JPH11343180A - Ceramic-member/metallic-member joined body and ceramic heater using the same - Google Patents

Ceramic-member/metallic-member joined body and ceramic heater using the same

Info

Publication number
JPH11343180A
JPH11343180A JP14937698A JP14937698A JPH11343180A JP H11343180 A JPH11343180 A JP H11343180A JP 14937698 A JP14937698 A JP 14937698A JP 14937698 A JP14937698 A JP 14937698A JP H11343180 A JPH11343180 A JP H11343180A
Authority
JP
Japan
Prior art keywords
ceramic
metal layer
metal
metal member
joined body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14937698A
Other languages
Japanese (ja)
Other versions
JP3924378B2 (en
Inventor
Hiroshi Shiyoku
浩 触
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP14937698A priority Critical patent/JP3924378B2/en
Publication of JPH11343180A publication Critical patent/JPH11343180A/en
Application granted granted Critical
Publication of JP3924378B2 publication Critical patent/JP3924378B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a joined body in which any cracks are not caused in a ceramic member and any peeling of a metallic member is not caused, even when the joined body is affected by a thermal history of heating/cooling during operation using the body, and also to provide a ceramic heater which consists of the joined body formed by joining a metal fitting for an electrode to a ceramic heating element and is capable of maintaining high joining strength without causing abnormal heat generation or disconnection due to the change in resistance of a heating resistor, and also, excellent in thermal shock resistance and high temp. stability, and further, has good rapid heating-up characteristics and is appropriate for high temp. use. SOLUTION: This joined body 1 is formed by joining a ceramic member 2 to a metallic member 3 through a metallic layer 4 which has a 20 to 200 μm thickness (7) and into which the component 6 of the metallic member 3 is diffused to a <=10 μm depth from an interface 5 between the metallic member 3 and the metallic layer 4, in such a way that only the surface side 8 of the metallic member 3, which is abutted on the ceramic member 2, is bonded to the metallic layer 4. The ceramic heater 9 is formed by joining a ceramic heating element 10 consisting of an insulator 14 and a heating resistor made of an electrically conductive material, to a metal fitting 11 for an electrode through a similar metallic layer 4.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、酸化物系あるいは
非酸化物系の各種セラミック部材と金属部材との接合体
及びセラミックヒータに関するもので、各種センサや測
定機器等をはじめとする各種産業機械装置、あるいは加
熱・点火用に用いられるセラミックヒータに代表される
各種燃焼機器部品やグロープラグ等の内燃機関部品、あ
るいは通電作動時に発熱を伴うパワートランジスタやダ
イオードをはじめとする半導体素子や抵抗体等のパワー
素子が搭載される放熱基板に代表される電子部品等の耐
熱性を必要とするセラミック部材と金属部材との接合体
に適用されるものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a joined body of various oxide-based or non-oxide-based ceramic members and metal members and a ceramic heater, and to various industrial machines including various sensors and measuring instruments. Equipment or various combustion equipment parts typified by ceramic heaters used for heating and ignition, internal combustion engine parts such as glow plugs, or semiconductor elements and resistors such as power transistors and diodes that generate heat when energized The present invention is applied to a joined body of a ceramic member and a metal member requiring heat resistance, such as an electronic component typified by a heat dissipation board on which the power element is mounted.

【0002】とりわけ、燃費改善や出力向上、及び排気
ガス改善を目指した自動車用の直噴型のディーゼルエン
ジンの始動促進をはじめ、船舶用あるいは発電用等の大
型ディーゼルエンジン等の各種内燃機関用点火補助に使
用されるグロープラグ、あるいは前記排気ガス改善を目
的とした早期活性型酸素センサ等の補助加熱用として用
いられる加熱用ヒータに好適な高温用のセラミックヒー
タに関するものである。
[0002] In particular, the ignition of various types of internal combustion engines such as large diesel engines for ships or power generation is promoted, including the promotion of starting of direct-injection diesel engines for automobiles with the aim of improving fuel efficiency, output, and exhaust gas. The present invention relates to a high-temperature ceramic heater suitable for a glow plug used for auxiliary or a heater for auxiliary heating such as an early activation type oxygen sensor for improving the exhaust gas.

【0003】[0003]

【従来の技術】従来より各種電子部品の絶縁基体として
利用されてきた酸化物系のセラミックスに加え、近年、
耐熱性及び耐食性、耐摩耗性、電気絶縁性により優れ
た、高強度でかつ比重が小さいという顕著な特徴を有す
る非酸化物系セラミックスが、化学プラントや工作機械
部品をはじめとする各種産業機械装置や、自動車用のデ
ィーゼルエンジン等の内燃機関部品として多用されるよ
うになっている。
2. Description of the Related Art In addition to oxide-based ceramics conventionally used as insulating bases for various electronic components, in recent years,
Non-oxide ceramics with outstanding characteristics of high strength and low specific gravity, excellent in heat resistance, corrosion resistance, abrasion resistance and electric insulation, are used for various industrial machinery including chemical plants and machine tool parts. Also, it has been widely used as an internal combustion engine component such as a diesel engine for an automobile.

【0004】例えば、ディーゼル機関の始動時やアイド
リング時に、副燃焼室内を急速に予熱するために用いら
れる内燃機関用グロープラグや、内燃機関の排気ガス中
の酸素濃度を検知し、排気ガス制御を行うための酸素セ
ンサの素子の活性化を促進するために内装されるヒータ
等の各種補助加熱用ヒータとしては、従来の急速昇温特
性や、耐摩耗性、耐熱性、耐食性等の耐久性に劣る、発
熱抵抗線と耐熱絶縁粉末とを耐熱金属製筒内に埋設した
シーズヒータに代わり、熱伝導性が良好な電気絶縁性セ
ラミック焼結体に、高融点金属やその化合物、及びそれ
らを主成分とする各種無機導電材から成る発熱抵抗体を
担持したり、接合したり、あるいは埋設したりして一体
化したセラミック発熱体が広く利用されるようになって
いる。
For example, when starting or idling a diesel engine, a glow plug for an internal combustion engine used for rapidly preheating the sub-combustion chamber, or an oxygen concentration in exhaust gas of the internal combustion engine is detected to control exhaust gas. Various auxiliary heaters, such as heaters installed to promote the activation of the oxygen sensor element, perform the conventional rapid temperature rise characteristics and durability such as wear resistance, heat resistance, and corrosion resistance. Instead of a sheath heater in which the inferior heating resistance wire and heat-resistant insulating powder are buried in a heat-resistant metal cylinder, a high-melting-point metal and its compound, and their main components, are converted into an electrically insulating ceramic sintered body with good thermal conductivity. 2. Description of the Related Art Ceramic heating elements which are integrated by supporting, joining, or burying heating resistors made of various inorganic conductive materials as components have been widely used.

【0005】しかしながら、前記セラミックスは脆性材
料であることから繰り返し応力が加わる部分への適用が
難しく、その上、加工性に乏しいことから、高温に曝さ
れる部分にのみ、耐熱性及び耐食性、耐摩耗性に優れた
軽量のセラミックスを用い、高荷重が作用する部分を高
強度で加工性に優れた金属部材で構成してセラミック部
材と金属部材とを組み合わせて複合構造体とする等、種
々のセラミックスと金属との接合体が提案されている。
However, since the ceramic is a brittle material, it is difficult to apply it to a portion to which repeated stress is applied. In addition, since the workability is poor, only the portion exposed to a high temperature has heat resistance, corrosion resistance, and resistance to heat. Various parts such as lightweight ceramics with excellent abrasion properties, metal parts with high strength and excellent workability are used for parts where high loads are applied, and ceramic and metal members are combined to form a composite structure. A joined body of ceramic and metal has been proposed.

【0006】かかるセラミック部材と金属部材との接合
には、従来よりセラミック部材表面にモリブデン(M
o)等の高融点金属を主成分とする金属層を被着し、該
金属層を介して銀ろう等のろう材により金属部材をろう
付け接合することが広く採用されていた。
[0006] For joining such a ceramic member and a metal member, conventionally, molybdenum (M
It has been widely adopted that a metal layer mainly composed of a high melting point metal such as o) is applied and a metal member is brazed and joined with a brazing material such as silver brazing through the metal layer.

【0007】しかしながら、前記ろう付け接合によるセ
ラミック部材と金属部材の接合体においては、両部材の
熱膨張率が大きく異なることから、該熱膨張差に起因す
る歪み、即ち、残留応力が両部材の接合部近辺、例え
ば、前記内燃機関用グロープラグや、各種補助加熱用ヒ
ータでは、セラミック発熱体の電極取り出し部と電極金
具との接合部、とりわけその接合界面に発生し、セラミ
ック部材と金属部材との接合強度の低下や、金属部材の
収縮力によるセラミック部材あるいは金属部材自体の破
壊や、接合界面からの剥離を招き易いという欠点があっ
た。
However, in the joined body of the ceramic member and the metal member formed by the brazing, since the coefficients of thermal expansion of the two members are greatly different from each other, the distortion due to the difference in the thermal expansion, that is, the residual stress, is reduced. In the vicinity of the joint, for example, the glow plug for the internal combustion engine, and various auxiliary heaters, the joint between the electrode extraction portion of the ceramic heating element and the electrode fitting, particularly at the joint interface, is formed between the ceramic member and the metal member. However, there are disadvantages that the bonding strength is easily reduced, the ceramic member or the metal member itself is broken due to the contraction force of the metal member, and separation from the bonding interface is easily caused.

【0008】そこで、セラミック部材と金属部材との熱
膨張差を解消し、高温まで接合強度を維持するために、
図4に示すようにセラミック部材20と金属部材21と
の間に金(Au)、銀(Ag)、銅(Cu)、ニッケル
(Ni)の一種以上を主成分とし、チタン(Ti)、バ
ナジウム(V)等の活性金属を含有する金属層22を熱
処理により溶融させて接合する、いわゆるろう接するこ
とが多数、提案されている(特開平6−321648号
公報、特開平7−25674号公報、特開平7−272
832号公報参照)。
Therefore, in order to eliminate the difference in thermal expansion between the ceramic member and the metal member and maintain the bonding strength up to a high temperature,
As shown in FIG. 4, between the ceramic member 20 and the metal member 21, one or more of gold (Au), silver (Ag), copper (Cu), and nickel (Ni) are used as main components, and titanium (Ti) and vanadium are used. A number of so-called brazings, in which the metal layer 22 containing an active metal such as (V) is melted by heat treatment and joined, have been proposed (JP-A-6-321648, JP-A-7-25674, JP-A-7-272
No. 832).

【0009】[0009]

【発明が解決しようとする課題】前記活性金属を含有す
る金属層22をろう材として熱処理により溶融させて接
合したセラミック部材20と金属部材21の接合体は、
初期強度や、例えば、常温と450℃の温度に交互に曝
してそれを繰り返す冷熱サイクル試験では、3000サ
イクル程度でもセラミック部材20と金属部材21の接
合強度は満足するものであった。
The joined body of the ceramic member 20 and the metal member 21 joined by melting and joining the metal layer 22 containing the active metal by heat treatment using the metal layer 22 containing the active metal as a brazing material,
In a thermal cycle test in which the initial strength and, for example, a normal temperature and a temperature of 450 ° C. were alternately exposed and repeated, the bonding strength between the ceramic member 20 and the metal member 21 was satisfactory even at about 3000 cycles.

【0010】しかしながら、例えば、最近の内燃機関用
として用いられる前記センサに内装されるセラミックヒ
ータは、排気ガス規制の強化に伴い、急速昇温による早
期活性化やリーンバーンエンジンに対応可能とする広域
型であること等が要求されるようになり、発熱温度の上
昇からセラミックヒータの電極金具付近の温度は、従来
の450℃程度から更に高い、500℃にも達するに及
び、前記金属層を熱処理により溶融して接合した接合体
では、走行10万マイルに該当する条件に耐えられない
という課題があった。
[0010] However, for example, a ceramic heater incorporated in the sensor used for a recent internal combustion engine has a wide area which can be quickly activated by rapid temperature rise and can cope with a lean burn engine in accordance with stricter exhaust gas regulations. The temperature near the metal fittings of the ceramic heater reaches 500 ° C., which is higher than the conventional temperature of about 450 ° C., due to the rise in heat generation temperature. However, there is a problem that the joined body that is melted and joined cannot endure the condition corresponding to traveling 100,000 miles.

【0011】即ち、前述のような高温条件下と急速昇温
の繰り返しは、金属層22が金属部材21とセラミック
部材20との当接面側33と側面34にかけて接着する
ことにより形成されるメニスカス部23に沿って、セラ
ミック部材20に微少なクラック24が発生するという
課題があった。
In other words, the repetition of the high-temperature condition and the rapid temperature increase as described above causes the meniscus formed by bonding the metal layer 22 to the contact surfaces 33 and 34 between the metal member 21 and the ceramic member 20. There is a problem that a minute crack 24 occurs in the ceramic member 20 along the portion 23.

【0012】又、図5に示すように無機材料から成る発
熱抵抗体(不図示)とセラミック焼結体25とで構成さ
れるセラミック発熱体26において、前記発熱抵抗体に
接続したリード線27と電気的に接続した電極取り出し
部28の露出部で、金属層22を介して電極金具29を
溶融接合したセラミックヒータ30にあっては、前述の
ような高温条件下で、長時間にわたる加熱冷却の繰り返
しにより電極金具29のセラミック発熱体26との当接
面側33と側面34にかけて接着した金属層22が形成
するメニスカス部23に沿ってセラミック発熱体26に
微少なクラック24が発生し、該クラック24が稼働中
に更に進展し、その結果、電極金具29がセラミック焼
結体25の一部を接着したままセラミック発熱体26か
ら剥離したり、発熱抵抗体に損傷を与えて抵抗変化を生
じたりして、通電時に電極部で異常発熱を起こしてヒー
タとしての寿命が低下し、ひいては断線を生じるという
課題があった。
As shown in FIG. 5, a ceramic heating element 26 composed of a heating resistor (not shown) made of an inorganic material and a ceramic sintered body 25 has a lead wire 27 connected to the heating resistor. In the ceramic heater 30 in which the electrode fitting 29 is melt-bonded via the metal layer 22 at the exposed part of the electrode connection part 28 electrically connected, the heating and cooling for a long time under the high temperature condition as described above. By repetition, a minute crack 24 is generated in the ceramic heating element 26 along the meniscus portion 23 formed by the metal layer 22 adhered to the contact surface side 33 and the side surface 34 of the electrode fitting 29 with the ceramic heating element 26, and the crack is generated. 24 further progresses during operation, and as a result, the electrode fitting 29 peels off from the ceramic heating element 26 while adhering a part of the ceramic sintered body 25, By or resulting resistance change in the resistive element damage, causing abnormal heat generation at the electrode portion reduces the life of the heater when energized, there is a problem that eventually results in disconnection.

【0013】[0013]

【発明の目的】本発明は前記課題に鑑み成されたもの
で、その目的は、セラミック部材と金属部材との接合部
が、500℃にも及ぶ高温度まで急速昇温する等、稼働
中に長時間にわたる加熱冷却の熱履歴を受けてもセラミ
ック部材にクラックを生じたり、あるいは金属部材がセ
ラミック部材から剥離したりせず、セラミックヒータに
あっては、電極金具がセラミック焼結体を一部接着した
ままセラミック発熱体から剥離したり、セラミック発熱
体の発熱抵抗体が抵抗変化して異常発熱したり、断線し
たりすることがなく、長期にわたり高い接合強度を維持
すると共に、耐熱性や耐熱衝撃性、高温安定性に優れ、
急速昇温特性が良好な高温用に最適なセラミック部材と
金属部材の接合体及びセラミックヒータを提供すること
にある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems, and has as its object to reduce the temperature of a joint between a ceramic member and a metal member during operation, for example, by rapidly increasing the temperature to as high as 500 ° C. Even when subjected to the heat history of heating and cooling for a long time, the ceramic member does not crack or the metal member does not peel off from the ceramic member. It maintains high bonding strength for a long time without peeling off from the ceramic heating element while being adhered, abnormal heat generation due to resistance change of the heating resistor of the ceramic heating element, and disconnection. Excellent impact resistance, high temperature stability,
An object of the present invention is to provide a joined body of a ceramic member and a metal member and a ceramic heater which have an excellent rapid temperature rising characteristic and are optimal for high temperatures.

【0014】[0014]

【課題を解決するための手段】本発明者は前記課題につ
いて種々検討した結果、従来のセラミック部材と金属部
材の接合体は、前記活性金属を含有する金属層をろう材
として溶融接合する際の熱履歴により、金属部材周囲に
該当するセラミック部材にわずかながらも残留応力が発
生していることに加えて、溶融接合する際に前記図4及
び図5に示す要部断面図の金属層22に重ねて記載した
X線マイクロアナリシス(EPMA)による元素の面分
析の結果、金属部材成分31及び電極金具成分32が金
属層22に拡散してその組成が変化し、その結果、該金
属層22の硬度が上昇して残留応力が増すことが明らか
となった。
As a result of various studies on the above-mentioned problems, the present inventor has found that a conventional joined body of a ceramic member and a metal member has a problem in melting and joining a metal layer containing the active metal as a brazing material. Due to the thermal history, a slight residual stress is generated in the ceramic member corresponding to the periphery of the metal member. In addition, when the metal member is melted and joined, the ceramic layer 22 shown in FIG. 4 and FIG. As a result of the surface analysis of elements by X-ray microanalysis (EPMA) described in an overlapped manner, the metal member component 31 and the electrode fitting component 32 diffuse into the metal layer 22 and change their compositions. It was found that the hardness increased and the residual stress increased.

【0015】更に、金属部材21との接合部周囲には、
セラミック部材20との当接面側33から金属部材21
の側面34にかけて、該金属部材21の角部が溶出して
円弧状を成すと共に、溶融接着した金属層22がメニス
カス部23を形成し、該接合部周囲に応力が集中するこ
とが重なりあった結果、前記クラック24が発生するも
のであることも判明した。
Further, around the joint with the metal member 21,
From the contact surface side 33 with the ceramic member 20, the metal member 21
Over the side surface 34, the corners of the metal member 21 elute and form an arc shape, and the melt-bonded metal layer 22 forms a meniscus portion 23, and stress concentrates around the joint. As a result, it was also found that the crack 24 was generated.

【0016】そこで、セラミック部材と金属部材とを接
合する際の温度上昇を抑制して金属部材成分の金属層へ
の拡散を防止し、その硬度の上昇を抑制すると共に、前
記金属層がメニスカス部を形成しないように、あるいは
該メニスカス部を除去したり、又は、該メニスカス部あ
るいは山状の盛り上がりを金属部材の接合部周囲に形成
しても、金属部材はセラミック部材との当接面側でのみ
金属層と接着し、金属部材の側面には接着しないように
すれば、その部分の残留応力の低減と集中を回避するこ
とが可能となり、前記課題が解消できることを見いだし
た。
Therefore, the temperature rise at the time of joining the ceramic member and the metal member is suppressed to prevent the diffusion of the metal member component into the metal layer, and to suppress the increase in the hardness of the metal member. Even if the meniscus portion is removed, or the meniscus portion or the mountain-like swell is formed around the joint portion of the metal member, the metal member is not formed on the contact surface side with the ceramic member. By adhering only to the metal layer and not to the side surface of the metal member, it has been found that the reduction and concentration of the residual stress at that portion can be avoided, and the above problem can be solved.

【0017】即ち、本発明のセラミック部材と金属部材
の接合体は、介在する厚さ20〜200μmの金属層
が、金属部材との界面より深さ10μm以内にだけ拡散
した金属部材成分を含有し、金属部材はセラミック部材
との当接面側だけで前記金属層と接着しており、金属部
材の側面では金属層が接着していないことを特徴とする
ものである。
That is, the joined body of the ceramic member and the metal member of the present invention contains a metal member component in which an intervening metal layer having a thickness of 20 to 200 μm is diffused only within a depth of 10 μm from the interface with the metal member. The metal member is bonded to the metal layer only on the contact surface side with the ceramic member, and the metal layer is not bonded on the side surface of the metal member.

【0018】特に、前記セラミック部材は、窒化珪素質
焼結体であること、あるいは、前記金属層が金(Au)
及びニッケル(Ni)を主成分とすること、又は、バナ
ジウム(V)かモリブデン(Mo)の一種以上を含有す
ることがより好適なものである。
Particularly, the ceramic member is a silicon nitride sintered body, or the metal layer is made of gold (Au).
And nickel (Ni) as a main component or containing at least one of vanadium (V) and molybdenum (Mo).

【0019】又、本発明のセラミックヒータは、電極金
具とセラミック発熱体との間に介在する金属層が20〜
200μmの厚さを有し、該金属層には電極金具との界
面から深さ10μm以内にだけ拡散した電極金具成分を
含有し、電極金具はセラミック発熱体との当接面側だけ
で金属層と接着しており、電極金具の側面とは金属層と
接着していないことを特徴とするものである。
Further, in the ceramic heater according to the present invention, the metal layer interposed between the electrode fitting and the ceramic heating element has a thickness of 20 to 20 mm.
The metal layer has a thickness of 200 μm, and the metal layer contains an electrode fitting component diffused only within a depth of 10 μm from the interface with the electrode fitting, and the electrode fitting has a metal layer only on the contact surface side with the ceramic heating element. And the side surface of the electrode fitting is not bonded to the metal layer.

【0020】とりわけ、前記セラミック発熱体を構成す
るセラミック焼結体は、窒化珪素質焼結体であること、
あるいは、前記金属層が金(Au)及びニッケル(N
i)を主成分とすること、又は、バナジウム(V)かモ
リブデン(Mo)の一種以上を含有することがより好適
なものである。
In particular, the ceramic sintered body constituting the ceramic heating element is a silicon nitride based sintered body;
Alternatively, the metal layer is made of gold (Au) and nickel (N
It is more preferable that i) be the main component or that at least one of vanadium (V) and molybdenum (Mo) be contained.

【0021】[0021]

【作用】本発明のセラミック部材と金属部材の接合体及
びセラミックヒータによれば、セラミック部材と金属部
材間に介在させる金属層は、厚さが20〜200μmで
金属部材との界面より深さ10μm以内だけにしか、前
記金属部材成分が拡散して含有されておらず、かつ該金
属部材は金属層とセラミック部材との当接面側だけで接
着しており、金属部材の側面には金属層が接着していな
いことから該金属層の組成変化が少なく、従って硬度が
上昇せず、残留応力も抑制されることになり、又、金属
部材の接合部周囲に該当するセラミック部材に応力が集
中しなくなり、加熱冷却を繰り返す熱履歴が長期間にわ
たっても、金属部材との接合部周囲のセラミック部材に
クラックを生じたり、金属部材がセラミック部材から剥
離したりする等の恐れは解消されることになる。
According to the joined body of the ceramic member and the metal member and the ceramic heater of the present invention, the metal layer interposed between the ceramic member and the metal member has a thickness of 20 to 200 μm and a depth of 10 μm from the interface with the metal member. Only within this range, the metal member component is not diffused and contained, and the metal member is adhered only at the contact surface side between the metal layer and the ceramic member, and the metal layer is attached to the side surface of the metal member. Since there is no adhesion, the composition change of the metal layer is small, so that the hardness does not increase and the residual stress is suppressed, and the stress is concentrated on the ceramic member corresponding to the periphery of the joint of the metal member. Even if the heat history of repeated heating and cooling is extended, cracks may occur in the ceramic member around the joint with the metal member, and the metal member may peel from the ceramic member for a long period of time. This will be resolved.

【0022】又、セラミックヒータにあっては、セラミ
ック発熱体と電極金具及び金属層を前記接合体と同様の
構成とすることにより、セラミック発熱体にクラックを
生じて電極金具がセラミック焼結体の一部を接着したま
ま剥離したり、発熱抵抗体が抵抗変化して異常発熱した
り、断線したりすることがなく、長期間にわたり高い接
合強度を維持すると共に、耐熱衝撃性や高温安定性に優
れ、急速昇温特性が良好で耐久性を飛躍的に向上させる
ことが可能となる。
In the case of the ceramic heater, the ceramic heating element, the electrode fitting and the metal layer have the same structure as that of the above-mentioned joined body, so that a crack is generated in the ceramic heating element and the electrode fitting becomes the ceramic sintered body. It maintains high bonding strength for a long period of time without peeling with a part adhered, abnormal heating due to resistance change of the heating resistor, or disconnection, as well as thermal shock resistance and high temperature stability. It is excellent, has rapid temperature rising characteristics, and can dramatically improve durability.

【0023】[0023]

【発明の実施の形態】以下、本発明のセラミック部材と
金属部材の接合体及びセラミックヒータについて、図面
に基づき詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a joined body of a ceramic member and a metal member and a ceramic heater according to the present invention will be described in detail with reference to the drawings.

【0024】図1は、本発明のセラミック部材と金属部
材の接合体の要部を拡大し、X線マイクロアナリシス
(EPMA)による金属層に拡散した金属部材成分の面
分析の結果を重ねて記載した断面図である。
FIG. 1 is an enlarged view of a main part of a joined body of a ceramic member and a metal member according to the present invention, in which the results of the surface analysis of the metal member components diffused into the metal layer by X-ray microanalysis (EPMA) are shown. FIG.

【0025】図1において、1はセラミック部材2と金
属部材3とを金属層4を介して接合したセラミック部材
と金属部材の接合体であり、金属層4は金属部材3との
界面5から深さ10μm以内だけに拡散した金属部材成
分6を含有した20〜200μmの厚さ7を有するもの
で、金属部材3は金属層4とセラミック部材2との当接
面側8だけで接着しており、金属部材3の側面13とは
金属層4が接着していないものである。
In FIG. 1, reference numeral 1 denotes a joined body of a ceramic member and a metal member in which a ceramic member 2 and a metal member 3 are joined via a metal layer 4, and the metal layer 4 extends deep from an interface 5 with the metal member 3. It has a thickness 7 of 20 to 200 μm containing a metal member component 6 diffused only within 10 μm, and the metal member 3 is bonded only on the contact surface side 8 between the metal layer 4 and the ceramic member 2. The side surface 13 of the metal member 3 is one to which the metal layer 4 is not bonded.

【0026】本発明において、前記セラミック部材とし
て適用可能な材質は、酸化物系セラミックスではアルミ
ナ(Al2 3 )やムライト(3Al2 3 ・2SiO
2 )等が、又、非酸化物系セラミックスでは窒化珪素
(Si3 4 )や炭化珪素(SiC)、サイアロン、窒
化アルミニウム(AlN)等が挙げられる。
In the present invention, the material applicable as the ceramic member is alumina (Al 2 O 3 ) or mullite (3Al 2 O 3 .2SiO 2 ) for oxide ceramics.
2 ), and non-oxide ceramics include silicon nitride (Si 3 N 4 ), silicon carbide (SiC), sialon, and aluminum nitride (AlN).

【0027】特に、金属部材及び金属層との熱膨張率は
異なるものの、前述のような高温雰囲気中での耐久性を
向上させるために、アルミナ(Al2 3 )に代えてマ
トリックス成分としてイッテルビウム(Yb)やイット
リウム(Y)等の希土類元素をモノシリケート及び/又
はダイシリケートの形態で含有する窒化珪素質焼結体
が、強度や破壊靱性、耐熱性の点からは最適である。
In particular, although the coefficients of thermal expansion of the metal member and the metal layer are different, in order to improve the durability in the high temperature atmosphere as described above, ytterbium is used as a matrix component instead of alumina (Al 2 O 3 ). A silicon nitride sintered body containing a rare earth element such as (Yb) or yttrium (Y) in the form of monosilicate and / or disilicate is optimal from the viewpoint of strength, fracture toughness and heat resistance.

【0028】又、前記セラミック部材と接合する金属部
材としては、該セラミック部材の熱膨張率と近似した
3.0〜7.5×10-6/℃程度の熱膨張率を有する金
属、例えば、モリブデン(Mo)やタングステン(W)
等の低熱膨張金属や、Fe−Ni系のインバー型合金、
あるいはFe−P系のエリンバー型合金、WC−TiC
−Co系の超硬合金等が挙げられ、耐酸化性や加工性、
及びコストという観点からはFe−Ni−Co系合金あ
るいはFe−Ni系合金が望ましい。
The metal member to be joined to the ceramic member may be a metal having a coefficient of thermal expansion of about 3.0 to 7.5 × 10 −6 / ° C., which is close to the coefficient of thermal expansion of the ceramic member. Molybdenum (Mo) and tungsten (W)
And low thermal expansion metals such as Fe-Ni based Invar alloys,
Alternatively, an Fe-P based Elinvar alloy, WC-TiC
-Co-based cemented carbide, etc., oxidation resistance and workability,
From the viewpoints of cost and cost, an Fe-Ni-Co alloy or an Fe-Ni alloy is desirable.

【0029】更に、前記金属部材の塑性変形のし易さと
いう点からは、該金属部材のヤング率が14〜15×1
3 kg/mm2 を示すFe−Ni−Co合金やFe−
Ni合金等のFe基合金が最適であり、その上、金属部
材自体の塑性変形で両部材間の熱膨張差により発生する
応力を吸収できるという点からは、該金属部材の厚さを
薄くして0.1〜0.5mm程度とすることがより望ま
しく、かかる金属部材の角部は周知の如く応力集中を回
避するため、面取りや丸く曲面加工を施しておくことが
より好ましいことは言うまでもない。
Further, in view of the ease of plastic deformation of the metal member, the metal member has a Young's modulus of 14 to 15 × 1.
0 3 kg / mm 2 to as an Fe-Ni-Co alloy show or Fe-
Fe-based alloys such as Ni alloys are optimal, and furthermore, the thickness of the metal member can be reduced from the viewpoint that the stress generated due to the difference in thermal expansion between the two members due to the plastic deformation of the metal member itself can be absorbed. Needless to say, it is more preferable that the corners of the metal member be chamfered or rounded in order to avoid stress concentration as is well known. .

【0030】一方、前記セラミック部材と金属部材とを
接合する金属層としては、主成分が金(Au)又はニッ
ケル(Ni)、銅(Cu)、銀(Ag)、パラジウム
(Pd)のいずれか一種以上から成るもので、400℃
以上の高温で使用しても酸化による劣化がなく、例え
ば、直流電源の通電が関与する使用条件下でのマイグレ
ーションの防止を考慮すると、前記金属層は金(Au)
が50〜99重量%、ニッケル(Ni)が1〜50重量
%の金(Au)とニッケル(Ni)の合金が最適であ
る。
On the other hand, as a metal layer for joining the ceramic member and the metal member, the main component is gold (Au) or nickel (Ni), copper (Cu), silver (Ag), or palladium (Pd). At least 400 ° C
The metal layer is made of gold (Au) when there is no deterioration due to oxidation even when used at the above high temperature.
Is optimally an alloy of gold (Au) and nickel (Ni) in which 50 to 99% by weight and nickel (Ni) is 1 to 50% by weight.

【0031】又、前記金属層には、活性金属として周期
律表第4a族元素のチタン(Ti)、バナジウム
(V)、マンガン(Mn)、コバルト(Co)、ニッケ
ル(Ni)、銅(Cu)や、モリブデン(Mo)、シリ
コン(Si)、ジルコニウム(Zr)、ハフニウム(H
f)をいずれか一種以上を含有することが好ましい。
In the metal layer, titanium (Ti), vanadium (V), manganese (Mn), cobalt (Co), nickel (Ni), copper (Cu), which is a group 4a element of the periodic table, is used as an active metal. ), Molybdenum (Mo), silicon (Si), zirconium (Zr), hafnium (H
It is preferable to contain any one or more of f).

【0032】とりわけ、前記金属層のセラミック部材へ
の濡れ性が良く、セラミック部材の強度を劣化させない
という点からは、バナジウム(V)又はモリブデン(M
o)の一種以上を活性金属として含有させることが最適
であり、かかる活性金属は窒化物や炭化物、水素化物等
の形態で含有させても良い。
In particular, vanadium (V) or molybdenum (M) is used from the viewpoint that the metal layer has good wettability to the ceramic member and does not deteriorate the strength of the ceramic member.
It is optimal to contain at least one of o) as an active metal, and such an active metal may be contained in the form of a nitride, carbide, hydride or the like.

【0033】又、前記活性金属の含有量は、1重量%未
満では接合強度の向上効果が見られず、10重量%を越
えると前記金属層の焼き付け温度が高くなり、冷却時に
大きな残留応力を生じてクラックの原因と成り易いた
め、1〜10重量%が好ましく、特に、1〜5重量%が
最適である。
When the content of the active metal is less than 1% by weight, the effect of improving the bonding strength is not seen, and when it exceeds 10% by weight, the baking temperature of the metal layer becomes high, and a large residual stress occurs during cooling. 1 to 10% by weight is preferable, and particularly 1 to 5% by weight is optimal, since it is likely to cause cracks.

【0034】従って、前記活性金属を含有した貴金属か
ら成る金属層としては、具体的には、金(Au)及び/
又は銀(Ag)と、ニッケル(Ni)又はパラジウム
(Pd)の一種以上、あるいは銅(Cu)又はコバルト
(Co)、シリコン(Si)のいずれか一種の合計量が
90〜99重量%で、残部の1〜10重量%がバナジウ
ム(V)、モリブデン(Mo)、チタン(Ti)、ジル
コニウム(Zr)、ハフニウム(Hf)、マンガン(M
n)のいずれか一種以上の活性金属を含有するもの等が
挙げられる。
Accordingly, as the metal layer made of the noble metal containing the active metal, specifically, gold (Au) and / or
Or the total amount of silver (Ag) and one or more of nickel (Ni) or palladium (Pd), or one of copper (Cu) or cobalt (Co) and silicon (Si) is 90 to 99% by weight, Vanadium (V), molybdenum (Mo), titanium (Ti), zirconium (Zr), hafnium (Hf), manganese (M
and n) those containing any one or more active metals.

【0035】本発明では、前記金属層は、接合時に金属
部材との界面から深さ10μmを越えて金属部材成分が
該金属層中に溶出拡散して含有されると、金属層の硬度
が著しく増加してその部分に残留応力が増加してクラッ
ク発生の原因となるため、前記金属部材成分の拡散範囲
は10μm以内となるように制御する必要がある。
In the present invention, the hardness of the metal layer is remarkably increased when the metal layer component is eluted and diffused into the metal layer beyond the depth of 10 μm from the interface with the metal member during bonding. Since it increases and the residual stress increases in that portion, causing cracks, it is necessary to control the diffusion range of the metal member component to be within 10 μm.

【0036】従って、かかる金属部材成分の拡散範囲と
相まって、前記金属層の厚さが20μm未満では、該金
属層の容量不足となり、巣等の接合ムラが生じて接合強
度が不十分となり、容易に金属部材が剥離したりするよ
うになり、その厚さが200μmを越えると金属層の容
量が過剰となって残留応力が増加し、短時間でセラミッ
ク部材にクラックを発生して強度低下を生じることにな
る。
Therefore, when the thickness of the metal layer is less than 20 μm, the capacity of the metal layer becomes insufficient, and the bonding strength such as nests becomes insufficient and the bonding strength becomes insufficient. When the thickness exceeds 200 μm, the capacity of the metal layer becomes excessive and the residual stress increases, and cracks occur in the ceramic member in a short time, resulting in a decrease in strength. Will be.

【0037】そのために、前記金属層の厚さは、20〜
200μmに特定され、金属層を被着形成する上での作
業性を考慮すると20〜150μmが好適となる。
For this purpose, the thickness of the metal layer is 20 to
The thickness is specified to be 200 μm, and 20 to 150 μm is preferable in consideration of workability in forming a metal layer.

【0038】次に、本発明では、金属部材と金属層との
接着形態として、金属部材の接合部周囲のセラミック部
材に応力の集中を避けるためには、該金属部材の側面と
金属層が接着してメニスカス部を形成していないことが
最も望ましく、前記金属層がメニスカス部あるいは山状
の盛り上がりを形成しても、金属部材の外周側面とは金
属層が接着していなければ良いものである。
Next, in the present invention, in order to avoid concentration of stress on the ceramic member around the joint of the metal member, the side surface of the metal member is bonded to the metal layer in the form of bonding between the metal member and the metal layer. It is most preferable that the metal layer does not form a meniscus portion. Even if the metal layer forms a meniscus portion or a mountain-like swell, it is sufficient that the metal layer does not adhere to the outer peripheral side surface of the metal member. .

【0039】従って、前記金属部材の外周側面には金属
層が接着せず、セラミック部材との当接面側でのみ金属
層が接着しているようにすべく、接合方法や接合温度、
接合圧力等の接合条件を制御するか、あるいはレーザー
トリミングや研削等により不要な部分を除去したり、又
は、金属部材の外周側面にBN等の耐熱性を有する離型
剤を予め塗布して溶融接合する等の必要があり、なかで
も簡便な方法としては、例えば、静的な振動を加えて接
合する超音波接合法であれば、大きく溶融したり、不要
部を除去したり、予め離型剤を塗布したりすることもな
く目的が達成でき、好都合である。
Accordingly, the joining method, the joining temperature, and the like are set so that the metal layer does not adhere to the outer peripheral side surface of the metal member, and the metal layer adheres only to the contact surface side with the ceramic member.
Control bonding conditions such as bonding pressure, or remove unnecessary parts by laser trimming or grinding, or apply a heat-resistant release agent such as BN to the outer peripheral surface of the metal member in advance and melt. It is necessary to join, etc. Among them, as a simple method, for example, in the case of an ultrasonic joining method in which static vibration is applied to join, a large melting or unnecessary portion is removed, or the mold is released in advance. The purpose can be achieved without applying an agent, which is convenient.

【0040】又、前記金属部材と金属層との接合は、必
要な強度を確保できれば全面に接合する必要がないこと
は言うまでもないが、熱膨張差による応力が集中するこ
とを避けるためには、前記金属部材の外周部と金属層の
外周部のいずれの縁とも重ならないように接合すること
が望ましい。
It is needless to say that the metal member and the metal layer need not be bonded to the entire surface as long as the required strength can be secured. It is desirable that the outer peripheral portion of the metal member and the outer peripheral portion of the metal layer be joined so as not to overlap any edge.

【0041】次に、図2は、本発明のセラミックヒータ
の一例を示す外観の図であり、図3は、本発明のセラミ
ックヒータの要部の断面を拡大し、X線マイクロアナリ
シス(EPMA)による金属層に拡散した電極金具成分
の面分析の結果を重ねて記載した断面図である。
Next, FIG. 2 is an external view showing an example of the ceramic heater of the present invention, and FIG. 3 is an enlarged cross-sectional view of a main part of the ceramic heater of the present invention. FIG. 9 is a cross-sectional view in which the results of surface analysis of electrode fitting components diffused into a metal layer by the method are overlapped.

【0042】図2及び図3において、9はセラミック発
熱体10と電極金具11を金属層4を介して接合したセ
ラミックヒータであり、セラミック発熱体10は無機導
電材から成る発熱抵抗体(不図示)とセラミック焼結体
から成る絶縁体14で構成され、発熱抵抗体に接続した
タングステン(W)等のリード線15が電極取り出し部
16と電気的に接続され、該電極取り出し部16が、N
iリードピン17をスポット溶接した電極金具11と金
属層4を介して電気的に接合されてセラミックヒータ9
が形成されている。
2 and 3, reference numeral 9 denotes a ceramic heater in which a ceramic heating element 10 and an electrode fitting 11 are joined via a metal layer 4. The ceramic heating element 10 is a heating resistor (not shown) made of an inorganic conductive material. ) And an insulator 14 made of a ceramic sintered body, and a lead wire 15 made of tungsten (W) or the like connected to the heating resistor is electrically connected to an electrode lead-out portion 16.
The electrode fitting 11 to which the i-lead pin 17 is spot-welded is electrically connected via the metal layer 4 to the ceramic heater 9.
Are formed.

【0043】本発明において、前記電極金具11は、例
えば、スポット溶接されたNiリードピン17を避けて
電極金具11の両サイドをセラミック発熱体10との当
接面にほぼ垂直に加圧しながら超音波接合を行うことに
より、電極金具11の側面13へ溶融した金属層が接着
することなく接合することが可能となる。
In the present invention, the electrode fitting 11 is, for example, an ultrasonic wave while pressing both sides of the electrode fitting 11 substantially perpendicularly to the contact surface with the ceramic heating element 10 avoiding the spot welded Ni lead pin 17. By performing the bonding, the molten metal layer can be bonded to the side surface 13 of the electrode fitting 11 without bonding.

【0044】その場合、電極金具11と金属層4の間に
は、Niリードピン17を避けて接合したことによる空
隙18が生じると共に、電極金具成分12の金属層4へ
の拡散は、金属層4の厚さにかかわらず電極金具11と
の界面から10μm以内の深さまでに収まり、金属層4
の組成変化による硬度の増加はほとんど見られず、従っ
て応力の増加も認められないことから、最も簡便な接合
方法である。
In this case, a gap 18 is formed between the electrode fitting 11 and the metal layer 4 by avoiding the Ni lead pin 17, and the electrode fitting component 12 diffuses into the metal layer 4. Of the metal layer 4 regardless of the thickness of the metal layer 4.
This is the simplest joining method since there is hardly any increase in the hardness due to the change in the composition and no increase in the stress is observed.

【0045】前記電極金具11は、既に詳述した金属部
材がいずれも同様に採用でき、更に、リードピン17と
してNi線等の軟質金属線をスポット溶接等により接続
して用いることにより、セラミックヒータとして振動が
加わるような稼働条件下では、該振動が直接、接合部に
伝わる等の物理的な負荷を軽減することから、より接合
部の剥離等の問題を回避することもできる。
As the electrode fitting 11, any of the metal members described in detail above can be similarly used. Further, a soft metal wire such as a Ni wire is connected as the lead pin 17 by spot welding or the like and used as a ceramic heater. Under operating conditions in which vibration is applied, the physical load such as transmission of the vibration directly to the joint is reduced, so that problems such as separation of the joint can be further avoided.

【0046】又、前記セラミックヒータが内燃機関のグ
ロープラグ等に適用される場合には、該セラミックヒー
タは、直流電源で稼働されるためマイグレーションによ
る短絡を防止するという観点からは、前記金属層として
は、金(Au)を主成分とし、活性金属としてバナジウ
ム(V)又はチタン(Ti)を含有するものが最適であ
る。
When the ceramic heater is applied to a glow plug of an internal combustion engine or the like, the ceramic heater is operated by a DC power supply, and therefore, from the viewpoint of preventing a short circuit due to migration, the ceramic heater is used as the metal layer. Most preferably, the main component is gold (Au) and contains vanadium (V) or titanium (Ti) as an active metal.

【0047】尚、本発明のセラミック発熱体を構成する
無機導電材から成る発熱抵抗体は、タングステン
(W)、モリブデン(Mo)、チタン(Ti)等の高融
点金属、あるいはタングステンカーバイド(WC)、珪
化モリブデン(MoSi2 )、窒化チタン(TiN)等
の高融点金属の炭化物や珪化物、窒化物等を主成分とす
る抵抗体が挙げられ、絶縁体の窒化物系セラミック焼結
体との熱膨張差、及び高温度下でもそれらと反応し難い
という点からは、WCあるいはWを主成分とするものが
好適である。
The heating resistor made of an inorganic conductive material constituting the ceramic heating element of the present invention is made of a refractory metal such as tungsten (W), molybdenum (Mo), titanium (Ti), or tungsten carbide (WC). , Molybdenum silicide (MoSi 2 ), titanium nitride (TiN), and other high-melting point metals such as carbides, silicides, and nitrides as main components. A material containing WC or W as a main component is preferred from the viewpoint of a difference in thermal expansion and a difficulty in reacting with them even at a high temperature.

【0048】尚、前記発熱抵抗体を成す無機導電材の構
成成分は、絶縁体の窒化物系セラミック焼結体に添加し
て熱膨張差や反応性を調整しても良いことは言うまでも
ない。
It goes without saying that the constituents of the inorganic conductive material forming the heating resistor may be added to the insulating nitride ceramic sintered body to adjust the thermal expansion difference and reactivity.

【0049】一方、前記無機導電材の主成分に対して、
その成長を制御して絶縁体との熱膨張差によるクラック
を防止し、かつ抵抗を増大させないようにするために、
分散剤として窒化珪素(Si3 4 )、窒化硼素(B
N)、窒化アルミニウム(AlN)あるいは炭化珪素
(SiC)の一種以上を含有させても良く、その含有量
は主成分100重量部に対して、例えば、窒化珪素(S
3 4 )は5〜30重量部、窒化硼素(BN)は1〜
20重量部、窒化アルミニウム(AlN)は1〜15重
量部、炭化珪素(SiC)は3〜15重量部の割合であ
れば好適である。
On the other hand, with respect to the main component of the inorganic conductive material,
In order to prevent the crack due to the thermal expansion difference with the insulator by controlling the growth and not to increase the resistance,
Silicon nitride (Si 3 N 4 ), boron nitride (B
N), aluminum nitride (AlN) or silicon carbide (SiC), and the content thereof may be, for example, silicon nitride (S
i 3 N 4 ) is 5 to 30 parts by weight, and boron nitride (BN) is 1 to 30 parts by weight.
20 parts by weight, 1 to 15 parts by weight of aluminum nitride (AlN) and 3 to 15 parts by weight of silicon carbide (SiC) are preferable.

【0050】他方、前記発熱抵抗体は、ブロック状や線
状、又は層状のいずれでも良く、前記絶縁体をその間に
介してU字状に曲げたり、コイル状に巻回したり、平面
にジグザグに折り曲げたりして発熱抵抗体を平面視した
時にU字状やW字状等、任意の形状を成すものとし、絶
縁体に担持したり、接合したり、あるいは埋設したりで
きる他、前記各種形状で絶縁体を介して2層以上の積層
構造とする等、各種形状形態で適用でき、その両端には
W材等から成るリード材を電気的に接続したものでも良
い。
On the other hand, the heat generating resistor may be in a block shape, a linear shape, or a layer shape, and may be bent in a U shape, wound in a coil shape, or zigzag in a plane with the insulator interposed therebetween. When the heating resistor is bent and viewed in a plan view, the heating resistor has an arbitrary shape such as a U-shape or a W-shape. The heating resistor can be supported on an insulator, joined, or buried. For example, a laminated structure of two or more layers via an insulator may be applied, and a lead material made of a W material or the like may be electrically connected to both ends.

【0051】[0051]

【実施例】次に、本発明を以下に詳述するようにして評
価した。先ず、窒化珪素(Si3 4 )粉末にイッテル
ビウム(Yb)やイットリウム(Y)等の希土類元素の
酸化物から成る焼結助剤を添加したセラミック原料粉
末、及びアルミナ(Al2 3 )粉末にシリカ(SiO
2 )、カルシア(CaO)を添加したセラミック原料粉
末、及び窒化アルミニウム(AlN)に酸化エルビウム
(Er2 3 )を焼結助剤として添加した原料粉末を周
知のプレス成形法等で平板状の成形体に成形し、該成形
体の一端側の表面にWCを主成分とするペーストを用い
てスクリーン印刷法によりU字状のパターンで発熱部を
形成し、同様にしてセラミック成形体の他端側から側面
にかけて電極部を形成する。
Next, the present invention was evaluated as described in detail below. First, a ceramic raw material powder obtained by adding a sintering aid composed of an oxide of a rare earth element such as ytterbium (Yb) or yttrium (Y) to a silicon nitride (Si 3 N 4 ) powder, and an alumina (Al 2 O 3 ) powder Silica (SiO
2 ) A ceramic raw material powder to which calcia (CaO) is added, and a raw material powder obtained by adding erbium oxide (Er 2 O 3 ) to aluminum nitride (AlN) as a sintering aid are formed into a flat plate by a known press molding method or the like. A heat-generating part is formed in a U-shaped pattern by a screen printing method using a paste mainly composed of WC on the surface on one end side of the molded body, and the other end of the ceramic molded body is similarly formed. An electrode portion is formed from the side to the side surface.

【0052】次に、前記発熱部と電極部を電気的に接続
するようにリード線を載置し、その上に別のセラミック
成形体を重ねた後、還元性雰囲気下、1700〜190
0℃の温度で焼成一体化してセラミック発熱体を作製し
た。
Next, a lead wire is placed so as to electrically connect the heating portion and the electrode portion, another ceramic molded body is placed thereon, and then, under a reducing atmosphere, 1700 to 190
A ceramic heating element was produced by firing and integrating at a temperature of 0 ° C.

【0053】その後、前記セラミック発熱体を研削加工
により円柱形状に加工し、露出した電極部に表1に示す
金属層成分を含有したペーストを用いてスクリーン印刷
法等により転写し、800〜1300℃の真空雰囲気中
で焼き付け処理を行って、幅3mm×長さ4mmの金属
層を被着形成した。
Thereafter, the ceramic heating element was processed into a cylindrical shape by grinding, and transferred to the exposed electrode portion by a screen printing method or the like using a paste containing a metal layer component shown in Table 1, and then heated to 800 to 1300 ° C. A metal layer having a width of 3 mm and a length of 4 mm was formed by applying a baking process in a vacuum atmosphere.

【0054】かくして得られたセラミック発熱体に、幅
2mm×長さ3mm×厚さ0.2mmのFe−Ni−C
o合金に予めNiリードピンをスポット溶接により接続
した電極金具を表1に示す各種接合方法により接合した
後、評価用のセラミックヒータの一部を用いて、電極金
具の接合部を含む部分を切断し、その断面を走査型電子
顕微鏡により観察すると共に、金属層の厚さを計測し
た。
The thus obtained ceramic heating element is provided with a 2 mm wide × 3 mm long × 0.2 mm thick Fe—Ni—C
After the electrode fittings in which the Ni lead pins were previously connected to the o-alloy by spot welding were joined by various joining methods shown in Table 1, a part including the joints of the electrode fittings was cut using a part of the ceramic heater for evaluation. The cross section was observed with a scanning electron microscope, and the thickness of the metal layer was measured.

【0055】又、前記断面において、電極金具がセラミ
ック発熱体と当接する面の長さに対する金属層が実際に
接合されている長さの比率を接合面積(%)として求
め、評価した。
Further, in the above-mentioned cross section, the ratio of the length of the metal layer actually joined to the length of the surface of the electrode fitting in contact with the ceramic heating element was obtained as a joining area (%) and evaluated.

【0056】次いで、X線マイクロアナリシス(EPM
A)で金属層に拡散した電極金具成分の面分析を行い、
該電極金具成分が含有される金属層の電極金具の界面か
らの深さを計測した。
Next, an X-ray microanalysis (EPM)
The surface analysis of the electrode fitting component diffused in the metal layer in A) is performed,
The depth of the metal layer containing the electrode fitting component from the interface of the electrode fitting was measured.

【0057】[0057]

【表1】 [Table 1]

【0058】[0058]

【表2】 [Table 2]

【0059】一方、他の評価用のセラミックヒータにつ
いて、電極金具の接合強度及び電極金具の接合部を含む
セラミックヒータの抗折強度、及び冷熱サイクル試験後
の抵抗変化率を測定すると共に、冷熱サイクル試験後の
セラミックヒータを電極金具の接合部を含む部分で切断
してその断面を観察した。
On the other hand, for the other ceramic heaters for evaluation, the joining strength of the electrode fittings, the bending strength of the ceramic heater including the joining parts of the electrode fittings, and the resistance change rate after the cooling / heating cycle test were measured. After the test, the ceramic heater was cut at a portion including the joint of the electrode fittings, and the cross section was observed.

【0060】前記接合強度は、評価用のセラミックヒー
タを固定し、セラミック発熱体に接合した電極金具のN
iリードピンをセラミック発熱体と垂直方向に引っ張
り、接合部又はNiリードピンあるいは電極金具が破断
した時の荷重(kgf)を計測して破断モードと共に評
価した。
The bonding strength is determined by fixing the ceramic heater for evaluation and measuring the N of the electrode fitting bonded to the ceramic heating element.
The i-lead pin was pulled in a direction perpendicular to the ceramic heating element, and the load (kgf) when the joint, the Ni lead pin or the electrode fitting was broken was measured and evaluated together with the breaking mode.

【0061】又、前記抗折強度は、評価用のセラミック
ヒータを把持して電極金具の接合部を加圧することによ
り、片持ち抗折試験を行い評価した。
The bending strength was evaluated by performing a cantilever bending test by holding the ceramic heater for evaluation and pressing the joint of the electrode fittings.

【0062】更に、前記冷熱サイクル試験は、評価用の
セラミックヒータを室温と500℃の温度雰囲気にそれ
ぞれ曝すのを1サイクルとして繰り返し、3000サイ
クル後のセラミックヒータの抵抗値を測定し、該試験前
の初期抵抗値に対する抵抗変化率を求めると共に、該試
験後のセラミックヒータを電極金具を含む断面で切断し
てクラックの有無を観察した。
Further, in the cooling / heating cycle test, the exposure of the ceramic heater for evaluation to the room temperature and the atmosphere of 500 ° C. was repeated as one cycle, and the resistance value of the ceramic heater after 3000 cycles was measured. The resistance change rate with respect to the initial resistance value was determined, and the ceramic heater after the test was cut along a cross section including the electrode fittings to observe the presence or absence of cracks.

【0063】[0063]

【表3】 [Table 3]

【0064】表から明らかなように、本発明の請求範囲
外である試料番号1、8、11、15では、いずれも電
極金具の接合強度が8kgf以下であり、同じく試料番
号10、14、17、18、27、28、30では、電
極金具の接合強度は8kgfを越えるものの、冷熱サイ
クル試験後の抵抗変化率が3.0以上と大であり、セラ
ミック発熱体にクラックの発生が認められた。
As is clear from the table, in Sample Nos. 1, 8, 11 and 15, which are outside the scope of the present invention, the bonding strength of the electrode fittings is 8 kgf or less, and Sample Nos. 10, 14, 17 , 18, 27, 28, and 30, although the bonding strength of the electrode fitting exceeded 8 kgf, the resistance change rate after the thermal cycle test was as large as 3.0 or more, and cracks were observed in the ceramic heating element. .

【0065】それに対して、本発明では、いずれも電極
金具の接合強度は8kgfを越え、しかも冷熱サイクル
試験後の抵抗変化率は2.6以下と小さく、セラミック
発熱体にクラックは認められず、電極金具の接合部周囲
の応力集中が効果的に緩和されていることが分かる。
On the other hand, in the present invention, the joint strength of the electrode fittings exceeded 8 kgf, the rate of change in resistance after the thermal cycle test was as small as 2.6 or less, and no cracks were observed in the ceramic heating element. It can be seen that the stress concentration around the joint of the electrode fitting is effectively alleviated.

【0066】尚、前記実施例ではセラミックヒーターに
ついて説明したが、本発明の接合形態は前記実施例に限
定されるものではなく、本発明の主旨を逸脱しないもの
であればいかなるものでも良く、例えばIGBT等のパ
ワートランジスター等を実装するセラミック焼結体基板
表面に形成したメタライズ部に対する電極等の金属片の
接合に適用しても同様の効果を奏するものである。
In the above embodiment, the ceramic heater has been described. However, the joining form of the present invention is not limited to the above embodiment, and may be of any type without departing from the gist of the present invention. The same effect can be obtained by applying the present invention to the joining of a metal piece such as an electrode to a metallized portion formed on the surface of a ceramic sintered body substrate on which a power transistor such as an IGBT is mounted.

【0067】[0067]

【発明の効果】叙上の如く、本発明のセラミック部材と
金属部材の接合体は、金属層への金属部材成分の溶出拡
散を金属部材との界面から10μm以内に抑制し、該金
属部材がセラミック部材との当接面側で20〜200μ
mの厚さの金属層を接着して接合したことから、両部材
間に介在する金属層への金属部材成分の溶出拡散による
応力増加が生じず、また金属部材の側面には金属層が接
着しておらず、金属部材の接合部周囲への応力集中が抑
制されると共に、接合時の物理的な応力が緩和され金属
層自体の応力増加が抑制され、室温と高温環境下に繰り
返し曝しても、セラミック部材にクラックが発生せず、
高い強度を維持した電気的な接続状態の劣化を起こさな
い極めて信頼性の高いセラミック部材と金属部材の接合
体及びセラミックヒータを提供することができる。
As described above, in the joined body of the ceramic member and the metal member of the present invention, the elution and diffusion of the metal member component into the metal layer is suppressed within 10 μm from the interface with the metal member, and the metal member is 20-200μ on the contact surface side with the ceramic member
Since the metal layer with a thickness of m is bonded and bonded, no stress increase occurs due to elution and diffusion of the metal component into the metal layer interposed between the two members, and the metal layer is bonded to the side surface of the metal member The stress concentration around the joint of the metal member is suppressed, and the physical stress at the time of joining is reduced, the increase in the stress of the metal layer itself is suppressed, and repeated exposure to room temperature and high temperature environment Also, cracks do not occur in the ceramic member,
An extremely reliable joined body of a ceramic member and a metal member and a ceramic heater which maintain high strength and do not cause deterioration of an electrical connection state can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のセラミック部材と金属部材の接合体を
示す一例の要部を拡大し、X線マイクロアナリシス(E
PMA)による金属層に拡散した金属部材成分の面分析
の結果を重ねて記載した断面図である。
FIG. 1 is an enlarged view of a main part of an example showing a joined body of a ceramic member and a metal member according to the present invention, and is shown by X-ray microanalysis (E).
FIG. 9 is a cross-sectional view in which the results of surface analysis of metal component components diffused into the metal layer by PMA) are superimposed.

【図2】本発明のセラミックヒータの一例を示す外観の
図である。
FIG. 2 is an external view showing an example of the ceramic heater of the present invention.

【図3】本発明のセラミックヒータの一例の要部の断面
を拡大し、X線マイクロアナリシス(EPMA)による
金属層に拡散した電極金具成分の面分析の結果を重ねて
記載した断面図である。
FIG. 3 is a cross-sectional view in which a cross-section of a main part of an example of the ceramic heater of the present invention is enlarged, and a result of a surface analysis of an electrode fitting component diffused in a metal layer by X-ray microanalysis (EPMA) is superimposed. .

【図4】従来のセラミック部材と金属部材の接合体の要
部を拡大し、X線マイクロアナリシス(EPMA)によ
る金属層に拡散した金属部材成分の面分析の結果を重ね
て記載した断面図である。
FIG. 4 is a cross-sectional view in which a main part of a conventional joined body of a ceramic member and a metal member is enlarged, and a result of a surface analysis of a metal member component diffused into a metal layer by X-ray microanalysis (EPMA) is superimposed. is there.

【図5】従来のセラミックヒータの要部の断面を拡大
し、X線マイクロアナリシス(EPMA)による金属層
に拡散した電極金具成分の面分析の結果を重ねて記載し
た断面図である。
FIG. 5 is a cross-sectional view in which a cross section of a main part of a conventional ceramic heater is enlarged, and a result of a surface analysis of an electrode fitting component diffused in a metal layer by X-ray microanalysis (EPMA) is superimposed.

【符号の説明】[Explanation of symbols]

1 セラミック部材と金属部材の接合体 2 セラミック部材 3 金属部材 4 金属層 5 界面 6 金属部材成分 7 厚さ 8 当接面側 9 セラミックヒータ 10 セラミック発熱体 11 電極金具 12 電極金具成分 DESCRIPTION OF SYMBOLS 1 Joined body of ceramic member and metal member 2 Ceramic member 3 Metal member 4 Metal layer 5 Interface 6 Metal member component 7 Thickness 8 Contact surface side 9 Ceramic heater 10 Ceramic heating element 11 Electrode fitting 12 Electrode fitting component

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】厚さが20〜200μmの金属層を介して
接合したセラミック部材と金属部材の接合体であって、
前記金属部材は金属層とセラミック部材との当接面側で
接着しており、該金属層は金属部材との界面から10μ
m以内に拡散した金属部材成分を含有していることを特
徴とするセラミック部材と金属部材の接合体。
1. A joined body of a ceramic member and a metal member joined via a metal layer having a thickness of 20 to 200 μm,
The metal member is bonded on the contact surface side between the metal layer and the ceramic member, and the metal layer is 10 μm from the interface with the metal member.
A joined body of a ceramic member and a metal member, comprising a metal member component diffused within m.
【請求項2】前記セラミック部材が、窒化珪素質焼結体
であることを特徴とする請求項1に記載のセラミック部
材と金属部材の接合体。
2. The joined body of a ceramic member and a metal member according to claim 1, wherein said ceramic member is a silicon nitride sintered body.
【請求項3】前記金属層は、金(Au)及びニッケル
(Ni)を主成分とすることを特徴とする請求項1又は
請求項2のいずれかに記載のセラミック部材と金属部材
の接合体。
3. The joined body of a ceramic member and a metal member according to claim 1, wherein the metal layer contains gold (Au) and nickel (Ni) as main components. .
【請求項4】前記金属層は、バナジウム(V)又はモリ
ブデン(Mo)の一種以上を含有することを特徴とする
請求項1乃至請求項3のいずれかに記載のセラミック部
材と金属部材の接合体。
4. The bonding between a ceramic member and a metal member according to claim 1, wherein the metal layer contains at least one of vanadium (V) and molybdenum (Mo). body.
【請求項5】無機導電材の発熱抵抗体とセラミック焼結
体とから成るセラミック発熱体と電極金具を厚さが20
〜200μmの金属層を介して接合したセラミックヒー
タであって、前記電極金具は金属層とセラミック発熱体
との当接面側で接着しており、該金属層は電極金具との
界面から10μm以内に拡散した電極金具成分を含有し
ていることを特徴とするセラミックヒータ。
5. A ceramic heating element comprising a heating resistor made of an inorganic conductive material and a ceramic sintered body and an electrode fitting having a thickness of 20 mm.
A ceramic heater joined through a metal layer of about 200 μm, wherein the electrode fitting is adhered on the contact surface side between the metal layer and the ceramic heating element, and the metal layer is within 10 μm from the interface with the electrode fitting. A ceramic heater comprising an electrode fitting component diffused into a ceramic heater.
【請求項6】前記セラミック発熱体を構成するセラミッ
ク焼結体が、窒化珪素質焼結体であることを特徴とする
請求項5に記載のセラミックヒータ。
6. The ceramic heater according to claim 5, wherein the ceramic sintered body constituting the ceramic heating element is a silicon nitride sintered body.
【請求項7】前記金属層は、金(Au)及びニッケル
(Ni)を主成分とすることを特徴とする請求項5又は
請求項6のいずれかに記載のセラミックヒータ。
7. The ceramic heater according to claim 5, wherein said metal layer contains gold (Au) and nickel (Ni) as main components.
【請求項8】前記金属層は、バナジウム(V)又はモリ
ブデン(Mo)の一種以上を含有することを特徴とする
請求項5乃至請求項7のいずれかに記載のセラミックヒ
ータ。
8. The ceramic heater according to claim 5, wherein said metal layer contains at least one of vanadium (V) and molybdenum (Mo).
JP14937698A 1998-05-29 1998-05-29 Ceramic heater Expired - Fee Related JP3924378B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14937698A JP3924378B2 (en) 1998-05-29 1998-05-29 Ceramic heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14937698A JP3924378B2 (en) 1998-05-29 1998-05-29 Ceramic heater

Publications (2)

Publication Number Publication Date
JPH11343180A true JPH11343180A (en) 1999-12-14
JP3924378B2 JP3924378B2 (en) 2007-06-06

Family

ID=15473791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14937698A Expired - Fee Related JP3924378B2 (en) 1998-05-29 1998-05-29 Ceramic heater

Country Status (1)

Country Link
JP (1) JP3924378B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021166309A1 (en) * 2020-02-21 2021-08-26 日本碍子株式会社 Electrically heated carrier and exhaust gas purification device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021166309A1 (en) * 2020-02-21 2021-08-26 日本碍子株式会社 Electrically heated carrier and exhaust gas purification device
JPWO2021166309A1 (en) * 2020-02-21 2021-08-26

Also Published As

Publication number Publication date
JP3924378B2 (en) 2007-06-06

Similar Documents

Publication Publication Date Title
KR100841271B1 (en) Ceramic heater and method for manufacture thereof
JP3921327B2 (en) Ceramic heater and manufacturing method thereof
JP4136648B2 (en) Dissimilar material joined body and manufacturing method thereof
JP3949459B2 (en) Joined body of different materials and manufacturing method thereof
JP2011034979A (en) Ceramic heater and hair iron using the same
JP4092172B2 (en) Method for manufacturing ceramic heater and method for manufacturing glow plug
JP2002270339A (en) Ceramic heater
JP2000088248A (en) Ceramic heater
JP3121985B2 (en) Silicon nitride ceramic heater
JPWO2006011520A1 (en) Ceramic heater and heating iron using the same
JP3934993B2 (en) Ceramic heater and manufacturing method thereof
JP3924378B2 (en) Ceramic heater
JP3799195B2 (en) Ceramic heater
JP4688376B2 (en) Ceramic heater
JP2004119312A (en) Ceramic heater
CN100596248C (en) Ceramic heater and manufacturing method of same
JP3762103B2 (en) Ceramic heater
JP2002257341A (en) Ceramic glow plug
JP2000133419A (en) Ceramic heater
JP3977965B2 (en) Heater device
JP4044244B2 (en) Silicon nitride ceramic heater
JP2017134912A (en) Ceramic heater
JP3588227B2 (en) Ceramic heater
JP3366472B2 (en) Ceramic heater and method of manufacturing the same
JP4153840B2 (en) Ceramic heater

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061114

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070226

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110302

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110302

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120302

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120302

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130302

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130302

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140302

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees