JP2004119312A - Ceramic heater - Google Patents

Ceramic heater Download PDF

Info

Publication number
JP2004119312A
JP2004119312A JP2002284364A JP2002284364A JP2004119312A JP 2004119312 A JP2004119312 A JP 2004119312A JP 2002284364 A JP2002284364 A JP 2002284364A JP 2002284364 A JP2002284364 A JP 2002284364A JP 2004119312 A JP2004119312 A JP 2004119312A
Authority
JP
Japan
Prior art keywords
stress relaxation
ceramic heater
ceramic
thickness
side end
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002284364A
Other languages
Japanese (ja)
Other versions
JP3811440B2 (en
Inventor
Yuuki Fujino
藤野 勇規
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2002284364A priority Critical patent/JP3811440B2/en
Publication of JP2004119312A publication Critical patent/JP2004119312A/en
Application granted granted Critical
Publication of JP3811440B2 publication Critical patent/JP3811440B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Resistance Heating (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a ceramic heater with excellent thermal shock resistance and high temperature stability as well as good quick warm-up characteristics, maintaining a high joint strength, without bringing forth abnormal heat generation or wire break due to resistance change by a crack caused by thermal expansion difference between ceramics and metal even under thermal history of heating and cooling used. <P>SOLUTION: Of the ceramic heater provided with a heating part and an electrode taking-out part connected to it inside a ceramic body, with an end part of the electrode taking-out part exposed to the surface and with a stress relaxation material jointed with the use of a brazing material, a thickness of the stress relaxation material at the side end part is made thinner than that at a center. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、石油ファンヒータ等の各種燃焼機器の点火用ヒータ、酸素センサ等の各種センサや測定機器の加熱用ヒータ、自動車用グロープラグなどに利用されるセラミックヒータに関するものである。
【0002】
【従来の技術】
従来より各種電子部品の絶縁基体として利用されてきた酸化物系のセラミックスに加え、近年、耐熱性及び耐食性、耐摩耗性、電気絶縁性により優れた、高強度でかつ比重が小さいという顕著な特徴を有する非酸化物系セラミックスが、化学プラントや工作機械をはじめとする各種産業機械装置や、自動車用のディーゼルエンジン等の内燃機関部品として多用されるようになっている。
【0003】
例えば、ディーゼル機関の始動時やアイドリング時に、副燃焼室内を急速に予熱するために用いられる内燃機関用グロープラグや、内燃機関の排気ガス中の酸素濃度を検知し、排気ガス制御を行うための酸素センサ素子の活性化を促進するために内装されるヒータ等の各種補助加熱用ヒータとしては、従来の急速昇温特性や、耐摩耗性、耐食性等の耐久性に劣る、発熱抵抗線と耐熱絶縁粉末とを耐熱金属製筒内に埋設したシーズヒータに代わり、熱伝導性が良好な電気絶縁性セラミック焼結体に、高融点金属やその化合物、及びそれらを主成分とする各種無機導電材から成る発熱抵抗体を担持したり、接合したり、あるいは埋設したりして一体化したセラミックヒータが広く利用されるようになっている。
【0004】
しかしながら、セラミック部材と金属部材の接合体においては、両部材の熱膨張率が大きく異なることから、該熱膨張差に起因する歪み、即ち、残留応力が両部材の接合部近辺、例えば、前記各種ヒータでは、セラミック発熱抵抗体の電極取り出し部と電極金具との接合部、とりわけその接合界面に発生し、セラミック部材と金属部材との接合強度の低下や、金属部材の収縮力によるセラミック部材あるいは金属部材自体の破壊や、接合界面からの剥離を招きやすいという欠点があった。
【0005】
従来のセラミックヒータの構造を図1を用いて説明する。たとえば、特許文献1や特許文献2に示されているように、不図示のセラミックグリーンシートの上面に発熱部2と電極取り出し部4をプリント形成し、これらの間を接続するようにタングステンリード9を載置し、前述と同様のセラミックグリーンシートを重ねて、ホットプレス焼成し、セラミックヒータ1の焼結体を得る。その後、電極取り出し部4の端面が露出するようにセラミックヒータ1焼結体の端面を研磨した後、ロウ材5をプリント形成し、真空中800〜1300℃で焼き付けする。その上に、リード線7を接合した応力緩和材6を載置してロウ付けすることにより、セラミック体3とリード線7との熱膨張差を解消し、高温まで接合強度を維持することができる。
【0006】
【特許文献1】
特開2000−21556号公報
【特許文献2】
特開平2−78174号公報
【0007】
【発明が解決しようとする課題】
しかしながら、前記応力緩和材6を介してセラミック体3と金属のリード線7を接合し、ロウ材5として接合強度が高い活性金属を含有するロウ材を用いて接合したとしても、セラミック体3にマイクロクラックが発生することは防げず、このマイクロクラックは、電極引き出し部4に達して抵抗変化を引き起こすという問題があった。また、応力緩和材6の端部の厚みが中央部の厚みと同等もしくは厚い状態であったため、残留応力が大きくマイクロクラックの発生に繋がる原因となっていた。
【0008】
従来は、一般家庭用電気製品等の数十Ωのヒータにおいてこのマイクロクラックによる抵抗変化は微少で発熱に影響を与えるものではなかった。近年、低電圧で用いる低抵抗のヒータにおいてはこのマイクロクラックによる抵抗変化がヒータ全体抵抗に対して占める割合は大きく、その結果、電極取り出し部4が発熱し、耐久性が低くなるという問題点が発生するようになった。
【0009】
即ち、電極取り出し部4の温度を想定した40℃と350℃の温度に繰り返し加熱冷却する耐久試験では短期的な試験には耐えるものの、10,000サイクルを越える長期的な加熱冷却の反復に対しては、セラミックヒータ1のろう付け部周辺に残留応力が発生し、前記加熱冷却の繰り返しによりクラックが成長して接合強度が低下し、その結果、接合した応力緩和材6の剥離や、前記クラックから発熱部2が酸化してセラミックヒータ1自体の抵抗変化等を生じて、耐久性が劣化して長期的な信頼性に欠けるという問題点があった。
【0010】
【課題を解決するための手段】
前記課題について調査した結果、電極取り出し部と応力緩和材との接続部において、応力緩和材の中央部に対する周辺部の厚み及び側端部の形状が抵抗変化、耐久性を左右している一つの要因であることを突き止めた。そこで、応力緩和材の周辺部及び側端部の厚み、形状を制御することにより、前記問題点を解消できることを見いだした。これにより、抵抗変化の少ない優れた耐久性を有するセラミックヒ−タを得ることが可能になった。
【0011】
即ち、本発明のセラミックヒータは、セラミック体の内部に発熱部とこれに連続する電極取り出し部を備え、該電極取り出し部の端部を表面に露出させるとともに、応力緩和材をロウ材を用いて接合したセラミックヒータにおいて、上記応力緩和材の厚みが、中央部より側端部が薄くなっていることを特徴とする。
【0012】
また、本発明のセラミックヒータは、上記応力緩和材の側端部の稜線が曲面状であることを特徴とする。
【0013】
【発明の実施の形態】
以下、本発明のセラミックヒータについて、図面に基づき説明する。
【0014】
図1において、セラミックヒータ1は、セラミック体3に発熱部2と電極取り出し部4を埋設し、電極取り出し部4の一端を露出させて、この露出部にロウ材5を備え、リード線7と応力緩和材6を接合した電極金具8をロウ付け等により接合したものである。
【0015】
また、図2は図1(b)の拡大図である。図2で示すように、応力緩和材6の中央部の厚みT2に対して、側端部の厚みT1を小さくし、両者の割合T1/T2を95%以下としてある。そのため、詳細を後述するようにリ−ド線7より通電し、加熱冷却を繰り返しても、耐久性を向上させることができる。
【0016】
セラミック体3にロウ材5を介して、電極金具8を接合した場合、応力緩和材6の側端部にはロウ材5のはい上がりが見られる。そのことにより、ロウ材5が応力緩和材6とセラミック体3の間にメニスカスを形成する。メニスカスが大きければ、残留応力が大きく、クラックが入ってしまい、電極部2への熱サイクル負荷をかけることにより、セラミックヒ−タ1自体の抵抗変化を生じて耐久性が劣化し、長期的な信頼性に欠けるものになっていた。
【0017】
そこで、応力緩和材6の中央部に対する側端部の厚みの割合を小さくすることにより、メニスカスの形成を小さくし、残留応力を抑制することにより、常温付近から高温まで急速に昇温する事を長時間にわたり反復したり、高温下で発熱させて飽和状態で長時間連続稼働させたりしても、リード線7を接続した応力緩和材6との接合部が長期的な加熱冷却(40℃→350℃)の反復に耐える強度を有し、且つ耐熱衝撃性、高温安定性に優れ、昇温特性の良好な耐久性に優れたセラミックヒータ1が得られる。
【0018】
次に、本発明の他の実施形態を説明する。
【0019】
図3は、図2と同じく図1(b)の拡大図であり、応力緩和材6の側端部が曲面となっている。前記応力緩和材6の中央部に対する側端部の厚みの割合を95%以下にして側端部を曲面にすることにより、側端部の厚みをさらに小さくすることによりメニスカスの形成を小さくし、残留応力を抑制することにより、使用中の長期的な加熱冷却(40℃→350℃)の繰り返しにおいても、抵抗変化が小さくセラミックヒータ1の信頼性が大幅に改善することができる。この曲面の曲率半径は、0.5mm以上とすることが好ましい。この曲率半径が0.5mm未満ではロウ材5のせり上がりを防止する効果がなくなるからである。
【0020】
また、応力緩和材6の中央部の厚みは、0.05〜1mm、さらに好ましくは0.1〜0.5mmとすることが好ましい。応力緩和材6の厚みが0.05mm未満ではリード線7を接合する際に応力緩和材6が変形し、その部分のロウ材5の量が増加して、ロウ付け部の強度が低下する恐れがある。また、応力緩和材6の厚みが1.0mmを越えると効力緩和材6とセラミック体3の熱膨張差によりセラミック体3に引張応力が発生しクラックが発生するようになるので好ましくない。
【0021】
また、応力緩衝材6の形状としては、長辺×短辺で1mm×2mm〜4mm×5mm程度とすることが好ましい。応力緩衝材6の寸法が1mm×2mmより小さいと、応力緩衝材6にリード線7を接合する作業性が悪くなる。また、応力緩衝材6の寸法が4mm×5mmを越えると、応力緩衝材6とセラミック体3との熱膨張差によりセラミック体3にクラックが発生しやすくなるので好ましくない。
【0022】
また、応力緩衝材6の端部は、方形ではなく略長円形となるように、角部を1mm以上の曲率半径の曲面となるように加工することが望ましい。これにより、端部への応力集中を防止し、ロウ付け部の耐久性を向上させることができる。
【0023】
また、応力緩衝材6の材質としては、熱膨張率と耐熱性を考慮して、Fe−Ni−Co合金や4−2アロイ、インコネル、ハステロイB等の金属材料からなるものを使用することが好ましい。
【0024】
また、ロウ材と応力緩衝材6との濡れを良くするために、応力緩衝材6の表面にNi等の金属からなるメッキ層を形成しても構わない。
【0025】
また、応力緩和材6の外周は、その全周において上記のように中央部の厚みを側端部の厚みの95%以下とすることが好ましく、より好ましくは80%以下とする。但し、側端部の強度が低下して変形し、ロウ材のメニスカスが大きくなることを防止するために、前記厚みの下限としては30%以上とすることが好ましい。また、側端部の加工については、図2、図3に示したように斜面形状にしたり曲面形状にしたりする以外に、段差を形成して側端部の厚みが小さくなるようにしても構わない。
【0026】
また、図2や図3のような応力緩和材6の側端部の加工は、切削加工やプレス加工もしくは鍛造により加工することができる。
【0027】
本発明のセラミックヒータ1に用いるセラミック体3としては、非酸化物系セラミックスである窒化珪素(Si)や炭化珪素(SiC)、サイアロン、窒化アルミニウム(AlN)等を主成分とし、それぞれ所定の焼結助剤を含有するものを用いることができる。これらのセラミックスはビッカース硬度10GPa以上であり、このような硬度を有する非酸化物系セラミックスを用いれば好適である。
【0028】
また、発熱部2、電極取り出し部4に適用可能な無機導電材としては、タングステン(W)、モリブデン(Mo)、チタン(Ti)等の高融点金属、あるいはタングステンカーバイト(WC)、珪化モリブデン(MoSi)、窒化チタン(TiN)等の高融点金属の炭化物や珪化物、窒化物等を主成分とする抵抗体が挙げられる。非酸化物系のセラミック体3との熱膨張差、及び高温度下でもそれらと反応しがたいという点からは、WCあるいはWを主成分とするものが好適である。
【0029】
一方、前記無機導電材の主成分に対して、その成長を制御してセラミック体3との熱膨張差によるクラックを防止し、かつ電極取り出し部4においては金属部材によるクラックの進展を防止するために窒化珪素(Si)、窒化硼素(BN)、窒化アルミニウム(AlN)あるいは炭化珪素(SiC)の1種以上からなる無機絶縁材を含有させることが望ましい。
【0030】
なお、上記無機導電材の含有率は10〜20重量%、無機導電材の平均粒径は0.1〜1.3μm、とりわけ0.2〜1.0μmの範囲が好ましく、この範囲内でその硬度が11.5GPa以上となるようにすれば良い。
【0031】
ロウ材5としては、主成分が金(Au)またはニッケル(Ni)、銅(Cu)、銀(Ag)パラジウム(Pd)のいずれか一種以上から成るもので、400℃以上の高温で使用しても酸化による劣化がないものを用いる。例えば、直流電源の通電が関与する使用条件下でのマイグレーションの防止を考慮すると、前記ロウ材5は金(Au)が50〜99重量%、ニッケル(Ni)が1〜50重量%の金(Au)とニッケル(Ni)の合金が最適である。
【0032】
また、前記ロウ材5には、活性金属として周期律表第4a族元素のチタン(Ti)、バナジウム(V)、マンガン(Mn)、コバルト(Co)、ニッケル(Ni)、銅(Cu)や、モリブデン(Mo)、シリコン(Si)、ジルコニウム(Zr)、ハフニウム(Hf)のいずれか1種以上を含有することが好ましい。とりわけ、前記ロウ材5のセラミック体3への濡れ性が良く、セラミック体3の強度を劣化させないという点からは、バナジウム(V)またはモリブデン(Mo)の一種以上を活性金属として含有させることが最適であり、かかる活性金属は窒化物や炭化物、水酸化物等の形態で含有させても良い。
【0033】
前記セラミック体3と接合する応力緩和材6としては、該セラミック体3の熱膨張率と近似した値を有する金属、例えば、モリブデン(Mo)やタングステン(W)等の低熱膨張金属や、Fe−Ni系のインバー型合金、あるいはFe−P系のエリンバー型合金、WC−TiC−Co系の超硬合金等が挙げられ、耐酸化性や加工性、及びコストという観点からはFe−Ni−Co系合金あるいはFe−Ni系合金が望ましい。
【0034】
【実施例】
本発明を以下に詳述するようにして評価した。
【0035】
先ず、窒化珪素(Si)粉末にイッテルビウム(Yb)やイットリウム(Y)等の希土類元素の酸化物から成る焼結助剤を添加したセラミック原料粉末を周知のプレス成形法等で平板状の成形体に成形し、該成形体の一端側の表面にWCを主成分とするペーストを用いてスクリーン印刷法によりU字状のパターンで発熱部2を形成し、同様にしてセラミック成形体の他端側から側面にかけて無機導電材と無機絶縁材の混合体からなる電極取り出し部4を形成した。
【0036】
次に、前記発熱部2と電極取り出し部4を電気的に接続するようにリード部を載置し、その上に別のセラミック成形体を重ねた後、還元性雰囲気下、1700〜1900℃の温度で焼成一体化してセラミックヒータ1を作製した。
【0037】
その後、前記セラミックヒータ1を研削することにより、露出した電極取り出し部4にAu、Ni、Vを含有したペーストを用いてスクリーン印刷法によりロウ材5を塗布し、800〜1300℃の真空雰囲気中で焼き付け処理を行って、ロウ材5を被着形成した。
【0038】
次にセラミックヒータ1に、幅2mm×長さ3mm×厚さ0.2mmのFe−Ni−Co合金からなる応力緩和材6に予めNiのリード線7をスポット溶接により接続した電極金具8を800〜1300℃の真空雰囲気中でロウ付けした。
【0039】
かくして得られたセラミックヒータ1の応力緩和材6の中央部の厚みT2に対する側端部の厚みT1の割合T1/T2を種々変化させてテストサンプルを作製し、室温と350℃雰囲気に繰り返し曝す冷熱サイクル試験を10,000サイクル行い抵抗変化率を測定した。その結果を表1に示す。
【0040】
【表1】

Figure 2004119312
【0041】
表1から判るように、本発明の範囲内であるテストサンプルNo.11〜40は抵抗変化率がおおむね2%以下と極めて小さく、且つバラツキも非常に小さい。対して、応力緩和材6の中央部の厚みT2に対する側端部の厚みT1の割合T1/T2が105%又は100%のもの(テストサンプルNo.1〜10)は抵抗変化率が極めて大きく、なおバラツキも非常に大きいことがわかった。上記結果より、応力緩和材6の中央部の厚みT2に対する側端部の厚みT1の割合T1/T2を95%以下とすることにより、セラミックヒータ1の信頼性が大幅に改善されることが確認できた。
【0042】
続いて、前記同様にして得られたセラミックヒ−タ1において、図3の如く、応力緩和材6の側端部の形状を曲率半径1.5mmの曲面とした上で、応力緩和材6の中央部の厚みT2に対する側端部の厚みT1の割合T1/T2を種々変化させてテストサンプルを作製し、室温と350℃雰囲気に繰り返し曝す冷熱サイクル試験を10,000サイクル行い抵抗変化率を測定した。
【0043】
その結果を表2に示す。
【0044】
【表2】
Figure 2004119312
【0045】
表2から判るように、本発明の範囲内であるテストサンプルNo.51〜80は抵抗変化率がおおむね2%以下と極めて小さく、且つバラツキも非常に小さい。対して、応力緩和材6の中央部の厚みT2に対する側端部の厚みT1の割合T1/T2が105%又は100%のもの(サンプルNo.41〜50)は応力緩和材6の側端部が曲面ではないものの結果(表1)と比較すると、抵抗変化率は多少小さくなっているが、2%を超えるものもあり、なおバラツキも大きく、不安定な結果である。上記結果より、応力緩和材6の側端部の面を曲面にすることにより、よりいっそうセラミックヒータ1の信頼性が大幅に改善されることが確認できた。
【0046】
尚、本発明のセラミックヒータ1は前記実施例に限定されるものでなく、前記応力緩和材6の形状は、本発明の主旨を逸脱しないものであればいかなる形状でもよく同様の効果を奏するものである。
【0047】
【発明の効果】
本発明によれば、セラミック体の内部に発熱部とこれに連続する電極取り出し部を備え、該電極取り出し部の端部を表面に露出させるとともに、応力緩和材をロウ材を用いて接合したセラミックヒータにおいて、上記応力緩和材の厚みを、中央部より側端部を薄くしたことによって、ロウ付け部のセラミック体へのクラックの発生及び進展をくいとめ、抵抗変化の少ない優れた耐久性をもったセラミックヒータを得ることができる。
【図面の簡単な説明】
【図1】(a)は本発明のセラミックヒータを示す斜視図であり、(b)はその電極取り出し部の断面図である。
【図2】本発明のセラミックヒータの電極取り出し部の拡大図である。
【図3】本発明のセラミックヒータの電極取り出し部の拡大図である。
【符号の説明】
1  セラミックヒータ
2  発熱部
3  セラミック体
4  電極取り出し部
5  金属層
6  応力緩和材
7  リード線
8  電極金具
9  タングステンリ−ド
T1 応力緩和材の中央部の厚み
T2 応力緩和材の側端部の厚み[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a ceramic heater used for an ignition heater for various combustion devices such as an oil fan heater, a heater for various sensors such as an oxygen sensor and a measuring device, a glow plug for an automobile, and the like.
[0002]
[Prior art]
In addition to oxide-based ceramics that have been used as insulating bases for various electronic components, in recent years, they have outstanding characteristics of high strength and low specific gravity, which are excellent in heat resistance, corrosion resistance, wear resistance, and electrical insulation. Non-oxide ceramics having the above-mentioned properties have been widely used as various industrial machinery such as chemical plants and machine tools, and as internal combustion engine components such as diesel engines for automobiles.
[0003]
For example, when starting or idling a diesel engine, a glow plug for an internal combustion engine used for rapidly preheating the sub-combustion chamber, or an oxygen concentration in the exhaust gas of the internal combustion engine is detected to control exhaust gas. Various auxiliary heating heaters such as heaters installed to promote the activation of the oxygen sensor element are the same as the conventional rapid temperature rise characteristics and the inferior durability such as abrasion resistance and corrosion resistance. Instead of a sheath heater in which insulating powder is buried in a heat-resistant metal cylinder, a high-melting-point metal and its compounds, and various inorganic conductive materials containing them as the main component, are used as an electrically insulating ceramic sintered body with good thermal conductivity. Ceramic heaters integrated by supporting, bonding, or burying a heat generating resistor made of a ceramic heater have been widely used.
[0004]
However, in the joined body of the ceramic member and the metal member, since the coefficients of thermal expansion of the two members are significantly different, distortion due to the difference in the thermal expansion, that is, the residual stress is in the vicinity of the joint of the two members, for example, In the heater, the heat is generated at the joint between the electrode take-out part of the ceramic heating resistor and the electrode fitting, particularly at the joint interface, and the joint strength between the ceramic member and the metal member is reduced. There is a drawback that the member itself is likely to be broken or peeled off from the bonding interface.
[0005]
The structure of a conventional ceramic heater will be described with reference to FIG. For example, as shown in Patent Literature 1 and Patent Literature 2, a heating portion 2 and an electrode take-out portion 4 are printed on the upper surface of a ceramic green sheet (not shown), and a tungsten lead 9 is connected to connect them. Are placed, and the same ceramic green sheets as described above are stacked and baked by hot press to obtain a sintered body of the ceramic heater 1. Then, after polishing the end surface of the ceramic heater 1 so that the end surface of the electrode take-out portion 4 is exposed, the brazing material 5 is printed and baked at 800 to 1300 ° C. in a vacuum. By placing and brazing the stress relieving material 6 to which the lead wire 7 has been bonded, the difference in thermal expansion between the ceramic body 3 and the lead wire 7 can be eliminated, and the bonding strength can be maintained up to high temperatures. it can.
[0006]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 2000-21556 [Patent Document 2]
JP-A-2-78174
[Problems to be solved by the invention]
However, even if the ceramic body 3 and the metal lead wire 7 are joined via the stress relaxation material 6 and the brazing material 5 is joined using a brazing material containing an active metal having a high joining strength, the ceramic body 3 is joined to the ceramic body 3. The occurrence of microcracks cannot be prevented, and there is a problem that the microcracks reach the electrode lead portion 4 and cause a change in resistance. In addition, since the thickness of the end portion of the stress relaxation material 6 was equal to or thicker than the thickness of the central portion, the residual stress was large, leading to the occurrence of microcracks.
[0008]
Conventionally, in a heater of several tens of ohms such as general household electric appliances, the resistance change due to the microcracks is very small and does not affect the heat generation. In recent years, in a low-resistance heater used at a low voltage, the resistance change due to the microcracks occupies a large proportion of the overall resistance of the heater, and as a result, the electrode take-out portion 4 generates heat, and the durability is reduced. Began to occur.
[0009]
That is, in a durability test in which heating and cooling are repeatedly performed at temperatures of 40 ° C. and 350 ° C. assuming the temperature of the electrode extraction portion 4, a short-term test is endurable, but a long-term repetition of heating and cooling exceeding 10,000 cycles is possible. In addition, residual stress is generated around the brazed portion of the ceramic heater 1, cracks grow due to the repetition of the heating and cooling, and the bonding strength is reduced. As a result, peeling of the bonded stress relieving material 6 and cracking As a result, the heat generating portion 2 is oxidized, causing a change in the resistance of the ceramic heater 1 itself and the like, resulting in a problem that the durability is deteriorated and the long-term reliability is lacking.
[0010]
[Means for Solving the Problems]
As a result of investigating the problem, the thickness of the peripheral portion with respect to the central portion of the stress relaxation material and the shape of the side end portion at the connection portion between the electrode take-out portion and the stress relaxation material change resistance, one of which has an influence on durability. Factor. Therefore, it has been found that the above problem can be solved by controlling the thickness and shape of the peripheral portion and the side end portion of the stress relaxation material. This makes it possible to obtain a ceramic heater having a small resistance change and excellent durability.
[0011]
That is, the ceramic heater of the present invention includes a heating portion inside the ceramic body and an electrode extraction portion connected to the heating portion, and exposes an end of the electrode extraction portion to the surface and uses a brazing material as a stress relaxation material. In the joined ceramic heater, the thickness of the stress relieving material is smaller at a side end than at a center.
[0012]
Further, the ceramic heater of the present invention is characterized in that the ridge line at the side end of the stress relaxation material is a curved surface.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the ceramic heater of the present invention will be described with reference to the drawings.
[0014]
In FIG. 1, a ceramic heater 1 has a heat generating part 2 and an electrode extraction part 4 embedded in a ceramic body 3, one end of the electrode extraction part 4 is exposed, and a brazing material 5 is provided in the exposed part. The electrode fitting 8 to which the stress relaxation material 6 is joined is joined by brazing or the like.
[0015]
FIG. 2 is an enlarged view of FIG. As shown in FIG. 2, the thickness T1 of the side end portion is smaller than the thickness T2 of the central portion of the stress relaxation member 6, and the ratio T1 / T2 of both is set to 95% or less. Therefore, the durability can be improved even when current is supplied from the lead wire 7 and heating and cooling are repeated as will be described later in detail.
[0016]
When the electrode fitting 8 is joined to the ceramic body 3 via the brazing material 5, the brazing material 5 rises at the side end of the stress relaxation material 6. Thereby, the brazing material 5 forms a meniscus between the stress relaxation material 6 and the ceramic body 3. If the meniscus is large, the residual stress is large and cracks occur. By applying a thermal cycle load to the electrode portion 2, the resistance of the ceramic heater 1 itself changes, and the durability is deteriorated. It was lacking in sex.
[0017]
Therefore, by reducing the ratio of the thickness of the side end portion to the central portion of the stress relaxation material 6, the formation of the meniscus is reduced, and by suppressing the residual stress, the temperature is rapidly raised from around normal temperature to a high temperature. Even if the operation is repeated for a long time or a continuous operation is performed for a long time in a saturated state by generating heat at a high temperature, the joint between the lead wire 7 and the stress relaxation material 6 is heated and cooled for a long time (40 ° C. → (350 ° C.), a ceramic heater 1 having excellent thermal shock resistance, high-temperature stability, excellent temperature rising characteristics, and excellent durability.
[0018]
Next, another embodiment of the present invention will be described.
[0019]
FIG. 3 is an enlarged view of FIG. 1B similarly to FIG. 2, and a side end portion of the stress relaxation material 6 is a curved surface. By making the ratio of the thickness of the side end portion to the center portion of the stress relaxing material 6 95% or less and making the side end portion a curved surface, the thickness of the side end portion is further reduced, thereby reducing the meniscus formation. By suppressing the residual stress, even when the heating and cooling (40 ° C. → 350 ° C.) is repeated for a long time during use, the resistance change is small and the reliability of the ceramic heater 1 can be greatly improved. The radius of curvature of this curved surface is preferably 0.5 mm or more. If the radius of curvature is less than 0.5 mm, the effect of preventing the brazing material 5 from rising is lost.
[0020]
The thickness of the central part of the stress relaxation material 6 is preferably 0.05 to 1 mm, more preferably 0.1 to 0.5 mm. If the thickness of the stress relieving material 6 is less than 0.05 mm, the stress relieving material 6 is deformed when the lead wire 7 is joined, and the amount of the brazing material 5 at that portion increases, and the strength of the brazed portion may decrease. There is. On the other hand, if the thickness of the stress relaxing material 6 exceeds 1.0 mm, a tensile stress is generated in the ceramic body 3 due to a difference in thermal expansion between the effect relaxing material 6 and the ceramic body 3 and cracks occur, which is not preferable.
[0021]
Further, the shape of the stress buffer 6 is preferably about 1 mm × 2 mm to 4 mm × 5 mm in a long side × a short side. When the dimension of the stress buffer 6 is smaller than 1 mm × 2 mm, the workability of joining the lead wire 7 to the stress buffer 6 is deteriorated. On the other hand, if the size of the stress buffer 6 exceeds 4 mm × 5 mm, cracks tend to occur in the ceramic body 3 due to a difference in thermal expansion between the stress buffer 6 and the ceramic body 3, which is not preferable.
[0022]
Further, it is desirable to process the end of the stress buffer material 6 so that the corner is a curved surface having a radius of curvature of 1 mm or more so that the end is not a square but a substantially oval. As a result, stress concentration at the end can be prevented, and the durability of the brazed portion can be improved.
[0023]
Further, as the material of the stress buffer material 6, a material made of a metal material such as an Fe-Ni-Co alloy, 4-2 alloy, Inconel, and Hastelloy B may be used in consideration of the coefficient of thermal expansion and heat resistance. preferable.
[0024]
Further, a plating layer made of a metal such as Ni may be formed on the surface of the stress buffer 6 in order to improve the wetting between the brazing material and the stress buffer 6.
[0025]
Further, as described above, the outer periphery of the stress relaxation member 6 preferably has a central portion having a thickness of 95% or less, more preferably 80% or less, of the thickness of the side end portion as described above. However, the lower limit of the thickness is preferably set to 30% or more in order to prevent the strength of the side end portion from being reduced and deformed to prevent the meniscus of the brazing material from becoming large. In addition, as for the processing of the side end portion, in addition to forming a slope or a curved surface as shown in FIGS. 2 and 3, a step may be formed to reduce the thickness of the side end. Absent.
[0026]
The processing of the side end portion of the stress relaxation material 6 as shown in FIGS. 2 and 3 can be performed by cutting, pressing, or forging.
[0027]
The ceramic body 3 used in the ceramic heater 1 of the present invention is mainly composed of non-oxide ceramics such as silicon nitride (Si 3 N 4 ), silicon carbide (SiC), sialon, and aluminum nitride (AlN). Those containing a predetermined sintering aid can be used. These ceramics have a Vickers hardness of 10 GPa or more, and it is preferable to use a non-oxide ceramic having such a hardness.
[0028]
Inorganic conductive materials applicable to the heating section 2 and the electrode take-out section 4 include high melting point metals such as tungsten (W), molybdenum (Mo), titanium (Ti), tungsten carbide (WC), and molybdenum silicide. (MoSi 2 ), a resistor mainly composed of carbide, silicide, nitride, or the like of a high melting point metal such as titanium nitride (TiN). A material containing WC or W as a main component is preferable from the viewpoint of a difference in thermal expansion from the non-oxide ceramic body 3 and a difficulty in reacting with them even at a high temperature.
[0029]
On the other hand, for controlling the growth of the main component of the inorganic conductive material to prevent cracks due to a difference in thermal expansion from the ceramic body 3, and to prevent the cracks caused by the metal member in the electrode take-out portion 4. It is preferable to contain an inorganic insulating material made of at least one of silicon nitride (Si 3 N 4 ), boron nitride (BN), aluminum nitride (AlN) and silicon carbide (SiC).
[0030]
The content of the inorganic conductive material is preferably 10 to 20% by weight, and the average particle size of the inorganic conductive material is preferably in a range of 0.1 to 1.3 μm, particularly preferably 0.2 to 1.0 μm. What is necessary is just to make hardness into 11.5 GPa or more.
[0031]
The brazing material 5 has a main component of at least one of gold (Au), nickel (Ni), copper (Cu), silver (Ag) and palladium (Pd), and is used at a high temperature of 400 ° C. or more. Even those that do not deteriorate due to oxidation are used. For example, considering the prevention of migration under use conditions involving energization of a DC power supply, the brazing material 5 contains 50 to 99% by weight of gold (Au) and 1 to 50% by weight of nickel (Ni). An alloy of Au) and nickel (Ni) is optimal.
[0032]
In addition, the brazing material 5 includes titanium (Ti), vanadium (V), manganese (Mn), cobalt (Co), nickel (Ni), copper (Cu) or the like as an active metal, which is a group 4a element of the periodic table. , Molybdenum (Mo), silicon (Si), zirconium (Zr), and hafnium (Hf). In particular, from the viewpoint that the brazing material 5 has good wettability to the ceramic body 3 and does not deteriorate the strength of the ceramic body 3, it is preferable to include at least one of vanadium (V) or molybdenum (Mo) as an active metal. Optimally, such active metals may be included in the form of nitrides, carbides, hydroxides and the like.
[0033]
As the stress relaxation material 6 to be bonded to the ceramic body 3, a metal having a value close to the coefficient of thermal expansion of the ceramic body 3, for example, a low thermal expansion metal such as molybdenum (Mo) or tungsten (W), or Fe- Ni-based Invar alloys, Fe-P-based Elinvar-type alloys, WC-TiC-Co-based cemented carbides, and the like, from the viewpoint of oxidation resistance, workability, and cost, Fe-Ni-Co System alloy or Fe-Ni system alloy is desirable.
[0034]
【Example】
The present invention was evaluated as described in detail below.
[0035]
First, a ceramic raw material powder obtained by adding a sintering aid composed of an oxide of a rare earth element such as ytterbium (Yb) or yttrium (Y) to silicon nitride (Si 3 N 4 ) powder is flat-plated by a known press molding method or the like. The heating part 2 is formed in a U-shaped pattern by a screen printing method using a paste containing WC as a main component on the surface on one end side of the molded body. From the other end to the side surface, an electrode take-out portion 4 made of a mixture of an inorganic conductive material and an inorganic insulating material was formed.
[0036]
Next, a lead portion is placed so as to electrically connect the heating portion 2 and the electrode take-out portion 4, and another ceramic molded body is placed thereon, and then, at a temperature of 1700 to 1900 ° C. in a reducing atmosphere. The ceramic heater 1 was manufactured by firing and integrating at a temperature.
[0037]
After that, the ceramic heater 1 is ground, and a brazing material 5 is applied to the exposed electrode take-out portions 4 by a screen printing method using a paste containing Au, Ni, and V, and the soldering is performed in a vacuum atmosphere at 800 to 1300 ° C. And a brazing material 5 was adhered and formed.
[0038]
Next, an electrode fitting 8 in which a Ni lead wire 7 was previously connected by spot welding to a stress relaxation material 6 made of an Fe—Ni—Co alloy having a width of 2 mm × a length of 3 mm × a thickness of 0.2 mm was attached to the ceramic heater 1. It was brazed in a vacuum atmosphere at 11300 ° C.
[0039]
A test sample was prepared by changing variously the ratio T1 / T2 of the thickness T1 of the side end portion to the thickness T2 of the central portion of the stress relaxation material 6 of the ceramic heater 1 thus obtained, and repeatedly exposed to room temperature and 350 ° C. atmosphere. The cycle test was performed for 10,000 cycles, and the resistance change rate was measured. Table 1 shows the results.
[0040]
[Table 1]
Figure 2004119312
[0041]
As can be seen from Table 1, test sample No. within the scope of the present invention. Samples 11 to 40 have extremely small resistance change rates of about 2% or less, and extremely small variations. On the other hand, when the ratio T1 / T2 of the thickness T1 of the side end portion to the thickness T2 of the central portion of the stress relaxation material 6 is 105% or 100% (test samples Nos. 1 to 10), the rate of change in resistance is extremely large. The variation was found to be very large. From the above results, it was confirmed that the reliability of the ceramic heater 1 was significantly improved by setting the ratio T1 / T2 of the thickness T1 of the side end portion to the thickness T2 of the central portion of the stress relaxation material 6 to 95% or less. did it.
[0042]
Subsequently, in the ceramic heater 1 obtained in the same manner as above, as shown in FIG. 3, the shape of the side end portion of the stress relaxation material 6 was a curved surface having a radius of curvature of 1.5 mm, and the center of the stress relaxation material 6 was formed. A test sample was prepared by variously changing the ratio T1 / T2 of the thickness T1 of the side end portion to the thickness T2 of the portion, and subjected to 10,000 cycles of a thermal cycle test in which the sample was repeatedly exposed to an atmosphere at room temperature and 350 ° C., and the resistance change rate was measured. .
[0043]
Table 2 shows the results.
[0044]
[Table 2]
Figure 2004119312
[0045]
As can be seen from Table 2, test sample no. Nos. 51 to 80 have a very small resistance change rate of about 2% or less and a very small variation. On the other hand, when the ratio T1 / T2 of the thickness T1 of the side end portion to the thickness T2 of the central portion of the stress relaxation material 6 is 105% or 100% (sample Nos. 41 to 50), the side end portion of the stress relaxation material 6 Although it is not a curved surface, the rate of change in resistance is slightly smaller than that of the result (Table 1), but there is a case where it exceeds 2%, the variation is still large, and the result is unstable. From the above results, it was confirmed that the reliability of the ceramic heater 1 was greatly improved by making the surface of the side end portion of the stress relaxation member 6 a curved surface.
[0046]
Incidentally, the ceramic heater 1 of the present invention is not limited to the above embodiment, and the shape of the stress relaxation material 6 may be any shape as long as it does not deviate from the gist of the present invention, and the same effect is exerted. It is.
[0047]
【The invention's effect】
According to the present invention, there is provided a ceramic body having a heat-generating portion and an electrode take-out portion connected to the heat-generating portion inside the ceramic body, exposing an end portion of the electrode take-out portion to the surface, and joining a stress relaxation material using a brazing material. In the heater, by making the thickness of the stress relaxation material thinner at the side end than at the center, the occurrence and propagation of cracks in the ceramic body at the brazed portion can be suppressed, and excellent durability with little resistance change can be obtained. Ceramic heater can be obtained.
[Brief description of the drawings]
FIG. 1A is a perspective view showing a ceramic heater of the present invention, and FIG. 1B is a cross-sectional view of an electrode extraction portion.
FIG. 2 is an enlarged view of an electrode take-out part of the ceramic heater of the present invention.
FIG. 3 is an enlarged view of an electrode extraction portion of the ceramic heater according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Ceramic heater 2 Heating part 3 Ceramic body 4 Electrode take-out part 5 Metal layer 6 Stress relaxation material 7 Lead wire 8 Electrode fitting 9 Tungsten lead T1 Thickness of central part of stress relaxation material T2 Thickness of side end of stress relaxation material

Claims (2)

セラミック体の内部に発熱部とこれに連続する電極取り出し部を備え、該電極取り出し部の端部を表面に露出させるとともに、この露出部に応力緩和材をロウ材を用いて接合したセラミックヒータにおいて、上記応力緩和材の厚みが、中央部より側端部が薄くなっていることを特徴とするセラミックヒータ。In a ceramic heater having a heat generating portion and an electrode extraction portion connected to the heating portion inside the ceramic body, and exposing the end of the electrode extraction portion to the surface and joining a stress relaxation material to the exposed portion using a brazing material. A ceramic heater, wherein the thickness of the stress relaxation material is smaller at a side end than at a center. 上記応力緩和材の側端部の稜線が曲面状であることを特徴とする請求項1記載のセラミックヒータ。2. The ceramic heater according to claim 1, wherein a ridge line at a side end of the stress relaxation material is curved.
JP2002284364A 2002-09-27 2002-09-27 Ceramic heater Expired - Fee Related JP3811440B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002284364A JP3811440B2 (en) 2002-09-27 2002-09-27 Ceramic heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002284364A JP3811440B2 (en) 2002-09-27 2002-09-27 Ceramic heater

Publications (2)

Publication Number Publication Date
JP2004119312A true JP2004119312A (en) 2004-04-15
JP3811440B2 JP3811440B2 (en) 2006-08-23

Family

ID=32277948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002284364A Expired - Fee Related JP3811440B2 (en) 2002-09-27 2002-09-27 Ceramic heater

Country Status (1)

Country Link
JP (1) JP3811440B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008501100A (en) * 2004-05-28 2008-01-17 サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド Ignition system
JP2017033637A (en) * 2015-07-29 2017-02-09 京セラ株式会社 Heater and glow plug
JP2017053619A (en) * 2015-09-10 2017-03-16 日本特殊陶業株式会社 Ceramic heater and glow plug
WO2020067508A1 (en) * 2018-09-28 2020-04-02 京セラ株式会社 Heater and glow-plug provided therewith

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7000221B2 (en) * 2018-03-23 2022-01-19 Koa株式会社 Gas sensor and its manufacturing method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008501100A (en) * 2004-05-28 2008-01-17 サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド Ignition system
JP4733117B2 (en) * 2004-05-28 2011-07-27 サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド Ignition system
JP2017033637A (en) * 2015-07-29 2017-02-09 京セラ株式会社 Heater and glow plug
JP2017053619A (en) * 2015-09-10 2017-03-16 日本特殊陶業株式会社 Ceramic heater and glow plug
US10557451B2 (en) 2015-09-10 2020-02-11 Ngk Spark Plug Co., Ltd. Ceramic heater and glow plug
WO2020067508A1 (en) * 2018-09-28 2020-04-02 京セラ株式会社 Heater and glow-plug provided therewith
JPWO2020067508A1 (en) * 2018-09-28 2021-08-30 京セラ株式会社 Heater and glow plug with it
JP7086205B2 (en) 2018-09-28 2022-06-17 京セラ株式会社 Heater and glow plug with it
EP3860306A4 (en) * 2018-09-28 2022-06-22 Kyocera Corporation Heater and glow-plug provided therewith

Also Published As

Publication number Publication date
JP3811440B2 (en) 2006-08-23

Similar Documents

Publication Publication Date Title
JP4751392B2 (en) Brazing structure, ceramic heater and glow plug
JP5261103B2 (en) Ceramic heater
WO2005060311A1 (en) Ceramic heater and method for manufacture thereof
JP2012033340A (en) Ceramic heater and glow plug having the same
JP4092172B2 (en) Method for manufacturing ceramic heater and method for manufacturing glow plug
JP3811440B2 (en) Ceramic heater
JP3121985B2 (en) Silicon nitride ceramic heater
JPWO2006011520A1 (en) Ceramic heater and heating iron using the same
JP3612086B2 (en) Ceramic heating element
JP3078418B2 (en) Ceramic heating element
JP4018998B2 (en) Ceramic heater and glow plug
JP6791636B2 (en) Ceramic heater
JP2000133419A (en) Ceramic heater
JP3762103B2 (en) Ceramic heater
JP3588227B2 (en) Ceramic heater
JP4688376B2 (en) Ceramic heater
JP4044244B2 (en) Silicon nitride ceramic heater
JP3924378B2 (en) Ceramic heater
JP2735725B2 (en) Ceramic heating element
JP4025641B2 (en) Ceramic heater
JP3266563B2 (en) Aluminum nitride ceramic heater
JP4153840B2 (en) Ceramic heater
JP2735721B2 (en) Ceramic heating element
JP4038138B2 (en) Ceramic heater and manufacturing method thereof
JP3874581B2 (en) Ceramic heater and glow plug using the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060523

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060526

R150 Certificate of patent or registration of utility model

Ref document number: 3811440

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090602

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100602

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100602

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110602

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120602

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130602

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees