〕請求項2に係る発明では、上記した
請求項1に係る発明の実施において、対向接触させた前
記窪み部の板間隙間側凸部どうしを、又は、接触させた
前記窪み部の板間隙間側凸部と他方流下板の平面部分と
をロウ付け連結する。
[2] In the second aspect of the present invention, in the above-described first aspect of the present invention, the inter-plate gap side projections of the dent portions brought into contact with each other or the dents brought into contact with each other. And the flat portion of the other flow-down plate is brazed and connected.

【0010】つまり、この構成によれば、上記のロウ付
けにより2枚の流下板どうしが連結されることで、板間
隙間と両流下板の外側域(すなわち、流下冷媒液の蒸発
域)との間での発生差圧に対する耐圧性を高く確保する
ことができる。
That is, according to this configuration, the two downstream plates are connected to each other by the above-mentioned brazing, so that the gap between the plates and the outer region of the both downstream plates (that is, the evaporation region of the flowing refrigerant liquid) are formed. High withstand pressure against the differential pressure generated between them.

【0011】また、対向接触させた窪み部の板間隙間側
凸部どうしを、又は、接触させた窪み部の板間隙間側凸
部と他方流下板の平面部分とをロウ付け連結するから、
2枚の流下板の間に介装した芯材を両側の流下板の夫々
にロウ付け連結する先述の従来構造に比べ、ロウ付け作
業を容易にすることができる。
In addition, since the inter-plate gap side protrusions of the recesses which are brought into contact with each other, or the inter-plate gap side protrusions of the contacted recess and the flat portion of the other falling plate are connected by brazing.
The brazing operation can be facilitated as compared with the above-described conventional structure in which the core material interposed between the two falling plates is brazed and connected to each of the two falling plates.

【0012】〔3〕請求項3に係る発明では、上記した
請求項1又は2に係る発明の実施において、前記窪み部
の板間隙間側凸部どうしの対向接触部、又は、前記窪み
部の板間隙間側凸部と他方流下板の平面部分との接触部
を、流下板の板面視で千鳥状に配置する。
[3] According to a third aspect of the present invention, in the embodiment of the first or second aspect described above, an opposing contact portion between the inter-plate gap side convex portions of the dent portion or the dent portion. The contact portion between the inter-plate gap side convex portion and the flat portion of the other falling plate is arranged in a zigzag pattern when the falling plate is viewed from the plate surface.

【0013】つまり、この構成によれば、板間隙間にお
いて上流側に位置する上記対向接触部又は上記接触部に
より2流に分けた被冷却流体の流れの各々を、1段下流
に位置する上記対向接触部又は上記接触部によりさらに
2流に分ける形態で、流下板の板面方向における板間隙
間の全体において、被冷却流体の流れに対し乱れを効果
的に与えることができ、これにより、板間隙間を流れる
被冷却流体と流下板の外側表面を膜状に流下する冷媒液
との間での熱交換の伝熱性を一層効果的に向上させるこ
とができて、蒸発器性能の向上を一層効果的に達成でき
る。
That is, according to this configuration, each of the flow of the fluid to be cooled divided into two flows by the opposed contact portion or the contact portion located on the upstream side in the gap between the plates is one stage downstream. In the form of further dividing into two flows by the opposed contact portion or the contact portion, in the entire space between the plate gaps in the plate surface direction of the falling plate, turbulence can be effectively given to the flow of the fluid to be cooled, The heat transfer of heat exchange between the fluid to be cooled flowing through the gap between the plates and the refrigerant liquid flowing down in the form of a film on the outer surface of the falling plate can be more effectively improved, thereby improving the evaporator performance. It can be achieved more effectively.

【0014】なお、請求項1〜3に係る発明の実施にお
いて、前記流下板の外側表面に、流下冷媒液に対する親
液性処理を施すようにすれば、冷媒液を膜状に流下させ
る流下板の外側表面において、流下冷媒液の膜が部分的
に不存となる乾き部(略言すれば、膜切れ部)が発生す
ることを上記の親液性処理により防止することができ、
これにより、前記板間隙間流路の細分化による伝熱性の
向上と相まって、板間隙間を流れる被冷却流体と流下板
の外側表面を膜状に流下する冷媒液との間での熱交換の
伝熱性を一層効果的に向上させることができて、蒸発器
性能の向上をさらに効果的に達成できる。
According to the first to third aspects of the present invention, if the lyophilic treatment for the flowing-down refrigerant liquid is performed on an outer surface of the flowing-down plate, the flowing-down plate for causing the refrigerant liquid to flow down in a film form. On the outer surface of the lyophilic treatment, it is possible to prevent the occurrence of a dry portion in which the film of the flowing-down refrigerant liquid is partially absent (in short, a film cut portion),
This, coupled with the improvement in heat transfer due to the subdivision of the inter-plate gap flow path, the heat exchange between the fluid to be cooled flowing in the inter-plate gap and the refrigerant liquid flowing down the outer surface of the falling plate in a film form. The heat transfer can be more effectively improved, and the evaporator performance can be more effectively improved.

【0015】〔4〕請求項4に係る発明では、板面どう
しを対向させた2枚の流下板どうしの間の板間隙間を冷
却用流体の流路とし、かつ、これら流下板夫々の外側表
面を吸収液の流下面として、吸収液供給部からの供給吸
収液を流下板夫々の外側表面に沿わせ膜状に流下させる
ことで、その流下吸収液を板間隙間における流動冷却用
流体と熱交換させながら周囲の冷媒蒸気に対し吸収作用
させる吸収式冷凍機のプレート型蒸発器において、流下
板に、外側表面では凹部となって板間隙間の側で凸部と
なる窪み部を板面方向に分散させて多数形成し、そし
て、一方の流下板における窪み部の板間隙間側凸部と他
方の流下板における窪み部の板間隙間側凸部とを対向接
触させて、又は、一方の流下板における窪み部の板間隙
間側凸部を他方の流下板の平面部分に接触させて、板間
隙間における冷却用流体の流路を細分化する。
[4] In the invention according to claim 4, the gap between the two flow-down plates whose plate surfaces face each other is used as a cooling fluid flow path, and the outside of each of these flow-down plates. With the surface as the lower surface of the absorbing liquid, the absorbing liquid supplied from the absorbing liquid supply section is caused to flow down in a film form along the outer surface of each of the falling plates, so that the flowing absorbing liquid and the fluid for cooling in the gap between the plates. In a plate-type evaporator of an absorption refrigerator in which heat is exchanged with the surrounding refrigerant vapor, a recessed portion that becomes a concave portion on the outer surface and a convex portion on the side between the plate gaps is provided on the falling plate. Dispersed in the direction to form a large number, and the plate-to-plate gap side convex portion of the dent in the one falling plate and the plate-to-plate gap side convex portion of the dent in the other falling plate in opposing contact, or Of the recess on the gap between the plates in the falling plate In contact with the planar portion of the plate, subdividing the flow passage of the cooling fluid in the plates gap.

【0016】つまり、この構成では、板間隙間における
冷却用流体の流路を上記の如く細分化することで、板間
隙間における冷却用流体の流れに乱れを与え、これによ
り、その板間隙間を流れる冷却用流体と流下板の外側表
面を膜状に流下する吸収液との間での熱交換の伝熱性を
高めて、吸収器性能を効果的に向上させることができ
る。
That is, in this configuration, the flow of the cooling fluid in the gap between the plates is divided as described above, thereby disturbing the flow of the cooling fluid in the gap between the plates. The heat transfer between the cooling fluid flowing through the cooling plate and the absorbing liquid flowing down the outer surface of the falling plate in the form of a film can be enhanced, and the performance of the absorber can be effectively improved.

【0017】そして、その細分化にあたっては、流下板
に窪み部を多数形成して、一方の流下板における窪み部
の板間隙間側凸部と他方の流下板における窪み部の板間
隙間側凸部とを対向接触させることで、又は、一方の流
下板における窪み部の板間隙間側凸部を他方の流下板の
平面部分に接触させることで、板間隙間における冷却用
流体の流路を細分化するから、先述の従来構造の如く2
枚の流下板の間に別部材の芯材を介装することで板間隙
間における冷却用流体の流路を細分化するに比べ、その
ような芯材を不要にして部品点数を少なくすることがで
き、これにより、製作を容易にするとともに製作コスト
を安価にすることができ、また、吸収器としての組み立
てユニットを軽小化することができて、吸収式冷凍機の
軽小化も可能になる。
In the subdivision, a large number of depressions are formed in the falling plate, and the inter-plate gap side projection of the depression in the one falling plate and the inter-plate gap side projection of the depression in the other falling plate. By contacting the portion with the portion, or by contacting the inter-plate gap side convex portion of the recessed portion of one of the flow-down plates with the flat portion of the other flow-down plate, the flow path of the cooling fluid in the inter-plate gap. Since it is subdivided, it is 2
By interposing a core member of another member between the falling plates, the flow path of the cooling fluid in the inter-plate gap is subdivided, so that such a core member is unnecessary and the number of parts can be reduced. Thereby, the production can be facilitated and the production cost can be reduced, the assembly unit as an absorber can be reduced in size, and the absorption refrigerator can be reduced in size. .

【0018】しかも、外側表面では凹部となって板間隙
間の側で凸部となる窪み部を板面方向に分散させて流下
板に多数形成することから、流下板の大型化を伴うこと
なく伝熱面積も増大させることができて、上記板間隙間
流路の細分化による伝熱性の向上と相まって吸収器性能
を一層効果的に高めることができ、この吸収器性能の向
上により吸収器の小型化が可能になることからも、上記
の如き芯材の不要化による吸収器の軽小化と相まって、
吸収式冷凍機の軽小化を一層効果的に達成できる。
In addition, since a large number of depressions which become concave portions on the outer surface and become convex portions between the plate gaps are dispersed in the plate surface direction and formed on the flow-down plate, the size of the flow-down plate is not increased. The heat transfer area can also be increased, and the performance of the absorber can be more effectively improved in combination with the improvement of the heat conductivity due to the subdivision of the inter-plate gap flow path. From the fact that miniaturization is possible, coupled with the lightness of the absorber by eliminating the need for the core material as described above,
The size of the absorption refrigerator can be reduced more effectively.

【0019】〔5〕請求項5に係る発明では、上記した
請求項4に係る発明の実施において、対向接触させた前
記窪み部の板間隙間側凸部どうしを、又は、接触させた
前記窪み部の板間隙間側凸部と他方流下板の平面部分と
をロウ付け連結する。
[5] According to a fifth aspect of the present invention, in the above-described embodiment of the fourth aspect of the present invention, the inter-plate gap side protrusions of the dent portions brought into contact with each other or the dents brought into contact with each other. And the flat portion of the other flow-down plate is brazed and connected.

【0020】つまり、この構成によれば、上記のロウ付
けにより2枚の流下板どうしが連結されることで、板間
隙間と両流下板の外側域(すなわち、流下吸収液の冷媒
蒸気に対する吸収作用域)との間での発生差圧に対する
耐圧性を高く確保することができる。
That is, according to this configuration, the two downstream plates are connected to each other by the above-mentioned brazing, so that the gap between the plates and the outer region of the both downstream plates (that is, the absorption of the downstream absorbing liquid with respect to the refrigerant vapor). High pressure resistance with respect to the generated differential pressure between the pressure difference and the working area).

【0021】また、対向接触させた窪み部の板間隙間側
凸部どうしを、又は、接触させた窪み部の板間隙間側凸
部と他方流下板の平面部分とをロウ付け連結するから、
2枚の流下板の間に介装した芯材を両側の流下板の夫々
にロウ付け連結する先述の従来構造に比べ、ロウ付け作
業を容易にすることができる。
In addition, since the inter-plate gap side projections of the recesses which are brought into contact with each other, or the inter-plate gap side projections of the contacted recesses and the plane portion of the other flow-down plate are connected by brazing.
The brazing operation can be facilitated as compared with the above-described conventional structure in which the core material interposed between the two falling plates is brazed and connected to each of the two falling plates.

【0022】〔6〕請求項6に係る発明では、上記した
請求項4又は5に係る発明の実施において、前記窪み部
の板間隙間側凸部どうしの対向接触部、又は、前記窪み
部の板間隙間側凸部と他方流下板の平面部分との接触部
を、流下板の板面視で千鳥状に配置する。
[6] In the invention according to claim 6, in the implementation of the invention according to claim 4 or 5, the opposing contact portion between the inter-plate gap side protrusions of the dent portion or the dent portion. The contact portion between the inter-plate gap side convex portion and the flat portion of the other falling plate is arranged in a zigzag pattern when the falling plate is viewed from the plate surface.

【0023】つまり、この構成によれば、板間隙間にお
いて上流側に位置する上記対向接触部又は上記接触部に
より2流に分けた冷却用流体の流れの各々を、1段下流
に位置する上記対向接触部又は上記接触部によりさらに
2流に分ける形態で、流下板の板面方向における板間隙
間の全体において、冷却用流体の流れに対し乱れを効果
的に与えることができ、これにより、板間隙間を流れる
冷却用流体と流下板の外側表面を膜状に流下する吸収液
との間での熱交換の伝熱性を一層効果的に向上させるこ
とができて、吸収器性能の向上を一層効果的に達成でき
る。
In other words, according to this structure, each of the cooling fluid flows divided into two streams by the opposed contact portion or the contact portion located on the upstream side in the gap between the plates is one stage downstream. In the form of further dividing into two flows by the opposed contact portion or the contact portion, in the entire space between the plate gaps in the plate surface direction of the falling plate, turbulence can be effectively given to the flow of the cooling fluid, whereby The heat transfer of heat exchange between the cooling fluid flowing through the gap between the plates and the absorbing liquid flowing down in a film form on the outer surface of the falling plate can be more effectively improved, thereby improving the performance of the absorber. It can be achieved more effectively.

【0024】なお、請求項4〜6に係る発明の実施にお
いて、前記流下板の外側表面に、流下吸収液に対する親
液性処理を施すようにすれば、吸収液を膜状に流下させ
る流下板の外側表面において、流下吸収液の膜が部分的
に不存となる乾き部(略言すれば、膜切れ部)が発生す
ることを上記の親液性処理により防止することができ、
これにより、前記板間隙間流路の細分化による伝熱性の
向上と相まって、板間隙間を流れる冷却用流体と流下板
の外側表面を膜状に流下する吸収液との間での熱交換の
伝熱性を一層効果的に向上させることができて、吸収器
性能の向上をさらに効果的に達成できる。
In the practice of the invention according to claims 4 to 6, the outer surface of the falling plate is subjected to a lyophilic treatment for the falling absorbing liquid, so that the falling liquid flows down in a film form. On the outer surface of the lyophilic treatment, it is possible to prevent the occurrence of a dry portion (in short, a cut portion of the film) in which the film of the falling absorbent is partially absent,
This, coupled with the improvement in heat transfer due to the subdivision of the inter-plate gap flow path, heat exchange between the cooling fluid flowing in the inter-plate gap and the absorbing liquid flowing down the outer surface of the falling plate in a film form. The heat transfer can be more effectively improved, and the performance of the absorber can be more effectively improved.

【0025】[0025]

【発明の実施の形態】図1は吸収式冷凍機の概略構成を
示し、1は冷媒Rを含んだ希吸収液Lsを加熱器2によ
り加熱して冷媒蒸気Rvを発生させることで吸収液Lと
冷媒Rを分離する再生器、3は再生器1で発生させた高
温の冷媒蒸気Rvを冷却器4により冷却して凝縮させる
凝縮器、5は凝縮器3から冷媒供給路6を介して流下供
給される冷媒液Rwを被冷却流体C(例えばブラインや
水)からの気化熱奪取により蒸発させて被冷却流体Cを
冷却する蒸発器、7は蒸発器5で発生する冷媒蒸気Rv
を濃吸収液Lcに吸収させる吸収器であり、この吸収器
7での冷媒蒸気Rvの吸収により、蒸発器5及び吸収器
7を内蔵する胴8の内部を減圧して、蒸発器5での冷媒
蒸発を減圧雰囲気中において低温レベルで行わせる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows a schematic configuration of an absorption refrigerator, and 1 shows a structure in which a rare absorbing liquid Ls containing a refrigerant R is heated by a heater 2 to generate a refrigerant vapor Rv. And a condenser 3 for cooling and condensing the high-temperature refrigerant vapor Rv generated in the regenerator 1 by the cooler 4, and a condenser 5 flowing down from the condenser 3 through the refrigerant supply path 6. An evaporator that evaporates the supplied refrigerant liquid Rw by removing vaporized heat from the cooled fluid C (for example, brine or water) to cool the cooled fluid C. Reference numeral 7 denotes a refrigerant vapor Rv generated in the evaporator 5.
Is absorbed in the concentrated absorption liquid Lc. By the absorption of the refrigerant vapor Rv by the absorber 7, the pressure inside the body 8 containing the evaporator 5 and the absorber 7 is reduced, and the evaporator 5 The refrigerant is evaporated at a low temperature in a reduced pressure atmosphere.

【0026】また、吸収器7では冷却用流体としての冷
却水Wにより、冷媒吸収に伴い発生する吸収熱を除去
し、その後、この冷却水Wは凝縮器3の冷却器4に供給
して凝縮器3での高温冷媒蒸気Rvの冷却に使用する。
The absorber 7 removes the heat of absorption generated by the absorption of the refrigerant by the cooling water W as a cooling fluid, and then supplies the cooling water W to the cooler 4 of the condenser 3 to condense the heat. It is used for cooling the high-temperature refrigerant vapor Rv in the vessel 3.

【0027】なお、本実施形態では、冷媒Rに水を使用
し、吸収液Lに臭化リチウム水溶液を使用している。
In the present embodiment, water is used for the refrigerant R, and an aqueous solution of lithium bromide is used for the absorbing liquid L.

【0028】9は胴8の内部における蒸発器領域から吸
収器領域への冷媒蒸気Rvの移動は許容しながら、冷媒
液Rwの液滴が蒸発器領域から吸収器領域へ侵入するこ
と、また、吸収液Lの液滴が吸収器領域から蒸発器領域
へ侵入することを防止するエリミネータ、10は蒸発器
5で蒸発し切らずに胴8の底部の冷媒液受け11に受け
止められた冷媒液Rwを冷媒循環路12を介し蒸発器領
域の上部に送って蒸発器5に循環供給する冷媒ポンプ、
13は吸収器7で冷媒蒸気Rvを吸収した後、胴8の底
部の吸収液受け14に受け止められた希吸収液Lsを希
吸収液路15を介して再生器1に送る吸収液ポンプであ
る。
Reference numeral 9 denotes that, while allowing the movement of the refrigerant vapor Rv from the evaporator region to the absorber region inside the barrel 8, droplets of the refrigerant liquid Rw enter the absorber region from the evaporator region. An eliminator 10 for preventing liquid droplets of the absorbing liquid L from entering the evaporator region from the absorber region 10 is a refrigerant liquid Rw received by the refrigerant liquid receiver 11 at the bottom of the body 8 without being completely evaporated by the evaporator 5. A refrigerant pump that sends the refrigerant through the refrigerant circulation path 12 to the upper part of the evaporator region and circulates the evaporator 5;
Reference numeral 13 denotes an absorption liquid pump which sends the diluted absorption liquid Ls received by the absorption liquid receiver 14 at the bottom of the body 8 to the regenerator 1 via the diluted absorption liquid path 15 after absorbing the refrigerant vapor Rv by the absorber 7. .

【0029】16は再生器1で冷媒Rを分離した濃吸収
液Lcを吸収器7に流下供給する濃吸収液路、17は再
生器1から吸収器7へ送る濃吸収液Lcの保有熱を回収
して、再生器1へ戻す希吸収液Lsを予熱する吸収液熱
交換器である。
Reference numeral 16 denotes a concentrated absorption liquid passage for supplying the concentrated absorption liquid Lc from which the refrigerant R has been separated in the regenerator 1 to the absorber 7, and reference numeral 17 denotes a retained heat of the concentrated absorption liquid Lc sent from the regenerator 1 to the absorber 7 This is an absorbent heat exchanger for preheating the diluted absorbent Ls that is collected and returned to the regenerator 1.

【0030】図2に示すように、蒸発器5及び吸収器7
には夫々、プレート型を採用し、蒸発器5は、胴8の内
部の蒸発器領域において平行な縦姿勢で並設した複数の
冷媒液流下パネル5Aと、冷媒液供給部として各々の冷
媒液流下パネル5Aの両面へ上縁側から冷媒液Rwをパ
ネル横巾方向に均等に分散させて供給する冷媒液分散器
18とで構成し、同様に、吸収器7は、胴8の内部の吸
収器領域において平行な縦姿勢で並設した複数の吸収液
流下パネル7Aと、吸収液供給部として各々の吸収液流
下パネル7Aの両面へ上縁側から濃吸収液Lcをパネル
横巾方向に均等に分散させて供給する吸収液分散器19
とで構成してある。
As shown in FIG. 2, the evaporator 5 and the absorber 7
The evaporator 5 has a plurality of refrigerant liquid flow-down panels 5A arranged side by side in a parallel vertical posture in an evaporator region inside the body 8, and each refrigerant liquid as a refrigerant liquid supply unit. A refrigerant liquid disperser 18 for uniformly dispersing the refrigerant liquid Rw in the width direction of the panel and supplying the refrigerant liquid Rw to both surfaces of the falling panel 5A from the upper edge side. Similarly, the absorber 7 includes an absorber inside the body 8. A plurality of absorbent flow-down panels 7A arranged side by side in a parallel vertical orientation in the region, and the concentrated absorbent Lc is evenly distributed in the panel width direction from the upper edge side to both surfaces of each absorbent flow-down panel 7A as an absorbent supply section. Absorbent disperser 19 supplied
It consists of

【0031】20は冷媒流下パネル5A及び吸収液流下
パネル7Aを支持する支持架台、21は冷媒流下パネル
5A及び吸収液流下パネル7Aを側方から支持する支持
枠である。
Reference numeral 20 denotes a support frame for supporting the refrigerant flow-down panel 5A and the absorption liquid flow-down panel 7A, and reference numeral 21 denotes a support frame for supporting the refrigerant flow-down panel 5A and the absorption liquid flow-down panel 7A from the side.

【0032】次に、蒸発器側の冷媒液分散器18及び冷
媒液流下パネル5Aの具体構造、並びに、吸収器側の吸
収液分散器19及び吸収液流下パネル7Aの具体構造に
ついて説明するが、これらは蒸発器側と吸収器側とでほ
ぼ同様の構造であることから説明の簡略化の為、これら
の構造を示す図3及び図4は蒸発器側と吸収器側とを兼
ねて示すものとしてある。
Next, the specific structure of the refrigerant liquid disperser 18 and the refrigerant liquid falling panel 5A on the evaporator side, and the specific structure of the absorbent liquid disperser 19 and the absorbent liquid falling panel 7A on the absorber side will be described. Since these are almost the same structure on the evaporator side and the absorber side, FIGS. 3 and 4 showing these structures show both the evaporator side and the absorber side for simplification of explanation. There is.

【0033】冷媒液分散器18及び吸収液分散器19は
図3及び図4に示すように、冷媒液流下パネル5Aの並
設列上方、及び、吸収液流下パネル7Aの並設列上方に
配設した主供給樋22A,22Bと、各々の冷媒液流下
パネル5Aの上縁側、及び、各々の吸収液流下パネル7
Aの上縁側に連設されて、主供給樋22A,22Bから
流出具23を介し落下により冷媒液Rwないし濃吸収液
Lcの定量供給を受ける両端閉塞の樋状体24とで構成
してあり、これら樋状体24の両側壁には夫々、液流出
用スリット25を所定間隔で多数形成してある。
As shown in FIGS. 3 and 4, the refrigerant liquid disperser 18 and the absorbing liquid disperser 19 are disposed above the juxtaposed row of the refrigerant liquid drop panels 5A and above the juxtaposed row of the absorbent liquid drop panels 7A. The main supply gutters 22A, 22B provided, the upper edge side of each refrigerant liquid falling panel 5A, and each absorbing liquid falling panel 7
A gutter-like body 24 closed at both ends, which is connected to the upper edge side of A and receives a fixed amount of the refrigerant liquid Rw or the concentrated absorption liquid Lc by dropping from the main supply gutters 22A and 22B through the outflow device 23. A large number of slits 25 for liquid outflow are formed on both side walls of the trough 24 at predetermined intervals.

【0034】つまり、樋状体24が受け入れた冷媒液R
wないし濃吸収液Lcを両側壁の多数の液流出用スリッ
ト25から流出させることにより、各冷媒液流下パネル
5Aの両面に冷媒液Rwを、また、各吸収液流下パネル
7Aの両面に濃吸収液Lcを、夫々、パネル横巾方向に
均等に分散させた状態で上縁側から供給し、これによ
り、各冷媒液流下パネル5Aの両面夫々で冷媒液Rwを
パネル表面に沿わせて膜状に流下させ、また、各吸収液
流下パネル7Aの両面夫々で濃吸収液Lcをパネル表面
に沿わせて膜状に流下させる。
That is, the refrigerant liquid R received by the gutter 24
By letting w or the concentrated absorbent Lc flow out from the multiple liquid outflow slits 25 on both side walls, the refrigerant liquid Rw is absorbed on both surfaces of each refrigerant liquid falling panel 5A, and the concentrated liquid is absorbed on both surfaces of each absorbent liquid falling panel 7A. The liquid Lc is supplied from the upper edge side in a state of being uniformly dispersed in the panel width direction, whereby the refrigerant liquid Rw is formed into a film along the panel surface on both surfaces of each refrigerant liquid flowing down panel 5A. The concentrated absorbent Lc is caused to flow down in a film form along the surface of each absorbent liquid flowing down panel 7A on both sides of the panel.

【0035】なお、蒸発器5側の主供給樋22Aには、
凝縮器3からの冷媒供給路6及び冷媒ポンプ10からの
冷媒循環路12を接続してあり、吸収側7側の主供給樋
22Bには、再生器1からの濃吸収液路16を接続して
ある。
The main supply gutter 22A on the side of the evaporator 5 has:
The refrigerant supply path 6 from the condenser 3 and the refrigerant circulation path 12 from the refrigerant pump 10 are connected, and the main supply gutter 22B on the absorption side 7 side is connected to the rich absorption liquid path 16 from the regenerator 1. It is.

【0036】冷媒液流下パネル5A及び吸収液流下パネ
ル7Aは、同図3及び図4に示すように、板面どうしを
対向させて配置した2枚の流下板26どうしの間に板間
隙間を形成して、下端一側の流体入口27aと上端一側
の流体出口28aを残し板間隙間の周縁を閉塞した板状
容器構造にしてあり、各パネル5A,7Aの下縁部に
は、下端一側の流体入口27aから供給される被冷却流
体Cや冷却水Wを板間隙間の全巾に行き渡らせる導入用
管状部27を形成し、一方、各パネル5A,7Aの上縁
部には、被冷却流体Cや冷却水Wを板間隙間の全巾で受
け入れて上端一側の流体出口28aへ導く導出用管状部
28を形成し、これにより、冷媒液流下パネル5Aで
は、2枚の流下板26どうしの間の板間隙間を蒸発器5
における被冷却流体Cの流路とし、また、吸収液流下パ
ネル7Aでは2枚の流下板26どうしの間の板間隙間を
吸収器7における冷却用流体としての冷却水Wの流路に
してある。
As shown in FIGS. 3 and 4, the refrigerant flow-down panel 5A and the absorption liquid flow-down panel 7A have a gap between the two flow-down plates 26 arranged opposite to each other. It is formed into a plate-like container structure in which the peripheral edge between the plate gaps is closed while leaving a fluid inlet 27a at one lower end and a fluid outlet 28a at one upper end, and the lower edge of each panel 5A, 7A has a lower end. An introduction tubular portion 27 is formed to allow the fluid to be cooled C and the cooling water W supplied from one fluid inlet 27a to spread over the entire width between the plate gaps, while the upper edges of the panels 5A and 7A are formed at the upper edges. An outlet tubular portion 28 is formed to receive the fluid C to be cooled and the cooling water W in the entire width of the gap between the plates and to guide the fluid C to the fluid outlet 28a on the upper end side. The gap between the falling plates 26 is set in the evaporator 5
And the gap between the two flow-down plates 26 in the absorbent flow-down panel 7A is used as the flow path of the cooling water W as the cooling fluid in the absorber 7. .

【0037】つまり、蒸発器5では、冷媒液Rwを冷媒
液流下パネル5Aの両面(すなわち、2枚の流下板26
夫々の外側表面)に沿わせて膜状に流下させるのに対
し、被冷却流体供給ヘッダ29から分岐管29aを介し
て流体入口27aに供給する被冷却流体Cを冷媒液流下
パネル5Aにおける板間隙間の流路(すなわち、2枚の
流下板26夫々の裏面側)に通過させることで、流下冷
媒液Rwを被冷却流体Cから気化熱奪取させながら蒸発
させる。
That is, in the evaporator 5, the refrigerant liquid Rw is supplied to both surfaces of the refrigerant liquid falling panel 5A (that is, the two falling plates 26).
On the other hand, the cooling fluid C to be supplied from the cooling fluid supply header 29 to the fluid inlet 27a through the branch pipe 29a flows between the plates in the refrigerant liquid falling panel 5A. By passing through the flow path in the gap (that is, the back surface side of each of the two falling plates 26), the falling refrigerant liquid Rw is evaporated while removing vaporized heat from the fluid C to be cooled.

【0038】また、吸収器7では、濃吸収液Lcを吸収
液流下パネル7Aの両面(すなわち、2枚の流下板26
夫々の外側表面)に沿わせて膜状に流下させるのに対
し、冷却水供給ヘッダ30から分岐管30aを介して流
体入口27aに供給する冷却水Wを吸収液流下パネル7
Aにおける板間隙間の流路(すなわち、2枚の流下板2
6夫々の裏面側)に通過させることで、流下吸収液Lc
を冷却水Wにより冷却しながら周囲の冷媒蒸気Rvに対
し吸収作用させる。
In the absorber 7, the concentrated absorbing liquid Lc is applied to both surfaces of the absorbing liquid flowing down panel 7A (ie, the two flowing down plates 26).
On the other hand, the cooling water W supplied from the cooling water supply header 30 to the fluid inlet 27a through the branch pipe 30a is supplied to the absorbing liquid flowing down panel 7 while flowing down the film along the respective outer surfaces).
A (ie, two falling plates 2)
6 on the back side) so that the falling absorption liquid Lc
Is absorbed by the surrounding refrigerant vapor Rv while being cooled by the cooling water W.

【0039】31は冷媒液流下パネル5Aの流体出口2
8aから送出される被冷却流体Cを分岐管31aを介し
集合させて導出する被冷却流体排出ヘッダ、32は吸収
液流下パネル7Aの流体出口28aから送出される冷却
水Wを分岐管32aを介し集合させて導出する冷却水排
出ヘッダである。
Numeral 31 denotes a fluid outlet 2 of the refrigerant liquid falling panel 5A.
A cooled fluid discharge header 32, which collects and outputs the cooled fluid C delivered from the outlet pipe 8a via the branch pipe 31a, and the cooling water W delivered from the fluid outlet 28a of the absorbent flow-down panel 7A through the branch pipe 32a. This is a cooling water discharge header that is collected and derived.

【0040】冷媒液流下パネル5A及び吸収液流下パネ
ル7Aを形成する2枚の流下板26には夫々、それらの
外側表面で凹部となって板間隙間の側で凸部となる半球
状の窪み部33を板面方向に分散させて多数形成してあ
り、冷媒液流下パネル5A及び吸収液流下パネル7Aと
しての組み立てユニットの形成状態において、一方の流
下板26における窪み部33の板間隙間側凸部と他方の
流下板26における板間隙間側凸部とを対向接触させる
ことで、冷媒液流下パネル5Aでは板間隙間における被
冷却流体Cの流路を細分化し、また、吸収液流下パネル
7Aでは板間隙間における冷却水Wの流路を細分化する
ようにしてある。
Each of the two falling plates 26 forming the refrigerant liquid falling panel 5A and the absorbing liquid falling panel 7A has a hemispherical depression which becomes a concave portion on the outer surface thereof and becomes a convex portion between the plate gaps. A large number of the portions 33 are dispersed in the plate surface direction, and in a state where the assembly units as the refrigerant liquid flowing down panel 5A and the absorbing liquid flowing down panel 7A are formed, the recessed portion 33 of one of the flow down plates 26 has a gap between the plates. By making the protruding portion and the inter-plate gap side protruding portion of the other flow-down plate 26 face each other, the flow path of the fluid C to be cooled in the inter-plate gap is subdivided in the refrigerant flow-down panel 5A. In FIG. 7A, the flow path of the cooling water W in the gap between the plates is subdivided.

【0041】つまり、このように板間隙間流路を細分化
することにより、板間隙間における被冷却流体Cの流れ
や冷却水Wの流れに乱れを与え、これにより、冷媒液流
下パネル5Aでは、板間隙間を流れる被冷却流体Cと各
流下板26の外側表面に沿って膜状に流下する冷媒液R
wとの間での熱交換の伝熱性を高めて蒸発器性能を高
め、また、吸収液流下パネル7Aでは、板間隙間を流れ
る冷却水Wと各流下板26の外側表面に沿って膜状に流
下する濃吸収液Lcとの間での熱交換の伝熱性を高めて
吸収器性能を高めるようにしてある。
That is, by dividing the inter-plate gap flow path in this manner, the flow of the cooling fluid C and the flow of the cooling water W in the inter-plate gap are disturbed. , The fluid C to be cooled flowing in the gap between the plates and the refrigerant liquid R flowing down in a film form along the outer surface of each of the falling plates 26.
In addition, the evaporator performance is enhanced by increasing the heat transfer of heat exchange between the cooling water W and the cooling water W flowing through the gap between the plates and the outer surface of each of the falling plates 26 along the film surface. The heat transfer between the concentrated absorption liquid Lc flowing down and the heat transfer is enhanced to enhance the absorber performance.

【0042】上記窪み部33は流下板26の板面視で千
鳥状に配置して、一方の流下板26の窪み部33と他方
の流下板26の窪み部33との板間隙間側凸部どうしの
対向接触部が流下板板面視で千鳥状に並ぶようにし、こ
れにより、板間隙間において上流側に位置する上記対向
接触部により2流に分けた被冷却流体Cや冷却水Wの流
れの各々を、1段下流に位置する上記対向接触部により
さらに2流に分ける形態で、流下板26の板面方向にお
ける板間隙間の全体において、被冷却流体Cや冷却水W
の流れに対し乱れを効果的に与えるようにしてある。
The depressions 33 are arranged in a zigzag pattern when viewed from the surface of the flow-down plate 26, and the inter-plate gap side protrusion between the depression 33 of the one flow-down plate 26 and the depression 33 of the other flow-down plate 26. The opposing contact portions are arranged in a staggered manner when viewed from the downflow plate surface, whereby the flow of the cooled fluid C or the cooling water W divided into two flows by the opposing contact portions located on the upstream side in the gap between the plates. Each of the flows is further divided into two flows by the opposed contact portion located one stage downstream, and the fluid to be cooled C and the cooling water W
The turbulence is effectively given to the flow of water.

【0043】また、上記の如く対向接触させる窪み部3
3の板間隙間側凸部どうしはロウ付けにより連結し、こ
れにより、冷媒液流下パネル5Aでは、被冷却流体Cの
流路としての板間隙間と冷媒液Rwの蒸発域としての外
側域との間での発生差圧に対する耐圧性を高く確保し、
また、吸収液流下パネル7Aでは、冷却水Wの流路とし
ての板間隙間と濃吸収液Lcの冷媒蒸気Rvに対する吸
収作用域としての外側域との間での発生差圧に対する耐
圧性を高く確保するようにしてある。
Further, the recessed portions 3 to be brought into opposing contact as described above
The inter-plate gap side projections of No. 3 are connected to each other by brazing, so that the inter-plate gap as the flow path of the fluid C to be cooled and the outer area as the evaporation area of the refrigerant liquid Rw are formed in the refrigerant liquid falling panel 5A. High pressure resistance against the differential pressure generated between
Further, in the absorbent flow-down panel 7A, the pressure resistance against the differential pressure generated between the gap between the plates as the flow path of the cooling water W and the outer region as the absorption region for the refrigerant vapor Rv of the concentrated absorbent Lc is increased. It is ensured.

【0044】冷媒液流下パネル5A及び吸収液流下パネ
ル7Aを形成する2枚の流下板26の外側表面には、流
下冷媒液Rwや流下吸収液Lcに対する親液性処理とし
て、鉄メッキした上での酸化処理、又は、銅粉粒体の焼
き付け処理、又は、銅合金粉粒体の焼き付け処理、又
は、鉄粉粒体の焼き付け処理のうちのいずれか1つ又は
複数を選択して施すとともに、多数の細溝34を形成し
てあり、これにより、冷媒液Rwや濃吸収液Lcを膜状
に流下させる流下板26の外側表面において、流下冷媒
液Rwの膜や流下吸収液Lcの膜が部分的に不存となる
乾き部(膜切れ部)が発生することを防止する。
The outer surfaces of the two flow-down plates 26 forming the refrigerant flow-down panel 5A and the absorption-liquid flow-down panel 7A are plated with iron as lyophilic treatment for the flow-down refrigerant liquid Rw and the flow-down absorption liquid Lc. Oxidation treatment, or, baking treatment of copper particles, or, baking treatment of copper alloy particles, or, and select and apply one or more of baking treatment of iron particles, A large number of narrow grooves 34 are formed, whereby the film of the flowing refrigerant liquid Rw and the film of the flowing absorbing liquid Lc are formed on the outer surface of the falling plate 26 for causing the refrigerant liquid Rw and the concentrated absorbing liquid Lc to flow down in a film form. It is possible to prevent the occurrence of a partially-existing dry portion (film cut portion).

【0045】〔別の実施形態〕次に別の実施形態を列記
する。
[Another Embodiment] Next, another embodiment will be described.

【0046】前述の実施形態では、一方の流下板26に
おける窪み部33の板間隙間側凸部と他方の流下板26
における窪み部33の板間隙間側凸部とを対向接触させ
て板間隙間の流路を細分化したが、これに代え、一方の
流下板26における窪み部33の板間隙間側凸部を他方
の流下板26の平面部分に接触させて板間隙間の流路を
細分化する形態を採用してもよい。
In the above-described embodiment, the protruding portion of the recess 33 in the one downflow plate 26 on the gap side between the plates and the other downflow plate 26
The flow path between the plate gaps was subdivided by opposing the inter-plate gap side projections of the depressions 33 in the above, but instead of this, the inter-plate gap side projections of the depressions 33 in one of the flow-down plates 26 were replaced. A mode in which the flow path between the plate gaps is subdivided by making contact with the flat portion of the other falling plate 26 may be adopted.

【0047】各窪み部33の形状は半球状に限定される
ものではなく、凹部側から見て溝状にするなど種々の形
状を採用でき、また、形状の異なるものを組み合わせて
形成してもよい。
The shape of each concave portion 33 is not limited to a hemispherical shape, and various shapes such as a groove shape as viewed from the concave portion side can be adopted. Good.

【0048】窪み部33の板間隙間側凸部どうしの対向
接触部の配列、または、窪み部33の板間隙間側凸部と
他方流下板の平面部分との接触部の配列は、必ずしも流
下板26の板面視で千鳥状の配列に限られるものでな
く、その他、種々の配列形態を採用できる。
The arrangement of opposing contact portions between the inter-plate gap side protrusions of the recessed portion 33 or the arrangement of the contact portion between the inter-plate gap side protrusion of the recessed portion 33 and the flat portion of the other flow-down plate is not always required to flow down. The arrangement of the plate 26 is not limited to the staggered arrangement when viewed from the plate surface, and other various arrangement forms can be adopted.

【0049】前述の実施形態では、胴8の内部の蒸発器
領域において複数の冷媒液流下パネル5Aを並設し、こ
の蒸発域領域に隣合う吸収器領域において複数の吸収液
流下パネル7Aを並設する構造を示したが、これに代
え、冷媒液流下パネル5Aと吸収液流下パネル7Aを交
互に配置して並設する構造を採用してもよい。
In the above-described embodiment, a plurality of refrigerant flow-down panels 5A are arranged in parallel in the evaporator area inside the body 8, and a plurality of absorbent liquid flow-down panels 7A are arranged in the absorber area adjacent to the evaporation area. Although the structure in which the cooling liquid flowing down panels 5A and the absorbing liquid flowing down panels 7A are alternately arranged and arranged side by side may be adopted instead of this.

【0050】冷媒液Rwは水に限定されるものではな
く、その他、種々の液体を冷媒液Rwとして使用でき、
吸収液Lも臭化リチウム水溶液に限定されるものではな
く、その他、種々の液体を吸収液Lとして使用できる。
The refrigerant liquid Rw is not limited to water, and various other liquids can be used as the refrigerant liquid Rw.
The absorption liquid L is not limited to the aqueous lithium bromide solution, and various other liquids can be used as the absorption liquid L.

【0051】また、被冷却流体Cも水やブラインに限定
されるものではなく、冷却用流体Wも水に限定されるも
のではない。
The cooling fluid C is not limited to water or brine, and the cooling fluid W is not limited to water.

【0052】前述の実施形態では単効用型の吸収式冷凍
機を示したが、本発明は二重効用型を初めとする多重効
用型の吸収式冷凍機にも適用できる。
In the above embodiment, a single-effect absorption refrigerator has been described, but the present invention can be applied to a multiple-effect absorption refrigerator including a double-effect absorption refrigerator.

【図面の簡単な説明】[Brief description of the drawings]

【図1】吸収式冷凍機の概略構成図FIG. 1 is a schematic configuration diagram of an absorption refrigerator.

【図2】蒸発器及び吸収器部分の斜視図FIG. 2 is a perspective view of an evaporator and an absorber.

【図3】流下パネルの正面図FIG. 3 is a front view of a downflow panel.

【図4】流下パネルの側面視断面図FIG. 4 is a side sectional view of the downflow panel.

【図5】従来構造を示す一部破断斜視図FIG. 5 is a partially broken perspective view showing a conventional structure.

【符号の説明】[Explanation of symbols]

18 冷媒液供給部 19 吸収液供給部 26 流下板 33 窪み部 C 被冷却流体 Lc 吸収液 Rw 冷媒液 18 Refrigerant liquid supply unit 19 Absorbent liquid supply unit 26 Downflow plate 33 Depression C Fluid to be cooled Lc Absorbent liquid Rw Refrigerant liquid

───────────────────────────────────────────────────── フロントページの続き (72)発明者 渡部 薫 神奈川県横浜市金沢区福浦3―10 日本発 条株式会社内 (72)発明者 秀島 英光 神奈川県横浜市金沢区福浦3―10 日本発 条株式会社内 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Kaoru Watanabe 3-10 Fukuura, Kanazawa-ku, Yokohama, Kanagawa Prefecture From Japan Co., Ltd. (72) Inventor Hidemitsu Hideshima 3-10 Fukuura, Fukuura, Kanazawa-ku, Yokohama, Kanagawa Japan Article Inside the corporation

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 板面どうしを対向させた2枚の流下板ど
うしの間の板間隙間を被冷却流体の流路とし、かつ、こ
れら流下板夫々の外側表面を冷媒液の流下面として、冷
媒液供給部からの供給冷媒液を前記流下板夫々の外側表
面に沿わせ膜状に流下させることで、その流下冷媒液を
前記板間隙間における流動被冷却流体と熱交換させなが
ら蒸発させる吸収式冷凍機のプレート型蒸発器であっ
て、 前記流下板に、外側表面では凹部となって前記板間隙間
の側で凸部となる窪み部を板面方向に分散させて多数形
成し、 一方の前記流下板における前記窪み部の板間隙間側凸部
と他方の前記流下板における前記窪み部の板間隙間側凸
部とを対向接触させて、又は、一方の前記流下板におけ
る前記窪み部の板間隙間側凸部を他方の前記流下板の平
面部分に接触させて、前記板間隙間における被冷却流体
の流路を細分化してある吸収式冷凍機のプレート型蒸発
器。
An inter-plate gap between two flow-down plates whose plate surfaces face each other is used as a flow path of a fluid to be cooled, and an outer surface of each of the flow-down plates is used as a flow lower surface of a refrigerant liquid. By causing the supply refrigerant liquid from the refrigerant liquid supply unit to flow down along the outer surface of each of the flow-down plates in a film form, the flow-down refrigerant liquid evaporates while exchanging heat with the fluid to be cooled in the gap between the plates. A plate-type evaporator of a type refrigerator, wherein a number of depressions, which become concave portions on the outer surface and become convex portions on the side between the plate gaps, are dispersed in the plate surface direction on the flow-down plate; The plate-to-plate gap side protrusion of the depression in the flow-down plate and the plate-to-plate clearance side protrusion of the depression in the other flow-down plate are in opposing contact, or the depression in one of the flow-down plates Of the gap between the plates on the plane portion of the other falling plate By touch, the plate type evaporator of an absorption refrigerating machine which had been subdivided flow path of the cooling fluid in the plates gap.
【請求項2】 対向接触させた前記窪み部の板間隙間側
凸部どうしを、又は、接触させた前記窪み部の板間隙間
側凸部と他方流下板の平面部分とをロウ付け連結してあ
る請求項1に記載した吸収式冷凍機のプレート型蒸発
器。
2. The inter-plate gap side projections of the depressions which are brought into opposing contact with each other, or the inter-plate gap side projections of the depressions which are brought into contact with the flat part of the other falling plate are connected by brazing. 2. The plate type evaporator of an absorption refrigerator according to claim 1, wherein:
【請求項3】 前記窪み部の板間隙間側凸部どうしの対
向接触部、又は、前記窪み部の板間隙間側凸部と他方流
下板の平面部分との接触部を、前記流下板の板面視で千
鳥状に配置してある請求項1又は2に記載した吸収式冷
凍機のプレート型蒸発器。
3. An opposing contact portion between the inter-plate gap side protrusions of the recess, or a contact portion between the inter-plate gap side protrusion of the recess and the flat portion of the other flow-down plate, 3. The plate-type evaporator of an absorption refrigerator according to claim 1, wherein the plate-type evaporator is arranged in a staggered shape when viewed from a plate surface.
【請求項4】 板面どうしを対向させた2枚の流下板ど
うしの間の板間隙間を冷却用流体の流路とし、かつ、こ
れら流下板夫々の外側表面を吸収液の流下面として、吸
収液供給部からの供給吸収液を前記流下板夫々の外側表
面に沿わせ膜状に流下させることで、その流下吸収液を
前記板間隙間における流動冷却用流体と熱交換させなが
ら周囲の冷媒蒸気に対し吸収作用させる吸収式冷凍機の
プレート型吸収器であって、 前記流下板に、外側表面では凹部となって前記板間隙間
の側で凸部となる窪み部を板面方向に分散させて多数形
成し、 一方の前記流下板における前記窪み部の板間隙間側凸部
と他方の前記流下板における前記窪み部の板間隙間側凸
部とを対向接触させて、又は、一方の前記流下板におけ
る前記窪み部の板間隙間側凸部を他方の前記流下板の平
面部分に接触させて、前記板間隙間における冷却用流体
の流路を細分化してある吸収式冷凍機のプレート型吸収
器。
4. A cooling fluid flow path between the two flow-down plates whose plate surfaces face each other, and an outer surface of each of the flow-down plates as a flow lower surface of the absorbing liquid. By flowing the absorption liquid supplied from the absorption liquid supply section along the outer surface of each of the flow-down plates in a film-like manner, the surrounding refrigerant is exchanged with the flowing cooling fluid in the gap between the plates while exchanging heat. A plate-type absorber of an absorption refrigerator for absorbing steam, wherein a recessed portion which becomes a concave portion on an outer surface and becomes a convex portion on a side between the plate gaps is dispersed in a plate surface direction in the falling plate. And a plurality of inter-plate gap side protrusions of the recessed portion of the one falling plate and the inter-plate gap side protrusions of the recessed portion of the other falling plate in the other falling plate, or On the other hand, the convex portion on the gap side between the plates of the recessed portion in the falling plate is Wherein in contact with the plane portion of the flow-down plate, the plate type absorber of the absorption refrigerator of the flow path of the cooling fluid in the plates gap it is subdivided.
【請求項5】 対向接触させた前記窪み部の板間隙間側
凸部どうしを、又は、接触させた前記窪み部の板間隙間
側凸部と他方流下板の平面部分とをロウ付け連結してあ
る請求項4に記載した吸収式冷凍機のプレート型吸収
器。
5. The brazing between the inter-plate gap side protruding portions of the recessed portions that are brought into contact with each other, or the planar portion of the other flow-down plate is brazed and connected to the inter-plate gap side protruding portions of the depressed portion. The plate type absorber of the absorption refrigerator according to claim 4, wherein
【請求項6】 前記窪み部の板間隙間側凸部どうしの対
向接触部、又は、前記窪み部の板間隙間側凸部と他方流
下板の平面部分との接触部を、前記流下板の板面視で千
鳥状に配置してある請求項4又は5に記載した吸収式冷
凍機のプレート型吸収器。
6. An opposing contact portion between the inter-plate gap side protrusions of the dent portion, or a contact portion between the inter-plate gap side protrusion of the dent portion and a flat portion of the other flow-down plate, The plate-type absorber of an absorption refrigerator according to claim 4 or 5, wherein the plate-type absorber is arranged in a staggered shape when viewed from a plate surface.
JP15885798A 1998-06-08 1998-06-08 Plate type evaporator and absorber of absorption refrigerator Ceased JP3305653B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15885798A JP3305653B2 (en) 1998-06-08 1998-06-08 Plate type evaporator and absorber of absorption refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15885798A JP3305653B2 (en) 1998-06-08 1998-06-08 Plate type evaporator and absorber of absorption refrigerator

Publications (2)

Publication Number Publication Date
JPH11351700A true JPH11351700A (en) 1999-12-24
JP3305653B2 JP3305653B2 (en) 2002-07-24

Family

ID=15680926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15885798A Ceased JP3305653B2 (en) 1998-06-08 1998-06-08 Plate type evaporator and absorber of absorption refrigerator

Country Status (1)

Country Link
JP (1) JP3305653B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100339399B1 (en) * 2000-04-10 2002-06-01 구자홍 Absorption heat pump
JP2013526699A (en) * 2010-05-25 2013-06-24 7エーシー テクノロジーズ,インコーポレイテッド Method and system using liquid desiccant for air conditioning and other processes
US9101874B2 (en) 2012-06-11 2015-08-11 7Ac Technologies, Inc. Methods and systems for turbulent, corrosion resistant heat exchangers
US9470426B2 (en) 2013-06-12 2016-10-18 7Ac Technologies, Inc. In-ceiling liquid desiccant air conditioning system
US9506697B2 (en) 2012-12-04 2016-11-29 7Ac Technologies, Inc. Methods and systems for cooling buildings with large heat loads using desiccant chillers
JP2016540180A (en) * 2013-11-19 2016-12-22 7エーシー テクノロジーズ,インコーポレイテッド Method and system for a turbulent corrosion resistant heat exchanger
US9631848B2 (en) 2013-03-01 2017-04-25 7Ac Technologies, Inc. Desiccant air conditioning systems with conditioner and regenerator heat transfer fluid loops
US9709285B2 (en) 2013-03-14 2017-07-18 7Ac Technologies, Inc. Methods and systems for liquid desiccant air conditioning system retrofit
US10024558B2 (en) 2014-11-21 2018-07-17 7Ac Technologies, Inc. Methods and systems for mini-split liquid desiccant air conditioning
US10323867B2 (en) 2014-03-20 2019-06-18 7Ac Technologies, Inc. Rooftop liquid desiccant systems and methods
US10619867B2 (en) 2013-03-14 2020-04-14 7Ac Technologies, Inc. Methods and systems for mini-split liquid desiccant air conditioning
US10921001B2 (en) 2017-11-01 2021-02-16 7Ac Technologies, Inc. Methods and apparatus for uniform distribution of liquid desiccant in membrane modules in liquid desiccant air-conditioning systems
US10941948B2 (en) 2017-11-01 2021-03-09 7Ac Technologies, Inc. Tank system for liquid desiccant air conditioning system

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100339399B1 (en) * 2000-04-10 2002-06-01 구자홍 Absorption heat pump
US9631823B2 (en) 2010-05-25 2017-04-25 7Ac Technologies, Inc. Methods and systems for desiccant air conditioning
JP2013526699A (en) * 2010-05-25 2013-06-24 7エーシー テクノロジーズ,インコーポレイテッド Method and system using liquid desiccant for air conditioning and other processes
US11624517B2 (en) 2010-05-25 2023-04-11 Emerson Climate Technologies, Inc. Liquid desiccant air conditioning systems and methods
US10753624B2 (en) 2010-05-25 2020-08-25 7Ac Technologies, Inc. Desiccant air conditioning methods and systems using evaporative chiller
US9243810B2 (en) 2010-05-25 2016-01-26 7AC Technologies Methods and systems for desiccant air conditioning
US9273877B2 (en) 2010-05-25 2016-03-01 7Ac Technologies, Inc. Methods and systems for desiccant air conditioning
US10168056B2 (en) 2010-05-25 2019-01-01 7Ac Technologies, Inc. Desiccant air conditioning methods and systems using evaporative chiller
US9377207B2 (en) 2010-05-25 2016-06-28 7Ac Technologies, Inc. Water recovery methods and systems
US9429332B2 (en) 2010-05-25 2016-08-30 7Ac Technologies, Inc. Desiccant air conditioning methods and systems using evaporative chiller
US10006648B2 (en) 2010-05-25 2018-06-26 7Ac Technologies, Inc. Methods and systems for desiccant air conditioning
US9709286B2 (en) 2010-05-25 2017-07-18 7Ac Technologies, Inc. Methods and systems for desiccant air conditioning
US9835340B2 (en) 2012-06-11 2017-12-05 7Ac Technologies, Inc. Methods and systems for turbulent, corrosion resistant heat exchangers
US9101874B2 (en) 2012-06-11 2015-08-11 7Ac Technologies, Inc. Methods and systems for turbulent, corrosion resistant heat exchangers
US11098909B2 (en) 2012-06-11 2021-08-24 Emerson Climate Technologies, Inc. Methods and systems for turbulent, corrosion resistant heat exchangers
US9308490B2 (en) 2012-06-11 2016-04-12 7Ac Technologies, Inc. Methods and systems for turbulent, corrosion resistant heat exchangers
US9101875B2 (en) 2012-06-11 2015-08-11 7Ac Technologies, Inc. Methods and systems for turbulent, corrosion resistant heat exchangers
US10443868B2 (en) 2012-06-11 2019-10-15 7Ac Technologies, Inc. Methods and systems for turbulent, corrosion resistant heat exchangers
US9506697B2 (en) 2012-12-04 2016-11-29 7Ac Technologies, Inc. Methods and systems for cooling buildings with large heat loads using desiccant chillers
US10024601B2 (en) 2012-12-04 2018-07-17 7Ac Technologies, Inc. Methods and systems for cooling buildings with large heat loads using desiccant chillers
US10760830B2 (en) 2013-03-01 2020-09-01 7Ac Technologies, Inc. Desiccant air conditioning methods and systems
US9631848B2 (en) 2013-03-01 2017-04-25 7Ac Technologies, Inc. Desiccant air conditioning systems with conditioner and regenerator heat transfer fluid loops
US10619867B2 (en) 2013-03-14 2020-04-14 7Ac Technologies, Inc. Methods and systems for mini-split liquid desiccant air conditioning
US9709285B2 (en) 2013-03-14 2017-07-18 7Ac Technologies, Inc. Methods and systems for liquid desiccant air conditioning system retrofit
US10619868B2 (en) 2013-06-12 2020-04-14 7Ac Technologies, Inc. In-ceiling liquid desiccant air conditioning system
US9470426B2 (en) 2013-06-12 2016-10-18 7Ac Technologies, Inc. In-ceiling liquid desiccant air conditioning system
JP2016540180A (en) * 2013-11-19 2016-12-22 7エーシー テクノロジーズ,インコーポレイテッド Method and system for a turbulent corrosion resistant heat exchanger
US10619895B1 (en) 2014-03-20 2020-04-14 7Ac Technologies, Inc. Rooftop liquid desiccant systems and methods
US10323867B2 (en) 2014-03-20 2019-06-18 7Ac Technologies, Inc. Rooftop liquid desiccant systems and methods
US10731876B2 (en) 2014-11-21 2020-08-04 7Ac Technologies, Inc. Methods and systems for mini-split liquid desiccant air conditioning
US10024558B2 (en) 2014-11-21 2018-07-17 7Ac Technologies, Inc. Methods and systems for mini-split liquid desiccant air conditioning
US10921001B2 (en) 2017-11-01 2021-02-16 7Ac Technologies, Inc. Methods and apparatus for uniform distribution of liquid desiccant in membrane modules in liquid desiccant air-conditioning systems
US10941948B2 (en) 2017-11-01 2021-03-09 7Ac Technologies, Inc. Tank system for liquid desiccant air conditioning system

Also Published As

Publication number Publication date
JP3305653B2 (en) 2002-07-24

Similar Documents

Publication Publication Date Title
JP3305653B2 (en) Plate type evaporator and absorber of absorption refrigerator
WO2000052411A1 (en) Plate type heat exchanger
JP3932241B2 (en) Absorption refrigerator
JP2007271197A (en) Absorption type refrigerating device
KR100497847B1 (en) Evaporator
JPH10220914A (en) Plate type evaporator and absorbing device of absorbing type freezer
JP4826314B2 (en) Evaporation / absorption unit for absorption refrigerator
JPH08105669A (en) Regenerator for absorption refrigerator
GB2051333A (en) Heat exchanger
JP3712775B2 (en) Plate evaporator / absorber for absorption refrigerator
JP2568769B2 (en) Absorption refrigerator
JP3292663B2 (en) Plate heat exchanger
JP3475003B2 (en) Plate evaporator for absorption refrigerator
JP3969556B2 (en) Plate heat exchanger
JP2002372338A (en) Absorptive cold/warm water machine
JP3485731B2 (en) Absorption chiller / heater
JP2502934B2 (en) Absorption refrigerator
KR100334933B1 (en) Absorber of plate heat exchanger type in Absorption heating and cooling system
JPH08159603A (en) Regenerator in absorption type refrigerator
JPS5922441Y2 (en) Heat exchanger
JP3756980B2 (en) Plate type absorber for absorption refrigerator
JP3522443B2 (en) Plate type condenser for absorption refrigerator
JP2003254680A (en) Heat exchanger and absorption refrigerating machine using it
JP2787178B2 (en) Absorption evaporator for absorption refrigerator
JP3722347B2 (en) Liquid membrane plate heat exchanger

Legal Events

Date Code Title Description
RVOP Cancellation by post-grant opposition