JP3762103B2 - Ceramic heater - Google Patents

Ceramic heater Download PDF

Info

Publication number
JP3762103B2
JP3762103B2 JP18670698A JP18670698A JP3762103B2 JP 3762103 B2 JP3762103 B2 JP 3762103B2 JP 18670698 A JP18670698 A JP 18670698A JP 18670698 A JP18670698 A JP 18670698A JP 3762103 B2 JP3762103 B2 JP 3762103B2
Authority
JP
Japan
Prior art keywords
electrode
ceramic heater
stress relaxation
ceramic
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18670698A
Other languages
Japanese (ja)
Other versions
JP2000021556A (en
Inventor
和利 北原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP18670698A priority Critical patent/JP3762103B2/en
Publication of JP2000021556A publication Critical patent/JP2000021556A/en
Application granted granted Critical
Publication of JP3762103B2 publication Critical patent/JP3762103B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は耐熱衝撃性、高温安定性に優れ、昇温特性及び耐久性の良好な石油ファンヒ−タ等の各種燃焼機器の点火用又は気化用ヒ−タや、酸素センサ−等の各種センサ−や測定機器、電子部品、産業機器、あるいは温水ヒ−タ、半田ごて等の一般家庭用電気製品等の加熱用ヒ−タ、更にはディ−ゼルエンジン等の始動時やアイドリング時に副燃焼室内を急速に予熱する内燃機関用グロ−プラグ等に適用される直流あるいは交流電源で使用される高温用のセラミックヒ−タに関するものである。
【0002】
【従来の技術】
従来より、各種加熱用や点火用ヒータとして、耐熱金属製の筒状体内に高融点金属線から成る発熱抵抗体を耐熱絶縁粉末と共に埋設した各種シーズヒータが多用されていた。
【0003】
しかし、前記シーズヒータをディーゼルエンジンの始動時やアイドリング時に副燃焼室内を急速に予熱するために用いられる内燃機関用グロープラグとして用いた場合、急速昇温が困難であり、その上、耐摩耗性や耐熱性、耐食性等の耐久性に劣るという欠点があった。
【0004】
そこで熱伝達効率が優れ、急速昇温が可能で、耐摩耗性や耐熱性、耐食性等の耐久性に優れた信頼性の高い内燃機関用のグロープラグとして、熱伝導性が良好な電気絶縁性セラミック焼結体に、高融点金属やその化合物、及びそれらを主成分とする各種無機導電材から成る発熱抵抗体を担持したり、接合したり、あるいは埋設したりして一体化したセラミック発熱体が広く利用されるようになり、それに伴ってその他の各種加熱用や点火用ヒータとしても適用されるようになってきた。
【0005】
一般に、セラミック発熱体としては、アルミナセラミツクの表面や内部に高融点金属の発熱部を設けたセラミツクヒ−タが知られているが、電気絶縁材料として用いられるアルミナ(Al2 3 )は耐熱衝撃性や高温強度に劣ることから、セラミック発熱体の絶縁部材には耐熱性や耐熱衝撃性、耐酸化性に優れた非酸化物系セラミックス、とりわけ耐熱性に優れ、高温強度も高く、熱容量が小さく、電気絶縁性が良好な窒化珪素質セラミックスが、急速昇温可能な高温用のセラミック発熱体の絶縁部材として広く採用されている。
【0006】
セラミック発熱体の端部側面には、無機導電材から成る発熱部と接続したリ−ド部材がそれぞれ導出されて電極取り出し部が形成され、必要に応じて該電極取り出し部にニッケル(Ni)等の金属が被覆され、その上からメタライズ金属層被着形成し、該メタライズ金属層から成る接合パッド部を介して外部電源に接続されるリ−ド線がろう付け接合されてセラミックヒ−タが構成されている。
【0007】
しかしながら、前記ろう付けに使用されるろう材は耐熱性を必要とするため、銀ろう等の高温用のろう材が用いられており、従ってろう付け接合する際には高温加熱されることから、冷却過程で絶縁部材のセラミックスとリ−ド線の金属との熱膨張差により残留応力が生じてセラミックスとリ−ド線との接合強度が低下するという欠点があった。
【0008】
そこで、かかる欠点を解消するために、セラミックスと金属との間に接合応力緩和材としてNi板を用いてろう付け接合することが提案されている(特開平7−25674号公報)。
【0009】
【発明が解決しようとする課題】
しかしながら、前接合応力緩和材を介してセラミックスと金属を接合する技術をセラミックヒータのリード線の接合に適用し、接合強度が高い活性金属を含有するろう材を用い前記同様に接合したとしても、従来例と同様に耐久性の点では問題があった。
【0010】
即ち、電極取り出し部の温度を想定した40℃と450℃の温度に繰り返し加熱冷却する耐久試験では、短期的な試験には耐えるものの、500サイクルを越える長期的な加熱冷却の反復に対しては、セラミックスと接合応力緩和材のNiとの9.4〜11.8×10-6/℃にも及ぶ熱膨張率の差により、セラミツクヒ−タのろう付け部周辺に残留応力が発生し、前記加熱冷却の繰り返しによりクラックが成長して接合強度が低下し、その結果、接合応力緩和材の剥離や、前記クラックから発熱部が酸化してセラミックヒ−タ自体の抵抗変化等を生じて耐久性が、劣化し、長期的な信頼性に欠けるという課題があった。
【0011】
【発明の目的】
本発明は前記課題に鑑み成されたもので、その目的は、セラミックヒータの電極金具の接合が長期的な加熱冷却の反復に耐える強度を有しかつクラック等が発生せず、かつ耐衝撃性、高温安定性に優れ、昇温特性の良好な各種燃焼機器の点火用または気化用ヒーターや、各種センサーや測定機器、電子部品、産業機器、一般家庭用電気製品などの加熱用ヒーター、更には内燃機関用グロープラグなどに好適な高温用セラミックヒーターを提供することにある。
【0012】
【課題を解決するための手段】
前記課題について調査した結果、本発明者等は、電極取り出し部と接合応力緩和材とを電気的に接続する活性金属を含有した金属層から成る接合パット部において、電極取り出し部と接合応力緩和材との位置関係が抵抗変化、耐久性を左右していることを突き止めた。そこで電極取り出し部と接合応力緩和材との位置を制御することにより、前記課題が解消できることを見出した。これにより、抵抗変化の少ない優れた耐久性を有するセラミックヒータを得ることが可能になった。
【0013】
本発明に係るセラミックヒータは、セラミックス中に発熱体を埋設し、該発熱体に接続した電極取り出し部の一部を露出させ、この露出部にろう材を用いてリード線を接合した接合応力緩和材を固定している。本セラミックヒータは、電極取り出し部を複数有し、少なくとも1の電極取り出し部は、接合応力緩和材の端部より0.2mm以上内側に位置し、少なくとも1の他の電極取り出し部は、接合応力緩和材の端部より外側に位置する。
【0014】
ましくは、接合応力緩和材の端部には、面取り部または曲面部が設けられている。
【0015】
【発明の実施の形態】
以下、本発明のセラミックヒーターを詳細に説明する。
【0016】
図1は、電極金具をろう付けにより接合したセラミックヒータを示す参考図であり、(A)は全体図、(B)は接合応力緩衝材接合部の断面形状で、(C)は接合応力緩衝材接合部の外観を示した平面図である。
【0017】
図1において、1はセラミック焼結体からなる絶縁部材7の中に、通電により発熱する主として無機導電材からなる発熱部を備えたセラミックヒータであり、2はメタライズ部、3は接合応力緩和材をなす電極金具、4は電極金具にスポット溶接されたNi等のリードピン、5は主として無機導電材からなる電極取り出し部、6は発熱部と電極取り出し部とを電気的に接続するWのリードピン等からなる引き出し部である。
【0018】
そして、図1(C)に示すように、電極取り出し部5は、電極金具3の内側に備えてあり、電極金具3の端部からの距離Gを0.2mm以上としてある。そのため、詳細を後述するようにリードピン4より通電し、加熱冷却を繰り返しても、耐久性を向上させることができる。
【0019】
図2は図1(B)をさらに拡大した図である。
【0020】
図2において、メタライズ部2の電極金具3との接合近傍部8は、電極金具3の端面にはい上がた状態となっている。電極金具3の接合面端部がメタライズ部2へ溶出し、エッジは曲面9となっている。
【0021】
電極金具3をろう付けにより接合した場合、金具端面へメタライズがはい上がり、メタライズが集まる傾向があり、このため応力が集中しているものと考えられる。さらには電極金具3成分がメタライズ中に拡散し、メタライズ組成が変化しメタライズの硬度が上昇することが確認されている。その為メタライズ自体の応力が増加し、全体の応力が高くなっていると考えられる。
【0022】
その為、電極取り出し部5と接合応力緩和材である電極金具3の端部が重なると、強度の弱い電極取り出し部5にクラックが入ってしまってセラミックヒータ1自体の抵抗変化等を生じて耐久性が劣化し、長期的な信頼性に欠けるものになっていた
【0023】
次に、本発明の実施形態を説明する。
【0024】
図3(A)は、電極取り出し部を2個設けた応力緩和材接合部分の表面図、(B)は、同じく断面図である。
【0025】
図3において、電極取り出し部5を複数設け、一方の電極取り出し部5bを応力緩和部材である電極金具3の端部より0.2mm以上内側に設け、他方の電極取り出し部5aは電極金具3の外側に形成してある。この実施形態では、電極取り出し部5aでメタライズ部2とつながっているため、長期的な加熱冷却(40→500℃)においても、抵抗変化が小さくセラミックヒータの信頼性が大幅に改善することができる。
【0026】
本発明において、発熱部の無機導電材は、W、Mo、Ti等の高融点金属、あるいは WC、MoSi2 、TiN等の高融点金属の炭化物や珪化物、窒化物等等を主成分とする抵抗体が挙げられ、望ましくは絶縁部材の窒化物系セラミック焼結体との熱膨張差、及び高温度下でもそれらと反応しがたいという点からはWCあるいはWを主成分とするものが好適である。
【0027】
尚、前記発熱部を成す無機導電材の構成成分は、逆に絶縁部である窒化物系セラミック焼結体に添加して熱膨張差や反応性を調整しても良いことは言うまでもない。
【0028】
また、前記無機導電材の主成分に対して、その成長を制御して絶縁部材との熱膨張差によるクラックを防止し、かつ抵抗を増大させないようにするために、分散剤として窒化珪素、窒化硼素、窒化アルミニウムあるいは炭化珪素の一種以上を含有させても良く、その重量は主成分100重量部に対して、例えば、窒化珪素は5〜30重量部、窒化硼素は1〜20重量部、窒化アルミニウムは1〜15重量部、炭化珪素は3〜15重量部の割合であることが望ましい。
【0029】
一方、本発明におけるセラミックヒーターを構成する発熱部は、ブロック状や線状、又は層状のいずれでも良く、前記絶縁部材をその間に介してU字状に曲げたり、コイル状に巻回したり、平面にジグザグに折り曲げたりして、前記発熱部を平面視した時にU字状やW字状等、任意の形状を成すものとし、絶縁部材に担持したり、接合したり、あるいは埋設したりできる他、前記各種形状で絶縁体を介して2層以上の積層構造とする等、各種形状形態で適用でき、その両端にはW材等からなるリード部を電気的に接続したものでも良い。
【0030】
また、窒化物系セラミック焼結体からなる絶縁部材は、窒化珪素、炭化珪素、サイアロン、窒化アルミニウム等が適用可能であり、その他にアルミナ等のセラミックスを用いることもできる。
【0031】
一方、メタライズ部2に接合する電極金具3は、前記絶縁部材の熱膨張率3.0〜5.4×10-6/℃と近似した3.0〜7.5×10-6/℃の金属が望ましい。
【0032】
また、電極金具3にはNi線等の軟質金属線をスポット溶接などにより接続して用いることにより使用時の振動などが直接接合部へ伝わるなどの物理的な負荷を軽減することもできる。
【0033】
また、前記電極金具3は、塑性変形しやすいという点からは、ヤング率が14〜15×1000kg/mm2 を示すFe−Ni−Co合金やFe−Ni合金等のFe基合金が最適であり、前記電極金具3自体の塑性変形で前記熱膨張差により発生する応力を吸収できるという点からは、その厚さを薄くして0.1〜0.5mm程度とすることが望ましく、さらに、電極金具3の角部は応力集中を回避するために面取りや丸く曲面加工を施しておくことはより好ましい。
【0034】
次に、本発明における活性金属を含有した貴金属からなるメタライズ部2としては、Au及び/又はAgと、Ni又はPdのいずれか一種類以上あるいはCu、Co、Siのいずれか一種の合計量が90〜99重量%で、残部1〜10重量%がV、Mo、Ti、Zr、Hf、Mnのいずれか一種類以上の活性金属を含有するものなどが挙げられ、前記活性金属は窒化物や炭化物、水素化物等の形態で含有させても良い。
【0035】
また、前記活性金属の量は、1重量%未満では接合強度の向上効果が見られず、10重量%を超えると前記メタライズ層の焼き付け温度が高くなり、冷却に大きな残留応力を生じてクラックの原因となるため前記範囲に限定され、1〜5重量%が最も望ましい。
【0036】
また、自動車用途など直流電源にて使用される場合に生じるマイグレーションによる短絡の防止という点からは、メタライズ部2としては貴金属の主成分としてAuにV又はTi等の活性金属を含有するものが最も望ましい。
【0037】
電極金具3とメタライズ部2との接合は必要な強度を確保すれば、全面の接合でなくても良いことは言うまでもないが、熱膨張差による応力が集中する事を避けるために前記電極金具の外周部とメタライズの外周部のいずれの縁とも重ならない事が望ましい。
【0049】
【実施例】
3に示すように電極取り出し部5を2個設け、1個を応力緩和材の内側に設け、1個を外側に設けたセラミックヒータを用い、40℃から500℃の大気中に繰り返し3000サイクル曝した時の抵抗変化率の結果を表に示す。
【0050】
この結果より、本発明の囲の試料No.1〜5は、抵抗変化が極めて小さい事が確認された。対して、電極取り出し部5と応力緩和材端部との距離が0mm、0.1mmの試料No.10は抵抗変化率が極めて高いことが判った。
【0051】
上記結果より、40℃〜500℃の繰り返しサイクルにおいては、電極取り出し部5を2個設け、1個を接合応力緩和材端部より0.2mm以上内部に設け、1個を外部に設ける事により、セラミックヒータの信頼性が大幅に改善されていることが確認できた。
【0052】
【表1】

Figure 0003762103
【0053】
尚、本発明のセラミックヒ−タは前記実施例に限定されるものでなく、前記接合パッド及び接合応力緩和材の形状は、本発明の主旨を逸脱しないものであればいかなる形状でも良く、またセラミック発熱体の断面形状も用途に応じて種々の変更が可能で有り、また発熱抵抗体を平行に複数配設して多層構造とし、各発熱抵抗体を直列にあるいは並列に接続した構造としたものに適用しても同様の効果を奏するものである。
【0054】
【発明の効果】
叙上の如く、本発明によれば、セラミックスを絶縁部材とし、通電により発熱する無機導電材から成る発熱部を具備したセラミックヒータにおいて、電極取り出し部を接合応力緩和材の端部より0.2mm以上内部に設けることにより、常温付近から高温まで急速に昇温することを長時間にわたり反復したり、高温下で発熱させて飽和状態で長時間、連続稼働したりしても、リ−ド線を接続した接合応力緩和材との接合部が長期的な加熱冷却の反復に耐える強度を有し、かつ耐熱衝撃性、高温安定性に優れ、昇温特性の良好な耐久性に優れたセラミックヒ−タを得ることができる。
【図面の簡単な説明】
【図1】ラミックヒータの参考例を示しており、(A)は全体の側面図、(B)は電極金具接合部分の断面図、(C)は電極金具接合部分の平面図である。
【図2】図1(B)の拡大図である。
【図3】本発明の実施形態を示しており、(A)は電極金具接合部分の平面図、(B)は電極金具接合部分の断面図である。
【符号の説明】
1:セラミックヒータ
2:メタライズ部
3:金属金具
4:リードピン
5:電極取り出し部
6:引き出し部
7:絶縁部材
8:接合近傍部
9:曲面[0001]
BACKGROUND OF THE INVENTION
INDUSTRIAL APPLICABILITY The present invention is excellent in thermal shock resistance and high temperature stability, and has excellent temperature rise characteristics and durability. Various sensors such as an ignition or vaporization heater for various combustion equipment such as a petroleum fan heater and an oxygen sensor. Heating heaters for general household electrical appliances such as hot water heaters, soldering irons, etc., as well as measuring equipment, electronic parts, industrial equipment, as well as auxiliary combustion chambers when starting or idling diesel engines, etc. The present invention relates to a high-temperature ceramic heater used in a direct current or alternating current power source applied to a glow plug for an internal combustion engine that rapidly preheats the heat.
[0002]
[Prior art]
Conventionally, various types of sheathed heaters in which a heating resistor made of a refractory metal wire is embedded together with a heat-resistant insulating powder in a cylindrical body made of a heat-resistant metal have been widely used as various heating and ignition heaters.
[0003]
However, when the sheathed heater is used as a glow plug for an internal combustion engine that is used to quickly preheat the auxiliary combustion chamber when starting or idling a diesel engine, rapid temperature rise is difficult, and in addition, wear resistance In addition, there is a disadvantage that it is inferior in durability such as heat resistance and corrosion resistance.
[0004]
Therefore, it has excellent heat transfer efficiency, rapid temperature rise, and excellent durability such as wear resistance, heat resistance, corrosion resistance, etc. A ceramic heating element in which a heating resistor composed of a refractory metal, a compound thereof, and various inorganic conductive materials containing them as a main component is supported, bonded, or embedded in a ceramic sintered body. Has been widely used, and accordingly, has been applied as various other heating and ignition heaters.
[0005]
In general, ceramic heaters are known in which a ceramic refractory metal heating part is provided on the surface or inside of an alumina ceramic, but alumina (Al 2 O 3 ) used as an electrical insulating material is a thermal shock. Insulating members of ceramic heating elements are non-oxide ceramics with excellent heat resistance, thermal shock resistance and oxidation resistance, especially excellent heat resistance, high temperature strength and low heat capacity. Silicon nitride ceramics with good electrical insulation are widely used as insulating members for high-temperature ceramic heating elements that can be rapidly heated.
[0006]
A lead member connected to the heat generating portion made of an inorganic conductive material is led out on the side surface of the end portion of the ceramic heating element to form an electrode extraction portion, and nickel (Ni) or the like is formed in the electrode extraction portion as necessary. A metallized metal layer is deposited on the metallized metal, and a lead wire connected to an external power source is brazed and bonded via a bonding pad portion made of the metallized metal layer to form a ceramic heater. Has been.
[0007]
However, since the brazing material used for the brazing requires heat resistance, a brazing material for high temperature such as silver brazing is used, and therefore, the brazing joint is heated at a high temperature. In the cooling process, a residual stress is generated due to a difference in thermal expansion between the ceramic of the insulating member and the metal of the lead wire, and the bonding strength between the ceramic and the lead wire is lowered.
[0008]
Therefore, in order to eliminate such drawbacks, it has been proposed to braze and bond between ceramics and metal using a Ni plate as a bonding stress relaxation material (Japanese Patent Laid-Open No. 7-25675).
[0009]
[Problems to be solved by the invention]
However, applying the technique of pre-Symbol bonding ceramics and a metal by means of a bonding stress relaxation material for bonding leads of the ceramic heater, even as the bonding strength was the same bonded using a brazing material containing a high active metal As with the conventional example, there was a problem in terms of durability.
[0010]
That is, in the durability test in which heating and cooling are repeatedly performed at a temperature of 40 ° C. and 450 ° C. assuming the temperature of the electrode extraction part, although it can withstand short-term tests, it is not suitable for repeated heating and cooling over 500 cycles. The residual stress is generated in the vicinity of the brazed portion of the ceramic heater due to the difference in coefficient of thermal expansion up to 9.4 to 11.8 × 10 −6 / ° C. between the ceramic and Ni of the bonding stress relaxation material, Cracks grow due to repeated heating and cooling, resulting in a decrease in bonding strength.As a result, peeling of the bonding stress relieving material, oxidation of the heat generating part from the cracks, and the resistance change of the ceramic heater itself cause durability. There was a problem of deterioration and lack of long-term reliability.
[0011]
OBJECT OF THE INVENTION
The present invention has been made in view of the above-mentioned problems, and the purpose thereof is to have the strength that the joining of the electrode fittings of the ceramic heater can withstand repeated heating and cooling over a long period of time, cracks do not occur, and impact resistance. Heating heaters for ignition and vaporization of various combustion devices with excellent high temperature stability and good temperature rise characteristics, heaters for various sensors and measuring devices, electronic parts, industrial equipment, general household electrical appliances, and more An object of the present invention is to provide a high-temperature ceramic heater suitable for a glow plug for an internal combustion engine.
[0012]
[Means for Solving the Problems]
As a result of investigating the above problems, the present inventors have found that, in the bonding pad portion made of a metal layer containing an active metal that electrically connects the electrode extraction portion and the bonding stress relaxation material, the electrode extraction portion and the bonding stress relaxation material. It has been found that the positional relationship between and has an effect on resistance change and durability. Thus, it has been found that the above problem can be solved by controlling the positions of the electrode lead-out portion and the bonding stress relaxation material. This makes it possible to obtain a ceramic heater having excellent durability with little resistance change.
[0013]
The ceramic heater according to the present invention includes a heating element embedded in ceramics, a part of an electrode take-out portion connected to the heating element is exposed, and a lead wire is bonded to the exposed portion using a brazing material. The material is fixed. This ceramic heater has a plurality of electrode take-out portions, at least one electrode take-out portion is located 0.2 mm or more inside the end portion of the bonding stress relaxation material, and at least one other electrode take-out portion has a bonding stress. Located outside the end of the cushioning material.
[0014]
Good Mashiku is an end portion of the bonding stress relaxation material, chamfer or curved portion is provided.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the ceramic heater of the present invention will be described in detail.
[0016]
Figure 1 is a reference diagram shows the ceramic heater formed by joining the electrode fitting by brazing, (A) is an overall view, (B) is a cross-sectional shape of the bonding stress relief member junction, (C) is bonded stress It is the top view which showed the external appearance of the buffer material junction part.
[0017]
In FIG. 1, reference numeral 1 denotes a ceramic heater provided with an exothermic part mainly made of an inorganic conductive material which generates heat when energized in an insulating member 7 made of a ceramic sintered body, 2 is a metallized part, and 3 is a joint stress relaxation material. 4 is a lead pin made of Ni or the like spot welded to the electrode fitting, 5 is an electrode take-out portion made mainly of an inorganic conductive material, 6 is a W lead pin that electrically connects the heat-generating portion and the electrode take-out portion, etc. It is the drawer part which consists of.
[0018]
And as shown in FIG.1 (C), the electrode extraction part 5 is provided inside the electrode metal fitting 3, and the distance G from the edge part of the electrode metal fitting 3 is 0.2 mm or more. Therefore, durability can be improved even if electricity is supplied from the lead pin 4 and heating and cooling are repeated as will be described in detail later.
[0019]
FIG. 2 is a further enlarged view of FIG.
[0020]
In FIG. 2, the joining vicinity portion 8 of the metallized portion 2 with the electrode fitting 3 is in a state of being raised on the end face of the electrode fitting 3. The end portion of the joint surface of the electrode fitting 3 is eluted into the metallized portion 2, and the edge is a curved surface 9.
[0021]
When the electrode fitting 3 is joined by brazing , the metallization rises to the end face of the fitting and the metallization tends to gather, and it is considered that the stress is concentrated. Further, it has been confirmed that the three components of the electrode fitting diffuse during metallization, the metallization composition is changed, and the hardness of the metallization is increased. Therefore, it is considered that the stress of the metallization itself increases and the overall stress is increased.
[0022]
Therefore, if the electrode take-out part 5 and the end of the electrode fitting 3 that is a joining stress relaxation material overlap, a crack is formed in the electrode take-out part 5 having low strength, resulting in a resistance change of the ceramic heater 1 itself and the like. Deteriorated and lacked long-term reliability .
[0023]
Next, the implementation form of the present invention.
[0024]
FIG. 3A is a surface view of a stress relaxation material bonding portion provided with two electrode extraction portions, and FIG. 3B is a sectional view of the same.
[0025]
In FIG. 3, a plurality of electrode extraction portions 5 are provided, one electrode extraction portion 5 b is provided 0.2 mm or more inside the end of the electrode fitting 3 that is a stress relaxation member, and the other electrode extraction portion 5 a It is formed on the outside. In this embodiment, since the electrode extraction part 5a is connected to the metallization part 2, even in long-term heating and cooling (40 → 500 ° C.), the resistance change is small and the reliability of the ceramic heater can be greatly improved. .
[0026]
In the present invention, the inorganic conductive material of the heat generating portion is mainly composed of a refractory metal such as W, Mo, Ti, or a carbide, silicide, nitride, or the like of a refractory metal such as WC, MoSi 2 , TiN or the like. Resistors are preferable, and those having WC or W as the main component are preferable from the viewpoint that the thermal expansion difference from the nitride-based ceramic sintered body of the insulating member and that it is difficult to react with them even at high temperatures. It is.
[0027]
Needless to say, the constituent components of the inorganic conductive material forming the heat generating portion may be added to the nitride ceramic sintered body as the insulating portion to adjust the difference in thermal expansion and reactivity.
[0028]
Further, with respect to the main component of the inorganic conductive material, in order to prevent the crack due to the difference in thermal expansion from the insulating member by controlling its growth and not to increase the resistance, silicon nitride, nitridation as a dispersant One or more of boron, aluminum nitride, or silicon carbide may be contained, and the weight thereof is, for example, 5 to 30 parts by weight of silicon nitride and 1 to 20 parts by weight of boron nitride with respect to 100 parts by weight of the main component. It is desirable that aluminum is 1 to 15 parts by weight and silicon carbide is 3 to 15 parts by weight.
[0029]
On the other hand, the heat generating part constituting the ceramic heater in the present invention may be in the form of a block, a line, or a layer, and the insulating member is bent in a U-shape therebetween, wound in a coil, It can be bent in a zigzag shape to form an arbitrary shape such as a U-shape or a W-shape when the heat generating part is viewed in plan, and can be supported on, bonded to, or buried in an insulating member It can be applied in various shapes such as a laminated structure of two or more layers with an insulator in the various shapes, and a lead portion made of a W material or the like may be electrically connected to both ends thereof.
[0030]
In addition, silicon nitride, silicon carbide, sialon, aluminum nitride, or the like can be applied to the insulating member made of a nitride ceramic sintered body, and ceramics such as alumina can also be used.
[0031]
On the other hand, the electrode fitting 3 joined to the metallized part 2 has a thermal expansion coefficient of 3.0 to 5.4 × 10 −6 / ° C., which is approximately 3.0 to 7.5 × 10 −6 / ° C. Metal is preferred.
[0032]
In addition, by using a soft metal wire such as a Ni wire connected to the electrode fitting 3 by spot welding or the like, it is possible to reduce a physical load such as vibration during use being directly transmitted to the joint.
[0033]
The electrode fitting 3 is most preferably an Fe-based alloy such as an Fe—Ni—Co alloy or Fe—Ni alloy having a Young's modulus of 14 to 15 × 1000 kg / mm 2 from the viewpoint of being easily plastically deformed. From the viewpoint that the stress generated by the thermal expansion difference can be absorbed by plastic deformation of the electrode fitting 3 itself, it is desirable to reduce the thickness to about 0.1 to 0.5 mm. It is more preferable that the corner portion of the metal fitting 3 is chamfered or rounded to avoid stress concentration.
[0034]
Next, as the metallized portion 2 made of a noble metal containing an active metal in the present invention, the total amount of Au and / or Ag and one or more of Ni or Pd or any one of Cu, Co, and Si is included. 90 to 99% by weight, and the remaining 1 to 10% by weight contains one or more active metals of V, Mo, Ti, Zr, Hf, and Mn. You may make it contain with forms, such as a carbide | carbonized_material and a hydride.
[0035]
Further, if the amount of the active metal is less than 1% by weight, the effect of improving the bonding strength is not seen, and if it exceeds 10% by weight, the baking temperature of the metallized layer becomes high, and a large residual stress is generated at the time of cooling. Therefore, the content is limited to the above range, and 1 to 5% by weight is most desirable.
[0036]
Further, from the viewpoint of preventing a short circuit due to migration that occurs when used in a DC power source such as an automobile application, the metallized portion 2 is most preferably one containing a precious metal as a main component and an active metal such as V or Ti in Au. desirable.
[0037]
Needless to say, the joining of the electrode fitting 3 and the metallized portion 2 may not be the entire joining as long as the necessary strength is ensured, but in order to avoid the concentration of stress due to the difference in thermal expansion, It is desirable that it does not overlap with any edge of the outer peripheral portion and the outer peripheral portion of the metallization.
[0049]
【Example】
As shown in FIG. 3, two electrode extraction portions 5 are provided, one is provided on the inner side of the stress relaxation material, and one is provided on the outer side, and 3000 cycles are repeated in the atmosphere of 40 ° C. to 500 ° C. The results of the resistance change rate when exposed are shown in Table 1 .
[0050]
From this result, sample No. 1 1-2 5, it resistance change is extremely small was confirmed. On the other hand, the distance between the electrode lead-out portion 5 and the end portion of the stress relaxation material is 0 mm and 0.1 mm . 1 to 10 were found to have a very high resistance change rate.
[0051]
From the above results, in the repetitive cycle of 40 ° C. to 500 ° C., two electrode take-out portions 5 are provided, one is provided 0.2 mm or more inside from the end of the joint stress relaxation material, and one is provided outside. It was confirmed that the reliability of the ceramic heater was greatly improved.
[0052]
[Table 1]
Figure 0003762103
[0053]
The ceramic heater of the present invention is not limited to the above embodiment, and the shape of the bonding pad and the bonding stress relaxation material may be any shape as long as it does not depart from the gist of the present invention. The cross-sectional shape of the heating element can be variously changed according to the application, and a plurality of heating resistors are arranged in parallel to form a multilayer structure, and each heating resistor is connected in series or in parallel. Even if applied to the above, the same effect can be obtained.
[0054]
【The invention's effect】
As described above, according to the present invention, in a ceramic heater having a heat generating portion made of an inorganic conductive material that uses ceramic as an insulating member and generates heat when energized, the electrode lead-out portion is 0.2 mm from the end of the joint stress relaxation material. Even if the temperature is rapidly raised from near room temperature to high temperature for a long time by providing it inside, or even if it is continuously operated for a long time in a saturated state by generating heat at high temperature, the lead wire The joint with the joint stress relaxation material connected to the ceramic heater has the strength to withstand repeated heating and cooling over a long period of time, and has excellent thermal shock resistance, high-temperature stability, and excellent durability. Can be obtained.
[Brief description of the drawings]
[1] shows a reference example of cell Ramikkuhita is a plan view of (A) is a side view of the whole, (B) is a sectional view of the electrode metal joint portion, (C) the electrode metal junction.
FIG. 2 is an enlarged view of FIG.
[Figure 3] shows the implementation form of the present invention, is a cross-sectional view of (A) a plan view of an electrode metal joint portion, (B) electrode metal junction.
[Explanation of symbols]
1: Ceramic heater 2: Metallized part 3: Metal fitting 4: Lead pin 5: Electrode extracting part 6: Leading part 7: Insulating member 8: Bonding vicinity part 9: Curved surface

Claims (2)

セラミックス中に発熱体を埋設し、該発熱体に接続した電極取り出し部の一部を露出させ、この露出部にろう材を用いてリード線を接合した接合応力緩和材を固定したセラミックヒータにおいて、
前記電極取り出し部を複数有し、
少なくとも1の電極取り出し部は、前記接合応力緩和材の端部より0.2mm以上内側に位置し、少なくとも1の他の電極取り出し部は、前記接合応力緩和材の端部より外側に位置することを特徴とするセラミックヒータ。
In a ceramic heater in which a heating element is embedded in ceramics, a part of an electrode take-out part connected to the heating element is exposed, and a bonding stress relaxation material is bonded to the exposed part using a brazing material.
A plurality of the electrode take-out portions;
At least one electrode extraction portion is positioned 0.2 mm or more inside from the end portion of the bonding stress relaxation material, and at least one other electrode extraction portion is positioned outside the end portion of the bonding stress relaxation material. Ceramic heater characterized by
前記接合応力緩和材の端部には、面取り部または曲面部が設けられていることを特徴とする、請求項に記載のセラミックヒータ。2. The ceramic heater according to claim 1 , wherein a chamfered portion or a curved surface portion is provided at an end portion of the bonding stress relaxation material.
JP18670698A 1998-07-01 1998-07-01 Ceramic heater Expired - Fee Related JP3762103B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18670698A JP3762103B2 (en) 1998-07-01 1998-07-01 Ceramic heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18670698A JP3762103B2 (en) 1998-07-01 1998-07-01 Ceramic heater

Publications (2)

Publication Number Publication Date
JP2000021556A JP2000021556A (en) 2000-01-21
JP3762103B2 true JP3762103B2 (en) 2006-04-05

Family

ID=16193220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18670698A Expired - Fee Related JP3762103B2 (en) 1998-07-01 1998-07-01 Ceramic heater

Country Status (1)

Country Link
JP (1) JP3762103B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7313268B2 (en) 2019-12-20 2023-07-24 ボッシュ株式会社 glow plug

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5345914B2 (en) * 2009-09-14 2013-11-20 日本特殊陶業株式会社 Ceramic heater
CN110536491A (en) * 2019-09-25 2019-12-03 重庆利迈陶瓷技术有限公司 A kind of ceramic electrically-heated body and electric iron of double-layer structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7313268B2 (en) 2019-12-20 2023-07-24 ボッシュ株式会社 glow plug

Also Published As

Publication number Publication date
JP2000021556A (en) 2000-01-21

Similar Documents

Publication Publication Date Title
KR101016977B1 (en) Brazed structure, ceramic heater, and glow plug
TW200810291A (en) Power terminals for ceramic heater and method of making the same
JP2002270339A (en) Ceramic heater
EP1288572A2 (en) Ceramic heater and glow plug having the ceramic heater
JP3762103B2 (en) Ceramic heater
JP3121985B2 (en) Silicon nitride ceramic heater
JP3588227B2 (en) Ceramic heater
JP3811440B2 (en) Ceramic heater
CN100596248C (en) Ceramic heater and manufacturing method of same
JP4688376B2 (en) Ceramic heater
JPH07167435A (en) Ceramic heat-generating member
JP4044244B2 (en) Silicon nitride ceramic heater
JPS59134585A (en) Structure of heater
JP2000133419A (en) Ceramic heater
JP4025641B2 (en) Ceramic heater
JP3924378B2 (en) Ceramic heater
JPS6029518A (en) Heater for glow plug
JPH0210557B2 (en)
JP2735729B2 (en) Ceramic heating element
JP3838785B2 (en) Ceramic heater
JP3977965B2 (en) Heater device
JP2735721B2 (en) Ceramic heating element
JPH07151332A (en) Ceramic glow plug
JP3075660B2 (en) Ceramic heater and method of manufacturing the same
JPS6337587A (en) Ceramic heater

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050412

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050610

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051018

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051117

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20051124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060112

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100120

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110120

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110120

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120120

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120120

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130120

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140120

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees