JP3924378B2 - Ceramic heater - Google Patents

Ceramic heater Download PDF

Info

Publication number
JP3924378B2
JP3924378B2 JP14937698A JP14937698A JP3924378B2 JP 3924378 B2 JP3924378 B2 JP 3924378B2 JP 14937698 A JP14937698 A JP 14937698A JP 14937698 A JP14937698 A JP 14937698A JP 3924378 B2 JP3924378 B2 JP 3924378B2
Authority
JP
Japan
Prior art keywords
ceramic
metal layer
metal
electrode
metal member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14937698A
Other languages
Japanese (ja)
Other versions
JPH11343180A (en
Inventor
浩 触
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP14937698A priority Critical patent/JP3924378B2/en
Publication of JPH11343180A publication Critical patent/JPH11343180A/en
Application granted granted Critical
Publication of JP3924378B2 publication Critical patent/JP3924378B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、酸化物系あるいは非酸化物系の各種セラミック部材と金属部材との接合体及びセラミックヒータに関するもので、各種センサや測定機器等をはじめとする各種産業機械装置、あるいは加熱・点火用に用いられるセラミックヒータに代表される各種燃焼機器部品やグロープラグ等の内燃機関部品、あるいは通電作動時に発熱を伴うパワートランジスタやダイオードをはじめとする半導体素子や抵抗体等のパワー素子が搭載される放熱基板に代表される電子部品等の耐熱性を必要とするセラミック部材と金属部材との接合体に適用されるものである。
【0002】
とりわけ、燃費改善や出力向上、及び排気ガス改善を目指した自動車用の直噴型のディーゼルエンジンの始動促進をはじめ、船舶用あるいは発電用等の大型ディーゼルエンジン等の各種内燃機関用点火補助に使用されるグロープラグ、あるいは前記排気ガス改善を目的とした早期活性型酸素センサ等の補助加熱用として用いられる加熱用ヒータに好適な高温用のセラミックヒータに関するものである。
【0003】
【従来の技術】
従来より各種電子部品の絶縁基体として利用されてきた酸化物系のセラミックスに加え、近年、耐熱性及び耐食性、耐摩耗性、電気絶縁性により優れた、高強度でかつ比重が小さいという顕著な特徴を有する非酸化物系セラミックスが、化学プラントや工作機械部品をはじめとする各種産業機械装置や、自動車用のディーゼルエンジン等の内燃機関部品として多用されるようになっている。
【0004】
例えば、ディーゼル機関の始動時やアイドリング時に、副燃焼室内を急速に予熱するために用いられる内燃機関用グロープラグや、内燃機関の排気ガス中の酸素濃度を検知し、排気ガス制御を行うための酸素センサの素子の活性化を促進するために内装されるヒータ等の各種補助加熱用ヒータとしては、従来の急速昇温特性や、耐摩耗性、耐熱性、耐食性等の耐久性に劣る、発熱抵抗線と耐熱絶縁粉末とを耐熱金属製筒内に埋設したシーズヒータに代わり、熱伝導性が良好な電気絶縁性セラミック焼結体に、高融点金属やその化合物、及びそれらを主成分とする各種無機導電材から成る発熱抵抗体を担持したり、接合したり、あるいは埋設したりして一体化したセラミック発熱体が広く利用されるようになっている。
【0005】
しかしながら、前記セラミックスは脆性材料であることから繰り返し応力が加わる部分への適用が難しく、その上、加工性に乏しいことから、高温に曝される部分にのみ、耐熱性及び耐食性、耐摩耗性に優れた軽量のセラミックスを用い、高荷重が作用する部分を高強度で加工性に優れた金属部材で構成してセラミック部材と金属部材とを組み合わせて複合構造体とする等、種々のセラミックスと金属との接合体が提案されている。
【0006】
かかるセラミック部材と金属部材との接合には、従来よりセラミック部材表面にモリブデン(Mo)等の高融点金属を主成分とする金属層を被着し、該金属層を介して銀ろう等のろう材により金属部材をろう付け接合することが広く採用されていた。
【0007】
しかしながら、前記ろう付け接合によるセラミック部材と金属部材の接合体においては、両部材の熱膨張率が大きく異なることから、該熱膨張差に起因する歪み、即ち、残留応力が両部材の接合部近辺、例えば、前記内燃機関用グロープラグや、各種補助加熱用ヒータでは、セラミック発熱体の電極取り出し部と電極金具との接合部、とりわけその接合界面に発生し、セラミック部材と金属部材との接合強度の低下や、金属部材の収縮力によるセラミック部材あるいは金属部材自体の破壊や、接合界面からの剥離を招き易いという欠点があった。
【0008】
そこで、セラミック部材と金属部材との熱膨張差を解消し、高温まで接合強度を維持するために、図4に示すようにセラミック部材20と金属部材21との間に金(Au)、銀(Ag)、銅(Cu)、ニッケル(Ni)の一種以上を主成分とし、チタン(Ti)、バナジウム(V)等の活性金属を含有する金属層22を熱処理により溶融させて接合する、いわゆるろう接することが多数、提案されている(特開平6−321648号公報、特開平7−25674号公報、特開平7−272832号公報参照)。
【0009】
【発明が解決しようとする課題】
前記活性金属を含有する金属層22をろう材として熱処理により溶融させて接合したセラミック部材20と金属部材21の接合体は、初期強度や、例えば、常温と450℃の温度に交互に曝してそれを繰り返す冷熱サイクル試験では、3000サイクル程度でもセラミック部材20と金属部材21の接合強度は満足するものであった。
【0010】
しかしながら、例えば、最近の内燃機関用として用いられる前記センサに内装されるセラミックヒータは、排気ガス規制の強化に伴い、急速昇温による早期活性化やリーンバーンエンジンに対応可能とする広域型であること等が要求されるようになり、発熱温度の上昇からセラミックヒータの電極金具付近の温度は、従来の450℃程度から更に高い、500℃にも達するに及び、前記金属層を熱処理により溶融して接合した接合体では、走行10万マイルに該当する条件に耐えられないという課題があった。
【0011】
即ち、前述のような高温条件下と急速昇温の繰り返しは、金属層22が金属部材21とセラミック部材20との当接面側33と側面34にかけて接着することにより形成されるメニスカス部23に沿って、セラミック部材20に微少なクラック24が発生するという課題があった。
【0012】
又、図5に示すように無機材料から成る発熱抵抗体(不図示)とセラミック焼結体25とで構成されるセラミック発熱体26において、前記発熱抵抗体に接続したリード線27と電気的に接続した電極取り出し部28の露出部で、金属層22を介して電極金具29を溶融接合したセラミックヒータ30にあっては、前述のような高温条件下で、長時間にわたる加熱冷却の繰り返しにより電極金具29のセラミック発熱体26との当接面側33と側面34にかけて接着した金属層22が形成するメニスカス部23に沿ってセラミック発熱体26に微少なクラック24が発生し、該クラック24が稼働中に更に進展し、その結果、電極金具29がセラミック焼結体25の一部を接着したままセラミック発熱体26から剥離したり、発熱抵抗体に損傷を与えて抵抗変化を生じたりして、通電時に電極部で異常発熱を起こしてヒータとしての寿命が低下し、ひいては断線を生じるという課題があった。
【0013】
【発明の目的】
本発明は前記課題に鑑み成されたもので、その目的は、セラミック部材と金属部材との接合部が、500℃にも及ぶ高温度まで急速昇温する等、稼働中に長時間にわたる加熱冷却の熱履歴を受けてもセラミック部材にクラックを生じたり、あるいは金属部材がセラミック部材から剥離したりせず、セラミックヒータにあっては、電極金具がセラミック焼結体を一部接着したままセラミック発熱体から剥離したり、セラミック発熱体の発熱抵抗体が抵抗変化して異常発熱したり、断線したりすることがなく、長期にわたり高い接合強度を維持すると共に、耐熱性や耐熱衝撃性、高温安定性に優れ、急速昇温特性が良好な高温用に最適なセラミック部材と金属部材の接合体及びセラミックヒータを提供することにある。
【0014】
【課題を解決するための手段】
本発明者は前記課題について種々検討した結果、従来のセラミック部材と金属部材の接合体は、前記活性金属を含有する金属層をろう材として溶融接合する際の熱履歴により、金属部材周囲に該当するセラミック部材にわずかながらも残留応力が発生していることに加えて、溶融接合する際に前記図4及び図5に示す要部断面図の金属層22に重ねて記載したX線マイクロアナリシス(EPMA)による元素の面分析の結果、金属部材成分31及び電極金具成分32が金属層22に拡散してその組成が変化し、その結果、該金属層22の硬度が上昇して残留応力が増すことが明らかとなった。
【0015】
更に、金属部材21との接合部周囲には、セラミック部材20との当接面側33から金属部材21の側面34にかけて、該金属部材21の角部が溶出して円弧状を成すと共に、溶融接着した金属層22がメニスカス部23を形成し、該接合部周囲に応力が集中することが重なりあった結果、前記クラック24が発生するものであることも判明した。
【0016】
そこで、セラミック部材と金属部材とを接合する際の温度上昇を抑制して金属部材成分の金属層への拡散を防止し、その硬度の上昇を抑制すると共に、前記金属層がメニスカス部を形成しないように、あるいは該メニスカス部を除去したり、又は、該メニスカス部あるいは山状の盛り上がりを金属部材の接合部周囲に形成しても、金属部材はセラミック部材との当接面側でのみ金属層と接着し、金属部材の側面には接着しないようにすれば、その部分の残留応力の低減と集中を回避することが可能となり、前記課題が解消できることを見いだした。
【0017】
即ち、本発明のセラミックヒータは、無機導電材の発熱抵抗体とセラミック焼結体とから成るセラミック発熱体と電極金具を厚さが20〜200μmの金属層を介して接合したセラミックヒータであって、前記電極金具は金属層とセラミック発熱体との当接面側でのみ接着しており、該金属層は電極金具との界面から10μm以内に拡散した電極金具成分を含有しており、前記電極金具の表面には、リードピンが接合されており、前記電極金具と前記金属層との間には前記リードピンに対向する位置に空隙が形成されており、前記空隙の少なくとも両サイドにおいて前記電極金具と前記金属層が接合されていることを特徴とする。
【0018】
特に、本発明のセラミックヒータにおいては、窒化珪素質焼結体であることが好ましく、前記金属層が金(Au)及びニッケル(Ni)を主成分とすることがより好ましく、バナジウム(V)かモリブデン(Mo)の一種以上を含有することがさらに好ましい
【0021】
【作用】
本発明のセラミック部材と金属部材の接合体及びセラミックヒータによれば、セラミック部材と金属部材間に介在させる金属層は、厚さが20〜200μmで金属部材との界面より深さ10μm以内だけにしか、前記金属部材成分が拡散して含有されておらず、かつ該金属部材は金属層とセラミック部材との当接面側だけで接着しており、金属部材の側面には金属層が接着していないことから該金属層の組成変化が少なく、従って硬度が上昇せず、残留応力も抑制されることになり、又、金属部材の接合部周囲に該当するセラミック部材に応力が集中しなくなり、加熱冷却を繰り返す熱履歴が長期間にわたっても、金属部材との接合部周囲のセラミック部材にクラックを生じたり、金属部材がセラミック部材から剥離したりする等の恐れは解消されることになる。
【0022】
又、セラミックヒータにあっては、セラミック発熱体と電極金具及び金属層を前記接合体と同様の構成とすることにより、セラミック発熱体にクラックを生じて電極金具がセラミック焼結体の一部を接着したまま剥離したり、発熱抵抗体が抵抗変化して異常発熱したり、断線したりすることがなく、長期間にわたり高い接合強度を維持すると共に、耐熱衝撃性や高温安定性に優れ、急速昇温特性が良好で耐久性を飛躍的に向上させることが可能となる。
【0023】
【発明の実施の形態】
以下、本発明のセラミック部材と金属部材の接合体及びセラミックヒータについて、図面に基づき詳細に説明する。
