JPH11339770A - Method and device for supplying battery electrolyte - Google Patents

Method and device for supplying battery electrolyte

Info

Publication number
JPH11339770A
JPH11339770A JP14178898A JP14178898A JPH11339770A JP H11339770 A JPH11339770 A JP H11339770A JP 14178898 A JP14178898 A JP 14178898A JP 14178898 A JP14178898 A JP 14178898A JP H11339770 A JPH11339770 A JP H11339770A
Authority
JP
Japan
Prior art keywords
battery
decompression
electrolytic solution
electrolyte
carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14178898A
Other languages
Japanese (ja)
Other versions
JP4029468B2 (en
Inventor
Kiyobumi Yamamoto
清文 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP14178898A priority Critical patent/JP4029468B2/en
Publication of JPH11339770A publication Critical patent/JPH11339770A/en
Application granted granted Critical
Publication of JP4029468B2 publication Critical patent/JP4029468B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • Y02E60/12

Landscapes

  • Filling, Topping-Up Batteries (AREA)
  • Primary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To inject the prescribed amount of an electrolyte precisely and efficiently, and to simplify the constitution. SOLUTION: This device has a carrier 24 containing plural battery cans 14, and a decompression booth 60 having apertures 62 respectively containing the battery cans 14, and moving with respect to the carrier 24 through a cylinder 78. Further, an O-ring 66 set on an end surface 64 of the decompression booth 60 is provided to form a space 68 integrally communicating with the apertures 62 between the end surface 64 and an upper surface 24c of the carrier 24, and to keep a decompression chamber 58 composed of the apertures 62 and the space 68 airtight.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、常圧下で電池缶に
電解液を注液した後に減圧下で前記電解液を含浸させる
処理を、複数回繰り返して該電解液の注入を行う電池の
電解液供給方法および装置に関する。
BACKGROUND OF THE INVENTION The present invention relates to an electrolytic solution for a battery in which an electrolyte is injected into a battery can at normal pressure and then impregnated with the electrolyte under reduced pressure a plurality of times. The present invention relates to a liquid supply method and device.

【0002】[0002]

【従来の技術】一般に、電池の組立工程において、正極
板と負極板がセパレータを挟んで巻回された極板群を電
池缶内に収納した後、この電池缶内に電解液を注液する
作業が行われている。
2. Description of the Related Art Generally, in a battery assembling process, an electrode plate group in which a positive electrode plate and a negative electrode plate are wound with a separator interposed therebetween is housed in a battery can, and an electrolytic solution is injected into the battery can. Work is taking place.

【0003】この種の注液作業では、安全装置の作動性
を確保するために、電池缶内の隙間を僅かにする必要が
ある一方、電池性能上の観点から、多量の電解液を精度
よく注入しなければならない。また、電池缶内では、ビ
ーディングにより形成された溝の上部に電解液が残存す
ると、この電池缶に封口体を挿入する際に前記電解液が
機内に飛散するおそれがある。このため、電解液を電池
缶内に十分に含浸させる必要がある。
[0003] In this kind of injection work, it is necessary to make a gap in the battery can small in order to ensure the operability of the safety device, but from the viewpoint of battery performance, a large amount of electrolyte is precisely dispensed. Must be injected. Further, in the battery can, if the electrolytic solution remains above the groove formed by the beading, the electrolytic solution may be scattered in the device when the sealing body is inserted into the battery can. Therefore, it is necessary to sufficiently impregnate the electrolyte in the battery can.

【0004】そこで、例えば、特開平8−250107
号公報に開示されているように、カップを用いて電池缶
内に電解液を一度に注入する方法が知られている(以
下、従来技術1という)。この従来技術1では、電池缶
の上部に設けられた開口部にカップが配置され、予めこ
のカップ内に電解液を供給しておき、遠心力、減圧およ
び加圧によって前記電解液を注入したり、あるいは、予
め電池缶内部を減圧しておき、バルブの切り替え作用下
に、該カップ内から電解液を注入している。
Therefore, for example, Japanese Patent Application Laid-Open No. 8-250107
As disclosed in Japanese Patent Application Laid-Open Publication No. H10-209, there is known a method of injecting an electrolytic solution into a battery can at one time using a cup (hereinafter referred to as Conventional Technique 1). In the prior art 1, a cup is arranged in an opening provided at an upper part of a battery can, an electrolyte is supplied in advance into the cup, and the electrolyte is injected by centrifugal force, decompression, and pressurization. Alternatively, the inside of the battery can is preliminarily depressurized, and the electrolyte is injected from inside the cup under the action of switching the valve.

【0005】また、電解液の注液処理と含浸処理とを繰
り返す方法が、従来から行われている(以下、従来技術
2という)。この従来技術2は、電池缶の上縁部まで電
解液を注液した後、常圧下(減圧下)でこの電解液を含
浸させる工程を複数回繰り返すことにより、前記電池缶
内への注液作業を行うものである。
[0005] Further, a method of repeating a process of injecting an electrolyte and a process of impregnation has been conventionally performed (hereinafter referred to as prior art 2). In the prior art 2, after the electrolyte is injected to the upper edge portion of the battery can, the step of impregnating the electrolyte at normal pressure (under reduced pressure) is repeated a plurality of times to thereby inject the electrolyte into the battery can. Work.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記の
従来技術1では、電池缶内から突出するリード(正極リ
ード)に電解液が大量に付着し易く、このリードにレー
ザ溶接等によって封口体を溶接する際の支障となってし
まう。このため、電解液を注入した後、リードに付着し
ている電解液を完全に除去する装置を設ける必要があ
り、工程が煩雑化するとともに、設備費が高騰するとい
う問題が指摘されている。
However, in the above-mentioned prior art 1, a large amount of electrolyte easily adheres to the lead (positive electrode lead) protruding from the battery can, and the sealing body is welded to the lead by laser welding or the like. It becomes a hindrance when doing. For this reason, it is necessary to provide a device for completely removing the electrolyte adhering to the lead after injecting the electrolyte, and it has been pointed out that the process becomes complicated and the equipment cost rises.

【0007】しかも、電解液を一旦貯溜するカップに
は、この電解液内の固形分である塩が析出してしまい、
電池缶内への注液量に大きなバラツキが発生してしま
う。また、カップのシール部分に塩が析出すると、シー
ル性の悪化が惹起されてしまう。このため、カップを洗
浄するための専用の装置が必要になり、設備全体が大が
かりなものになるという問題がある。
[0007] In addition, a salt, which is a solid content in the electrolytic solution, precipitates in the cup in which the electrolytic solution is temporarily stored.
A large variation occurs in the amount of liquid injected into the battery can. Further, if salt is deposited on the sealing portion of the cup, the sealing property is deteriorated. For this reason, a dedicated device for cleaning the cup is required, and there is a problem that the entire equipment becomes large.

【0008】一方、上記の従来技術2では、常圧下にお
ける電解液の含浸処理を行う場合、この電解液の含浸に
長時間を要するとともに、電池缶内部に空間が存在して
いるにも係わらず、空気の逃げ場がなくなり、この空間
内に電解液が含浸しないという問題がある。また、減圧
下における電解液の含浸処理では、電池缶内に注液され
た電解液の液面が上昇し、この電解液が前記電池缶の上
縁部からこぼれるおそれがある。
On the other hand, in the above-mentioned prior art 2, when performing the impregnation treatment of the electrolytic solution under normal pressure, it takes a long time to impregnate the electrolytic solution, and the impregnating process is performed despite the existence of the space inside the battery can. In addition, there is no escape space for air, and there is a problem that the electrolyte is not impregnated in this space. In addition, in the impregnation of the electrolyte under reduced pressure, the level of the electrolyte injected into the battery can rises, and this electrolyte may spill from the upper edge of the battery can.

【0009】本発明は、この種の問題を解決するもので
あり、電解液を所定の量だけ正確に注液するとともに、
この電解液が不要な部分に付着することを阻止し、しか
も、構成を簡素化することが可能な電池の電解液供給方
法および装置を提供することを目的とする。
The present invention solves this kind of problem, and injects a predetermined amount of an electrolytic solution accurately,
An object of the present invention is to provide a method and an apparatus for supplying an electrolytic solution for a battery, which can prevent the electrolytic solution from adhering to an unnecessary portion and can simplify the configuration.

【0010】[0010]

【課題を解決するための手段】本発明に係る電池の電解
液の供給方法および装置では、電解液が注液された電池
缶を減圧ブース内に配置し、先ず、この電池缶に第1真
空圧力による第1減圧処理が施された後、減圧解除処理
が施される。次いで、電池缶に第1真空圧力よりも高い
第2真空圧力による第2減圧処理が施された後、減圧解
除処理が行われる。
According to the method and the apparatus for supplying an electrolytic solution of a battery according to the present invention, a battery can into which an electrolytic solution has been injected is placed in a decompression booth. After the first decompression process by pressure is performed, a decompression release process is performed. Next, after the battery can is subjected to a second decompression process using a second vacuum pressure higher than the first vacuum pressure, a decompression release process is performed.

【0011】このように、第1真空圧力よりも第2真空
圧力を高く設定することにより、電池缶に注液された電
解液が、この電池缶の上縁部からこぼれ出すことを確実
に阻止することができる。しかも、常圧下における含浸
処理に比べて、含浸時間を大幅に短縮することが可能に
なる。
As described above, by setting the second vacuum pressure higher than the first vacuum pressure, the electrolyte injected into the battery can is reliably prevented from spilling from the upper edge of the battery can. can do. Moreover, the impregnation time can be significantly reduced as compared with the impregnation treatment under normal pressure.

【0012】ここで、第1および第2減圧処理時に、減
圧ブース内が第1および第2真空圧力に至った際、真空
弁を介して前記減圧ブース内を気密に閉塞保持してい
る。従って、減圧時に減圧ブース内に空気の流れが発生
することを確実に阻止し、電解液の蒸発を有効に抑えて
注液量のバラツキが発生することがない。
When the inside of the decompression booth reaches the first and second vacuum pressures during the first and second decompression treatments, the inside of the decompression booth is kept airtightly closed via a vacuum valve. Therefore, it is possible to reliably prevent the flow of air from being generated in the decompression booth at the time of depressurization, to effectively suppress the evaporation of the electrolytic solution, and to prevent variations in the injection amount.

【0013】また、電池缶に電解液を注液するポンプの
停止時間が一定時間を超えると、ポンプノズル部の電解
液が蒸発して次の吐出量が減少し易い。例えば、電池缶
内に注液される電解液の注液量のバラツキは、±5/1
00ccに設定されているのに対し、ポンプが1時間停
止されると、ポンプノズル部の電解液が1/100cc
減少することが知られており、注液量のバラツキが相当
に大きくなってしまう。そこで、ポンプの停止時間が一
定時間を超えた際、このポンプから廃液部位に電解液を
1ショット分だけ吐出した後、電池缶内への注液作業が
行われる。このため、ポンプの電解液吐出精度を向上さ
せることができる。
Further, if the stop time of the pump for injecting the electrolytic solution into the battery can exceeds a certain time, the electrolytic solution in the pump nozzle evaporates and the next discharge amount tends to decrease. For example, the variation in the amount of electrolyte injected into the battery can is ± 5/1.
When the pump is stopped for one hour, the electrolyte in the pump nozzle portion is reduced to 1/100 cc while the pump is stopped for 1 hour.
It is known to decrease, and the variation in the injection amount becomes considerably large. Therefore, when the stop time of the pump exceeds a certain time, the pump discharges the electrolyte for one shot from the pump to the waste liquid portion, and then performs the operation of injecting the battery into the battery can. For this reason, it is possible to improve the electrolyte discharge accuracy of the pump.

【0014】さらにまた、複数個の電池缶を一体的に収
容するキャリア内部に冷却を供給して、この電池缶を冷
却している。従って、電池缶に注液された電解液が、減
圧含浸時に沸騰することを阻止するとともに、この電解
液の蒸発を有効に防止することが可能になる。
Further, cooling is supplied to the inside of a carrier accommodating a plurality of battery cans integrally to cool the battery cans. Therefore, it is possible to prevent the electrolytic solution injected into the battery can from boiling at the time of impregnation under reduced pressure, and to effectively prevent the electrolytic solution from evaporating.

【0015】[0015]

【発明の実施の形態】図1は、本発明の実施形態に係る
電解液供給装置10の概略平面説明図であり、図2は、
この電解液供給装置10の一部概略正面図である。
FIG. 1 is a schematic plan view of an electrolytic solution supply device 10 according to an embodiment of the present invention, and FIG.
FIG. 2 is a partial schematic front view of the electrolytic solution supply device 10.

【0016】電解液供給装置10により電解液が分割注
液される電池12は、図5に示すように、有底円筒形状
の電池缶14を有し、この電池缶14内には、正極板と
負極板がセパレータを挟んで巻回された極板群16が挿
入されている。極板群16の負極リード18が電池缶1
4の底面に溶接されており、この極板群16の正極リー
ド20が前記電池缶14から上方に突出している。
The battery 12 into which the electrolyte is dividedly injected by the electrolyte supply device 10 has a bottomed cylindrical battery can 14 as shown in FIG. And an electrode plate group 16 in which a negative electrode plate is wound with a separator interposed therebetween. The negative electrode lead 18 of the electrode plate group 16 is
The positive electrode lead 20 of the electrode group 16 projects upward from the battery can 14.

【0017】図1に示すように、電解液供給装置10
は、電池製造ライン22に併設されており、キャリア2
4を介して矢印A方向に複数個(例えば、10個)ずつ
配列され、かつ矢印B方向に複数列(例えば、4列)ず
つ配置された合計40個の電池缶14に、電解液を所定
量ずつ供給可能な第1〜第4注液ステーション26a〜
26dと、前記第1〜第4注液ステーション26a〜2
6dの下流側に配設され、前記電池缶14に減圧処理と
減圧解除処理とを交互に複数回ずつ施す第1〜第4減圧
ステーション28a〜28dとを備える。
As shown in FIG. 1, an electrolytic solution supply device 10
Is installed in the battery manufacturing line 22 and the carrier 2
The electrolyte solution is placed in a total of 40 battery cans 14 arranged in a plurality (for example, 10) in the direction of arrow A and a plurality of rows (for example, 4 rows) in the direction of arrow B via 4. The first to fourth liquid injection stations 26a to 26x which can supply a fixed amount at a time.
26d, the first to fourth liquid injection stations 26a to 2
The first to fourth decompression stations 28a to 28d are provided downstream of the battery can 6 and alternately perform the decompression process and the decompression process on the battery can 14 a plurality of times.

【0018】キャリア24は、図5に示すように、10
個の電池缶14を所定間隔ずつ離間して配置するための
収容部24aを有している。収容部24aは略円筒状を
有しており、キャリア24の内部に形成された室24b
例に突出するとともに、この室24bには、図示しない
冷却風供給源に連通する供給管路29が接続されてい
る。供給管路29から室24b内に、例えば、5℃の冷
風が供給される。
As shown in FIG.
It has an accommodating portion 24a for arranging the battery cans 14 at predetermined intervals. The accommodation portion 24a has a substantially cylindrical shape, and has a chamber 24b formed inside the carrier 24.
In addition to the example, a supply pipe 29 communicating with a cooling air supply source (not shown) is connected to the chamber 24b. For example, 5 ° C. cold air is supplied from the supply pipe 29 into the chamber 24b.

【0019】電解液供給装置10は、図1に示すよう
に、第1および第2注液ステーション26a、26bと
第1および第2減圧ステーション28a、28bとが矢
印B1方向に指向して交互に配設される第1搬送路30
と、第3および第4注液ステーション26c、26dと
第3および第4減圧ステーション28c、28dとが矢
印B2方向に指向して交互に配設される第2搬送路32
とを備える。
As shown in FIG. 1, the electrolyte supply device 10 includes first and second injection stations 26a and 26b and first and second decompression stations 28a and 28b alternately oriented in the direction of arrow B1. First transport path 30 provided
And a second transport path 32 in which third and fourth liquid injection stations 26c and 26d and third and fourth pressure reduction stations 28c and 28d are arranged alternately in the direction of arrow B2.
And

【0020】第1搬送路30の両端には、電池缶引込ス
テーション34aとキャリア移送ステーション35aと
が設けられるとともに、第2搬送路32の両端には、キ
ャリア移送ステーション35bと電池缶払出ステーショ
ン34bとが設けられる。キャリア移送ステーション3
5aと35bおよび電池缶引込ステーション34aと電
池缶払出ステーション34bとは、それぞれ第1および
第2連結路36a、36bを介して連結され、キャリア
循環搬送路が構成されている。
At both ends of the first transfer path 30, a battery can pull-in station 34a and a carrier transfer station 35a are provided, and at both ends of the second transfer path 32, a carrier transfer station 35b and a battery can discharge station 34b are provided. Is provided. Carrier transfer station 3
5a and 35b, and the battery can pull-in station 34a and the battery can discharge station 34b are connected via first and second connection paths 36a and 36b, respectively, to form a carrier circulation transport path.

【0021】第1〜第4注液ステーション26a〜26
dは、10個ずつ4列(合計で40個)配列された電池
缶14に、それぞれ所定量(第1回分〜第4回分)の電
解液を供給可能な第1〜第4注液手段38a〜38dを
備える。
First to fourth injection stations 26a to 26
d is a first to fourth liquid injection means 38a capable of supplying a predetermined amount (the first to fourth times) of the electrolyte solution to the battery cans 14 arranged in four rows of ten pieces (a total of 40 pieces). To 38d.

【0022】図2に示すように、第1注液手段38a
は、キャリア24の長手方向(矢印A方向)両端側上方
に互いに平行して配設されたレール40a、40bに沿
って矢印B方向に進退自在な自走式移動本体42a、4
2bを備える。移動本体42a、42bには、図示しな
い昇降手段を介してアーム44の両端が支持されるとと
もに、このアーム44には、キャリア24に載置された
10個の電池缶14に対応して定量ポンプ46a〜46
jが装着される。定量ポンプ46a〜46jは、電解液
が貯溜された液タンク48に連通しており、各定量ポン
プ46a〜46jには、下方に向かって注液管50a〜
50jが配置されている。
As shown in FIG. 2, the first liquid injection means 38a
Are self-propelled movable bodies 42a, 4a which can move back and forth in the direction of arrow B along rails 40a, 40b arranged in parallel with each other above both ends in the longitudinal direction (direction of arrow A) of the carrier 24.
2b. The moving bodies 42a and 42b support both ends of an arm 44 via lifting means (not shown). The arm 44 has a metering pump corresponding to the ten battery cans 14 mounted on the carrier 24. 46a-46
j is attached. The metering pumps 46a to 46j communicate with a liquid tank 48 in which the electrolyte is stored. Each of the metering pumps 46a to 46j has a liquid injection tube 50a to
50j are arranged.

【0023】図3に示すように、第1注液手段38aに
は、定量ポンプ46a〜46jの停止時間が一定時間を
超えた際、電解液を1ショット分だけ吐出するための空
打ちステーション52が設けられる。この空打ちステー
ション52は、第1注液手段38aによる電池缶14へ
の電解液の注液位置の外方に配置される廃液トレイ54
を備え、この廃液トレイ54に接続される廃液管56
が、図示ない廃液タンク等に接続されている。
As shown in FIG. 3, the first liquid injection means 38a has an emptying station 52 for discharging the electrolyte for one shot when the stoppage time of the metering pumps 46a to 46j exceeds a predetermined time. Is provided. The empty beating station 52 is provided with a waste liquid tray 54 disposed outside a position where the electrolyte is injected into the battery can 14 by the first injection means 38a.
And a waste liquid pipe 56 connected to the waste liquid tray 54.
Are connected to a waste liquid tank and the like (not shown).

【0024】第1注液ステーション26aの下流側に配
置された第1減圧ステーション28aは、図4に示すよ
うに、4列に配置された各キャリア24の全体を覆っ
て、あるいは、各列の前記キャリア24毎に減圧室58
を形成するための昇降自在な減圧ブース60を備える。
As shown in FIG. 4, the first decompression station 28a disposed downstream of the first injection station 26a covers the entirety of the carriers 24 arranged in four rows, or A decompression chamber 58 for each carrier 24
Is provided with a pressure-reducing booth 60 that can be moved up and down freely.

【0025】減圧ブース60は、所定数の電池缶14に
対応して、各電池缶14を1個ずつ受容する開口部62
を有し、各開口部62は、前記減圧ブース60の端面6
4側から所定の深さHまで形成されるとともに、直径D
が設定された開口断面円柱状を有している。深さHは、
各電池缶14の上部側から突出する正極リード20を避
け得る必要最小限の深さに設定される一方、直径Dは、
この電池缶14の直径よりもわずかに大径に設定されて
いる。
The decompression booth 60 has an opening 62 for receiving each battery can 14 one by one corresponding to a predetermined number of battery cans 14.
Each opening 62 is provided at the end face 6 of the decompression booth 60.
4 to a predetermined depth H and a diameter D
Has a columnar shape with an open section. The depth H is
While the depth is set to the minimum necessary to avoid the positive electrode lead 20 protruding from the upper side of each battery can 14, the diameter D is
The diameter of the battery can 14 is set slightly larger than the diameter of the battery can 14.

【0026】減圧ブース60の端面64には、全ての開
口部62を囲繞してOリング(シール材)66が装着さ
れる。Oリング66は、キャリア24の上面24cに密
着し、減圧ブース60の端面64と前記上面24cとの
間に各開口部62に一体的に連通する空間部68を形成
する。開口部62と空間部68とから減圧室58が構成
され、この減圧室58がOリング66により気密に保持
される。
An O-ring (seal material) 66 is mounted on the end face 64 of the decompression booth 60 so as to surround all the openings 62. The O-ring 66 is in close contact with the upper surface 24c of the carrier 24, and forms a space 68 that is integrally communicated with each opening 62 between the end surface 64 of the decompression booth 60 and the upper surface 24c. The opening 62 and the space 68 form a decompression chamber 58, and the decompression chamber 58 is kept airtight by an O-ring 66.

【0027】減圧ブース60には、空間部68に連通す
る通路70が形成され、この通路70と図示しない負圧
圧発生源とを連通する配管72の途上には、圧力計74
および真空弁76が設けられる。この真空弁76は、通
路70を図示しない負圧発生源に連通させるポジション
と、前記通路70を大気に開放されるポジションと、前
記通路70を閉塞するポジションとに切り替えられる。
A passage 70 communicating with the space 68 is formed in the decompression booth 60. A pressure gauge 74 is provided in the middle of a pipe 72 which communicates the passage 70 with a negative pressure source (not shown).
And a vacuum valve 76. The vacuum valve 76 is switched between a position where the passage 70 communicates with a negative pressure source (not shown), a position where the passage 70 is opened to the atmosphere, and a position where the passage 70 is closed.

【0028】減圧ブース60を昇降させるためのアクチ
ュエータ、例えば、シリンダ78から下方に延在するロ
ッド80には支持板82が固着され、この支持板82の
四隅に孔部84が形成される。減圧ブース60の上部に
支柱86が固着され、この支柱86が孔部84よりも小
径に設定されるとともに、各支柱86の上部には上方に
は向かって拡径するセンタリング用テーパ面88が形成
される。支柱86にスプリング90が外挿され、このス
プリング90の両端が減圧ブース60と支持板82とに
押し付けられている。
A support plate 82 is fixed to an actuator for raising and lowering the decompression booth 60, for example, a rod 80 extending downward from a cylinder 78, and holes 84 are formed at four corners of the support plate 82. A column 86 is fixed to the upper part of the decompression booth 60, and the column 86 is set to have a smaller diameter than the hole 84, and a centering tapered surface 88 is formed on the upper part of each column 86 so as to expand upward. Is done. A spring 90 is externally inserted into the support column 86, and both ends of the spring 90 are pressed against the decompression booth 60 and the support plate 82.

【0029】第2〜第4注液ステーション26b〜26
dおよび第2〜第4減圧ステーション28b〜28d
は、上述した第1注液ステーション26aおよび第1減
圧ステーション28aと同様に構成されており、同一の
構成要素には同一の参照符号を付してその詳細な説明は
省略する。
Second to fourth injection stations 26b to 26
d and the second to fourth decompression stations 28b to 28d
Has the same configuration as the above-described first injection station 26a and first decompression station 28a, and the same components are denoted by the same reference numerals and detailed description thereof will be omitted.

【0030】このように構成される本実施形態に係る電
解液供給装置10の動作について、本発明に係る電解液
供給方法との関連で以下に説明する。
The operation of the electrolytic solution supply apparatus 10 according to this embodiment having the above-described configuration will be described below in relation to the electrolytic solution supply method according to the present invention.

【0031】図1に示すように、電池缶14が、電池製
造ライン22に沿って矢印A1方向に搬送され、所定数
(10個)の電池缶14が電池缶引込ステーション34
aに配置されているキャリア24の収容部24aに挿入
支持される。電池缶引込ステーション34aでは、各キ
ャリア24に電池缶14がそれぞれ10個ずつ配置され
た後、4列のキャリア24が第1注液ステーション26
aに搬送される。
As shown in FIG. 1, the battery cans 14 are transported along the battery manufacturing line 22 in the direction of arrow A1.
The carrier 24 is inserted and supported by the accommodating portion 24a of the carrier 24 arranged at the position a. In the battery can pull-in station 34a, after ten battery cans 14 are arranged in each carrier 24, the four rows of carriers 24 are moved to the first injection station 26.
a.

【0032】第1注液ステーション26aでは、先ず、
第1注液手段38aが1列目のキャリア24に対応して
配置されており、アーム44が、図2中、矢印C1方向
(鉛直下方向)に移動する。そして、各定量ポンプ46
a〜46jに設けられている注液管50a〜50jが、
1列目のキャリア24に支持されている各電池缶14の
上部に配置された後、前記定量ポンプ46a〜46jが
駆動される。このため、定量ポンプ46a〜46jは、
液タンク48内に貯溜されている電解液を所定の量(第
1回分)だけ各注液管50a〜50jを介して電池缶1
4内に注入する。
At the first injection station 26a, first,
The first liquid injection means 38a is arranged corresponding to the first row of carriers 24, and the arm 44 moves in the direction of arrow C1 (vertically downward direction) in FIG. And each metering pump 46
The injection pipes 50a to 50j provided in the a to 46j are:
After being placed above the battery cans 14 supported by the first row of carriers 24, the metering pumps 46a to 46j are driven. For this reason, the metering pumps 46a to 46j
A predetermined amount (the first time) of the electrolytic solution stored in the liquid tank 48 is supplied to the battery can 1 via each of the injection pipes 50a to 50j.
Inject into 4.

【0033】次いで、アーム44が上昇(矢印C2方
向)するとともに、移動本体42a、42bがレール4
0a、40bに沿って矢印B1方向(または、矢印B2
方向)に所定距離だけ移動し、第1注液手段38aが2
列目のキャリア24の上方に対応して配置される。この
状態で、1列目のキャリア24に挿入されている電池缶
14と同様に第1注液手段38aが駆動され、2列目の
キャリア24に挿入されている各電池缶14内に第1回
分の電解液が注入される。同様にして、第1注液ステー
ション26aに配置されている3列目および4列目のキ
ャリア24に挿入支持されている各電池缶14に対する
第1回分の電解液の供給処理が遂行される。
Next, the arm 44 is raised (in the direction of arrow C2), and the movable bodies 42a and 42b are
0a and 40b along arrow B1 (or arrow B2).
Direction), and the first liquid injection means 38a
It is arranged correspondingly above the carriers 24 in the row. In this state, the first liquid injection means 38a is driven in the same manner as the battery cans 14 inserted into the first row of carriers 24, and the first cans are inserted into the respective battery cans 14 inserted into the second row of carriers 24. Batch electrolyte is injected. Similarly, the first supply process of the electrolytic solution to each battery can 14 inserted and supported by the third and fourth rows of carriers 24 arranged in the first liquid injection station 26a is performed.

【0034】第1注液ステーション26aで電池缶14
に第1回分の電解液が注入された後、4列目のキャリア
24が第1減圧ステーション28aに一体的に送られて
減圧処理が施される。すなわち、第1減圧ステーション
28aでは、図4に示すように、シリンダ78の作用下
に、ロッド80が下方向に移動すると、このロッド80
に固着された支持板82が下降し、前記支持板82にテ
ーパ面88を介してセンタリング支持されている減圧ブ
ース60が下降する。このため、減圧ブース60の端面
64に装着されているOリング66がキャリア24の上
面24cに密着し、前記キャリア24に収容されている
電池缶14が減圧室58内に一体的に配置される。
At the first filling station 26a, the battery can 14
After the first electrolytic solution is injected, the carriers 24 in the fourth row are integrally sent to the first decompression station 28a to be decompressed. That is, at the first pressure reducing station 28a, as shown in FIG.
Then, the pressure reducing booth 60 centered and supported by the support plate 82 via the tapered surface 88 is lowered. Therefore, the O-ring 66 mounted on the end surface 64 of the decompression booth 60 is in close contact with the upper surface 24c of the carrier 24, and the battery can 14 housed in the carrier 24 is integrally disposed in the decompression chamber 58. .

【0035】この状態で、真空弁76を介して減圧ブー
ス60の通路70が図示しない負圧発生源に連通し、こ
の負圧発生源の作用下に、前記通路70を介して減圧室
58内が減圧される。ここで、図6に示すように、減圧
室58内が、−200mmHgの減圧度(第1真空圧
力)状態に至ると、真空弁76が閉じられてこの減圧室
58が気密に閉塞保持される。そして、減圧室58内を
約10秒間以上、−200mmHgの減圧状態に放置し
た後、真空弁76を切り替えて通路70を大気に開放さ
せる(減圧解除処理)。
In this state, the passage 70 of the decompression booth 60 communicates with a negative pressure source (not shown) via the vacuum valve 76, and under the action of the negative pressure source, the inside of the decompression chamber 58 is connected via the passage 70. Is decompressed. Here, as shown in FIG. 6, when the inside of the decompression chamber 58 reaches a decompression degree (first vacuum pressure) of −200 mmHg, the vacuum valve 76 is closed and the decompression chamber 58 is airtightly closed and held. . Then, after the inside of the decompression chamber 58 is left under a decompression state of -200 mmHg for about 10 seconds or more, the vacuum valve 76 is switched to open the passage 70 to the atmosphere (decompression release processing).

【0036】次に、真空弁76が駆動されて減圧室58
が図示しない負圧発生源に連通し、この負圧発生源の作
用下に、前記減圧室58内が−700mmHgの減圧度
(第2真空圧力)状態に至ると、前記真空弁76が閉じ
られる。このため、減圧室58内は、−700mmHg
の減圧状態を維持し、所定時間経過後に真空弁76が大
気開放される。
Next, the vacuum valve 76 is driven to operate the pressure reducing chamber 58.
Communicates with a negative pressure source (not shown), and when the inside of the pressure reducing chamber 58 reaches a reduced pressure degree (second vacuum pressure) of -700 mmHg under the operation of the negative pressure source, the vacuum valve 76 is closed. . Therefore, the inside of the decompression chamber 58 is −700 mmHg.
Is maintained, and after a predetermined time elapses, the vacuum valve 76 is opened to the atmosphere.

【0037】このように、第1減圧ステーション28a
では、電池缶14が配置されている減圧室58内が、先
ず、第1真空圧力である−200mmHgの減圧度に減
圧されて電解液の含浸が行われるとともに、この減圧室
58が大気に開放されて減圧解除処理が施され、電池缶
14から前記電解液がこぼれることをを阻止している。
次いで、減圧室58内は、第2の真空圧力である−70
0mmHgの減圧度に維持された後、前記減圧室58が
大気に開放される。
As described above, the first decompression station 28a
Then, the inside of the decompression chamber 58 in which the battery can 14 is disposed is first reduced to the first vacuum pressure of -200 mmHg to be impregnated with the electrolytic solution, and the decompression chamber 58 is opened to the atmosphere. Then, a pressure release process is performed to prevent the electrolyte solution from spilling from the battery can 14.
Next, the inside of the decompression chamber 58 is at the second vacuum pressure of −70.
After maintaining the pressure reduction degree at 0 mmHg, the pressure reduction chamber 58 is opened to the atmosphere.

【0038】このため、電池缶14内に注入された電解
液は、この電池缶14からこぼれることがなく、しかも
この電解液を短時間で確実に含浸させることができると
いう効果が得られる。特に、電池缶14内の電解液が泡
状となり、この泡状電解液が正極リード20に沿って盛
り上がるようにして泡が形成されることがなく、この正
極リード20に電解液の塩が付着することを確実に阻止
することが可能になる。これにより、注液処理後の正極
リード20に付着した塩を除去する作業が不要になり、
注液作業全体の効率化が容易に遂行されるという効果が
得られる。
Therefore, the effect is obtained that the electrolytic solution injected into the battery can 14 does not spill from the battery can 14 and that the electrolytic solution can be surely impregnated in a short time. In particular, the electrolyte in the battery can 14 becomes foamy, and the foamed electrolyte swells along the positive electrode lead 20 so that no foam is formed. Can be reliably prevented from being performed. This eliminates the need to remove the salt attached to the positive electrode lead 20 after the liquid injection process,
The effect is obtained that the efficiency of the entire injection operation is easily performed.

【0039】なお、−200mmHgの減圧含浸時に
は、電池缶14内の上部空隙への電解液の含浸が行われ
る一方、−700mmHgの減圧含浸時には、前記電池
缶14内の下部空隙である極板群16内への前記電解液
の含浸が行われることになる。
During impregnation at -200 mmHg under reduced pressure, the upper space in the battery can 14 is impregnated with the electrolytic solution, while during impregnation at -700 mmHg, the electrode group as the lower space in the battery can 14 is impregnated. 16 is impregnated with the electrolytic solution.

【0040】また、本実施形態では、電池缶14を収容
しているキャリヤ24に供給管路29が接続されてお
り、この供給管路29を介して前記キャリヤ24の室2
4bに、例えば、5℃の冷風が導入される。これによ
り、収容部24aに配置されている各電池缶14は、冷
風による冷却作用が施されており、この電池缶14内に
注液される電解液の温度が高騰することを阻止してい
る。従って、電解液の沸騰を確実に防止することが可能
になるとともに、前記電解液の蒸発をも可及的に防止す
ることができる。
In the present embodiment, the supply pipe 29 is connected to the carrier 24 containing the battery can 14, and the chamber 2 of the carrier 24 is connected through the supply pipe 29.
For example, cold air of 5 ° C. is introduced into 4b. Thereby, each battery can 14 arranged in the accommodating portion 24a is subjected to the cooling action by the cool air, and prevents the temperature of the electrolyte injected into the battery can 14 from rising. . Therefore, the boiling of the electrolyte can be reliably prevented, and the evaporation of the electrolyte can be prevented as much as possible.

【0041】さらにまた、本実施形態では、減圧ブース
60に各電池缶14を収容可能な最小容積の開口部62
が複数形成されており、この減圧ブース60に装着され
たOリング66をキャリヤ24の上面24cに密着させ
て、前記開口部62および空間部68からなる減圧室5
8を気密に閉塞保持している。
Further, in the present embodiment, the opening 62 having the minimum capacity capable of accommodating each battery can 14 is provided in the decompression booth 60.
A plurality of O-rings 66 mounted on the decompression booth 60 are brought into close contact with the upper surface 24 c of the carrier 24, and the decompression chamber 5 including the opening 62 and the space 68 is formed.
8 is hermetically closed.

【0042】このため、減圧室58内が第1真空圧力で
ある−200mmHgに至った際に、真空弁76を閉じ
ることによってこの減圧室58内が密閉状態で保持さ
れ、前記減圧室58内の空気の流れを遮断することがで
き、電解液の蒸発を有効に阻止して注液量のバラツキが
発生することはない。その際、減圧室58内は、空間部
68に連通する通路70から吸引されるため、各電池缶
14の上部側に空気の流れが惹起することがなく、例え
ば、電解液の液面の揺れを有効に抑えることが可能にな
る。
Therefore, when the inside of the decompression chamber 58 reaches the first vacuum pressure of -200 mmHg, the interior of the decompression chamber 58 is kept closed by closing the vacuum valve 76. The flow of air can be cut off, and the evaporation of the electrolytic solution is effectively prevented, so that the injection amount does not vary. At this time, since the inside of the decompression chamber 58 is sucked from the passage 70 communicating with the space portion 68, no air flow occurs on the upper side of each battery can 14, and for example, the liquid level of the electrolyte solution fluctuates. Can be effectively suppressed.

【0043】しかも、減圧ブース60は、支持板82に
対して支柱86およびスプリング90を介してフローテ
ィング支持されている。従って、キャリヤ24の上面2
4cに傾きが生じていても、減圧ブース60に装着され
ている0リング66を前記上面24cに対し確実に密着
させ、減圧室58内を気密に閉塞保持することができ
る。また、シリンダ78を介してロッド80が上方に移
動すると、支持板82の孔部84を構成する壁面に各支
柱86のテーパ面88が支持され、減圧ブース60が容
易かつ自動的にセンタリングされることになる。
Further, the decompression booth 60 is floatingly supported by the support plate 82 via the support column 86 and the spring 90. Therefore, the upper surface 2 of the carrier 24
Even if the 4c is inclined, the O-ring 66 attached to the decompression booth 60 can be securely brought into close contact with the upper surface 24c, and the inside of the decompression chamber 58 can be airtightly closed. When the rod 80 moves upward through the cylinder 78, the tapered surfaces 88 of the columns 86 are supported on the wall surfaces of the holes 84 of the support plate 82, and the decompression booth 60 is easily and automatically centered. Will be.

【0044】第1減圧ステーション28aで所定の含浸
処理が施された電池缶14は、キャリア24と一体的に
第2注液ステーション26bに移送される。この第2注
液ステーション26bでは、第1注液ステーション26
aと同様に、4列に配置されたキャリア24の各電池缶
14に対して第2回分の電解液の注入作業が行われる。
第2注液ステーション26bで第2回分の電解液の注入
が行われた電池缶14は、第2減圧ステーション28b
に搬送される。
The battery can 14 which has been subjected to the predetermined impregnation at the first pressure reducing station 28a is transferred to the second liquid filling station 26b integrally with the carrier 24. In the second injection station 26b, the first injection station 26
As in a, a second operation of injecting the electrolyte into each of the battery cans 14 of the carriers 24 arranged in four rows is performed.
The battery can 14 into which the second injection of the electrolytic solution has been performed at the second injection station 26b is placed in the second pressure reducing station 28b.
Transported to

【0045】この第2減圧ステーション28bでは、図
7に示ように、減圧処理と減圧解除処理とを3回ずつ行
うことにより、第2回分の電解液の含浸処理が施され
る。具体的には、減圧ブース60が下降することにより
Oリング66がキャリア24の上面24cに密着して減
圧室58が形成された後、先ず、−200mmHgの減
圧度(第1真空圧力)状態で所定時間だけ放置し、大気
開放を行って減圧解除処理が施される。
In the second decompression station 28b, as shown in FIG. 7, the decompression process and the decompression release process are performed three times, respectively, so that the second impregnation process of the electrolytic solution is performed. Specifically, after the decompression booth 60 is lowered and the O-ring 66 is in close contact with the upper surface 24c of the carrier 24 to form the decompression chamber 58, first, at a decompression degree of -200 mmHg (first vacuum pressure). The apparatus is left for a predetermined time, released to the atmosphere, and subjected to a decompression releasing process.

【0046】次いで、減圧室58を−400mmHgの
減圧度(第2真空圧力)状態に減圧して所定時間だけ放
置し、大気開放を行う。さらに、−700mmHgの減
圧度(第3真空圧力)状態に減圧して所定時間だけ保持
した後、減圧解除処理が行われる。
Next, the decompression chamber 58 is depressurized to a state of a depressurization degree of -400 mmHg (second vacuum pressure) and left for a predetermined time to open to the atmosphere. Further, after the pressure is reduced to a decompression degree (third vacuum pressure) of -700 mmHg and maintained for a predetermined time, a decompression release process is performed.

【0047】このように、第2減圧ステーション28b
では、減圧処理と減圧解除処理とが交互に行われるとと
もに、第1真空圧力、第2真空圧力および第3真空圧力
と減圧度が、順次、高くなるように設定されている。こ
れにより、−200mmHgの減圧含浸時に電池缶14
の上部空隙に含浸が行われる一方、−400mmHgお
よび−700mmHgの減圧含浸時に前記電池缶14の
下部空隙への含浸が行われ、第1減圧ステーション28
aと同様の効果が得られる。
As described above, the second decompression station 28b
In this example, the decompression process and the decompression release process are performed alternately, and the first vacuum pressure, the second vacuum pressure, the third vacuum pressure, and the degree of decompression are set so as to increase sequentially. This allows the battery can 14 to be impregnated at -200 mmHg under reduced pressure.
The lower gap of the battery can 14 is impregnated at the time of the impregnation at -400 mmHg and -700 mmHg while the upper gap of the first pressure station 28 is impregnated.
The same effect as a can be obtained.

【0048】次に、キャリア24は、キャリア移送ステ
ーション35aに搬送され、第1連結路36aに沿っ
て、図1中、矢印A1方向に搬送されてキャリア移送ス
テーション35bに送られる。キャリア24の電池缶1
4は、キャリア移送ステーション35bから第3注液ス
テーション26cおよび第3減圧ステーション28cに
搬送されて第3回分の電解液の注入および含浸処理が施
される。電池缶14は、さらに第4注液ステーション2
6dおよび第4減圧ステーション28dに搬送されて第
4回分の電解液の注液および含浸処理が行われ、電池缶
払出ステーション34bに移送される。第3および第4
減圧ステーション28c、28dでは、第2減圧ステー
ション28bと同様に、図7に示す手順により電解液の
含浸処理が施される。
Next, the carrier 24 is transported to the carrier transport station 35a, and is transported along the first connecting path 36a in the direction of arrow A1 in FIG. 1 to the carrier transport station 35b. Battery can 1 for carrier 24
4 is transported from the carrier transfer station 35b to the third liquid injection station 26c and the third decompression station 28c, where the electrolyte is injected and impregnated for the third time. The battery can 14 is further connected to the fourth injection station 2
6d and the fourth decompression station 28d are conveyed to perform the fourth injection and impregnation of the electrolytic solution, and then transferred to the battery can discharge station 34b. Third and fourth
In the decompression stations 28c and 28d, similarly to the second decompression station 28b, the electrolyte impregnation process is performed according to the procedure shown in FIG.

【0049】この電池缶払出ステーション34bでは、
各キャリア24に挿入支持されている電池缶14が電池
製造ライン22に、順次、送り出される。電池缶14
は、矢印A1方向に搬送されて封口処理等の次段の工程
に送られる。
In the battery can dispensing station 34b,
The battery cans 14 inserted and supported by each carrier 24 are sequentially sent out to the battery manufacturing line 22. Battery can 14
Is transported in the direction of arrow A1 and sent to the next step such as a sealing process.

【0050】ところで、第1乃至第4注液ステーション
26a〜26dでは、定量ポンプ46a〜46jを介し
て電池缶14内に電解液が一定量ずつ吐出されており、
この定量ポンプ46a〜46jが一定時間以上停止する
と、それぞれのポンプノズル部の電解液が蒸発してしま
う。
In the first to fourth injection stations 26a to 26d, a fixed amount of the electrolyte is discharged into the battery can 14 via the fixed amount pumps 46a to 46j.
If the metering pumps 46a to 46j stop for a certain period of time or more, the electrolyte in each pump nozzle will evaporate.

【0051】そこで、本実施形態では、定量ポンプ46
a〜46jの停止時間が一定時間を超えた際、図3に示
すように、前記定量ポンプ46a〜46jが空打ちステ
ーション52に一旦移送される。この空打ちステーショ
ン52では、定量ポンプ46a〜46jから廃液トレー
54に1ショット分の電解液が吐出された後、前記定量
ポンプ46a〜46jが注液位置まで移動して電池缶1
4内への電解液の注液作業が行われる。
Therefore, in the present embodiment, the metering pump 46
When the stop time of a to 46j exceeds a certain time, the metering pumps 46a to 46j are temporarily transferred to the idle driving station 52 as shown in FIG. In this idle driving station 52, after one shot of the electrolytic solution is discharged from the metering pumps 46a to 46j to the waste liquid tray 54, the metering pumps 46a to 46j move to the pouring position and the battery can 1
The operation of injecting the electrolytic solution into 4 is performed.

【0052】このように、定量ポンプ46a〜46jが
一定時間以上、例えば、5分間以上停止すると、空打ち
ステーション52に移送されて空打ちが行われる。この
ため、電池缶14には、常時、所定量の電解液が高精度
に注液され、注液量のバラツキを有効に阻止することが
できるという効果が得られる。
As described above, when the metering pumps 46a to 46j are stopped for a predetermined time or more, for example, for 5 minutes or more, the pumps are transferred to the idling station 52 and idling is performed. For this reason, a predetermined amount of the electrolytic solution is constantly injected into the battery can 14 with high accuracy, and the effect of effectively preventing variations in the injected amount can be obtained.

【0053】なお、本実施形態を用いて実際に注液を行
ったところ、2秒タクトでかつ電池缶14内の空隙が
0.8〜1.0ccの条件下において、注液量のバラツ
キが±0.05ccの範囲内となり、電解液の飛散がな
く、しかも正極リード20の汚れもない、良好な注液処
理が達成された。
Incidentally, when the liquid injection was actually performed using this embodiment, the fluctuation of the liquid injection amount was found to be 2 seconds tact and the gap in the battery can 14 was 0.8 to 1.0 cc. It was within the range of ± 0.05 cc, and a good injection treatment was achieved, in which no electrolyte solution was scattered and the positive electrode lead 20 was not stained.

【0054】[0054]

【発明の効果】以上のように、本発明に係る電池の電解
液供給方法および装置では、電池缶に電解液が注液され
た後、この電池缶に、先ず、第1真空圧力による第1減
圧処理と減圧解除処理とが施される。次いで、電池缶に
は、第1真空圧力よりも高い第2真空圧力による第2減
圧処理および減圧解除処理が施される。このため、電解
液の液面が必要以上に上昇してこぼれ等が発生すること
がなく、しかも電解液の含浸処理が短時間で効率的に遂
行される。さらに、極板等に電解液が付着することがな
く、電解液供給作業全体の効率化が容易に遂行される。
As described above, in the battery electrolyte supply method and apparatus according to the present invention, after the electrolyte is injected into the battery can, first, the first vacuum pressure is applied to the battery can. A decompression process and a decompression release process are performed. Next, the battery can is subjected to a second decompression process and a decompression release process using a second vacuum pressure higher than the first vacuum pressure. For this reason, the electrolyte level does not rise more than necessary and spillage does not occur, and the impregnation process of the electrolyte solution is efficiently performed in a short time. Further, the electrolytic solution does not adhere to the electrode plate or the like, and the efficiency of the entire electrolytic solution supply operation can be easily improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態に係る電解液供給装置の概略
平面説明図である。
FIG. 1 is a schematic plan explanatory view of an electrolytic solution supply device according to an embodiment of the present invention.

【図2】前記電解液供給装置を構成する注液ステーショ
ンの一部概略正面図である。
FIG. 2 is a partial schematic front view of an injection station constituting the electrolytic solution supply device.

【図3】前記注液ステーションの一部概略側面図であ
る。
FIG. 3 is a partial schematic side view of the liquid injection station.

【図4】前記電解液供給装置を構成する減圧ブースの正
面説明図である。
FIG. 4 is an explanatory front view of a decompression booth constituting the electrolytic solution supply device.

【図5】前記電解液供給装置により電解液が注液される
電池缶およびキャリアの一部断面斜視図である。
FIG. 5 is a partial cross-sectional perspective view of a battery can and a carrier into which an electrolytic solution is injected by the electrolytic solution supply device.

【図6】第1減圧ステーションの減圧および減圧解除処
理の説明図である。
FIG. 6 is an explanatory diagram of decompression and decompression release processing of a first decompression station.

【図7】第2乃至第4減圧ステーションでの減圧および
減圧解除処理の説明図である。
FIG. 7 is an explanatory diagram of decompression and decompression release processing in second to fourth decompression stations.

【符号の説明】[Explanation of symbols]

10…電解液供給装置 12…電池 14…電池缶 16…極板群 18…負極リード 20…正極リー
ド 22…電池製造ライン 24…キャリア 24a…収容部 24b…室 26a〜26d…注液ステーション 28a〜28d
…減圧ステーション 29…供給管路 38a〜38d
…注液手段 46a〜46j…定量ポンプ 52…空打ちス
テーション 54…廃液トレイ 58…減圧室 60…減圧ブース 62…開口部 64…端面 66…Oリング 68…空間部 70…通路 72…配管 76…真空弁 78…シリンダ 82…支持板 86…支柱 88…テーパ面 90…スプリング
DESCRIPTION OF SYMBOLS 10 ... Electrolyte supply apparatus 12 ... Battery 14 ... Battery can 16 ... Electrode group 18 ... Negative electrode lead 20 ... Positive electrode lead 22 ... Battery manufacturing line 24 ... Carrier 24a ... Housing part 24b ... Room 26a-26d ... Injection station 28a- 28d
… Decompression station 29… Supply line 38a-38d
... Injection means 46a-46j ... Measuring pump 52 ... Punching station 54 ... Waste liquid tray 58 ... Decompression chamber 60 ... Decompression booth 62 ... Opening 64 ... End face 66 ... O-ring 68 ... Space 70 ... Pathway 72 ... Piping 76 ... Vacuum valve 78 ... Cylinder 82 ... Support plate 86 ... Post 88 ... Tapered surface 90 ... Spring

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】常圧下で電池缶に電解液を注液した後に減
圧下で前記電解液を含浸させる処理を、複数回繰り返し
て該電解液の注入を行う電池の電解液供給方法であっ
て、 前記電解液が注液された前記電池缶を減圧ブース内に配
置させ、該電池缶に第1真空圧力による第1減圧処理を
施した後、減圧解除処理を施す工程と、 前記電池缶に前記第1真空圧力よりも高い第2真空圧力
による第2減圧処理を施した後、減圧解除処理を施す工
程と、 を有することを特徴とする電池の電解液供給方法。
1. A method for supplying an electrolytic solution for a battery, comprising: repeating a process of injecting the electrolytic solution under a reduced pressure after injecting the electrolytic solution into a battery can under normal pressure and injecting the electrolytic solution a plurality of times. Disposing the battery can into which the electrolytic solution has been injected in a decompression booth, performing a first decompression process using a first vacuum pressure on the battery can, and then performing a decompression release process; Performing a second decompression process using a second vacuum pressure higher than the first vacuum pressure, and then performing a decompression release process.
【請求項2】請求項1記載の電解液供給方法において、
前記第1および第2減圧処理時に、前記減圧ブース内が
前記第1および第2真空圧力に至った際、真空弁を介し
て該減圧ブース内を気密に閉塞保持することを特徴とす
る電池の電解液供給方法。
2. The method according to claim 1, wherein
In the first and second decompression processes, when the inside of the decompression booth reaches the first and second vacuum pressures, the inside of the decompression booth is airtightly closed and held via a vacuum valve. Electrolyte supply method.
【請求項3】請求項1記載の電解液供給方法において、
前記電池缶に前記電解液を注液するポンプの停止時間が
一定時間を超えた際、前記ポンプから廃液部位に前記電
解液を1ショット分だけ吐出する工程を有することを特
徴とする電池の電解液供給方法。
3. The method according to claim 1, wherein
A step of discharging the electrolyte for one shot from the pump to a waste liquid portion when a stop time of a pump for injecting the electrolyte into the battery can exceeds a predetermined time. Liquid supply method.
【請求項4】請求項1記載の電解液供給方法において、
複数個の前記電池缶を一体的に収容するキャリア内部に
冷却風を供給して該電池缶を冷却することを特徴とする
電池の電解液供給方法。
4. The method according to claim 1, wherein
A method for supplying an electrolytic solution for a battery, comprising supplying cooling air to a carrier accommodating a plurality of said battery cans to cool said battery cans.
【請求項5】常圧下で電池缶に電解液を注液した後に減
圧下で前記電解液を含浸させる処理を、複数回繰り返し
て該電解液の注入を行う電池の電解液供給装置であっ
て、 複数個の前記電池缶を一体的に収容するキャリアと、 前記電池缶が1個ずつ受容される複数個の開口部を有
し、アクチュエータを介して前記キャリアに対し進退自
在な減圧ブースと、 前記減圧ブースの端面に装着され、前記端面と前記キャ
リアの上面との間に前記複数個の開口部に一体的に連通
する空間部を形成するとともに、該複数個の開口部およ
び前記空間部からなる減圧室を気密に保持するシール部
材と、 を備えることを特徴とする電池の電解液供給装置。
5. An electrolytic solution supply device for a battery, wherein a process of injecting an electrolytic solution into a battery can at normal pressure and then impregnating the electrolytic solution under reduced pressure is repeated a plurality of times to inject the electrolytic solution. A carrier integrally housing a plurality of the battery cans, a decompression booth having a plurality of openings in which the battery cans are received one by one, and capable of moving back and forth with respect to the carrier via an actuator; A space that is mounted on an end face of the decompression booth and that integrally communicates with the plurality of openings between the end face and the upper surface of the carrier is formed. And a sealing member for keeping the decompression chamber airtight.
【請求項6】請求項5記載の電解液供給装置において、
前記減圧ブースと負圧発生源とを連通する配管途上に、
該減圧ブース内を気密に閉塞保持するための真空弁が設
けられることを特徴とする電池の電解液供給装置。
6. The electrolytic solution supply device according to claim 5, wherein
On the way to communicate the decompression booth and the negative pressure source,
A battery electrolyte supply device for a battery, comprising a vacuum valve for airtightly closing and holding the inside of the decompression booth.
【請求項7】請求項5記載の電解液供給装置において、
前記キャリアには、該キャリア内部に冷却風を供給して
該電池缶を冷却するための冷却風供給管路が接続される
ことを特徴とする電池の電解液供給装置。
7. The electrolytic solution supply device according to claim 5, wherein
A battery electrolyte supply device for a battery, wherein a cooling air supply pipe for supplying cooling air to the inside of the carrier to cool the battery can is connected to the carrier.
【請求項8】請求項5記載の電解液供給装置において、
前記電池缶に前記電解液を注液する注液手段は、ポンプ
の停止時間が一定時間を超えた際に前記電解液を1ショ
ット分だけ吐出する廃液部位を備えることを特徴とする
電池の電解液供給装置。
8. The electrolytic solution supply device according to claim 5, wherein
The liquid injection means for injecting the electrolytic solution into the battery can includes a waste liquid portion for discharging the electrolytic solution by one shot when a stop time of a pump exceeds a predetermined time. Liquid supply device.
JP14178898A 1998-05-22 1998-05-22 Battery electrolyte supply method and apparatus Expired - Lifetime JP4029468B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14178898A JP4029468B2 (en) 1998-05-22 1998-05-22 Battery electrolyte supply method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14178898A JP4029468B2 (en) 1998-05-22 1998-05-22 Battery electrolyte supply method and apparatus

Publications (2)

Publication Number Publication Date
JPH11339770A true JPH11339770A (en) 1999-12-10
JP4029468B2 JP4029468B2 (en) 2008-01-09

Family

ID=15300178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14178898A Expired - Lifetime JP4029468B2 (en) 1998-05-22 1998-05-22 Battery electrolyte supply method and apparatus

Country Status (1)

Country Link
JP (1) JP4029468B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010008115A (en) * 2000-11-09 2001-02-05 김종선 filling equipment of battery electrolysis liquid
JP2004022502A (en) * 2002-06-20 2004-01-22 Kyushu Electric Power Co Inc Liquid injection method of battery, liquid injection apparatus for battery, and battery
DE10302119A1 (en) * 2003-01-21 2004-07-29 Epcos Ag Electrodes for use in electrochemical cells are produced in continuous strip form of coated aluminum
KR100868684B1 (en) 2007-10-10 2008-11-13 (주)하나기술 Pouring apparatus for electrolyte of battery and pouring g method thereof
CN102403484A (en) * 2011-11-30 2012-04-04 江苏双登集团有限公司 Vacuum acid injection method for lead-acid storage battery
KR101381820B1 (en) * 2013-01-18 2014-04-07 주식회사 디에이테크놀로지 Cleaning apparatus for injection system for electrolyte of rechargeable battery
US8810079B2 (en) 2009-11-27 2014-08-19 Samsung Sdi Co., Ltd. Battery pack and uninterruptible power supply having the same
CN104008890A (en) * 2013-12-19 2014-08-27 宁波南车新能源科技有限公司 Super capacitor liquid injection method and liquid injection device
KR101493950B1 (en) * 2009-11-09 2015-02-17 주식회사 엘지화학 Method & apparatus for manufacturing secondary battery
CN108091818A (en) * 2018-01-29 2018-05-29 深圳市东汇精密机电有限公司 A kind of Full-automatic lithium battery liquid-filling machine for battery and its electrolyte filling method
CN112136241A (en) * 2018-06-11 2020-12-25 阿莫绿色技术有限公司 Preparation method of flexible battery
CN115241615A (en) * 2022-09-23 2022-10-25 深圳市铂纳特斯自动化科技有限公司 Lithium battery positive and negative pressure liquid injection machine
CN115275540A (en) * 2022-08-02 2022-11-01 三一技术装备有限公司 Liquid injection device and method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101395438B1 (en) * 2011-12-05 2014-05-14 닛산 지도우샤 가부시키가이샤 Manufacturing method and manufacturing apparatus for electrical device with film covering
KR101395497B1 (en) * 2011-12-05 2014-05-14 닛산 지도우샤 가부시키가이샤 Manufacturing method and manufacturing apparatus for electrical device with film covering

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010008115A (en) * 2000-11-09 2001-02-05 김종선 filling equipment of battery electrolysis liquid
JP2004022502A (en) * 2002-06-20 2004-01-22 Kyushu Electric Power Co Inc Liquid injection method of battery, liquid injection apparatus for battery, and battery
JP4625232B2 (en) * 2002-06-20 2011-02-02 九州電力株式会社 Battery pouring method, battery pouring device, and battery
DE10302119A1 (en) * 2003-01-21 2004-07-29 Epcos Ag Electrodes for use in electrochemical cells are produced in continuous strip form of coated aluminum
KR100868684B1 (en) 2007-10-10 2008-11-13 (주)하나기술 Pouring apparatus for electrolyte of battery and pouring g method thereof
KR101493950B1 (en) * 2009-11-09 2015-02-17 주식회사 엘지화학 Method & apparatus for manufacturing secondary battery
US8810079B2 (en) 2009-11-27 2014-08-19 Samsung Sdi Co., Ltd. Battery pack and uninterruptible power supply having the same
CN102403484A (en) * 2011-11-30 2012-04-04 江苏双登集团有限公司 Vacuum acid injection method for lead-acid storage battery
KR101381820B1 (en) * 2013-01-18 2014-04-07 주식회사 디에이테크놀로지 Cleaning apparatus for injection system for electrolyte of rechargeable battery
CN104008890A (en) * 2013-12-19 2014-08-27 宁波南车新能源科技有限公司 Super capacitor liquid injection method and liquid injection device
CN108091818A (en) * 2018-01-29 2018-05-29 深圳市东汇精密机电有限公司 A kind of Full-automatic lithium battery liquid-filling machine for battery and its electrolyte filling method
CN108091818B (en) * 2018-01-29 2023-11-07 深圳市东汇精密机电有限公司 Full-automatic lithium battery liquid injection machine and liquid injection method thereof
CN112136241A (en) * 2018-06-11 2020-12-25 阿莫绿色技术有限公司 Preparation method of flexible battery
US20210143519A1 (en) * 2018-06-11 2021-05-13 Amogreentech Co., Ltd. Flexible battery manufacturing method
US11909074B2 (en) * 2018-06-11 2024-02-20 Amogreentech Co., Ltd. Flexible battery manufacturing method
CN112136241B (en) * 2018-06-11 2024-03-22 阿莫绿色技术有限公司 Method for preparing flexible battery
CN115275540A (en) * 2022-08-02 2022-11-01 三一技术装备有限公司 Liquid injection device and method
CN115275540B (en) * 2022-08-02 2024-03-08 三一技术装备有限公司 Priming device and method
CN115241615A (en) * 2022-09-23 2022-10-25 深圳市铂纳特斯自动化科技有限公司 Lithium battery positive and negative pressure liquid injection machine
CN115241615B (en) * 2022-09-23 2022-11-25 深圳市铂纳特斯自动化科技有限公司 Lithium battery positive and negative pressure liquid injection machine

Also Published As

Publication number Publication date
JP4029468B2 (en) 2008-01-09

Similar Documents

Publication Publication Date Title
JPH11339770A (en) Method and device for supplying battery electrolyte
KR101704341B1 (en) Gas injection apparatus, gas discharge apparatus, gas injection method and gas discharge method
US9666454B2 (en) Wafer storage apparatus having gas charging portions and semiconductor manufacturing apparatus using the same
US8047241B2 (en) Method for filling electrolyte into battery cell and apparatus for carrying out the method
CN110010533B (en) Substrate processing apparatus and substrate processing method
US10381246B2 (en) Substrate processing apparatus
KR20140058190A (en) Apparatus for treating substrate
KR102586807B1 (en) Electrolyte injection apparatus, and Electrolyte injection method
CN109482381B (en) Processing liquid supply device and substrate processing system
JP7109989B2 (en) SUBSTRATE PROCESSING METHOD, STORAGE MEDIUM AND SUBSTRATE PROCESSING SYSTEM
KR20160037786A (en) Substrate processing method and substrate processing apparatus
TWI225319B (en) Electrolyte injection device and battery production method
KR101996717B1 (en) Film forming method and film forming apparatus
JPH1196992A (en) Electrolyte injection device, electrolyte injection method, and battery
KR100795651B1 (en) Sealed battery and method for manufacturing the same
JP4220150B2 (en) Liquid injection device for injecting filling liquid into battery or condenser outer can
JP3928199B2 (en) Battery electrolyte supply method and apparatus
CN116364591A (en) Apparatus for treating substrate and method for monitoring static electricity of treating liquid
KR20180107502A (en) Wafer storage container
JPH08250107A (en) Liquid impregnating device and liquid impregnating method
KR101131547B1 (en) Boat and semiconductor deposition apparatus and method including the same
JPH08273659A (en) Electrolyte impregnating method and its device
JP2022120351A (en) Electrolyte injection system for open battery and electrolyte injection method for open battery
JP2003022799A (en) Assembly carrier for pouring electrolyte, and electrolyte pouring method and device
JP2003059485A (en) Electrolyte filling method and device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070626

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070925

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071008

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101026

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101026

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111026

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111026

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121026

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121026

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121026

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131026

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term