JP4029468B2 - Battery electrolyte supply method and apparatus - Google Patents

Battery electrolyte supply method and apparatus Download PDF

Info

Publication number
JP4029468B2
JP4029468B2 JP14178898A JP14178898A JP4029468B2 JP 4029468 B2 JP4029468 B2 JP 4029468B2 JP 14178898 A JP14178898 A JP 14178898A JP 14178898 A JP14178898 A JP 14178898A JP 4029468 B2 JP4029468 B2 JP 4029468B2
Authority
JP
Japan
Prior art keywords
battery
decompression
electrolytic solution
booth
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP14178898A
Other languages
Japanese (ja)
Other versions
JPH11339770A (en
Inventor
清文 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP14178898A priority Critical patent/JP4029468B2/en
Publication of JPH11339770A publication Critical patent/JPH11339770A/en
Application granted granted Critical
Publication of JP4029468B2 publication Critical patent/JP4029468B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • Y02E60/12

Landscapes

  • Filling, Topping-Up Batteries (AREA)
  • Primary Cells (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、常圧下で電池缶に電解液を注液した後に減圧下で前記電解液を含浸させる処理を、複数回繰り返して該電解液の注入を行う電池の電解液供給方法および装置に関する。
【0002】
【従来の技術】
一般に、電池の組立工程において、正極板と負極板がセパレータを挟んで巻回された極板群を電池缶内に収納した後、この電池缶内に電解液を注液する作業が行われている。
【0003】
この種の注液作業では、安全装置の作動性を確保するために、電池缶内の隙間を僅かにする必要がある一方、電池性能上の観点から、多量の電解液を精度よく注入しなければならない。また、電池缶内では、ビーディングにより形成された溝の上部に電解液が残存すると、この電池缶に封口体を挿入する際に前記電解液が機内に飛散するおそれがある。このため、電解液を電池缶内に十分に含浸させる必要がある。
【0004】
そこで、例えば、特開平8−250107号公報に開示されているように、カップを用いて電池缶内に電解液を一度に注入する方法が知られている(以下、従来技術1という)。この従来技術1では、電池缶の上部に設けられた開口部にカップが配置され、予めこのカップ内に電解液を供給しておき、遠心力、減圧および加圧によって前記電解液を注入したり、あるいは、予め電池缶内部を減圧しておき、バルブの切り替え作用下に、該カップ内から電解液を注入している。
【0005】
また、電解液の注液処理と含浸処理とを繰り返す方法が、従来から行われている(以下、従来技術2という)。この従来技術2は、電池缶の上縁部まで電解液を注液した後、常圧下(減圧下)でこの電解液を含浸させる工程を複数回繰り返すことにより、前記電池缶内への注液作業を行うものである。
【0006】
【発明が解決しようとする課題】
しかしながら、上記の従来技術1では、電池缶内から突出するリード(正極リード)に電解液が大量に付着し易く、このリードにレーザ溶接等によって封口体を溶接する際の支障となってしまう。このため、電解液を注入した後、リードに付着している電解液を完全に除去する装置を設ける必要があり、工程が煩雑化するとともに、設備費が高騰するという問題が指摘されている。
【0007】
しかも、電解液を一旦貯溜するカップには、この電解液内の固形分である塩が析出してしまい、電池缶内への注液量に大きなバラツキが発生してしまう。また、カップのシール部分に塩が析出すると、シール性の悪化が惹起されてしまう。このため、カップを洗浄するための専用の装置が必要になり、設備全体が大がかりなものになるという問題がある。
【0008】
一方、上記の従来技術2では、常圧下における電解液の含浸処理を行う場合、この電解液の含浸に長時間を要するとともに、電池缶内部に空間が存在しているにも係わらず、空気の逃げ場がなくなり、この空間内に電解液が含浸しないという問題がある。また、減圧下における電解液の含浸処理では、電池缶内に注液された電解液の液面が上昇し、この電解液が前記電池缶の上縁部からこぼれるおそれがある。
【0009】
本発明は、この種の問題を解決するものであり、電解液を所定の量だけ正確に注液するとともに、この電解液が不要な部分に付着することを阻止し、しかも、構成を簡素化することが可能な電池の電解液供給方法および装置を提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明に係る電池の電解液の供給方法および装置では、電解液が注液された電池缶を減圧ブース内に配置し、先ず、この電池缶に第1真空圧力による第1減圧処理が施された後、前記減圧ブース内を常圧にする第1減圧解除処理が施される。次いで、電池缶に第1真空圧力よりも高い第2真空圧力による第2減圧処理が施された後、前記減圧ブース内を常圧にする第2減圧解除処理が行われる。
【0011】
このように、第1真空圧力よりも第2真空圧力を高く設定することにより、電池缶に注液された電解液が、この電池缶の上縁部からこぼれ出すことを確実に阻止することができる。しかも、常圧下における含浸処理に比べて、含浸時間を大幅に短縮することが可能になる。また、第2減圧解除処理を施した後に、さらに、前記電池缶に前記第2真空圧力よりも高い第3真空圧力による第3減圧処理を施された後、前記減圧ブース内を常圧にする第3減圧解除処理を施してもよい。
【0012】
ここで、第1および第2減圧処理時に、減圧ブース内が第1および第2真空圧力に至った際、真空弁を介して前記減圧ブース内を気密に閉塞保持している。従って、減圧時に減圧ブース内に空気の流れが発生することを確実に阻止し、電解液の蒸発を有効に抑えて注液量のバラツキが発生することがない。
【0013】
また、電池缶に電解液を注液するポンプの停止時間が一定時間を超えると、ポンプノズル部の電解液が蒸発して次の吐出量が減少し易い。例えば、電池缶内に注液される電解液の注液量のバラツキは、±5/100ccに設定されているのに対し、ポンプが1時間停止されると、ポンプノズル部の電解液が1/100cc減少することが知られており、注液量のバラツキが相当に大きくなってしまう。そこで、ポンプの停止時間が一定時間を超えた際、このポンプから廃液部位に電解液を1ショット分だけ吐出した後、電池缶内への注液作業が行われる。このため、ポンプの電解液吐出精度を向上させることができる。
【0014】
さらにまた、複数個の電池缶を一体的に収容するキャリア内部に冷却を供給して、この電池缶を冷却している。従って、電池缶に注液された電解液が、減圧含浸時に沸騰することを阻止するとともに、この電解液の蒸発を有効に防止することが可能になる。また、前記減圧ブースの開口部は前記電池缶に接触しない深さで且つ前記電池缶の直径よりも大径である開口断面円柱状の凹部であってもよい。
【0015】
【発明の実施の形態】
図1は、本発明の実施形態に係る電解液供給装置10の概略平面説明図であり、図2は、この電解液供給装置10の一部概略正面図である。
【0016】
電解液供給装置10により電解液が分割注液される電池12は、図5に示すように、有底円筒形状の電池缶14を有し、この電池缶14内には、正極板と負極板がセパレータを挟んで巻回された極板群16が挿入されている。極板群16の負極リード18が電池缶14の底面に溶接されており、この極板群16の正極リード20が前記電池缶14から上方に突出している。
【0017】
図1に示すように、電解液供給装置10は、電池製造ライン22に併設されており、キャリア24を介して矢印A方向に複数個(例えば、10個)ずつ配列され、かつ矢印B方向に複数列(例えば、4列)ずつ配置された合計40個の電池缶14に、電解液を所定量ずつ供給可能な第1〜第4注液ステーション26a〜26dと、前記第1〜第4注液ステーション26a〜26dの下流側に配設され、前記電池缶14に減圧処理と減圧解除処理とを交互に複数回ずつ施す第1〜第4減圧ステーション28a〜28dとを備える。
【0018】
キャリア24は、図5に示すように、10個の電池缶14を所定間隔ずつ離間して配置するための収容部24aを有している。収容部24aは略円筒状を有しており、キャリア24の内部に形成された室24b例に突出するとともに、この室24bには、図示しない冷却風供給源に連通する供給管路29が接続されている。供給管路29から室24b内に、例えば、5℃の冷風が供給される。
【0019】
電解液供給装置10は、図1に示すように、第1および第2注液ステーション26a、26bと第1および第2減圧ステーション28a、28bとが矢印B1方向に指向して交互に配設される第1搬送路30と、第3および第4注液ステーション26c、26dと第3および第4減圧ステーション28c、28dとが矢印B2方向に指向して交互に配設される第2搬送路32とを備える。
【0020】
第1搬送路30の両端には、電池缶引込ステーション34aとキャリア移送ステーション35aとが設けられるとともに、第2搬送路32の両端には、キャリア移送ステーション35bと電池缶払出ステーション34bとが設けられる。キャリア移送ステーション35aと35bおよび電池缶引込ステーション34aと電池缶払出ステーション34bとは、それぞれ第1および第2連結路36a、36bを介して連結され、キャリア循環搬送路が構成されている。
【0021】
第1〜第4注液ステーション26a〜26dは、10個ずつ4列(合計で40個)配列された電池缶14に、それぞれ所定量(第1回分〜第4回分)の電解液を供給可能な第1〜第4注液手段38a〜38dを備える。
【0022】
図2に示すように、第1注液手段38aは、キャリア24の長手方向(矢印A方向)両端側上方に互いに平行して配設されたレール40a、40bに沿って矢印B方向に進退自在な自走式移動本体42a、42bを備える。移動本体42a、42bには、図示しない昇降手段を介してアーム44の両端が支持されるとともに、このアーム44には、キャリア24に載置された10個の電池缶14に対応して定量ポンプ46a〜46jが装着される。定量ポンプ46a〜46jは、電解液が貯溜された液タンク48に連通しており、各定量ポンプ46a〜46jには、下方に向かって注液管50a〜50jが配置されている。
【0023】
図3に示すように、第1注液手段38aには、定量ポンプ46a〜46jの停止時間が一定時間を超えた際、電解液を1ショット分だけ吐出するための空打ちステーション52が設けられる。この空打ちステーション52は、第1注液手段38aによる電池缶14への電解液の注液位置の外方に配置される廃液トレイ54を備え、この廃液トレイ54に接続される廃液管56が、図示ない廃液タンク等に接続されている。
【0024】
第1注液ステーション26aの下流側に配置された第1減圧ステーション28aは、図4に示すように、4列に配置された各キャリア24の全体を覆って、あるいは、各列の前記キャリア24毎に減圧室58を形成するための昇降自在な減圧ブース60を備える。
【0025】
減圧ブース60は、所定数の電池缶14に対応して、各電池缶14を1個ずつ受容する開口部62を有し、各開口部62は、前記減圧ブース60の端面64側から所定の深さHまで形成されるとともに、直径Dが設定された開口断面円柱状を有している。深さHは、各電池缶14の上部側から突出する正極リード20を避け得る必要最小限の深さに設定される一方、直径Dは、この電池缶14の直径よりもわずかに大径に設定されている。
【0026】
減圧ブース60の端面64には、全ての開口部62を囲繞してOリング(シール材)66が装着される。Oリング66は、キャリア24の上面24cに密着し、減圧ブース60の端面64と前記上面24cとの間に各開口部62に一体的に連通する空間部68を形成する。開口部62と空間部68とから減圧室58が構成され、この減圧室58がOリング66により気密に保持される。
【0027】
減圧ブース60には、空間部68に連通する通路70が形成され、この通路70と図示しない負圧発生源とを連通する配管72の途上には、圧力計74および真空弁76が設けられる。この真空弁76は、通路70を図示しない負圧発生源に連通させるポジションと、前記通路70を大気に開放されるポジションと、前記通路70を閉塞するポジションとに切り替えられる。
【0028】
減圧ブース60を昇降させるためのアクチュエータ、例えば、シリンダ78から下方に延在するロッド80には支持板82が固着され、この支持板82の四隅に孔部84が形成される。減圧ブース60の上部に支柱86が固着され、この支柱86が孔部84よりも小径に設定されるとともに、各支柱86の上部には上方には向かって拡径するセンタリング用テーパ面88が形成される。支柱86にスプリング90が外挿され、このスプリング90の両端が減圧ブース60と支持板82とに押し付けられている。
【0029】
第2〜第4注液ステーション26b〜26dおよび第2〜第4減圧ステーション28b〜28dは、上述した第1注液ステーション26aおよび第1減圧ステーション28aと同様に構成されており、同一の構成要素には同一の参照符号を付してその詳細な説明は省略する。
【0030】
このように構成される本実施形態に係る電解液供給装置10の動作について、本発明に係る電解液供給方法との関連で以下に説明する。
【0031】
図1に示すように、電池缶14が、電池製造ライン22に沿って矢印A1方向に搬送され、所定数(10個)の電池缶14が電池缶引込ステーション34aに配置されているキャリア24の収容部24aに挿入支持される。電池缶引込ステーション34aでは、各キャリア24に電池缶14がそれぞれ10個ずつ配置された後、4列のキャリア24が第1注液ステーション26aに搬送される。
【0032】
第1注液ステーション26aでは、先ず、第1注液手段38aが1列目のキャリア24に対応して配置されており、アーム44が、図2中、矢印C1方向(鉛直下方向)に移動する。そして、各定量ポンプ46a〜46jに設けられている注液管50a〜50jが、1列目のキャリア24に支持されている各電池缶14の上部に配置された後、前記定量ポンプ46a〜46jが駆動される。このため、定量ポンプ46a〜46jは、液タンク48内に貯溜されている電解液を所定の量(第1回分)だけ各注液管50a〜50jを介して電池缶14内に注入する。
【0033】
次いで、アーム44が上昇(矢印C2方向)するとともに、移動本体42a、42bがレール40a、40bに沿って矢印B1方向(または、矢印B2方向)に所定距離だけ移動し、第1注液手段38aが2列目のキャリア24の上方に対応して配置される。この状態で、1列目のキャリア24に挿入されている電池缶14と同様に第1注液手段38aが駆動され、2列目のキャリア24に挿入されている各電池缶14内に第1回分の電解液が注入される。同様にして、第1注液ステーション26aに配置されている3列目および4列目のキャリア24に挿入支持されている各電池缶14に対する第1回分の電解液の供給処理が遂行される。
【0034】
第1注液ステーション26aで電池缶14に第1回分の電解液が注入された後、4列目のキャリア24が第1減圧ステーション28aに一体的に送られて減圧処理が施される。すなわち、第1減圧ステーション28aでは、図4に示すように、シリンダ78の作用下に、ロッド80が下方向に移動すると、このロッド80に固着された支持板82が下降し、前記支持板82にテーパ面88を介してセンタリング支持されている減圧ブース60が下降する。このため、減圧ブース60の端面64に装着されているOリング66がキャリア24の上面24cに密着し、前記キャリア24に収容されている電池缶14が減圧室58内に一体的に配置される。
【0035】
この状態で、真空弁76を介して減圧ブース60の通路70が図示しない負圧発生源に連通し、この負圧発生源の作用下に、前記通路70を介して減圧室58内が減圧される。ここで、図6に示すように、減圧室58内が、−200mmHgの減圧度(第1真空圧力)状態に至ると、真空弁76が閉じられてこの減圧室58が気密に閉塞保持される。そして、減圧室58内を約10秒間以上、−200mmHgの減圧状態に放置した後、真空弁76を切り替えて通路70を大気に開放させる(減圧解除処理)。
【0036】
次に、真空弁76が駆動されて減圧室58が図示しない負圧発生源に連通し、この負圧発生源の作用下に、前記減圧室58内が−700mmHgの減圧度(第2真空圧力)状態に至ると、前記真空弁76が閉じられる。このため、減圧室58内は、−700mmHgの減圧状態を維持し、所定時間経過後に真空弁76が大気開放される。
【0037】
このように、第1減圧ステーション28aでは、電池缶14が配置されている減圧室58内が、先ず、第1真空圧力である−200mmHgの減圧度に減圧されて電解液の含浸が行われるとともに、この減圧室58が大気に開放されて減圧解除処理が施され、電池缶14から前記電解液がこぼれることを阻止している。次いで、減圧室58内は、第2の真空圧力である−700mmHgの減圧度に維持された後、前記減圧室58が大気に開放される。
【0038】
このため、電池缶14内に注入された電解液は、この電池缶14からこぼれることがなく、しかもこの電解液を短時間で確実に含浸させることができるという効果が得られる。特に、電池缶14内の電解液が泡状となり、この泡状電解液が正極リード20に沿って盛り上がるようにして泡が形成されることがなく、この正極リード20に電解液の塩が付着することを確実に阻止することが可能になる。これにより、注液処理後の正極リード20に付着した塩を除去する作業が不要になり、注液作業全体の効率化が容易に遂行されるという効果が得られる。
【0039】
なお、−200mmHgの減圧含浸時には、電池缶14内の上部空隙への電解液の含浸が行われる一方、−700mmHgの減圧含浸時には、前記電池缶14内の下部空隙である極板群16内への前記電解液の含浸が行われることになる。
【0040】
また、本実施形態では、電池缶14を収容しているキャリヤ24に供給管路29が接続されており、この供給管路29を介して前記キャリヤ24の室24bに、例えば、5℃の冷風が導入される。これにより、収容部24aに配置されている各電池缶14は、冷風による冷却作用が施されており、この電池缶14内に注液される電解液の温度が高騰することを阻止している。従って、電解液の沸騰を確実に防止することが可能になるとともに、前記電解液の蒸発をも可及的に防止することができる。
【0041】
さらにまた、本実施形態では、減圧ブース60に各電池缶14を収容可能な最小容積の開口部62が複数形成されており、この減圧ブース60に装着されたOリング66をキャリヤ24の上面24cに密着させて、前記開口部62および空間部68からなる減圧室58を気密に閉塞保持している。
【0042】
このため、減圧室58内が第1真空圧力である−200mmHgに至った際に、真空弁76を閉じることによってこの減圧室58内が密閉状態で保持され、前記減圧室58内の空気の流れを遮断することができ、電解液の蒸発を有効に阻止して注液量のバラツキが発生することはない。その際、減圧室58内は、空間部68に連通する通路70から吸引されるため、各電池缶14の上部側に空気の流れが惹起することがなく、例えば、電解液の液面の揺れを有効に抑えることが可能になる。
【0043】
しかも、減圧ブース60は、支持板82に対して支柱86およびスプリング90を介してフローティング支持されている。従って、キャリヤ24の上面24cに傾きが生じていても、減圧ブース60に装着されている0リング66を前記上面24cに対し確実に密着させ、減圧室58内を気密に閉塞保持することができる。また、シリンダ78を介してロッド80が上方に移動すると、支持板82の孔部84を構成する壁面に各支柱86のテーパ面88が支持され、減圧ブース60が容易かつ自動的にセンタリングされることになる。
【0044】
第1減圧ステーション28aで所定の含浸処理が施された電池缶14は、キャリア24と一体的に第2注液ステーション26bに移送される。この第2注液ステーション26bでは、第1注液ステーション26aと同様に、4列に配置されたキャリア24の各電池缶14に対して第2回分の電解液の注入作業が行われる。第2注液ステーション26bで第2回分の電解液の注入が行われた電池缶14は、第2減圧ステーション28bに搬送される。
【0045】
この第2減圧ステーション28bでは、図7に示ように、減圧処理と減圧解除処理とを3回ずつ行うことにより、第2回分の電解液の含浸処理が施される。具体的には、減圧ブース60が下降することによりOリング66がキャリア24の上面24cに密着して減圧室58が形成された後、先ず、−200mmHgの減圧度(第1真空圧力)状態で所定時間だけ放置し、大気開放を行って減圧解除処理が施される。
【0046】
次いで、減圧室58を−400mmHgの減圧度(第2真空圧力)状態に減圧して所定時間だけ放置し、大気開放を行う。さらに、−700mmHgの減圧度(第3真空圧力)状態に減圧して所定時間だけ保持した後、減圧解除処理が行われる。
【0047】
このように、第2減圧ステーション28bでは、減圧処理と減圧解除処理とが交互に行われるとともに、第1真空圧力、第2真空圧力および第3真空圧力と減圧度が、順次、高くなるように設定されている。これにより、−200mmHgの減圧含浸時に電池缶14の上部空隙に含浸が行われる一方、−400mmHgおよび−700mmHgの減圧含浸時に前記電池缶14の下部空隙への含浸が行われ、第1減圧ステーション28aと同様の効果が得られる。
【0048】
次に、キャリア24は、キャリア移送ステーション35aに搬送され、第1連結路36aに沿って、図1中、矢印A1方向に搬送されてキャリア移送ステーション35bに送られる。キャリア24の電池缶14は、キャリア移送ステーション35bから第3注液ステーション26cおよび第3減圧ステーション28cに搬送されて第3回分の電解液の注入および含浸処理が施される。電池缶14は、さらに第4注液ステーション26dおよび第4減圧ステーション28dに搬送されて第4回分の電解液の注液および含浸処理が行われ、電池缶払出ステーション34bに移送される。第3および第4減圧ステーション28c、28dでは、第2減圧ステーション28bと同様に、図7に示す手順により電解液の含浸処理が施される。
【0049】
この電池缶払出ステーション34bでは、各キャリア24に挿入支持されている電池缶14が電池製造ライン22に、順次、送り出される。電池缶14は、矢印A1方向に搬送されて封口処理等の次段の工程に送られる。
【0050】
ところで、第1乃至第4注液ステーション26a〜26dでは、定量ポンプ46a〜46jを介して電池缶14内に電解液が一定量ずつ吐出されており、この定量ポンプ46a〜46jが一定時間以上停止すると、それぞれのポンプノズル部の電解液が蒸発してしまう。
【0051】
そこで、本実施形態では、定量ポンプ46a〜46jの停止時間が一定時間を超えた際、図3に示すように、前記定量ポンプ46a〜46jが空打ちステーション52に一旦移送される。この空打ちステーション52では、定量ポンプ46a〜46jから廃液トレー54に1ショット分の電解液が吐出された後、前記定量ポンプ46a〜46jが注液位置まで移動して電池缶14内への電解液の注液作業が行われる。
【0052】
このように、定量ポンプ46a〜46jが一定時間以上、例えば、5分間以上停止すると、空打ちステーション52に移送されて空打ちが行われる。このため、電池缶14には、常時、所定量の電解液が高精度に注液され、注液量のバラツキを有効に阻止することができるという効果が得られる。
【0053】
なお、本実施形態を用いて実際に注液を行ったところ、2秒タクトでかつ電池缶14内の空隙が0.8〜1.0ccの条件下において、注液量のバラツキが±0.05ccの範囲内となり、電解液の飛散がなく、しかも正極リード20の汚れもない、良好な注液処理が達成された。
【0054】
【発明の効果】
以上のように、本発明に係る電池の電解液供給方法および装置では、電池缶に電解液が注液された後、この電池缶に、先ず、第1真空圧力による第1減圧処理と減圧解除処理とが施される。次いで、電池缶には、第1真空圧力よりも高い第2真空圧力による第2減圧処理および減圧解除処理が施される。このため、電解液の液面が必要以上に上昇してこぼれ等が発生することがなく、しかも電解液の含浸処理が短時間で効率的に遂行される。さらに、極板等に電解液が付着することがなく、電解液供給作業全体の効率化が容易に遂行される。
【図面の簡単な説明】
【図1】本発明の実施形態に係る電解液供給装置の概略平面説明図である。
【図2】前記電解液供給装置を構成する注液ステーションの一部概略正面図である。
【図3】前記注液ステーションの一部概略側面図である。
【図4】前記電解液供給装置を構成する減圧ブースの正面説明図である。
【図5】前記電解液供給装置により電解液が注液される電池缶およびキャリアの一部断面斜視図である。
【図6】第1減圧ステーションの減圧および減圧解除処理の説明図である。
【図7】第2乃至第4減圧ステーションでの減圧および減圧解除処理の説明図である。
【符号の説明】
10…電解液供給装置 12…電池
14…電池缶 16…極板群
18…負極リード 20…正極リード
22…電池製造ライン 24…キャリア
24a…収容部 24b…室
26a〜26d…注液ステーション 28a〜28d…減圧ステーション
29…供給管路 38a〜38d…注液手段
46a〜46j…定量ポンプ 52…空打ちステーション
54…廃液トレイ 58…減圧室
60…減圧ブース 62…開口部
64…端面 66…Oリング
68…空間部 70…通路
72…配管 76…真空弁
78…シリンダ 82…支持板
86…支柱 88…テーパ面
90…スプリング
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method and an apparatus for supplying an electrolytic solution for a battery in which a treatment for impregnating the electrolytic solution under reduced pressure after injecting the electrolytic solution into a battery can under normal pressure is repeated a plurality of times to inject the electrolytic solution.
[0002]
[Prior art]
In general, in a battery assembly process, an electrode plate group in which a positive electrode plate and a negative electrode plate are wound around a separator is stored in a battery can, and then an operation of pouring an electrolyte into the battery can is performed. Yes.
[0003]
In this type of liquid injection work, in order to ensure the operability of the safety device, it is necessary to make the gap in the battery can small, while from the viewpoint of battery performance, a large amount of electrolyte must be injected accurately. I must. In addition, if the electrolytic solution remains in the upper part of the groove formed by beading in the battery can, the electrolytic solution may be scattered in the machine when the sealing body is inserted into the battery can. For this reason, it is necessary to fully impregnate the battery can with the electrolytic solution.
[0004]
Therefore, for example, as disclosed in Japanese Patent Laid-Open No. 8-250107, a method of injecting an electrolytic solution into a battery can at once using a cup is known (hereinafter referred to as Prior Art 1). In this prior art 1, a cup is disposed in an opening provided in the upper part of the battery can, and an electrolytic solution is supplied in advance into the cup, and the electrolytic solution is injected by centrifugal force, reduced pressure and pressurization. Alternatively, the inside of the battery can is decompressed in advance, and the electrolyte is injected from the cup under the valve switching action.
[0005]
In addition, a method of repeating the electrolytic solution pouring treatment and the impregnation treatment has been conventionally performed (hereinafter referred to as Conventional Technology 2). In this prior art 2, after the electrolyte solution is injected up to the upper edge of the battery can, the step of impregnating the electrolyte solution under normal pressure (reduced pressure) is repeated a plurality of times to inject the solution into the battery can. Work.
[0006]
[Problems to be solved by the invention]
However, in the above-described prior art 1, a large amount of electrolyte is likely to adhere to the lead (positive electrode lead) protruding from the inside of the battery can, which hinders the sealing body from being welded to the lead by laser welding or the like. For this reason, it is necessary to provide an apparatus for completely removing the electrolytic solution adhering to the lead after injecting the electrolytic solution, and it has been pointed out that the process becomes complicated and the equipment cost increases.
[0007]
In addition, the salt, which is a solid content in the electrolytic solution, is deposited on the cup that temporarily stores the electrolytic solution, resulting in a large variation in the amount of liquid injected into the battery can. Further, when salt is deposited on the seal portion of the cup, the sealing performance is deteriorated. For this reason, the apparatus for exclusive use for wash | cleaning a cup is needed, and there exists a problem that the whole installation becomes a big thing.
[0008]
On the other hand, in the above-described prior art 2, when the electrolytic solution is impregnated under normal pressure, it takes a long time to impregnate the electrolytic solution, and the air can be removed even though there is a space inside the battery can. There is a problem that there is no escape and the electrolyte does not impregnate in this space. In addition, in the electrolytic solution impregnation treatment under reduced pressure, the liquid level of the electrolytic solution poured into the battery can rises, and this electrolytic solution may spill from the upper edge of the battery can.
[0009]
The present invention solves this type of problem, accurately injects a predetermined amount of electrolyte, prevents the electrolyte from adhering to unnecessary portions, and simplifies the configuration. It is an object of the present invention to provide a battery electrolyte supply method and apparatus that can be used.
[0010]
[Means for Solving the Problems]
In the battery electrolyte supply method and apparatus according to the present invention, a battery can into which the electrolyte is injected is placed in a decompression booth, and first, this battery can is subjected to a first decompression process using a first vacuum pressure. After that, a first decompression release process is performed to bring the inside of the decompression booth to normal pressure . Next, after the battery can is subjected to a second decompression process with a second vacuum pressure higher than the first vacuum pressure , a second decompression release process is performed to bring the inside of the decompression booth to a normal pressure .
[0011]
In this way, by setting the second vacuum pressure higher than the first vacuum pressure, it is possible to reliably prevent the electrolyte injected into the battery can from spilling out from the upper edge of the battery can. it can. Moreover, the impregnation time can be greatly shortened as compared with the impregnation treatment under normal pressure. In addition, after the second decompression release process is performed, the battery can is further subjected to a third decompression process with a third vacuum pressure higher than the second vacuum pressure, and then the inside of the decompression booth is brought to a normal pressure. A third decompression release process may be performed.
[0012]
Here, during the first and second decompression processes, when the decompression booth reaches the first and second vacuum pressures, the decompression booth is hermetically closed and held via the vacuum valve. Therefore, it is possible to reliably prevent the flow of air from occurring in the decompression booth during decompression, and to effectively suppress the evaporation of the electrolytic solution, so that the injection amount does not vary.
[0013]
Moreover, if the stop time of the pump which injects electrolyte solution into a battery can exceeds a fixed time, the electrolyte solution of a pump nozzle part will evaporate and the next discharge amount will reduce easily. For example, the variation in the amount of electrolyte injected into the battery can is set to ± 5/100 cc, whereas when the pump is stopped for 1 hour, the electrolyte in the pump nozzle is 1 / 100 cc is known to decrease, and the variation in the amount of injected liquid becomes considerably large. Therefore, when the pump stop time exceeds a certain time, the electrolytic solution is discharged from the pump to the waste liquid portion for one shot, and then the liquid is poured into the battery can. For this reason, the electrolyte discharge precision of a pump can be improved.
[0014]
Still further, cooling air is supplied to the inside of a carrier that integrally accommodates a plurality of battery cans to cool the battery cans. Accordingly, it is possible to prevent the electrolytic solution poured into the battery can from boiling when impregnated under reduced pressure, and to effectively prevent evaporation of the electrolytic solution. Further, the opening of the decompression booth may be a recess having a cylindrical shape with an opening cross section having a depth not contacting the battery can and a diameter larger than the diameter of the battery can.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a schematic plan view of an electrolytic solution supply apparatus 10 according to an embodiment of the present invention, and FIG. 2 is a partial schematic front view of the electrolytic solution supply apparatus 10.
[0016]
As shown in FIG. 5, the battery 12 into which the electrolytic solution is divided and injected by the electrolytic solution supply apparatus 10 has a bottomed cylindrical battery can 14. The battery can 14 includes a positive electrode plate and a negative electrode plate. The electrode plate group 16 wound around the separator is inserted. The negative electrode lead 18 of the electrode plate group 16 is welded to the bottom surface of the battery can 14, and the positive electrode lead 20 of the electrode plate group 16 protrudes upward from the battery can 14.
[0017]
As shown in FIG. 1, the electrolyte supply device 10 is provided in the battery production line 22 and is arranged in a plurality (for example, 10) in the direction of arrow A via the carrier 24 and in the direction of arrow B. The first to fourth injection stations 26a to 26d capable of supplying a predetermined amount of electrolytic solution to a total of 40 battery cans 14 arranged in a plurality of rows (for example, 4 rows), and the first to fourth injections. 1st-4th pressure reduction station 28a-28d which is arrange | positioned in the downstream of the liquid stations 26a-26d and performs the pressure reduction process and pressure reduction cancellation | release process to the said battery can 14 alternately several times each.
[0018]
As shown in FIG. 5, the carrier 24 has an accommodating portion 24 a for arranging ten battery cans 14 spaced apart by a predetermined interval. The accommodating portion 24a has a substantially cylindrical shape and protrudes into an example of a chamber 24b formed inside the carrier 24, and a supply pipe 29 connected to a cooling air supply source (not shown) is connected to the chamber 24b. Has been. For example, cool air of 5 ° C. is supplied from the supply line 29 into the chamber 24b.
[0019]
As shown in FIG. 1, the electrolyte supply apparatus 10 includes first and second injection stations 26a and 26b and first and second decompression stations 28a and 28b that are alternately arranged in the direction of arrow B1. Second transport path 32 in which the first transport path 30, the third and fourth liquid injection stations 26c, 26d, and the third and fourth decompression stations 28c, 28d are alternately arranged in the direction of the arrow B2. With.
[0020]
A battery can drawing station 34a and a carrier transfer station 35a are provided at both ends of the first transfer path 30, and a carrier transfer station 35b and a battery can discharge station 34b are provided at both ends of the second transfer path 32. . The carrier transfer stations 35a and 35b, the battery can drawing-in station 34a, and the battery can discharge station 34b are connected via first and second connection paths 36a and 36b, respectively, to form a carrier circulation transfer path.
[0021]
Each of the first to fourth liquid injection stations 26a to 26d can supply a predetermined amount (1st to 4th) of the electrolytic solution to each of the battery cans 14 arranged in four rows (40 in total). First to fourth liquid injection means 38a to 38d.
[0022]
As shown in FIG. 2, the first liquid injection means 38a can advance and retreat in the arrow B direction along rails 40a and 40b arranged in parallel with each other above both ends in the longitudinal direction (arrow A direction) of the carrier 24. Self-propelled mobile bodies 42a and 42b. Both ends of the arm 44 are supported on the moving main bodies 42a and 42b via lifting means (not shown). The arm 44 has a metering pump corresponding to the ten battery cans 14 placed on the carrier 24. 46a to 46j are mounted. The metering pumps 46a to 46j communicate with a liquid tank 48 in which an electrolytic solution is stored, and liquid metering pipes 50a to 50j are arranged downward in each metering pump 46a to 46j.
[0023]
As shown in FIG. 3, the first liquid injection means 38a is provided with a blanking station 52 for discharging the electrolyte solution for one shot when the stop time of the metering pumps 46a to 46j exceeds a certain time. . The emptying station 52 includes a waste liquid tray 54 disposed outside the position of pouring the electrolytic solution into the battery can 14 by the first liquid injection means 38a, and a waste liquid pipe 56 connected to the waste liquid tray 54 is provided. It is connected to a waste liquid tank (not shown).
[0024]
As shown in FIG. 4, the first decompression station 28a arranged on the downstream side of the first liquid injection station 26a covers the entire carriers 24 arranged in four rows, or the carriers 24 in each row. Each is provided with a decompression booth 60 that can be raised and lowered to form a decompression chamber 58.
[0025]
The decompression booth 60 has an opening 62 for receiving each battery can 14 corresponding to a predetermined number of battery cans 14. Each opening 62 has a predetermined opening from the end face 64 side of the decompression booth 60. It is formed up to a depth H and has an opening cross-sectional columnar shape with a diameter D set. The depth H is set to a necessary minimum depth that can avoid the positive electrode lead 20 protruding from the upper side of each battery can 14, while the diameter D is slightly larger than the diameter of the battery can 14. Is set.
[0026]
An O-ring (seal material) 66 is attached to the end face 64 of the decompression booth 60 so as to surround all the openings 62. The O-ring 66 is in close contact with the upper surface 24c of the carrier 24, and forms a space 68 that communicates integrally with each opening 62 between the end surface 64 of the decompression booth 60 and the upper surface 24c. A decompression chamber 58 is constituted by the opening 62 and the space 68, and the decompression chamber 58 is hermetically held by an O-ring 66.
[0027]
A vacuum booth 60 is formed a passage 70 communicating with the space portion 68, the middle of the piping 72 communicating the negative pressure generating source (not shown) with the passage 70, pressure gauge 74 and a vacuum valve 76 are provided. The vacuum valve 76 is switched between a position where the passage 70 is communicated with a negative pressure source (not shown), a position where the passage 70 is opened to the atmosphere, and a position where the passage 70 is closed.
[0028]
A support plate 82 is fixed to an actuator for moving the decompression booth 60 up and down, for example, a rod 80 extending downward from the cylinder 78, and holes 84 are formed at four corners of the support plate 82. A support column 86 is fixed to the upper portion of the decompression booth 60, and the support column 86 is set to have a smaller diameter than the hole portion 84, and a centering taper surface 88 is formed on the upper portion of each support column 86. Is done. A spring 90 is extrapolated to the column 86, and both ends of the spring 90 are pressed against the decompression booth 60 and the support plate 82.
[0029]
The second to fourth liquid injection stations 26b to 26d and the second to fourth pressure reduction stations 28b to 28d are configured in the same manner as the first liquid injection station 26a and the first pressure reduction station 28a described above, and have the same components. Are denoted by the same reference numerals, and detailed description thereof is omitted.
[0030]
The operation of the electrolytic solution supply apparatus 10 according to the present embodiment configured as described above will be described below in relation to the electrolytic solution supply method according to the present invention.
[0031]
As shown in FIG. 1, the battery cans 14 are transported along the battery production line 22 in the direction of the arrow A1, and a predetermined number (ten) of battery cans 14 are arranged in the battery can drawing station 34a. It is inserted and supported in the accommodating portion 24a. In the battery can drawing station 34a, ten battery cans 14 are arranged on each carrier 24, and then four rows of carriers 24 are conveyed to the first liquid injection station 26a.
[0032]
In the first liquid injection station 26a, first, the first liquid injection means 38a is disposed corresponding to the carrier 24 in the first row, and the arm 44 moves in the direction of arrow C1 (vertically downward) in FIG. To do. And after the liquid injection pipes 50a-50j provided in each metering pump 46a-46j are arranged on the upper part of each battery can 14 supported by the carrier 24 in the first row, the metering pumps 46a-46j are arranged. Is driven. For this reason, the metering pumps 46a to 46j inject the electrolyte stored in the liquid tank 48 into the battery can 14 through the liquid injection pipes 50a to 50j by a predetermined amount (first time).
[0033]
Next, the arm 44 moves up (in the direction of arrow C2), and the moving main bodies 42a and 42b move along the rails 40a and 40b by a predetermined distance in the direction of arrow B1 (or in the direction of arrow B2). Are arranged corresponding to the upper side of the carrier 24 in the second row. In this state, the first liquid injection means 38a is driven in the same manner as the battery cans 14 inserted in the carrier 24 in the first row, and the first in each battery can 14 inserted in the carrier 24 in the second row. The batch of electrolyte is injected. Similarly, the first supply process of the electrolyte solution is performed on the battery cans 14 inserted and supported by the third row and fourth row carriers 24 arranged in the first liquid injection station 26a.
[0034]
After the first electrolytic solution is injected into the battery can 14 at the first injection station 26a, the carrier 24 in the fourth row is integrally sent to the first decompression station 28a and subjected to decompression processing. That is, in the first decompression station 28a, as shown in FIG. 4, when the rod 80 moves downward under the action of the cylinder 78, the support plate 82 fixed to the rod 80 is lowered, and the support plate 82 is moved downward. The decompression booth 60 supported by centering via the tapered surface 88 is lowered. For this reason, the O-ring 66 attached to the end face 64 of the decompression booth 60 is in close contact with the upper surface 24c of the carrier 24, and the battery can 14 accommodated in the carrier 24 is integrally disposed in the decompression chamber 58. .
[0035]
In this state, the passage 70 of the decompression booth 60 communicates with a negative pressure generation source (not shown) through the vacuum valve 76, and the inside of the decompression chamber 58 is decompressed through the passage 70 under the action of the negative pressure generation source. The Here, as shown in FIG. 6, when the inside of the decompression chamber 58 reaches a state of reduced pressure (first vacuum pressure) of −200 mmHg, the vacuum valve 76 is closed and the decompression chamber 58 is hermetically closed and held. . Then, after the inside of the decompression chamber 58 is left in a decompressed state of −200 mmHg for about 10 seconds or more, the vacuum valve 76 is switched to open the passage 70 to the atmosphere (decompression release process).
[0036]
Next, the vacuum valve 76 is driven so that the decompression chamber 58 communicates with a negative pressure generation source (not shown). Under the action of this negative pressure generation source, the decompression chamber 58 has a decompression degree of -700 mmHg (second vacuum pressure). ) State, the vacuum valve 76 is closed. For this reason, the decompression chamber 58 is maintained in a decompressed state of −700 mmHg, and the vacuum valve 76 is opened to the atmosphere after a predetermined time has elapsed.
[0037]
As described above, in the first decompression station 28a, the inside of the decompression chamber 58 in which the battery can 14 is disposed is first decompressed to a degree of decompression of −200 mmHg, which is the first vacuum pressure, and the electrolytic solution is impregnated. the decompression chamber 58 is vacuum releasing process is open to the atmosphere is performed, and seals inhibitory said electrolyte spilling from the battery can 14. Next, the inside of the decompression chamber 58 is maintained at a degree of decompression of −700 mmHg which is the second vacuum pressure, and then the decompression chamber 58 is opened to the atmosphere.
[0038]
For this reason, the electrolytic solution injected into the battery can 14 is not spilled from the battery can 14, and the effect that the electrolytic solution can be reliably impregnated in a short time is obtained. In particular, the electrolyte in the battery can 14 becomes foamed, and bubbles are not formed as the foamed electrolyte rises along the positive electrode lead 20, and salt of the electrolytic solution adheres to the positive electrode lead 20. It is possible to reliably prevent this. As a result, the work of removing the salt adhering to the positive electrode lead 20 after the liquid injection process becomes unnecessary, and the effect that the efficiency of the entire liquid injection operation can be easily achieved is obtained.
[0039]
In addition, when the reduced pressure impregnation of −200 mmHg is performed, the upper space in the battery can 14 is impregnated with the electrolytic solution. On the other hand, when the reduced pressure impregnation is −700 mmHg, the electrode plate group 16 which is the lower space in the battery can 14 is introduced. The above electrolyte solution is impregnated.
[0040]
In the present embodiment, a supply pipe 29 is connected to the carrier 24 containing the battery can 14, and the cool air of 5 ° C. is supplied to the chamber 24 b of the carrier 24 through the supply pipe 29. Is introduced. Thereby, each battery can 14 arrange | positioned at the accommodating part 24a is cooled with the cold wind, and has prevented that the temperature of the electrolyte solution injected into this battery can 14 rises. . Therefore, it is possible to surely prevent boiling of the electrolytic solution and to prevent evaporation of the electrolytic solution as much as possible.
[0041]
Furthermore, in the present embodiment, the decompression booth 60 is formed with a plurality of openings 62 having a minimum volume capable of accommodating each battery can 14, and the O-ring 66 attached to the decompression booth 60 is connected to the upper surface 24 c of the carrier 24. The decompression chamber 58 composed of the opening 62 and the space 68 is hermetically closed and held.
[0042]
For this reason, when the inside of the decompression chamber 58 reaches -200 mmHg which is the first vacuum pressure, the inside of the decompression chamber 58 is held in a sealed state by closing the vacuum valve 76, and the flow of air in the decompression chamber 58 Therefore, it is possible to effectively prevent evaporation of the electrolytic solution and to prevent variations in the injection amount. At that time, since the inside of the decompression chamber 58 is sucked from the passage 70 communicating with the space portion 68, no air flow is caused on the upper side of each battery can 14, and for example, the liquid level of the electrolyte is shaken. Can be effectively suppressed.
[0043]
In addition, the decompression booth 60 is supported in a floating manner with respect to the support plate 82 via a column 86 and a spring 90. Therefore, even if the upper surface 24c of the carrier 24 is inclined, the 0-ring 66 attached to the decompression booth 60 can be securely adhered to the upper surface 24c, and the inside of the decompression chamber 58 can be hermetically closed and held. . Further, when the rod 80 moves upward via the cylinder 78, the taper surface 88 of each column 86 is supported on the wall surface forming the hole 84 of the support plate 82, and the decompression booth 60 is easily and automatically centered. It will be.
[0044]
The battery can 14 that has been subjected to the predetermined impregnation treatment in the first decompression station 28 a is transferred to the second liquid injection station 26 b integrally with the carrier 24. In the second liquid injection station 26b, as in the first liquid injection station 26a, a second operation of injecting the electrolytic solution is performed on the battery cans 14 of the carriers 24 arranged in four rows. The battery can 14 that has been injected with the electrolyte solution for the second time at the second injection station 26b is transported to the second decompression station 28b.
[0045]
In the second decompression station 28b, as shown in FIG. 7, the decompression process and the decompression release process are performed three times to perform the second impregnation process with the electrolytic solution. Specifically, after the decompression booth 60 is lowered and the O-ring 66 is brought into close contact with the upper surface 24c of the carrier 24 to form the decompression chamber 58, first, in a reduced pressure degree (first vacuum pressure) state of −200 mmHg. It is allowed to stand for a predetermined time, is released to the atmosphere, and a decompression release process is performed.
[0046]
Next, the decompression chamber 58 is decompressed to a degree of decompression (second vacuum pressure) of −400 mmHg and is left for a predetermined time to release to the atmosphere. Further, after the pressure is reduced to a reduced pressure level (third vacuum pressure) of −700 mmHg and held for a predetermined time, the reduced pressure release process is performed.
[0047]
As described above, in the second decompression station 28b, the decompression process and the decompression release process are alternately performed, and the first vacuum pressure, the second vacuum pressure, the third vacuum pressure, and the degree of decompression are sequentially increased. Is set. As a result, the upper gap of the battery can 14 is impregnated during the reduced pressure impregnation of -200 mmHg, while the lower gap of the battery can 14 is impregnated during the reduced pressure impregnation of -400 mmHg and -700 mmHg. The same effect can be obtained.
[0048]
Next, the carrier 24 is transported to the carrier transport station 35a, transported in the direction of arrow A1 in FIG. 1 along the first connection path 36a, and sent to the carrier transport station 35b. The battery can 14 of the carrier 24 is transported from the carrier transfer station 35b to the third injection station 26c and the third decompression station 28c, and is subjected to the third injection and impregnation of the electrolyte. The battery can 14 is further transported to the fourth injection station 26d and the fourth decompression station 28d, where a fourth electrolyte injection and impregnation process is performed, and is transferred to the battery can discharge station 34b. In the third and fourth decompression stations 28c and 28d, as in the second decompression station 28b, the electrolytic solution is impregnated by the procedure shown in FIG.
[0049]
At the battery can discharge station 34b, the battery cans 14 inserted and supported by the carriers 24 are sequentially sent out to the battery production line 22. The battery can 14 is conveyed in the direction of the arrow A1 and sent to the next step such as a sealing process.
[0050]
By the way, in the 1st thru | or 4th injection | pouring station 26a-26d, electrolyte solution is discharged in the battery can 14 by fixed amount through the metering pumps 46a-46j, and these metering pumps 46a-46j stop for more than fixed time. Then, the electrolyte solution of each pump nozzle part will evaporate.
[0051]
Therefore, in this embodiment, when the stop time of the metering pumps 46a to 46j exceeds a certain time, the metering pumps 46a to 46j are temporarily transferred to the idle driving station 52 as shown in FIG. In the emptying station 52, after one shot of the electrolytic solution is discharged from the metering pumps 46a to 46j to the waste liquid tray 54, the metering pumps 46a to 46j move to the pouring position and electrolysis into the battery can 14 is performed. Liquid injection work is performed.
[0052]
As described above, when the metering pumps 46a to 46j are stopped for a certain time or longer, for example, 5 minutes or longer, the metering pumps 46a to 46j are transferred to the blanking station 52 to perform blanking. For this reason, a predetermined amount of electrolytic solution is always poured into the battery can 14 with high accuracy, and an effect that the variation in the amount of liquid injection can be effectively prevented is obtained.
[0053]
In addition, when the liquid injection was actually performed using the present embodiment, the variation in the liquid injection amount was ± 0.00% under the condition of a tact of 2 seconds and a gap in the battery can 14 of 0.8 to 1.0 cc. A good liquid injection treatment was achieved, which was within the range of 05 cc, and the electrolyte solution was not scattered and the positive electrode lead 20 was not soiled.
[0054]
【The invention's effect】
As described above, in the battery electrolyte supply method and apparatus according to the present invention, after the electrolyte is injected into the battery can, first, the first decompression process and the decompression release by the first vacuum pressure are performed on the battery can. Processing. Next, the battery can is subjected to a second decompression process and a decompression release process with a second vacuum pressure higher than the first vacuum pressure. Therefore, the liquid level of the electrolytic solution does not rise more than necessary and spillage or the like does not occur, and the electrolytic solution impregnation process is efficiently performed in a short time. Further, the electrolytic solution does not adhere to the electrode plate or the like, and the efficiency of the entire electrolytic solution supply operation can be easily achieved.
[Brief description of the drawings]
FIG. 1 is a schematic plan view of an electrolytic solution supply apparatus according to an embodiment of the present invention.
FIG. 2 is a partial schematic front view of a liquid injection station constituting the electrolytic solution supply apparatus.
FIG. 3 is a partial schematic side view of the liquid injection station.
FIG. 4 is a front explanatory view of a decompression booth constituting the electrolytic solution supply apparatus.
FIG. 5 is a partial cross-sectional perspective view of a battery can and a carrier into which an electrolytic solution is injected by the electrolytic solution supply apparatus.
FIG. 6 is an explanatory diagram of decompression and decompression release processing of the first decompression station.
FIG. 7 is an explanatory diagram of decompression and decompression release processing in second to fourth decompression stations.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 ... Electrolyte supply apparatus 12 ... Battery 14 ... Battery can 16 ... Electrode plate group 18 ... Negative electrode lead 20 ... Positive electrode lead 22 ... Battery manufacturing line 24 ... Carrier 24a ... Storage part 24b ... Chamber 26a-26d ... Injection | pouring station 28a- 28d ... Decompression station 29 ... Supply line 38a-38d ... Liquid injection means 46a-46j ... Metering pump 52 ... Blanking station 54 ... Waste liquid tray 58 ... Decompression chamber 60 ... Decompression booth 62 ... Opening 64 ... End face 66 ... O-ring 68 ... Space 70 ... Passage 72 ... Piping 76 ... Vacuum valve 78 ... Cylinder 82 ... Support plate 86 ... Strut 88 ... Tapered surface 90 ... Spring

Claims (10)

常圧下で電池缶に電解液を注液した後に減圧下で前記電解液を含浸させる処理を、複数回繰り返して該電解液の注入を行う電池の電解液供給方法であって、
前記電池缶内には正極板と負極板とがセパレータを挟んで巻回され且つ正極リードが該電池缶より上方に突出した極板群が挿入されており、
前記電解液が注液された前記電池缶を減圧ブース内に配置させ、該電池缶に第1真空圧力による第1減圧処理を施す工程と、
前記第1減圧処理工程後に、前記減圧ブース内を常圧にする第1減圧解除処理を施す工程と、
前記第1減圧解除処理工程後に、前記電池缶に前記第1真空圧力よりも高い第2真空圧力による第2減圧処理を施す工程と、
前記第2減圧処理工程後に、前記減圧ブース内を常圧にする第2減圧解除処理を施す工程と、
を有することを特徴とする電池の電解液供給方法。
A method for supplying an electrolytic solution of a battery, in which the electrolytic solution is injected repeatedly by injecting the electrolytic solution under reduced pressure after injecting the electrolytic solution into a battery can under normal pressure,
In the battery can, a positive electrode plate and a negative electrode plate are wound with a separator interposed therebetween, and a positive electrode group in which a positive electrode lead protrudes upward from the battery can is inserted,
Wherein said battery can electrolyte is injected is disposed in a vacuum booth, and facilities to process the first decompression process by the first vacuum pressure in the battery can,
After the first decompression process step, a step of performing a first decompression release process for making the inside of the decompression booth a normal pressure ;
After the first vacuum releasing process, and facilities to process the second pressure reducing treatment with a high second vacuum pressure than the first vacuum pressure in the battery can,
After the second decompression process step, a step of performing a second decompression release process for making the inside of the decompression booth a normal pressure ;
A battery electrolyte supply method comprising:
請求項1記載の電解液供給方法において、前記第1および第2減圧処理時に、前記減圧ブース内が前記第1および第2真空圧力に至った際、真空弁を介して該減圧ブース内を気密に閉塞保持することを特徴とする電池の電解液供給方法。  2. The electrolytic solution supply method according to claim 1, wherein during the first and second decompression processes, when the interior of the decompression booth reaches the first and second vacuum pressures, the interior of the decompression booth is hermetically sealed via a vacuum valve. A battery electrolyte supply method, wherein the battery is kept closed. 請求項1記載の電解液供給方法において、前記第2減圧解除処理工程後に、さらに、前記電池缶に前記第2真空圧力よりも高い第3真空圧力による第3減圧処理を施す工程と、The method for supplying electrolytic solution according to claim 1, wherein after the second decompression release treatment step, the battery can is further subjected to a third decompression treatment with a third vacuum pressure higher than the second vacuum pressure;
前記第3減圧処理工程後に、前記減圧ブース内を常圧にする第3減圧解除処理を施す工程と、After the third decompression process step, performing a third decompression release process for making the inside of the decompression booth a normal pressure;
を有することを特徴とする電池の電解液供給方法。A battery electrolyte supply method comprising:
請求項1記載の電解液供給方法において、前記電池缶に前記電解液を注液するポンプの停止時間が一定時間を超えた際、前記ポンプから廃液部位に前記電解液を1ショット分だけ吐出する工程を有することを特徴とする電池の電解液供給方法。  2. The electrolytic solution supply method according to claim 1, wherein when the stop time of a pump for injecting the electrolytic solution into the battery can exceeds a certain time, the electrolytic solution is discharged from the pump to the waste liquid portion for one shot. A battery electrolyte supply method comprising a step. 請求項1記載の電解液供給方法において、複数個の前記電池缶を一体的に収容するキャリア内部に冷却風を供給して該電池缶を冷却することを特徴とする電池の電解液供給方法。  2. The method for supplying an electrolyte solution according to claim 1, wherein cooling air is supplied into a carrier that integrally accommodates the plurality of battery cans to cool the battery cans. 常圧下で電池缶に電解液を注液した後に減圧下で前記電解液を含浸させる処理を、複数回繰り返して該電解液の注入を行う電池の電解液供給装置であって、
前記電池缶内には正極板と負極板とがセパレータを挟んで巻回され且つ正極リードが該電池缶より上方に突出した極板群が挿入されており、
複数個の前記電池缶を一体的に収容するキャリアと、
前記電池缶が1個ずつ受容される複数個の開口部を有し、アクチュエータを介して前記キャリアに対し進退自在な減圧ブースと、
前記減圧ブースと負圧発生源との間に設けられ、該減圧ブース内を気密に保持し且つ負圧と常圧とに切り換える真空弁と、
前記減圧ブースの端面に装着され、前記端面と前記キャリアの上面との間に前記複数個の開口部に一体的に連通する空間部を形成するとともに、該複数個の開口部および前記空間部からなる減圧室を気密に保持するシール部材と、
を備え、
前記電解液が注液された前記電池缶を配置した前記減圧ブース内を前記真空弁の切換作用下に前記負圧発生源により第1真空圧力で第1減圧処理を施した後に、前記真空弁を切り換えて前記減圧ブース内を常圧にする第1減圧解除処理を施し、さらに、前記真空弁を 切り換えて前記電池缶に前記負圧発生源により前記第1真空圧力よりも高い第2真空圧力で第2減圧処理を施した後に、前記真空弁を切り換えて前記減圧ブース内を常圧にする第2減圧解除処理を施すことを特徴とする電池の電解液供給装置。
A battery electrolyte supply device for injecting the electrolyte solution by repeatedly injecting the electrolyte solution under reduced pressure after injecting the electrolyte solution into the battery can under normal pressure,
In the battery can, a positive electrode plate and a negative electrode plate are wound with a separator interposed therebetween, and a positive electrode group in which a positive electrode lead protrudes upward from the battery can is inserted,
A carrier that integrally accommodates a plurality of battery cans;
A decompression booth having a plurality of openings for receiving the battery cans one by one, and capable of moving forward and backward with respect to the carrier via an actuator;
A vacuum valve that is provided between the decompression booth and the negative pressure generation source, holds the inside of the decompression booth airtight, and switches between negative pressure and normal pressure;
A space portion that is attached to an end surface of the decompression booth and that communicates integrally with the plurality of openings is formed between the end surface and the upper surface of the carrier, and from the plurality of openings and the space A sealing member for hermetically holding the decompression chamber,
With
After the first decompression process is performed at the first vacuum pressure by the negative pressure generation source under the switching action of the vacuum valve in the decompression booth in which the battery can into which the electrolytic solution has been injected is disposed, the vacuum valve Is switched to normal pressure in the decompression booth, and the vacuum valve is switched to a second vacuum pressure higher than the first vacuum pressure by the negative pressure source in the battery can. The battery electrolyte supply device is characterized in that after the second decompression process is performed, a second decompression release process is performed to switch the vacuum valve to normalize the interior of the decompression booth .
請求項6記載の電解液供給装置において、前記減圧ブースの開口部は前記電池缶に接触しない深さで且つ前記電池缶の直径よりも大径である開口断面円柱状の凹部であることを特徴とする電池の電解液供給装置。7. The electrolytic solution supply apparatus according to claim 6, wherein the opening of the decompression booth is a recess having a cylindrical shape with an opening cross section having a depth not contacting the battery can and larger than the diameter of the battery can. A battery electrolyte supply device. 請求項6記載の電解液供給装置において、前記第2減圧解除処理を施した後に、さらに、前記真空弁を切り換えて前記電池缶に前記負圧発生源により前記第2真空圧力よりも高い第3真空圧力による第3減圧処理を施した後に、前記真空弁を切り換えて前記減圧ブース内を常圧にする第3減圧解除処理を施すことを特徴とする電池の電解液供給装置。7. The electrolyte supply device according to claim 6, wherein after the second decompression release processing is performed, the vacuum valve is further switched, and the battery can is thirdly higher than the second vacuum pressure by the negative pressure generating source. 3. A battery electrolyte supply device comprising: performing a third decompression release process for switching the vacuum valve to normal pressure in the decompression booth after performing a third decompression process using a vacuum pressure. 請求項記載の電解液供給装置において、前記キャリアには、該キャリア内部に冷却風を供給して該電池缶を冷却するための冷却風供給管路が接続されることを特徴とする電池の電解液供給装置。7. The electrolyte supply device according to claim 6 , wherein a cooling air supply pipe for supplying cooling air to the inside of the carrier to cool the battery can is connected to the carrier. Electrolyte supply device. 請求項記載の電解液供給装置において、前記電池缶に前記電解液を注液する注液手段は、ポンプの停止時間が一定時間を超えた際に前記電解液を1ショット分だけ吐出する廃液部位を備えることを特徴とする電池の電解液供給装置。7. The electrolyte supply device according to claim 6 , wherein the injection means for injecting the electrolyte into the battery can discharges the electrolyte for one shot when the pump stop time exceeds a predetermined time. A battery electrolyte supply device comprising a portion.
JP14178898A 1998-05-22 1998-05-22 Battery electrolyte supply method and apparatus Expired - Lifetime JP4029468B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14178898A JP4029468B2 (en) 1998-05-22 1998-05-22 Battery electrolyte supply method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14178898A JP4029468B2 (en) 1998-05-22 1998-05-22 Battery electrolyte supply method and apparatus

Publications (2)

Publication Number Publication Date
JPH11339770A JPH11339770A (en) 1999-12-10
JP4029468B2 true JP4029468B2 (en) 2008-01-09

Family

ID=15300178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14178898A Expired - Lifetime JP4029468B2 (en) 1998-05-22 1998-05-22 Battery electrolyte supply method and apparatus

Country Status (1)

Country Link
JP (1) JP4029468B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101395438B1 (en) * 2011-12-05 2014-05-14 닛산 지도우샤 가부시키가이샤 Manufacturing method and manufacturing apparatus for electrical device with film covering
KR101395497B1 (en) * 2011-12-05 2014-05-14 닛산 지도우샤 가부시키가이샤 Manufacturing method and manufacturing apparatus for electrical device with film covering
WO2019240468A1 (en) * 2018-06-11 2019-12-19 주식회사 아모그린텍 Flexible battery manufacturing method

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010008115A (en) * 2000-11-09 2001-02-05 김종선 filling equipment of battery electrolysis liquid
JP4625232B2 (en) * 2002-06-20 2011-02-02 九州電力株式会社 Battery pouring method, battery pouring device, and battery
DE10302119A1 (en) * 2003-01-21 2004-07-29 Epcos Ag Electrodes for use in electrochemical cells are produced in continuous strip form of coated aluminum
KR100868684B1 (en) 2007-10-10 2008-11-13 (주)하나기술 Pouring apparatus for electrolyte of battery and pouring g method thereof
KR101493950B1 (en) * 2009-11-09 2015-02-17 주식회사 엘지화학 Method & apparatus for manufacturing secondary battery
KR101084212B1 (en) 2009-11-27 2011-11-17 삼성에스디아이 주식회사 Battery pack and uninterruptible power supply having the same
CN102403484A (en) * 2011-11-30 2012-04-04 江苏双登集团有限公司 Vacuum acid injection method for lead-acid storage battery
KR101381820B1 (en) * 2013-01-18 2014-04-07 주식회사 디에이테크놀로지 Cleaning apparatus for injection system for electrolyte of rechargeable battery
CN104008890B (en) * 2013-12-19 2017-01-18 宁波中车新能源科技有限公司 Super capacitor liquid injection method and liquid injection device
CN108091818B (en) * 2018-01-29 2023-11-07 深圳市东汇精密机电有限公司 Full-automatic lithium battery liquid injection machine and liquid injection method thereof
CN115275540B (en) * 2022-08-02 2024-03-08 三一技术装备有限公司 Priming device and method
CN115241615B (en) * 2022-09-23 2022-11-25 深圳市铂纳特斯自动化科技有限公司 Lithium battery positive and negative pressure liquid injection machine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101395438B1 (en) * 2011-12-05 2014-05-14 닛산 지도우샤 가부시키가이샤 Manufacturing method and manufacturing apparatus for electrical device with film covering
KR101395497B1 (en) * 2011-12-05 2014-05-14 닛산 지도우샤 가부시키가이샤 Manufacturing method and manufacturing apparatus for electrical device with film covering
WO2019240468A1 (en) * 2018-06-11 2019-12-19 주식회사 아모그린텍 Flexible battery manufacturing method

Also Published As

Publication number Publication date
JPH11339770A (en) 1999-12-10

Similar Documents

Publication Publication Date Title
JP4029468B2 (en) Battery electrolyte supply method and apparatus
KR102586807B1 (en) Electrolyte injection apparatus, and Electrolyte injection method
KR100868684B1 (en) Pouring apparatus for electrolyte of battery and pouring g method thereof
EP0060444A1 (en) Plating apparatus
KR100493781B1 (en) A fluid injector and method of manufacturing a battery cell
CN115986338A (en) Battery liquid injection method and liquid injection device
JPH1196992A (en) Electrolyte injection device, electrolyte injection method, and battery
JP2022120351A (en) Electrolyte injection system for open battery and electrolyte injection method for open battery
JPH0799050A (en) Electrolyte filling device in manufacturing battery
JP3615699B2 (en) Sealed battery and method for manufacturing the same
JP3928199B2 (en) Battery electrolyte supply method and apparatus
JP4010477B2 (en) Apparatus and method for injecting liquid into container
JP4220150B2 (en) Liquid injection device for injecting filling liquid into battery or condenser outer can
US20080035171A1 (en) Cleaning method and cleaning apparatus for porous member
JP2003022799A (en) Assembly carrier for pouring electrolyte, and electrolyte pouring method and device
KR101204641B1 (en) Cleaning apparatus, substrate processing system, cleaning method, and storage medium
KR100592231B1 (en) Electrolyte impregnation device and polymer impregnation method of polymer secondary battery
JP4971561B2 (en) Electrolyte injection method and apparatus
US6158596A (en) Substrate holder, and system and method for cleaning and drying same
TWI642131B (en) Method and apparatus for cleaning a substrate
JPH08250107A (en) Liquid impregnating device and liquid impregnating method
KR200269066Y1 (en) Device for filling electrolyte of battery manufacturing equipment
JPH07118307B2 (en) Injection method of electrolyte to storage battery and injection machine
KR101325365B1 (en) Apparatus of cleaning and drying wafer and method using same
CN113369238A (en) Method and device for cleaning graphite bipolar plate

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070626

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070925

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071008

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101026

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101026

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111026

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111026

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121026

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121026

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121026

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131026

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term