【0024】
図1は、本発明のセラミック部材と金属部材の接合体の要部を拡大し、X線マイクロアナリシス(EPMA)による金属層に拡散した金属部材成分の面分析の結果を重ねて記載した断面図である。
【0025】
図1において、1はセラミック部材2と金属部材3とを金属層4を介して接合したセラミック部材と金属部材の接合体であり、金属層4は金属部材3との界面5から深さ10μm以内だけに拡散した金属部材成分6を含有した20〜200μmの厚さ7を有するもので、金属部材3は金属層4とセラミック部材2との当接面側8だけで接着しており、金属部材3の側面13とは金属層4が接着していないものである。
【0026】
本発明において、前記セラミック部材として適用可能な材質は、酸化物系セラミックスではアルミナ(Al2 3 )やムライト(3Al2 3 ・2SiO2 )等が、又、非酸化物系セラミックスでは窒化珪素(Si3 4 )や炭化珪素(SiC)、サイアロン、窒化アルミニウム(AlN)等が挙げられる。
【0027】
特に、金属部材及び金属層との熱膨張率は異なるものの、前述のような高温雰囲気中での耐久性を向上させるために、アルミナ(Al2 3 )に代えてマトリックス成分としてイッテルビウム(Yb)やイットリウム(Y)等の希土類元素をモノシリケート及び/又はダイシリケートの形態で含有する窒化珪素質焼結体が、強度や破壊靱性、耐熱性の点からは最適である。
【0028】
又、前記セラミック部材と接合する金属部材としては、該セラミック部材の熱膨張率と近似した3.0〜7.5×10-6/℃程度の熱膨張率を有する金属、例えば、モリブデン(Mo)やタングステン(W)等の低熱膨張金属や、Fe−Ni系のインバー型合金、あるいはFe−P系のエリンバー型合金、WC−TiC−Co系の超硬合金等が挙げられ、耐酸化性や加工性、及びコストという観点からはFe−Ni−Co系合金あるいはFe−Ni系合金が望ましい。
【0029】
更に、前記金属部材の塑性変形のし易さという点からは、該金属部材のヤング率が14〜15×103 kg/mm2 を示すFe−Ni−Co合金やFe−Ni合金等のFe基合金が最適であり、その上、金属部材自体の塑性変形で両部材間の熱膨張差により発生する応力を吸収できるという点からは、該金属部材の厚さを薄くして0.1〜0.5mm程度とすることがより望ましく、かかる金属部材の角部は周知の如く応力集中を回避するため、面取りや丸く曲面加工を施しておくことがより好ましいことは言うまでもない。
【0030】
一方、前記セラミック部材と金属部材とを接合する金属層としては、主成分が金(Au)又はニッケル(Ni)、銅(Cu)、銀(Ag)、パラジウム(Pd)のいずれか一種以上から成るもので、400℃以上の高温で使用しても酸化による劣化がなく、例えば、直流電源の通電が関与する使用条件下でのマイグレーションの防止を考慮すると、前記金属層は金(Au)が50〜99重量%、ニッケル(Ni)が1〜50重量%の金(Au)とニッケル(Ni)の合金が最適である。
【0031】
又、前記金属層には、活性金属として周期律表第4a族元素のチタン(Ti)、バナジウム(V)、マンガン(Mn)、コバルト(Co)、ニッケル(Ni)、銅(Cu)や、モリブデン(Mo)、シリコン(Si)、ジルコニウム(Zr)、ハフニウム(Hf)をいずれか一種以上を含有することが好ましい。
【0032】
とりわけ、前記金属層のセラミック部材への濡れ性が良く、セラミック部材の強度を劣化させないという点からは、バナジウム(V)又はモリブデン(Mo)の一種以上を活性金属として含有させることが最適であり、かかる活性金属は窒化物や炭化物、水素化物等の形態で含有させても良い。
【0033】
又、前記活性金属の含有量は、1重量%未満では接合強度の向上効果が見られず、10重量%を越えると前記金属層の焼き付け温度が高くなり、冷却時に大きな残留応力を生じてクラックの原因と成り易いため、1〜10重量%が好ましく、特に、1〜5重量%が最適である。
【0034】
従って、前記活性金属を含有した貴金属から成る金属層としては、具体的には、金(Au)及び/又は銀(Ag)と、ニッケル(Ni)又はパラジウム(Pd)の一種以上、あるいは銅(Cu)又はコバルト(Co)、シリコン(Si)のいずれか一種の合計量が90〜99重量%で、残部の1〜10重量%がバナジウム(V)、モリブデン(Mo)、チタン(Ti)、ジルコニウム(Zr)、ハフニウム(Hf)、マンガン(Mn)のいずれか一種以上の活性金属を含有するもの等が挙げられる。
【0035】
本発明では、前記金属層は、接合時に金属部材との界面から深さ10μmを越えて金属部材成分が該金属層中に溶出拡散して含有されると、金属層の硬度が著しく増加してその部分に残留応力が増加してクラック発生の原因となるため、前記金属部材成分の拡散範囲は10μm以内となるように制御する必要がある
【0036】
従って、かかる金属部材成分の拡散範囲と相まって、前記金属層の厚さが20μm未満では、該金属層の容量不足となり、巣等の接合ムラが生じて接合強度が不十分となり、容易に金属部材が剥離したりするようになり、その厚さが200μmを越えると金属層の容量が過剰となって残留応力が増加し、短時間でセラミック部材にクラックを発生して強度低下を生じることになる。
【0037】
そのために、前記金属層の厚さは、20〜200μmに特定され、金属層を被着形成する上での作業性を考慮すると20〜150μmが好適となる。
【0038】
次に、本発明では、金属部材と金属層との接着形態として、金属部材の接合部周囲のセラミック部材に応力の集中を避けるためには、該金属部材の側面と金属層が接着してメニスカス部を形成していないことが最も望ましく、前記金属層がメニスカス部あるいは山状の盛り上がりを形成しても、金属部材の外周側面とは金属層が接着していなければ良いものである。
【0039】
従って、前記金属部材の外周側面には金属層が接着せず、セラミック部材との当接面側でのみ金属層が接着しているようにすべく、接合方法や接合温度、接合圧力等の接合条件を制御するか、あるいはレーザートリミングや研削等により不要な部分を除去したり、又は、金属部材の外周側面にBN等の耐熱性を有する離型剤を予め塗布して溶融接合する等の必要があり、なかでも簡便な方法としては、例えば、静的な振動を加えて接合する超音波接合法であれば、大きく溶融したり、不要部を除去したり、予め離型剤を塗布したりすることもなく目的が達成でき、好都合である。
【0040】
又、前記金属部材と金属層との接合は、必要な強度を確保できれば全面に接合する必要がないことは言うまでもないが、熱膨張差による応力が集中することを避けるためには、前記金属部材の外周部と金属層の外周部のいずれの縁とも重ならないように接合することが望ましい。
【0041】
次に、図2は、本発明のセラミックヒータの一例を示す外観の図であり、図3は、本発明のセラミックヒータの要部の断面を拡大し、X線マイクロアナリシス(EPMA)による金属層に拡散した電極金具成分の面分析の結果を重ねて記載した断面図である。
【0042】
図2及び図3において、9はセラミック発熱体10と電極金具11を金属層4を介して接合したセラミックヒータであり、セラミック発熱体10は無機導電材から成る発熱抵抗体(不図示)とセラミック焼結体から成る絶縁体14で構成され、発熱抵抗体に接続したタングステン(W)等のリード線15が電極取り出し部16と電気的に接続され、該電極取り出し部16が、Niリードピン17をスポット溶接した電極金具11と金属層4を介して電気的に接合されてセラミックヒータ9が形成されている。
【0043】
本発明において、前記電極金具11は、例えば、スポット溶接されたNiリードピン17を避けて電極金具11の両サイドをセラミック発熱体10との当接面にほぼ垂直に加圧しながら超音波接合を行うことにより、電極金具11の側面13へ溶融した金属層が接着することなく接合することが可能となる。
【0044】
その場合、電極金具11と金属層4の間には、Niリードピン17を避けて接合したことによる空隙18が生じると共に、電極金具成分12の金属層4への拡散は、金属層4の厚さにかかわらず電極金具11との界面から10μm以内の深さまでに収まり、金属層4の組成変化による硬度の増加はほとんど見られず、従って応力の増加も認められないことから、最も簡便な接合方法である。
【0045】
前記電極金具11は、既に詳述した金属部材がいずれも同様に採用でき、更に、リードピン17としてNi線等の軟質金属線をスポット溶接等により接続して用いることにより、セラミックヒータとして振動が加わるような稼働条件下では、該振動が直接、接合部に伝わる等の物理的な負荷を軽減することから、より接合部の剥離等の問題を回避することもできる。
【0046】
又、前記セラミックヒータが内燃機関のグロープラグ等に適用される場合には、該セラミックヒータは、直流電源で稼働されるためマイグレーションによる短絡を防止するという観点からは、前記金属層としては、金(Au)を主成分とし、活性金属としてバナジウム(V)又はチタン(Ti)を含有するものが最適である。
【0047】
尚、本発明のセラミック発熱体を構成する無機導電材から成る発熱抵抗体は、タングステン(W)、モリブデン(Mo)、チタン(Ti)等の高融点金属、あるいはタングステンカーバイド(WC)、珪化モリブデン(MoSi2 )、窒化チタン(TiN)等の高融点金属の炭化物や珪化物、窒化物等を主成分とする抵抗体が挙げられ、絶縁体の窒化物系セラミック焼結体との熱膨張差、及び高温度下でもそれらと反応し難いという点からは、WCあるいはWを主成分とするものが好適である。
【0048】
尚、前記発熱抵抗体を成す無機導電材の構成成分は、絶縁体の窒化物系セラミック焼結体に添加して熱膨張差や反応性を調整しても良いことは言うまでもない。
【0049】
一方、前記無機導電材の主成分に対して、その成長を制御して絶縁体との熱膨張差によるクラックを防止し、かつ抵抗を増大させないようにするために、分散剤として窒化珪素(Si3 4 )、窒化硼素(BN)、窒化アルミニウム(AlN)あるいは炭化珪素(SiC)の一種以上を含有させても良く、その含有量は主成分100重量部に対して、例えば、窒化珪素(Si3 4 )は5〜30重量部、窒化硼素(BN)は1〜20重量部、窒化アルミニウム(AlN)は1〜15重量部、炭化珪素(SiC)は3〜15重量部の割合であれば好適である。
【0050】
他方、前記発熱抵抗体は、ブロック状や線状、又は層状のいずれでも良く、前記絶縁体をその間に介してU字状に曲げたり、コイル状に巻回したり、平面にジグザグに折り曲げたりして発熱抵抗体を平面視した時にU字状やW字状等、任意の形状を成すものとし、絶縁体に担持したり、接合したり、あるいは埋設したりできる他、前記各種形状で絶縁体を介して2層以上の積層構造とする等、各種形状形態で適用でき、その両端にはW材等から成るリード材を電気的に接続したものでも良い。
【0051】
【実施例】
次に、本発明を以下に詳述するようにして評価した。
先ず、窒化珪素(Si3 4 )粉末にイッテルビウム(Yb)やイットリウム(Y)等の希土類元素の酸化物から成る焼結助剤を添加したセラミック原料粉末、及びアルミナ(Al2 3 )粉末にシリカ(SiO2 )、カルシア(CaO)を添加したセラミック原料粉末、及び窒化アルミニウム(AlN)に酸化エルビウム(Er2 3 )を焼結助剤として添加した原料粉末を周知のプレス成形法等で平板状の成形体に成形し、該成形体の一端側の表面にWCを主成分とするペーストを用いてスクリーン印刷法によりU字状のパターンで発熱部を形成し、同様にしてセラミック成形体の他端側から側面にかけて電極部を形成する。
【0052】
次に、前記発熱部と電極部を電気的に接続するようにリード線を載置し、その上に別のセラミック成形体を重ねた後、還元性雰囲気下、1700〜1900℃の温度で焼成一体化してセラミック発熱体を作製した。
【0053】
その後、前記セラミック発熱体を研削加工により円柱形状に加工し、露出した電極部に表1に示す金属層成分を含有したペーストを用いてスクリーン印刷法等により転写し、800〜1300℃の真空雰囲気中で焼き付け処理を行って、幅3mm×長さ4mmの金属層を被着形成した。
【0054】
かくして得られたセラミック発熱体に、幅2mm×長さ3mm×厚さ0.2mmのFe−Ni−Co合金に予めNiリードピンをスポット溶接により接続した電極金具を表1に示す各種接合方法により接合した後、評価用のセラミックヒータの一部を用いて、電極金具の接合部を含む部分を切断し、その断面を走査型電子顕微鏡により観察すると共に、金属層の厚さを計測した。
【0055】
又、前記断面において、電極金具がセラミック発熱体と当接する面の長さに対する金属層が実際に接合されている長さの比率を接合面積(%)として求め、評価した。
【0056】
次いで、X線マイクロアナリシス(EPMA)で金属層に拡散した電極金具成分の面分析を行い、該電極金具成分が含有される金属層の電極金具の界面からの深さを計測した。
【0057】
【表1】

Figure 0003924378
【0058】
【表2】
Figure 0003924378
【0059】
一方、他の評価用のセラミックヒータについて、電極金具の接合強度及び電極金具の接合部を含むセラミックヒータの抗折強度、及び冷熱サイクル試験後の抵抗変化率を測定すると共に、冷熱サイクル試験後のセラミックヒータを電極金具の接合部を含む部分で切断してその断面を観察した。
【0060】
前記接合強度は、評価用のセラミックヒータを固定し、セラミック発熱体に接合した電極金具のNiリードピンをセラミック発熱体と垂直方向に引っ張り、接合部又はNiリードピンあるいは電極金具が破断した時の荷重()を計測して破断モードと共に評価した。
【0061】
又、前記抗折強度は、評価用のセラミックヒータを把持して電極金具の接合部を加圧することにより、片持ち抗折試験を行い評価した。
【0062】
更に、前記冷熱サイクル試験は、評価用のセラミックヒータを室温と500℃の温度雰囲気にそれぞれ曝すのを1サイクルとして繰り返し、3000サイクル後のセラミックヒータの抵抗値を測定し、該試験前の初期抵抗値に対する抵抗変化率を求めると共に、該試験後のセラミックヒータを電極金具を含む断面で切断してクラックの有無を観察した。
【0063】
【表3】
Figure 0003924378
【0064】
表から明らかなように、本発明の請求範囲外である試料番号1、8、11、15では、いずれも電極金具の接合強度が78.5N(8kgf)以下であり、同じく試料番号10、14、17、18、27、28、30では、電極金具の接合強度は78.5N(8kgf)を越えるものの、冷熱サイクル試験後の抵抗変化率が3.0以上と大であり、セラミック発熱体にクラックの発生が認められた。
【0065】
それに対して、本発明では、いずれも電極金具の接合強度は78.5N(8kgf)を越え、しかも冷熱サイクル試験後の抵抗変化率は2.6以下と小さく、セラミック発熱体にクラックは認められず、電極金具の接合部周囲の応力集中が効果的に緩和されていることが分かる。
【0066】
尚、前記実施例ではセラミックヒーターについて説明したが、本発明の接合形態は前記実施例に限定されるものではなく、本発明の主旨を逸脱しないものであればいかなるものでも良く、例えばIGBT等のパワートランジスター等を実装するセラミック焼結体基板表面に形成したメタライズ部に対する電極等の金属片の接合に適用しても同様の効果を奏するものである。
【0067】
【発明の効果】
本発明によれば、電極金具と金属層との間に空隙が形成され、該空隙の少なくとも両サイドにおいて前記電極金具と前記金属層が接合され、より好ましくは金属層への金属部材成分の溶出拡散を金属部材との界面から10μm以内に抑制し、該金属部材がセラミック部材との当接面側で20〜200μmの厚さの金属層を接着して接合したときには、両部材間に介在する金属層への金属部材成分の溶出拡散による応力増加が生じず、また金属部材の側面には金属層が接着しておらず、金属部材の接合部周囲への応力集中が抑制されると共に、接合時の物理的な応力が緩和され金属層自体の応力増加が抑制され、室温と高温環境下に繰り返し曝しても、セラミック部材にクラックが発生せず、高い強度を維持した電気的な接続状態の劣化を起こさない極めて信頼性の高いセラミックヒータを提供することができる。
【図面の簡単な説明】
【図1】本発明のセラミック部材と金属部材の接合体を示す一例の要部を拡大し、X線マイクロアナリシス(EPMA)による金属層に拡散した金属部材成分の面分析の結果を重ねて記載した断面図である。
【図2】本発明のセラミックヒータの一例を示す外観の図である。
【図3】本発明のセラミックヒータの一例の要部の断面を拡大し、X線マイクロアナリシス(EPMA)による金属層に拡散した電極金具成分の面分析の結果を重ねて記載した断面図である。
【図4】従来のセラミック部材と金属部材の接合体の要部を拡大し、X線マイクロアナリシス(EPMA)による金属層に拡散した金属部材成分の面分析の結果を重ねて記載した断面図である。
【図5】従来のセラミックヒータの要部の断面を拡大し、X線マイクロアナリシス(EPMA)による金属層に拡散した電極金具成分の面分析の結果を重ねて記載した断面図である。
【符号の説明】
1 セラミック部材と金属部材の接合体
2 セラミック部材
3 金属部材
4 金属層
5 界面
6 金属部材成分
7 厚さ
8 当接面側
9 セラミックヒータ
10 セラミック発熱体
11 電極金具
12 電極金具成分[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a joined body of a ceramic member and a metal member of various oxide or non-oxide type and a ceramic heater, and various industrial machines such as various sensors and measuring instruments, or for heating and ignition. Various internal combustion engine parts such as ceramic heaters used for ceramics, internal combustion engine parts such as glow plugs, or power elements such as semiconductor elements and resistors including power transistors and diodes that generate heat when energized. The present invention is applied to a joined body of a ceramic member and a metal member that require heat resistance, such as an electronic component typified by a heat dissipation board.
[0002]
In particular, it is used for the acceleration of starting direct-injection diesel engines for automobiles aimed at improving fuel efficiency, output, and exhaust gas, as well as ignition assistance for various internal combustion engines such as large diesel engines for ships or power generation. The present invention relates to a high temperature ceramic heater suitable for a heater used for auxiliary heating such as a glow plug to be used or an early activation oxygen sensor for the purpose of improving the exhaust gas.
[0003]
[Prior art]
In addition to oxide-based ceramics that have been used as insulating bases for various electronic components in the past, in recent years, it has outstanding features of high strength and low specific gravity, which are superior in heat resistance and corrosion resistance, wear resistance, and electrical insulation. Non-oxide ceramics having a large number of are widely used as various industrial machine devices including chemical plants and machine tool parts, and as internal combustion engine parts such as automobile diesel engines.
[0004]
For example, when starting a diesel engine or idling, a glow plug for an internal combustion engine used to rapidly preheat the sub-combustion chamber, or an oxygen concentration in the exhaust gas of the internal combustion engine to detect exhaust gas Various auxiliary heaters such as heaters built in to promote the activation of oxygen sensor elements, heat generation that is inferior to conventional rapid temperature rise characteristics and durability such as wear resistance, heat resistance, corrosion resistance, etc. Instead of a sheathed heater in which resistance wires and heat-resistant insulating powder are embedded in a heat-resistant metal cylinder, an electrically insulating ceramic sintered body with good thermal conductivity, a refractory metal, its compound, and their main components Ceramic heating elements integrated by carrying, bonding, or embedding heating resistors made of various inorganic conductive materials are widely used.
[0005]
However, since the ceramic is a brittle material, it is difficult to apply to parts where repeated stress is applied, and in addition, because it is poor in workability, only the parts exposed to high temperatures are resistant to heat resistance, corrosion resistance, and wear resistance. A variety of ceramics and metals, such as a composite structure using a combination of ceramic members and metal members made of high-strength and excellent workability parts made of high-weight lightweight ceramics A zygote is proposed.
[0006]
For joining such a ceramic member and a metal member, a metal layer mainly composed of a refractory metal such as molybdenum (Mo) is deposited on the surface of the ceramic member, and brazing such as silver brazing is performed through the metal layer. It has been widely adopted to braze and join metal members with materials.
[0007]
However, in the joined body of the ceramic member and the metal member by brazing joining, since the thermal expansion coefficients of both the members are greatly different, the distortion caused by the difference in thermal expansion, that is, the residual stress is in the vicinity of the joint portion of both the members. For example, in the glow plug for internal combustion engine and various auxiliary heaters, the bonding strength between the ceramic member and the metal member is generated at the bonding portion between the electrode extraction portion of the ceramic heating element and the electrode fitting, particularly at the bonding interface. There is a drawback in that the ceramic member or the metal member itself is liable to be degraded due to the shrinkage force of the metal member, or to be peeled off from the bonding interface.
[0008]
Therefore, in order to eliminate the difference in thermal expansion between the ceramic member and the metal member and maintain the bonding strength up to a high temperature, gold (Au), silver ( A so-called brazing method in which a metal layer 22 containing active metal such as titanium (Ti), vanadium (V) and the like is melted by heat treatment and contains at least one of Ag), copper (Cu), and nickel (Ni) as a main component. Many contacts have been proposed (see JP-A-6-321648, JP-A-7-25675, and JP-A-7-272832).
[0009]
[Problems to be solved by the invention]
The joined body of the ceramic member 20 and the metal member 21 joined by melting and joining the active metal-containing metal layer 22 by heat treatment is exposed to an initial strength or, for example, a normal temperature and a temperature of 450 ° C. alternately. In the thermal cycle test repeating the above, the bonding strength between the ceramic member 20 and the metal member 21 was satisfactory even at about 3000 cycles.
[0010]
However, for example, ceramic heaters built in the sensors used for recent internal combustion engines are wide-area types that can respond to early activation due to rapid temperature rise and lean burn engines as exhaust gas regulations are tightened. As the heat generation temperature rises, the temperature in the vicinity of the electrode fittings of the ceramic heater reaches 500 ° C, which is higher than the conventional 450 ° C, and the metal layer is melted by heat treatment. The joined body joined in this manner has a problem that it cannot withstand the conditions corresponding to 100,000 miles of traveling.
[0011]
That is, the repetition of the rapid temperature rise under the high temperature condition as described above causes the metal layer 22 to adhere to the contact surface side 33 and the side surface 34 of the metal member 21 and the ceramic member 20 and adhere to the meniscus portion 23 formed. Along with this, there is a problem that a minute crack 24 is generated in the ceramic member 20.
[0012]
Further, as shown in FIG. 5, in a ceramic heating element 26 comprising a heating resistor (not shown) made of an inorganic material and a ceramic sintered body 25, the lead wire 27 connected to the heating resistor is electrically connected. In the ceramic heater 30 in which the electrode fitting 29 is melt-bonded through the metal layer 22 at the exposed portion of the connected electrode lead-out portion 28, the electrode is obtained by repeated heating and cooling over a long period of time under the high temperature conditions as described above. A minute crack 24 is generated in the ceramic heating element 26 along the meniscus portion 23 formed by the metal layer 22 bonded to the contact surface side 33 and the side surface 34 of the metal fitting 29 with the ceramic heating element 26, and the crack 24 is activated. As a result, the electrode fitting 29 peels off from the ceramic heating element 26 with a part of the ceramic sintered body 25 adhered, or the heating resistor is damaged. By or resulting resistance changes giving, causing abnormal heat generation at the electrode portion reduces the life of the heater when energized, there is a problem that eventually results in disconnection.
[0013]
OBJECT OF THE INVENTION
The present invention has been made in view of the above problems, and its purpose is to heat and cool over a long period of time during operation, such as a rapid increase in temperature of the joint between the ceramic member and the metal member to a high temperature as high as 500 ° C. The ceramic member does not crack even if it receives the heat history of the above, or the metal member does not peel from the ceramic member. It does not peel off from the body, or the resistance of the heating element of the ceramic heating element changes abnormally, causing no abnormal heat generation or disconnection, maintaining high bonding strength for a long time, heat resistance, thermal shock resistance, high temperature stability It is an object of the present invention to provide a ceramic member-metal member assembly and a ceramic heater which are excellent in performance and have excellent rapid temperature rise characteristics and which are optimal for high temperatures.
[0014]
[Means for Solving the Problems]
As a result of various studies on the above problems, the present inventor has found that a conventional joined body of a ceramic member and a metal member corresponds to the periphery of the metal member due to a heat history when the metal layer containing the active metal is melt-bonded as a brazing material. X-ray microanalysis (overlaid on the metal layer 22 in the cross-sectional view of the main part shown in FIGS. 4 and 5 when melt bonding is performed in addition to the fact that a slight residual stress is generated in the ceramic member. As a result of the elemental analysis by EPMA), the metal member component 31 and the electrode fitting component 32 are diffused into the metal layer 22 to change its composition. As a result, the hardness of the metal layer 22 increases and the residual stress increases. It became clear.
[0015]
Further, around the joint portion with the metal member 21, from the contact surface side 33 with the ceramic member 20 to the side surface 34 of the metal member 21, the corner portion of the metal member 21 elutes to form an arc shape and melt. It has also been found that the bonded metal layer 22 forms a meniscus portion 23 and the stress 24 concentrates around the joint portion, and as a result, the crack 24 is generated.
[0016]
Therefore, the temperature rise at the time of joining the ceramic member and the metal member is suppressed to prevent the diffusion of the metal member component to the metal layer, the increase in the hardness is suppressed, and the metal layer does not form a meniscus portion. Even if the meniscus portion is removed, or the meniscus portion or the mountain-like bulge is formed around the joint portion of the metal member, the metal member is a metal layer only on the contact surface side with the ceramic member. It has been found that if it is bonded to the side surface of the metal member and is not bonded to the side surface of the metal member, reduction and concentration of the residual stress at that portion can be avoided, and the above-mentioned problems can be solved.
[0017]
That is, the present inventionCeramic heaterIsA ceramic heater in which a ceramic heating element composed of a heating resistor of inorganic conductive material and a ceramic sintered body and an electrode fitting are joined via a metal layer having a thickness of 20 to 200 μm, the electrode fitting comprising the metal layer and the ceramic Bonded only on the contact surface side with the heating element, the metal layer contains an electrode fitting component diffused within 10 μm from the interface with the electrode fitting, and lead pins are bonded to the surface of the electrode fitting. A gap is formed between the electrode fitting and the metal layer at a position facing the lead pin, and the electrode fitting and the metal layer are joined at least on both sides of the gap.It is characterized by that.
[0018]
In particular, the present inventionIn ceramic heaterIs a silicon nitride sintered bodyIs preferred,The metal layer is mainly composed of gold (Au) and nickel (Ni).Is more preferred,Containing one or more of vanadium (V) or molybdenum (Mo)Is more preferred.
[0021]
[Action]
According to the joined body of the ceramic member and the metal member and the ceramic heater according to the present invention, the metal layer interposed between the ceramic member and the metal member has a thickness of 20 to 200 μm and a depth within 10 μm from the interface with the metal member. However, the metal member component is not diffused and contained, and the metal member is bonded only on the contact surface side of the metal layer and the ceramic member, and the metal layer is bonded to the side surface of the metal member. Since the composition change of the metal layer is small, the hardness does not increase, the residual stress will be suppressed, and the stress does not concentrate on the ceramic member corresponding to the periphery of the joint of the metal member, The risk of cracking in the ceramic member around the joint with the metal member or peeling of the metal member from the ceramic member is eliminated even when the heat history of repeated heating and cooling is long. Will be.
[0022]
Further, in the ceramic heater, the ceramic heating element, the electrode fitting, and the metal layer are configured in the same manner as the joined body, so that the ceramic heating element is cracked, and the electrode fitting causes a part of the ceramic sintered body. It does not peel off while it is bonded, the resistance of the heating resistor changes abnormally, or it does not break, maintaining high bonding strength over a long period of time, excellent thermal shock resistance and high temperature stability, and rapid The temperature rise characteristics are good and the durability can be improved dramatically.
[0023]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a joined body of a ceramic member and a metal member and a ceramic heater according to the present invention will be described in detail with reference to the drawings.
[0024]
FIG. 1 is an enlarged cross-sectional view of a principal part of a joined body of a ceramic member and a metal member according to the present invention, and the results of surface analysis of metal member components diffused in a metal layer by X-ray microanalysis (EPMA) are overlapped. It is.
[0025]
In FIG. 1, reference numeral 1 denotes a joined body of a ceramic member and a metal member obtained by joining a ceramic member 2 and a metal member 3 via a metal layer 4. The metal layer 4 is within a depth of 10 μm from the interface 5 with the metal member 3. The metal member 3 has a thickness 7 of 20 to 200 μm containing the metal member component 6 diffused only in the metal member 3, and the metal member 3 is bonded only at the contact surface side 8 between the metal layer 4 and the ceramic member 2. The side surface 13 of 3 is the one to which the metal layer 4 is not bonded.
[0026]
In the present invention, the material applicable as the ceramic member is alumina (Al2OThree) And mullite (3Al2OThree・ 2SiO2), Etc., and non-oxide ceramics include silicon nitride (SiThreeNFour), Silicon carbide (SiC), sialon, aluminum nitride (AlN), and the like.
[0027]
In particular, although the coefficient of thermal expansion is different from that of the metal member and the metal layer, alumina (Al2OThree), A silicon nitride sintered body containing rare earth elements such as ytterbium (Yb) and yttrium (Y) in the form of monosilicate and / or disilicate as a matrix component, in terms of strength, fracture toughness and heat resistance From is the best.
[0028]
Moreover, as a metal member joined with the said ceramic member, 3.0-7.5 * 10 which approximated the thermal expansion coefficient of this ceramic member.-6Metal having a coefficient of thermal expansion of about / ° C., for example, low thermal expansion metal such as molybdenum (Mo) and tungsten (W), Fe—Ni based invar type alloy, Fe—P based Elinvar type alloy, WC— Examples thereof include TiC-Co based cemented carbide, and Fe-Ni-Co based alloys or Fe-Ni based alloys are desirable from the viewpoint of oxidation resistance, workability, and cost.
[0029]
Furthermore, from the viewpoint of ease of plastic deformation of the metal member, the Young's modulus of the metal member is 14 to 15 × 10.Threekg / mm2Fe-based alloys such as Fe-Ni-Co alloys and Fe-Ni alloys are optimal, and furthermore, the stress generated by the difference in thermal expansion between the two members can be absorbed by plastic deformation of the metal members themselves. It is more desirable to reduce the thickness of the metal member to about 0.1 to 0.5 mm, and the corners of the metal member are chamfered or rounded and curved to avoid stress concentration as is well known. It goes without saying that it is more preferable to apply this.
[0030]
On the other hand, as the metal layer for joining the ceramic member and the metal member, the main component is one or more of gold (Au) or nickel (Ni), copper (Cu), silver (Ag), and palladium (Pd). Even if it is used at a high temperature of 400 ° C. or higher, there is no deterioration due to oxidation. For example, in consideration of prevention of migration under use conditions involving energization of a DC power source, the metal layer is made of gold (Au). An alloy of gold (Au) and nickel (Ni) of 50 to 99% by weight and nickel (Ni) of 1 to 50% by weight is optimal.
[0031]
In addition, the metal layer may include titanium (Ti), vanadium (V), manganese (Mn), cobalt (Co), nickel (Ni), copper (Cu) of the Group 4a elements of the periodic table as active metals, It is preferable to contain at least one of molybdenum (Mo), silicon (Si), zirconium (Zr), and hafnium (Hf).
[0032]
In particular, it is optimal to contain one or more of vanadium (V) or molybdenum (Mo) as an active metal from the viewpoint that the wettability of the metal layer to the ceramic member is good and the strength of the ceramic member is not deteriorated. Such an active metal may be contained in the form of nitride, carbide, hydride or the like.
[0033]
Further, if the content of the active metal is less than 1% by weight, the effect of improving the bonding strength is not seen, and if it exceeds 10% by weight, the baking temperature of the metal layer becomes high, and a large residual stress is generated during cooling. 1 to 10% by weight is preferable, and 1 to 5% by weight is particularly optimal.
[0034]
Therefore, as the metal layer made of the noble metal containing the active metal, specifically, gold (Au) and / or silver (Ag) and one or more of nickel (Ni) or palladium (Pd), or copper ( The total amount of any one of Cu), cobalt (Co), and silicon (Si) is 90 to 99 wt%, and the remaining 1 to 10 wt% is vanadium (V), molybdenum (Mo), titanium (Ti), Examples include one containing one or more active metals of zirconium (Zr), hafnium (Hf), and manganese (Mn).
[0035]
In the present invention, when the metal layer contains a metal member component that is dissolved and diffused into the metal layer beyond the depth of 10 μm from the interface with the metal member during bonding, the hardness of the metal layer is remarkably increased. Since the residual stress increases in the portion and causes cracking, it is necessary to control the diffusion range of the metal member component to be within 10 μm..
[0036]
Therefore, coupled with the diffusion range of the metal member component, if the thickness of the metal layer is less than 20 μm, the capacity of the metal layer is insufficient, uneven bonding such as a nest occurs, the bonding strength is insufficient, and the metal member is easily formed. If the thickness exceeds 200 μm, the capacity of the metal layer becomes excessive and the residual stress increases, cracks are generated in the ceramic member in a short time, and the strength is reduced. .
[0037]
Therefore, the thickness of the metal layer is specified to be 20 to 200 μm, and 20 to 150 μm is preferable in consideration of workability in depositing and forming the metal layer.
[0038]
Next, in the present invention, as a bonding form between the metal member and the metal layer, in order to avoid stress concentration on the ceramic member around the joint portion of the metal member, the side surface of the metal member and the metal layer are bonded to each other and the meniscus is bonded. It is most desirable that no portion is formed, and even if the metal layer forms a meniscus portion or a ridge-like bulge, it is sufficient that the metal layer is not adhered to the outer peripheral side surface of the metal member.
[0039]
Therefore, the metal layer is not bonded to the outer peripheral side surface of the metal member, and the metal layer is bonded only on the contact surface side with the ceramic member. Necessary to control conditions, remove unnecessary parts by laser trimming, grinding, etc., or apply a heat-resistant release agent such as BN to the outer peripheral side surface of the metal member in advance and melt-bond Among them, as a simple method, for example, if it is an ultrasonic bonding method in which static vibration is applied and bonded, it is melted greatly, unnecessary portions are removed, or a release agent is applied in advance. The goal can be achieved without any advantage.
[0040]
In addition, it is needless to say that the metal member and the metal layer need not be joined to the entire surface as long as the required strength can be secured. In order to avoid stress concentration due to the difference in thermal expansion, the metal member It is desirable to join so that it does not overlap with any edge of the outer periphery of the metal layer and the outer periphery of the metal layer.
[0041]
Next, FIG. 2 is an external view showing an example of the ceramic heater of the present invention, and FIG. 3 is an enlarged cross-sectional view of the main part of the ceramic heater of the present invention, and a metal layer by X-ray microanalysis (EPMA). It is sectional drawing which overlapped and described the result of the surface analysis of the electrode metal fitting component diffused in.
[0042]
2 and 3, 9 is a ceramic heater in which a ceramic heating element 10 and an electrode fitting 11 are joined via a metal layer 4, and the ceramic heating element 10 is a heating resistor (not shown) made of an inorganic conductive material and a ceramic. A lead wire 15 such as tungsten (W), which is made of an insulator 14 made of a sintered body and connected to the heating resistor, is electrically connected to the electrode lead-out portion 16, and the electrode lead-out portion 16 connects the Ni lead pin 17. A ceramic heater 9 is formed by being electrically joined to the spot-welded electrode fitting 11 via the metal layer 4.
[0043]
In the present invention, for example, the electrode fitting 11 performs ultrasonic bonding while pressing both sides of the electrode fitting 11 substantially perpendicularly to the contact surface with the ceramic heating element 10 while avoiding the spot-welded Ni lead pin 17. As a result, the molten metal layer can be bonded to the side surface 13 of the electrode fitting 11 without bonding.
[0044]
In this case, a gap 18 is generated between the electrode fitting 11 and the metal layer 4 by avoiding the Ni lead pin 17 and the diffusion of the electrode fitting component 12 into the metal layer 4 is caused by the thickness of the metal layer 4. Regardless of the thickness, the depth is within 10 μm from the interface with the electrode fitting 11 and almost no increase in hardness due to a change in the composition of the metal layer 4 is observed. It is.
[0045]
As the electrode fitting 11, any of the metal members already described in detail can be used in the same manner, and further, as a lead pin 17, a soft metal wire such as a Ni wire is connected by spot welding or the like, thereby applying vibration as a ceramic heater. Under such operating conditions, the physical load such as that the vibration is directly transmitted to the joint portion is reduced, so that problems such as separation of the joint portion can be avoided.
[0046]
Further, when the ceramic heater is applied to a glow plug of an internal combustion engine or the like, the ceramic heater is operated by a DC power source, and therefore, from the viewpoint of preventing a short circuit due to migration, A material containing (Au) as a main component and vanadium (V) or titanium (Ti) as an active metal is optimal.
[0047]
The heating resistor made of the inorganic conductive material constituting the ceramic heating element of the present invention is a high melting point metal such as tungsten (W), molybdenum (Mo), titanium (Ti), tungsten carbide (WC), molybdenum silicide. (MoSi2), A resistor mainly composed of carbide, silicide, nitride, or the like of a high melting point metal such as titanium nitride (TiN), a thermal expansion difference from the nitride ceramic sintered body of the insulator, and high From the standpoint that it does not easily react with them even under temperature, WC or those containing W as a main component are preferable.
[0048]
Needless to say, the components of the inorganic conductive material constituting the heating resistor may be added to the nitride-based ceramic sintered body of the insulator to adjust the difference in thermal expansion and reactivity.
[0049]
On the other hand, with respect to the main component of the inorganic conductive material, silicon nitride (Si) is used as a dispersant in order to prevent the crack due to the difference in thermal expansion from the insulator by controlling the growth and to prevent the resistance from increasing.ThreeNFour), Boron nitride (BN), aluminum nitride (AlN), or silicon carbide (SiC), and the content thereof is, for example, silicon nitride (Si) relative to 100 parts by weight of the main component.ThreeNFour) Is 5 to 30 parts by weight, boron nitride (BN) is 1 to 20 parts by weight, aluminum nitride (AlN) is 1 to 15 parts by weight, and silicon carbide (SiC) is 3 to 15 parts by weight. is there.
[0050]
On the other hand, the heating resistor may be in the form of a block, a line, or a layer, and the insulator is bent in a U shape, wound in a coil, or zigzag bent in a plane. When the heating resistor is viewed in plan, it has an arbitrary shape such as a U-shape or a W-shape, and can be supported on, bonded to, or buried in an insulator, It can be applied in various shapes such as a laminated structure of two or more layers via a lead, and a lead material made of a W material or the like may be electrically connected to both ends thereof.
[0051]
【Example】
The invention was then evaluated as detailed below.
First, silicon nitride (SiThreeNFour) Ceramic raw material powder added with a sintering aid made of oxides of rare earth elements such as ytterbium (Yb) and yttrium (Y), and alumina (Al2OThree) Powder to silica (SiO2), Ceramic raw material powder added with calcia (CaO), and aluminum nitride (AlN) with erbium oxide (Er2OThree) As a sintering aid is formed into a flat molded body by a known press molding method or the like, and a screen printing method using a paste containing WC as a main component on the surface of one end of the molded body. Thus, the heat generating part is formed in a U-shaped pattern, and the electrode part is similarly formed from the other end side to the side surface of the ceramic molded body.
[0052]
Next, a lead wire is placed so as to electrically connect the heat generating portion and the electrode portion, and another ceramic molded body is stacked thereon, followed by firing at a temperature of 1700 to 1900 ° C. in a reducing atmosphere. A ceramic heating element was produced by integration.
[0053]
Thereafter, the ceramic heating element is processed into a cylindrical shape by grinding, and transferred to the exposed electrode portion by a screen printing method using a paste containing the metal layer component shown in Table 1, and a vacuum atmosphere at 800 to 1300 ° C. A baking process was performed in the inside to deposit and form a metal layer having a width of 3 mm and a length of 4 mm.
[0054]
Electrode fittings in which Ni lead pins were previously connected to an Fe—Ni—Co alloy having a width of 2 mm × length of 3 mm × thickness of 0.2 mm by spot welding were bonded to the ceramic heating element thus obtained by various bonding methods shown in Table 1. Then, using a part of the ceramic heater for evaluation, the part including the joint part of the electrode fitting was cut, the cross section was observed with a scanning electron microscope, and the thickness of the metal layer was measured.
[0055]
In the cross section, the ratio of the length of the metal layer actually bonded to the length of the surface where the electrode fitting contacts the ceramic heating element was determined and evaluated as a bonding area (%).
[0056]
Next, the surface analysis of the electrode fitting component diffused into the metal layer was performed by X-ray microanalysis (EPMA), and the depth of the metal layer containing the electrode fitting component from the interface of the electrode fitting was measured.
[0057]
[Table 1]
Figure 0003924378
[0058]
[Table 2]
Figure 0003924378
[0059]
On the other hand, for the other ceramic heaters for evaluation, while measuring the joint strength of the electrode bracket and the bending strength of the ceramic heater including the joint portion of the electrode bracket, and the resistance change rate after the thermal cycle test, The ceramic heater was cut at a portion including the joint portion of the electrode fitting, and the cross section was observed.
[0060]
The bonding strength is determined by fixing the ceramic heater for evaluation, pulling the Ni lead pin of the electrode fitting bonded to the ceramic heating element in the direction perpendicular to the ceramic heating element, and the load when the bonding portion or Ni lead pin or electrode fitting breaks (N) Was measured and evaluated together with the fracture mode.
[0061]
The bending strength was evaluated by a cantilever bending test by holding a ceramic heater for evaluation and pressurizing the joint of the electrode fitting.
[0062]
Further, in the thermal cycle test, exposure of the ceramic heater for evaluation to room temperature and 500 ° C. temperature atmosphere was repeated as one cycle, the resistance value of the ceramic heater after 3000 cycles was measured, and the initial resistance before the test was measured. The rate of resistance change with respect to the value was determined, and the ceramic heater after the test was cut along the cross section including the electrode fitting, and the presence of cracks was observed.
[0063]
[Table 3]
Figure 0003924378
[0064]
As is clear from the table, in sample numbers 1, 8, 11, and 15 which are outside the scope of the present invention, the bonding strength of the electrode fittings is all78.5N (8kgf)Similarly, for sample numbers 10, 14, 17, 18, 27, 28, and 30, the bonding strength of the electrode fitting is78.5N (8kgf)However, the rate of change in resistance after the thermal cycle test was as large as 3.0 or more, and cracks were observed in the ceramic heating element.
[0065]
In contrast, in the present invention, the bonding strength of the electrode fittings is78.5N (8kgf)Furthermore, the rate of change in resistance after the thermal cycle test is as small as 2.6 or less, and no cracks are observed in the ceramic heating element, and the stress concentration around the joint of the electrode fitting is effectively alleviated. .
[0066]
In addition, although the ceramic heater was demonstrated in the said Example, the joining form of this invention is not limited to the said Example, What kind of thing may be used as long as it does not deviate from the main point of this invention, for example, IGBT etc. Even when applied to the joining of metal pieces such as electrodes to a metallized portion formed on the surface of a ceramic sintered body substrate on which a power transistor or the like is mounted, the same effect can be obtained.
[0067]
【The invention's effect】
The present inventionAccording to the present invention, a gap is formed between the electrode fitting and the metal layer, and the electrode fitting and the metal layer are joined on at least both sides of the gap, more preferablyThe elution and diffusion of the metal member component to the metal layer is suppressed within 10 μm from the interface with the metal member, and the metal member is bonded to the ceramic layer with a thickness of 20 to 200 μm on the contact surface side. didSometimesThe stress does not increase due to the elution and diffusion of the metal member component to the metal layer interposed between the two members, and the metal layer is not adhered to the side surface of the metal member, and the stress concentration around the joint part of the metal member In addition, the physical stress at the time of bonding is relieved and the stress increase in the metal layer itself is suppressed, and cracks do not occur in the ceramic member even if it is repeatedly exposed to room temperature and high temperature environments, and high strength is maintained. Highly reliable without causing deterioration of the electrical connectionTheA ceramic heater can be provided.
[Brief description of the drawings]
FIG. 1 is an enlarged view of an essential part of an example showing a joined body of a ceramic member and a metal member according to the present invention, and the results of surface analysis of metal member components diffused in a metal layer by X-ray microanalysis (EPMA) are described repeatedly. FIG.
FIG. 2 is an external view showing an example of a ceramic heater according to the present invention.
FIG. 3 is an enlarged cross-sectional view of the main part of an example of the ceramic heater of the present invention, and is a cross-sectional view in which the results of surface analysis of the electrode fitting components diffused in the metal layer by X-ray microanalysis (EPMA) are shown superimposed. .
FIG. 4 is a cross-sectional view in which a main part of a conventional ceramic member-metal member assembly is enlarged and the results of surface analysis of metal member components diffused into the metal layer by X-ray microanalysis (EPMA) are overlapped and described. is there.
FIG. 5 is an enlarged cross-sectional view of a main part of a conventional ceramic heater, and is a cross-sectional view in which the results of surface analysis of electrode fitting components diffused into a metal layer by X-ray microanalysis (EPMA) are overlapped.
[Explanation of symbols]
1 Bonded body of ceramic member and metal member
2 Ceramic parts
3 Metal parts
4 Metal layers
5 Interface
6 Metal component components
7 Thickness
8 Contact surface side
9 Ceramic heater
10 Ceramic heating element
11 Electrode bracket
12 Electrode bracket components

Claims (4)

無機導電材の発熱抵抗体とセラミック焼結体とから成るセラミック発熱体と電極金具を厚さが20〜200μmの金属層を介して接合したセラミックヒータであって、前記電極金具は金属層とセラミック発熱体との当接面側でのみ接着しており、該金属層は電極金具との界面から10μm以内に拡散した電極金具成分を含有しており、
前記電極金具の表面には、リードピンが接合されており、前記電極金具と前記金属層との間には前記リードピンに対向する位置に空隙が形成されており、前記空隙の少なくとも両サイドにおいて前記電極金具と前記金属層が接合されていることを特徴とするセラミックヒータ。
A ceramic heater in which a ceramic heating element composed of a heating resistor of inorganic conductive material and a ceramic sintered body and an electrode fitting are joined via a metal layer having a thickness of 20 to 200 μm , the electrode fitting comprising the metal layer and the ceramic Bonded only on the contact surface side with the heating element, the metal layer contains an electrode fitting component diffused within 10 μm from the interface with the electrode fitting,
A lead pin is joined to the surface of the electrode fitting, and a gap is formed between the electrode fitting and the metal layer at a position facing the lead pin, and the electrode is provided on at least both sides of the gap. A ceramic heater , wherein a metal fitting and the metal layer are joined .
前記セラミック発熱体を構成するセラミック焼結体が、窒化珪素質焼結体であることを特徴とする請求項に記載のセラミックヒータ。The ceramic heater according to claim 1 , wherein the ceramic sintered body constituting the ceramic heating element is a silicon nitride sintered body. 前記金属層は、金(Au)及びニッケル(Ni)を主成分とすることを特徴とする請求項1又は2に記載のセラミックヒータ。The metal layer, a ceramic heater according to claim 1 or 2, characterized in that the main component of gold (Au) and nickel (Ni). 前記金属層は、バナジウム(V)又はモリブデン(Mo)の一種以上を含有することを特徴とする請求項1〜3のいずれかに記載のセラミックヒータ。The ceramic heater according to any one of claims 1 to 3 , wherein the metal layer contains one or more of vanadium (V) and molybdenum (Mo).
JP14937698A 1998-05-29 1998-05-29 Ceramic heater Expired - Fee Related JP3924378B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14937698A JP3924378B2 (en) 1998-05-29 1998-05-29 Ceramic heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14937698A JP3924378B2 (en) 1998-05-29 1998-05-29 Ceramic heater

Publications (2)

Publication Number Publication Date
JPH11343180A JPH11343180A (en) 1999-12-14
JP3924378B2 true JP3924378B2 (en) 2007-06-06

Family

ID=15473791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14937698A Expired - Fee Related JP3924378B2 (en) 1998-05-29 1998-05-29 Ceramic heater

Country Status (1)

Country Link
JP (1) JP3924378B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7225470B2 (en) * 2020-02-21 2023-02-20 日本碍子株式会社 Electrically heated carrier and exhaust gas purification device

Also Published As

Publication number Publication date
JPH11343180A (en) 1999-12-14

Similar Documents

Publication Publication Date Title
KR100841271B1 (en) Ceramic heater and method for manufacture thereof
JP3921327B2 (en) Ceramic heater and manufacturing method thereof
JP4136648B2 (en) Dissimilar material joined body and manufacturing method thereof
JP2002293655A (en) Jointing structure of metal terminal and ceramic member, jointing structure of metal member and ceramic member and jointing material for jointing metal terminal and ceramic member
JP4005268B2 (en) Bonding structure of ceramics and metal and intermediate insert used for this
JP3949459B2 (en) Joined body of different materials and manufacturing method thereof
JP2011034979A (en) Ceramic heater and hair iron using the same
JP4092172B2 (en) Method for manufacturing ceramic heater and method for manufacturing glow plug
JP2002270339A (en) Ceramic heater
JP2000088248A (en) Ceramic heater
JP3121985B2 (en) Silicon nitride ceramic heater
JP3924378B2 (en) Ceramic heater
JPWO2006011520A1 (en) Ceramic heater and heating iron using the same
JP3934993B2 (en) Ceramic heater and manufacturing method thereof
JP4688376B2 (en) Ceramic heater
JP3811440B2 (en) Ceramic heater
JP3799195B2 (en) Ceramic heater
JPH07167435A (en) Ceramic heat-generating member
JP3762103B2 (en) Ceramic heater
JP2000133419A (en) Ceramic heater
JP2002257341A (en) Ceramic glow plug
JP4044244B2 (en) Silicon nitride ceramic heater
JP3588227B2 (en) Ceramic heater
JP3838785B2 (en) Ceramic heater
JP3501834B2 (en) Manufacturing method of joined body of ceramic material and metal material

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061114

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070226

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110302

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110302

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120302

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120302

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130302

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130302

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140302

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees