JPH11337413A - Apparatus and method for noncontact temperature measurement - Google Patents

Apparatus and method for noncontact temperature measurement

Info

Publication number
JPH11337413A
JPH11337413A JP14375498A JP14375498A JPH11337413A JP H11337413 A JPH11337413 A JP H11337413A JP 14375498 A JP14375498 A JP 14375498A JP 14375498 A JP14375498 A JP 14375498A JP H11337413 A JPH11337413 A JP H11337413A
Authority
JP
Japan
Prior art keywords
heat receiving
receiving plate
temperature measuring
measured
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14375498A
Other languages
Japanese (ja)
Inventor
Fumio Watanabe
文夫 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sukegawa Electric Co Ltd
Original Assignee
Sukegawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sukegawa Electric Co Ltd filed Critical Sukegawa Electric Co Ltd
Priority to JP14375498A priority Critical patent/JPH11337413A/en
Publication of JPH11337413A publication Critical patent/JPH11337413A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a noncontact temperature measuring apparatus by which the surface temperature of an object to be measured can be measured precisely in a noncontact manner and which can be used repeatedly by a method wherein, when the surface temperature of the object to be measured is measured in a noncontact state, radiant heat from the surface of the object to be measured is received with good efficiency and the temperature is measured. SOLUTION: A noncontact temperature measuring apparatus is featured in such a way that a heat receiving plate 1 whose heat receiving face 6 is arranged so as to be faced with the surface of an object (a), to be measured, whose temperature is to be measured is provided and that a temperature measuring element in which a temperature measuring point 3 is arranged on the heat receiving plate 1 is provided. As a most universal temperature measuring element, a thermocouple 2 in which thermocouple wires 4, 5 composed of a pair of metal wires are bonded to the temperature measuring point 3 is used. Especially in a measurement at a high temperature, a thermocouple 2 in which a pair of thermocouples 4, 5 are composed of a platinum wire and a platinum-rhodium wire is used. The heat receiving face 6 on the heat receiving plate 1 is surface-treated in order to make its emissivity higher than other parts of the heat receiving plate 1.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、熱電対等の測温素
子を使用し、測定物の表面の温度を測定する温度測定装
置とそれを使用した温度測定方法に関し、特に板状の測
定物の平坦な表面を非接触で温度測定するのに好適な非
接触温度測定装置とそれを使用した温度測定方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a temperature measuring device for measuring the surface temperature of a measured object using a temperature measuring element such as a thermocouple, and a temperature measuring method using the same. The present invention relates to a non-contact temperature measurement device suitable for non-contact temperature measurement of a flat surface and a temperature measurement method using the same.

【0002】[0002]

【従来の技術】物体の温度を測定し、これを電圧等の電
気量に変換する温度測定手段として、熱電対や測温抵抗
体が使用されている。特に、熱電対は接触型測定手段と
して熱計測の主流の位置を占めている。これは熱電対が
高精度測定が可能であり、安定度が高く、且つ安価に製
作出来ることにある。しかし高温領域において、熱電対
で物体の表面温度を測定する場合、熱電対の先端の測温
点に流れ込む熱によって測定値が大きく変化する。この
ため、多数の点を同時計測するような場合、大きなばら
つきが生ずることになる。また、測定物が熱電対を構成
する金属線と化学反応を起こすような場合は、正確な温
度計測が出来ない問題があった。
2. Description of the Related Art Thermocouples and resistance thermometers are used as temperature measuring means for measuring the temperature of an object and converting the temperature into an electric quantity such as a voltage. In particular, thermocouples occupy the mainstream of thermal measurement as contact-type measuring means. This is because thermocouples can be measured with high accuracy, have high stability, and can be manufactured at low cost. However, when the surface temperature of an object is measured with a thermocouple in a high temperature region, the measured value greatly changes due to heat flowing into a temperature measuring point at the tip of the thermocouple. For this reason, when many points are measured simultaneously, large variations occur. Further, when the measured object causes a chemical reaction with a metal wire constituting the thermocouple, there is a problem that accurate temperature measurement cannot be performed.

【0003】一方、熱放射が活発となる500℃では輻
射を計測する非接触型放射温度計が用いられる。この温
度計は前記熱電対のような問題点は有しないが、材料の
放射係数や光学レンズ系の放射透過率の補正が必要であ
り、また測定物が平板で大きい場合は、測定レンズを面
に平行に移動するか、またその補正も必要である。この
ため前記熱電対より測定精度は約一桁落ちる。
On the other hand, at 500 ° C. where heat radiation becomes active, a non-contact radiation thermometer for measuring radiation is used. Although this thermometer does not have the problems of the thermocouple, it requires correction of the radiation coefficient of the material and the radiation transmittance of the optical lens system. Must be moved in parallel with, or its correction is necessary. For this reason, the measurement accuracy is lower by about one digit than the thermocouple.

【0004】一方半導体製造装置等で多用されるように
なったCVD薄膜製造装置等では、平行な加熱円盤にシ
リコンウエハを載せて、温度制御によって薄膜を作成
し、チップを製作するようになった。21世紀に向かっ
て進められているプロセス技術は、そのウエハ直径が3
00mmもありながら、その温度制御は800〜100
0℃の温度レベル領域において、±3℃という高精度が
要求される。しかし、現状ではその表面温度の正確な測
定手段がない。実際には、ダミーのウエハ上に白金−白
金ロジュウムの熱電対を接着材で多数貼り付け、これで
ダミーのウエハの表面温度を計測し、これにより目的の
ウエアの表面温度を推定するという手段が取られてい
る。
On the other hand, in a CVD thin film manufacturing apparatus which has come to be widely used in a semiconductor manufacturing apparatus and the like, a silicon wafer is mounted on a parallel heating disk and a thin film is formed by temperature control to produce a chip. . The process technology being advanced toward the 21st century is that the wafer diameter is 3
The temperature control is 800-100
In the temperature range of 0 ° C., high accuracy of ± 3 ° C. is required. However, at present there is no accurate means for measuring the surface temperature. In practice, there is a method of attaching a large number of platinum-platinum-rodium thermocouples on a dummy wafer with an adhesive, measuring the surface temperature of the dummy wafer, and thereby estimating the surface temperature of the target wear. Has been taken.

【0005】[0005]

【発明が解決しようとしている課題】しかし、このよう
な温度測定手段は、ダミーのウエハを1回だけ測定した
らそれ以降再度測定に使用できないため、ライフサイク
ルも短く、再現性も小さい。他方、放射温度計では多数
の補正項目をコンピュータで数値処理して表示するため
高価である。そこで本発明では、測定物の表面温度を非
接触状態で測定するに当たり、測定物の表面からの輻射
熱を効率よく受熱し、この温度を測定することにより、
測定物の表面温度を非接触で正確に測定することを可能
とし、しかも繰り返して使用することが可能な非接触温
度測定装置を提供することを目的とするものである。
However, since such a temperature measuring means cannot be used for the measurement again after the dummy wafer is measured only once, the life cycle is short and the reproducibility is small. On the other hand, a radiation thermometer is expensive because many correction items are numerically processed and displayed by a computer. Therefore, in the present invention, when measuring the surface temperature of the measurement object in a non-contact state, by efficiently receiving the radiant heat from the surface of the measurement object, by measuring this temperature,
It is an object of the present invention to provide a non-contact temperature measuring device that enables non-contact accurate measurement of the surface temperature of an object to be measured and that can be used repeatedly.

【0006】[0006]

【課題を解決するための手段】本発明では、前記の目的
を達成するため、測定物の表面に対向して配置する受熱
板1を用い、この受熱板1の温度を測るため、同受熱板
1に熱電対2等の測温素子の測温点3を取り付け、測定
物aの測定しようとする表面の近傍に前記受熱板1の受
熱面6を非接触状態で対向して配置し、測定物の表面温
度を非接触で測定するものである。
According to the present invention, in order to achieve the above-mentioned object, a heat receiving plate 1 is disposed to face a surface of an object to be measured, and the temperature of the heat receiving plate 1 is measured. 1, a temperature measuring point 3 of a temperature measuring element such as a thermocouple 2 is attached, and a heat receiving surface 6 of the heat receiving plate 1 is arranged in a non-contact state in the vicinity of a surface to be measured of an object a to be measured. The surface temperature of an object is measured in a non-contact manner.

【0007】すなわち、本発明による非接触温度測定装
置は、測定物aの温度を測定しようとする表面に受熱面
6が対向して配置される受熱板1と、この受熱板1に測
温点3を配置した測温素子とを有することを特徴とす
る。最も一般的な測温素子は、一対の金属線からなる熱
電対線4、5を測温点3で接合した熱電対2である。特
に、高温での測定には、一対の熱電対4、5が白金線と
白金ロジュウム線からなる熱電対2が使用される。
That is, the non-contact temperature measuring device according to the present invention comprises a heat receiving plate 1 having a heat receiving surface 6 opposed to the surface of the object to be measured whose temperature is to be measured; 3 is provided. The most common temperature measuring element is a thermocouple 2 in which thermocouple wires 4 and 5 composed of a pair of metal wires are joined at a temperature measuring point 3. In particular, for measurement at a high temperature, a thermocouple 2 in which a pair of thermocouples 4 and 5 are composed of a platinum wire and a platinum-rhodium wire is used.

【0008】受熱板1の受熱面6は熱電対を構成する熱
電対線4、5の断面積の2倍以上とし、この受熱面6は
同受熱板1の他の部分より輻射率を高めた表面処理をす
る。この受熱板2は白金または白金合金からなるものが
よく、その受熱面6の輻射率を高めるための表面処理と
しては、白金黒処理をすることがあげられる。このよう
な非接触温度測定装置を使用し、測定物aの温度を測定
しようとする表面に受熱板1の受熱面2を対向して配置
し、この受熱板1に測温点3を配置した測温素子を計測
器に接続して受熱板1の温度を測定する。
The heat receiving surface 6 of the heat receiving plate 1 is at least twice as large as the cross-sectional area of the thermocouple wires 4 and 5 constituting the thermocouple, and the heat receiving surface 6 has a higher emissivity than other portions of the heat receiving plate 1. Perform surface treatment. The heat receiving plate 2 is preferably made of platinum or a platinum alloy. As a surface treatment for increasing the emissivity of the heat receiving surface 6, a platinum black treatment may be used. Using such a non-contact temperature measuring device, the heat receiving surface 2 of the heat receiving plate 1 was arranged to face the surface of the object a to be measured, and the temperature measuring point 3 was arranged on the heat receiving plate 1. The temperature measuring element is connected to a measuring instrument to measure the temperature of the heat receiving plate 1.

【0009】この非接触温度測定装置を使用した温度測
定では、前記受熱板1がその受熱面6で測定物aの表面
からの輻射熱を受熱し、受熱板6の温度が測定物aの表
面温度とほぼ等しくなる。従って、この受熱板6の温度
を、熱電対2等の測温素子で測定することにより、測定
物aの温度を非接触状態で測定することが可能となる。
受熱板1の受熱面6と反対側にリフレクタ9を配置する
のが好ましく、このリフレクタ9は受熱板1の受熱面6
と反対側から受熱板1の周囲を囲むように連続して形成
されていることがより好ましい。このリフレクタ9は、
測定物aの表面から放射される輻射熱の拡散を防止し、
その輻射熱の大半を受熱板1に反射させることができる
ため、受熱板1は測定物aの表面温度をほぼ忠実に反映
することになる。
In the temperature measurement using this non-contact temperature measuring device, the heat receiving plate 1 receives radiant heat from the surface of the measured object a on its heat receiving surface 6, and the temperature of the heat receiving plate 6 is changed to the surface temperature of the measured object a. Is almost equal to Therefore, by measuring the temperature of the heat receiving plate 6 with a temperature measuring element such as the thermocouple 2, the temperature of the measured object a can be measured in a non-contact state.
It is preferable to arrange a reflector 9 on the side opposite to the heat receiving surface 6 of the heat receiving plate 1, and this reflector 9 is provided on the heat receiving surface 6 of the heat receiving plate 1.
More preferably, it is formed continuously from the opposite side to surround the periphery of the heat receiving plate 1. This reflector 9
Preventing diffusion of radiant heat radiated from the surface of the measurement object a,
Since most of the radiant heat can be reflected to the heat receiving plate 1, the heat receiving plate 1 almost exactly reflects the surface temperature of the measured object a.

【0010】[0010]

【発明の実施の形態】次に、図面を参照しながら、本発
明の実施の形態について、具体的且つ詳細に説明する。
図1は、本発明による非接触温度測定装置の基本構成を
示している。測定対象である測定物aは、例えばシリコ
ンウエハ等のように平坦な表面を有し、その表面が高温
で元素レベルの加工がなされるワークである。このよう
な測定物aは、その下に配置された図示してない抵抗加
熱ヒータや電子線衝撃用のフィラメント等により所定の
温度に加熱され、その状態で表面上で材料化合物が熱化
学反応によって分解蓄積され、加工されるものである。
Embodiments of the present invention will now be described specifically and in detail with reference to the drawings.
FIG. 1 shows a basic configuration of a non-contact temperature measuring device according to the present invention. The measurement object a to be measured has a flat surface, such as a silicon wafer, and is a workpiece whose surface is processed at an element level at a high temperature. Such an object to be measured a is heated to a predetermined temperature by a resistance heater, not shown, or a filament for electron beam impact arranged thereunder, and in this state, the material compound is subjected to a thermochemical reaction on the surface. It is decomposed, accumulated and processed.

【0011】この測定物aの測定しようとする表面に、
対向して受熱板1が配置される。この受熱板1の測定物
aの表面に面した側が受熱面6となる。この受熱板1
は、熱伝導良好な金属で、高温度領域の測定の場合は、
高温下で化学的、物理的な安定性が高い高融点金属が使
用される。このような条件を満足する金属としては、例
えば白金または白金合金が使用できる。受熱板1の受熱
面6は、輻射率が特に高いことが望ましく、輻射率を高
めるための表面処理を施すことが好ましい。受熱板1が
白金または白金合金の場合、輻射率を高めるための表面
処理として、白金黒処理を施すことをあげることができ
る。この場合は材料が同質であるため、剥離や割れの問
題が発生しない。
On the surface of the object a to be measured,
The heat receiving plate 1 is arranged so as to face. The side of the heat receiving plate 1 facing the surface of the measurement object a becomes the heat receiving surface 6. This heat receiving plate 1
Is a metal with good heat conductivity, and when measuring in a high temperature region,
A refractory metal having high chemical and physical stability at high temperatures is used. As a metal satisfying such conditions, for example, platinum or a platinum alloy can be used. The heat receiving surface 6 of the heat receiving plate 1 preferably has a particularly high emissivity, and is preferably subjected to a surface treatment for increasing the emissivity. When the heat receiving plate 1 is made of platinum or a platinum alloy, a platinum black treatment can be given as a surface treatment for increasing the emissivity. In this case, since the materials are of the same quality, the problem of peeling or cracking does not occur.

【0012】さらに、受熱板1には熱電対2等の測温素
子の測温点3が設けられている。受熱板1の受熱面6の
面積は、熱電対線4、5の断面積の2倍以上とし、熱電
対1の測温点3は、受熱板1の中心に設けるのがよい。
図示の熱電対は、一対の熱電対線4、5をステンレス管
等のシース7に収納し、このシース7に充填したマグネ
シア等の無機絶縁材8により絶縁したシース形熱電対を
使用する。このシース形熱電対を受熱板1の受熱面6と
反対側の面に立て、一対の熱電対線4、5の先端を接合
した測温点3を受熱板1に埋め込む。さらに、シース7
の先端を受熱板1の背面に熔着し、受熱板1の背面に直
交するように固定する。
Further, the heat receiving plate 1 is provided with a temperature measuring point 3 of a temperature measuring element such as a thermocouple 2. The area of the heat receiving surface 6 of the heat receiving plate 1 is preferably at least twice the cross-sectional area of the thermocouple wires 4 and 5, and the temperature measuring point 3 of the thermocouple 1 is preferably provided at the center of the heat receiving plate 1.
The illustrated thermocouple uses a sheath-type thermocouple in which a pair of thermocouple wires 4 and 5 are housed in a sheath 7 such as a stainless steel tube and insulated by an inorganic insulating material 8 such as magnesia filled in the sheath 7. This sheath-type thermocouple is set up on the surface opposite to the heat receiving surface 6 of the heat receiving plate 1, and the temperature measuring point 3 to which the ends of the pair of thermocouple wires 4 and 5 are joined is embedded in the heat receiving plate 1. In addition, sheath 7
Is welded to the back surface of the heat receiving plate 1 and fixed so as to be orthogonal to the back surface of the heat receiving plate 1.

【0013】受熱板1が白金または白金合金からなる場
合、熱電対2は、それを構成する熱電対線4、5が白金
−白金ロジウムからなるものを用いるのがよい。これに
よって、高温下での受熱板1と熱電対線4、5との化学
反応がなく、安定して使用することができる。この熱電
対2を構成する熱電対4、5の引出線は、図示していな
い0点補償回路を介して測定機器に接続され、温度測定
が行われる。なお、図1に示した熱電対3は、受熱板1
に測温点3を直接溶接した接地型熱電対2であるが、熱
電対2は、絶縁材8の中に絶縁状態で電気的に浮かした
非接地型熱電対2としてもよい。
When the heat receiving plate 1 is made of platinum or a platinum alloy, it is preferable to use the thermocouple 2 whose thermocouple wires 4, 5 are made of platinum-platinum rhodium. Accordingly, there is no chemical reaction between the heat receiving plate 1 and the thermocouple wires 4 and 5 at a high temperature, and the heat receiving plate 1 can be used stably. The leads of the thermocouples 4 and 5 constituting the thermocouple 2 are connected to a measuring device via a zero-point compensation circuit (not shown), and the temperature is measured. The thermocouple 3 shown in FIG.
The thermocouple 2 is a non-grounded thermocouple 2 which is electrically floated in an insulating state in an insulating material 8.

【0014】受熱板1の背後には、測定物aから放射さ
れる輻射熱を受熱板1側に反射するリフレクタ9が配置
されている。このリフレクタ9は、例えば少なくとも受
熱板1側に向いた反射面が鏡面となった金属製のもので
あり、受熱板1の背後から受熱板1の周囲を囲むような
逆カップ形の形状となっている。このリフレクタ9の中
央を前記の熱電対2を収納したシース7が貫通してい
る。
Behind the heat receiving plate 1, a reflector 9 for reflecting the radiant heat radiated from the object to be measured a to the heat receiving plate 1 side is arranged. The reflector 9 is, for example, made of a metal whose reflection surface facing at least the heat receiving plate 1 side is a mirror surface, and has an inverted cup shape that surrounds the heat receiving plate 1 from behind the heat receiving plate 1. ing. The sheath 7 containing the thermocouple 2 passes through the center of the reflector 9.

【0015】このような非接触温度測定装置において、
測定物aは例えばシリコンウエハ等の被加熱物であり、
この測定物aは、例えば図1において下側から加熱され
る。測定物aが例えば1,000℃前後に加熱される
と、その測定物aの表面から輻射熱が放出される。この
とき、図1に示すように、受熱板1の受熱面6を測定物
aの表面近くに非接触状態で配置すると、測定物aの表
面から放射された輻射熱が受熱板1の受熱面6から受熱
板1に受熱される。受熱面6は、例えば、白金黒処理等
の輻射率を高めるための処理が行われているため、輻射
熱の伝達が効率的に行われ、受熱板1の温度は測定物a
の温度を正確に反映する。従って、この受熱板6の温度
を、熱電対2等の測温素子で測定することにより、測定
物aの温度を測定することが可能となる。
In such a non-contact temperature measuring device,
The measurement object a is a heated object such as a silicon wafer, for example.
The measurement object a is heated from below, for example, in FIG. When the object a is heated to, for example, about 1,000 ° C., radiant heat is emitted from the surface of the object a. At this time, as shown in FIG. 1, when the heat receiving surface 6 of the heat receiving plate 1 is arranged in a non-contact state near the surface of the object to be measured a, the radiant heat radiated from the surface of the object to be measured a From the heat receiving plate 1. Since the heat receiving surface 6 is subjected to a process for increasing the emissivity, such as a platinum black process, the transfer of radiant heat is performed efficiently, and the temperature of the heat receiving plate 1 is measured a
Accurately reflect the temperature of the Therefore, by measuring the temperature of the heat receiving plate 6 with a temperature measuring element such as the thermocouple 2, the temperature of the measured object a can be measured.

【0016】受電板1の受熱面6の受熱面6と反対側か
ら受熱板1の周囲を囲むように連続して形成されたリフ
レクタ9が配置されることにより、リフレクタ9が測定
物aの表面から輻射される熱の拡散を防止し、その輻射
熱の大半を受熱板1に集中させる。このため、受熱板1
は測定物aの表面温度をほぼ忠実に反映することにな
る。
A reflector 9 continuously formed so as to surround the periphery of the heat receiving plate 1 from the side opposite to the heat receiving surface 6 of the heat receiving surface 6 of the power receiving plate 1 is disposed, so that the reflector 9 becomes a surface of the object a. The diffusion of the heat radiated from is prevented, and most of the radiated heat is concentrated on the heat receiving plate 1. Therefore, the heat receiving plate 1
Reflects the surface temperature of the measured object a almost exactly.

【0017】図2は、受熱板1と熱電対2とを組み合わ
せたものを複数用意し、測定物aの表面の複数の個所に
それぞれの受熱面6が対向するように受熱板1を配置し
たものである。このようにして、表面積の広いシリコン
ウエハ等の測定物aについては、複数の受熱板1を使用
することで、測定物aの複数の個所を同時に温度測定す
ることができる。
In FIG. 2, a plurality of combinations of the heat receiving plate 1 and the thermocouple 2 are prepared, and the heat receiving plates 1 are arranged so that the respective heat receiving surfaces 6 face each other at a plurality of locations on the surface of the measured object a. Things. In this way, for the measurement object a such as a silicon wafer having a large surface area, the temperature can be measured at a plurality of locations of the measurement object a at the same time by using the plurality of heat receiving plates 1.

【0018】なお、図2に示したリフレクタ9は、複数
の受熱板1を同時に覆うような平面積の広い逆トレイ状
のものが使用されている。これに対して、図1に示すよ
うな個々の受熱板1毎にリフレクタ9を設けてもよい。
以上の実施の形態は、測温素子して熱電対を使用したも
のであるが、測温素子して測温抵抗体等の、他の電気的
な温度測定手段を使用することももちろん可能である。
As the reflector 9 shown in FIG. 2, an inverted tray having a large flat area and covering the plurality of heat receiving plates 1 at the same time is used. On the other hand, a reflector 9 may be provided for each heat receiving plate 1 as shown in FIG.
In the above embodiment, a thermocouple is used as a temperature measuring element, but it is of course possible to use other electric temperature measuring means such as a temperature measuring resistor as a temperature measuring element. is there.

【0019】[0019]

【実施例】次に、図2と図3を参照しながら、本発明の
実施例について、具体的数値をあげて説明する。図3に
直径300mmのシリコンウエハである測定物aの平面
を示す。この図3に示すように、測定物の中心とこの中
心の回りの3つの同心円上に、120゜間隔で前記のよ
うな受熱板1を配置し、それらの受熱面6(図2参照)
を測定物aから3mm離して対向配置した。この状態の
縦断側面図は、図2に示す通りとなる。受熱板1にそれ
ぞれ測温接点3(図1参照)を埋め込んだ熱電対2(図
1及び図2参照)は、0点補償回路を介して測定器に接
続した。
Next, referring to FIGS. 2 and 3, an embodiment of the present invention will be described with specific numerical values. FIG. 3 shows a plane of a measurement object a which is a silicon wafer having a diameter of 300 mm. As shown in FIG. 3, the above-mentioned heat receiving plates 1 are arranged at intervals of 120 ° on the center of the object to be measured and three concentric circles around this center, and their heat receiving surfaces 6 (see FIG. 2).
Was placed 3 mm away from the measurement object a and opposed to each other. A longitudinal side view in this state is as shown in FIG. The thermocouples 2 (see FIGS. 1 and 2) each having the temperature measuring contacts 3 (see FIG. 1) embedded in the heat receiving plate 1 were connected to a measuring instrument via a zero-point compensation circuit.

【0020】また図1に示すように、温度測定値の比較
のため、測定物aの表面の3個所には、白金−白金ロジ
ウムからなる熱電対10の測温接点11を埋め込み、こ
の熱電対10は0点補償回路を介して測定器に接続し
た。これらの測定物a及び受熱板1等を真空中におき、
測定物aに加速電圧を印加しながら、その下面側にフィ
ラメントから熱電子を衝突させ、この電子衝撃で測定物
を温度1,000℃を目標として一様に加熱した。
As shown in FIG. 1, for the purpose of comparing the measured temperature values, a temperature measuring contact 11 of a thermocouple 10 made of platinum-platinum rhodium is buried in three places on the surface of the measured object a. Reference numeral 10 was connected to a measuring instrument via a zero-point compensation circuit. Put these measurement object a and heat receiving plate 1 etc. in vacuum,
While applying an accelerating voltage to the measurement object a, the lower surface of the measurement object was bombarded with thermoelectrons from the filament, and the electron shock was used to uniformly heat the measurement object at a temperature of 1,000 ° C.

【0021】測定物aの安定した状態で、受熱板1にそ
れぞれ測温接点3を埋め込んだ熱電対2の10カ所の配
置状態と、測定物aの表面に測温点11を直接埋め込ん
だ熱電対10とでそれぞれ測定した温度の結果を図3に
示す。この結果から、測定物aの平面の中心の受熱板1
で測定された温度は、1006.1℃、その周囲の受熱
板1で測定された温度は、1004.3℃〜1011.
7℃、そのバラツキはほぼ±3℃に収まった。また、測
定物aの表面に測温点11を直接埋め込んだ熱電対10
で測定された温度は、992.3℃〜1010.0℃
で、同じ温度分布上のウエハ上でありながら温度測定値
にバラツキが見られた。
In the stable state of the object to be measured a, the thermocouples 2 in which the temperature measuring contacts 3 are embedded in the heat receiving plate 1 are respectively arranged at ten positions, and the thermocouple in which the temperature measuring point 11 is directly embedded in the surface of the object to be measured a. FIG. 3 shows the results of the temperature measured for each pair. From this result, the heat receiving plate 1 at the center of the plane of the measurement object a
Is 1006.1 ° C., and the temperature measured by the surrounding heat receiving plate 1 is 1004.3 ° C. to 1011.
7 ° C., and the variation was almost within ± 3 ° C. In addition, a thermocouple 10 in which a temperature measuring point 11 is directly embedded in the surface of the object a.
The temperature measured at 992.3 ° C. to 10.00.0 ° C.
As a result, the temperature measured values varied even on the wafer having the same temperature distribution.

【0022】このように、測定物aと非接触の受熱板1
で測定された温度と、測定物aの表面に測温点11を直
接埋め込んだ熱電対10で測定された温度とは、ほぼ同
等の測定結果となった。そのため、本発明による非接触
温度測定装置により、従来の測定物aに測温接点を埋め
込む熱電対10による温度測定と同等の精度で温度測定
が可能であることが確認された。しかも、温度測定値の
バラツキは、熱電対に比べて格段に小さいことが明らか
である。
As described above, the heat receiving plate 1 that is not in contact with the measurement object a
And the temperature measured by the thermocouple 10 in which the temperature measuring point 11 was directly embedded in the surface of the measured object a, were almost the same. Therefore, it was confirmed that the non-contact temperature measurement device according to the present invention can measure the temperature with the same accuracy as the temperature measurement by the thermocouple 10 in which the temperature measuring junction is embedded in the conventional measurement object a. Moreover, it is clear that the variation in the measured temperature value is much smaller than that of the thermocouple.

【0023】[0023]

【発明の効果】以上説明した通り、本発明による非接触
温度測定装置とそれを使用した温度測定方法では、測定
物の表面温度を非接触状態で測定するに当たり、測定物
の表面からの輻射熱を効率よく受熱し、この温度を測定
することにより、測定物の表面温度を非接触で、多点同
時に正確に測定することが可能となる。しかも、この非
接触温度測定装置は、繰り返し使用が可能である。
As described above, in the non-contact temperature measuring apparatus and the temperature measuring method using the same according to the present invention, the radiant heat from the surface of the object is measured when the surface temperature of the object is measured in a non-contact state. By efficiently receiving heat and measuring this temperature, it becomes possible to measure the surface temperature of the object to be measured in a non-contact manner at multiple points and simultaneously. Moreover, the non-contact temperature measuring device can be used repeatedly.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による非接触温度測定装置とそれを使用
した温度測定方法の例を示す要部縦断側面図である。
FIG. 1 is a vertical sectional side view of a main part showing an example of a non-contact temperature measuring device and a temperature measuring method using the same according to the present invention.

【図2】本発明による非接触温度測定装置とそれを使用
した温度測定方法の他の例であって、受熱板を熱電対を
複数使用した例を示す要部縦断側面図である。
FIG. 2 is a vertical sectional side view of a main part showing another example of a non-contact temperature measuring device and a temperature measuring method using the same according to the present invention, in which a plurality of thermocouples are used as heat receiving plates.

【図3】本発明による非接触温度測定装置とそれを使用
した温度測定方法の例において、受熱板と熱電対を組み
合わせた非接触温度測定と熱電対を測定物aの表面に直
接埋め込んで測定した測定結果を示す測定物の平面図で
ある。
FIG. 3 shows an example of a non-contact temperature measuring device and a temperature measuring method using the same according to the present invention, in which a non-contact temperature measuring device in which a heat receiving plate and a thermocouple are combined and a thermocouple is directly embedded in the surface of an object to be measured a It is a top view of the measured object which shows the measured result.

【符号の説明】[Explanation of symbols]

1 受熱板 3 測温点 4 熱電対線 5 熱電対線 2 熱電対 6 受熱板の受熱面 a 測定物 9 リフレクタ DESCRIPTION OF SYMBOLS 1 Heat receiving plate 3 Temperature measuring point 4 Thermocouple wire 5 Thermocouple wire 2 Thermocouple 6 Heat receiving surface of heat receiving plate a Measurement object 9 Reflector

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 測定物(a)の表面温度を非接触で測定
する非接触温度測定装置において、測定物(a)の温度
を測定しようとする表面に対向して配置される受熱板
(1)と、この受熱板(1)に測温点(3)を配置した
測温素子とを有することを特徴とする非接触温度測定装
置。
1. A non-contact temperature measuring device for measuring the surface temperature of a measured object (a) in a non-contact manner, wherein the heat receiving plate (1) is arranged to face the surface of the measured object (a) whose temperature is to be measured. ), And a temperature measuring element having a temperature measuring point (3) arranged on the heat receiving plate (1).
【請求項2】 測温素子は、一対の金属線からなる熱電
対線(4)、(5)を測温点(3)で接合した熱電対
(2)であることを特徴とする非接触温度測定装置。
2. A non-contact thermocouple, wherein the temperature measuring element is a thermocouple (2) in which thermocouple wires (4) and (5) each comprising a pair of metal wires are joined at a temperature measuring point (3). Temperature measuring device.
【請求項3】 熱電対(2)を構成する熱電対線
(4)、(5)は、それぞれ白金線と白金ロジュウム線
からなることを特徴とする請求項2に記載の非接触温度
測定装置。
3. The non-contact temperature measuring device according to claim 2, wherein the thermocouple wires (4) and (5) constituting the thermocouple (2) are made of a platinum wire and a platinum rhodium wire, respectively. .
【請求項4】 受熱板(1)の受熱面(6)は熱電対を
構成する熱電対線(4)、(5)の断面積の2倍以上で
あることを特徴とする請求項2または3に記載の非接触
温度測定装置。
4. The heat receiving surface (6) of the heat receiving plate (1) is at least twice as large as the cross-sectional area of the thermocouple wires (4) and (5) constituting the thermocouple. 3. The non-contact temperature measuring device according to 3.
【請求項5】 受熱板(1)の測定物(a)の表面に対
向させる受熱面(6)は、同受熱板(1)の他の部分よ
り輻射率を高めた表面処理がなされていることを特徴と
する請求項1〜4の何れかに記載の非接触温度測定装
置。
5. The heat receiving surface (6) of the heat receiving plate (1) facing the surface of the measurement object (a) has been subjected to a surface treatment with a higher emissivity than other portions of the heat receiving plate (1). The non-contact temperature measuring device according to any one of claims 1 to 4, wherein
【請求項6】 受熱板(1)は白金または白金合金から
なる共に、受熱面(6)が白金黒処理されていることを
特徴とする請求項5に記載の非接触温度測定装置。
6. The non-contact temperature measuring device according to claim 5, wherein the heat receiving plate (1) is made of platinum or a platinum alloy, and the heat receiving surface (6) is treated with platinum black.
【請求項7】 受熱板(1)の受熱面(6)と反対側
に、リフレクタ(9)が配置されていることを特徴とす
る請求項1〜6の何れかに記載の非接触温度測定装置。
7. Non-contact temperature measurement according to claim 1, wherein a reflector (9) is arranged on a side of the heat receiving plate (1) opposite to the heat receiving surface (6). apparatus.
【請求項8】 リフレクタ(9)は受熱板(1)の受熱
面(6)と反対側から受熱板(1)の周囲を囲むように
連続して形成されていることを特徴とする請求項1〜5
の何れかに記載の非接触温度測定装置。
8. The reflector (9) is formed continuously from the side opposite to the heat receiving surface (6) of the heat receiving plate (1) so as to surround the periphery of the heat receiving plate (1). 1-5
The non-contact temperature measuring device according to any one of the above.
【請求項9】 前記請求項1〜8の何れかに記載の非接
触温度測定装置を使用し、測定物(a)の温度を測定し
ようとする表面に受熱板(1)の受熱面(6)を対向し
て配置し、この受熱板(1)に測温点(3)を配置した
測温素子を計測器に接続して受熱板(1)の温度を測定
することを特徴とする非接触温度測定方法。
9. A heat receiving surface (6) of a heat receiving plate (1) on a surface of the object (a) to be measured using the non-contact temperature measuring device according to any one of claims 1 to 8. ) Are arranged facing each other, and a temperature measuring element having a temperature measuring point (3) arranged on the heat receiving plate (1) is connected to a measuring instrument to measure the temperature of the heat receiving plate (1). Contact temperature measurement method.
JP14375498A 1998-05-26 1998-05-26 Apparatus and method for noncontact temperature measurement Pending JPH11337413A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14375498A JPH11337413A (en) 1998-05-26 1998-05-26 Apparatus and method for noncontact temperature measurement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14375498A JPH11337413A (en) 1998-05-26 1998-05-26 Apparatus and method for noncontact temperature measurement

Publications (1)

Publication Number Publication Date
JPH11337413A true JPH11337413A (en) 1999-12-10

Family

ID=15346251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14375498A Pending JPH11337413A (en) 1998-05-26 1998-05-26 Apparatus and method for noncontact temperature measurement

Country Status (1)

Country Link
JP (1) JPH11337413A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001072088A1 (en) * 2000-03-23 2001-09-27 Ceramaspeed Limited Temperature sensor
JP2006292703A (en) * 2005-04-05 2006-10-26 Yoshinobu Abe Thermocouple

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001072088A1 (en) * 2000-03-23 2001-09-27 Ceramaspeed Limited Temperature sensor
JP2006292703A (en) * 2005-04-05 2006-10-26 Yoshinobu Abe Thermocouple
JP4671752B2 (en) * 2005-04-05 2011-04-20 可伸 安部 thermocouple

Similar Documents

Publication Publication Date Title
WO1998038673A1 (en) Substrate temperature measuring instrument, method of measuring substrate temperature, substrate heating method and heat treatment device
EP0723141A1 (en) Sensors for measuring temperature and methods of measuring workpiece temperatures
US6204484B1 (en) System for measuring the temperature of a semiconductor wafer during thermal processing
US4854727A (en) Emissivity calibration apparatus and method
JPH05118928A (en) Contact type temperature measuring method
KR20070049188A (en) Flow sensor
WO1998055842A1 (en) A temperature calibration substrate
US3232113A (en) Thermal parameter indicator
JP2781616B2 (en) Semiconductor wafer heat treatment equipment
JP3878321B2 (en) Substrate wafer processing equipment
JP3911071B2 (en) High speed lamp heat treatment apparatus and high speed lamp heat treatment method
US3472074A (en) Maximum thermometer for surface temperature measurements
JPS6037116A (en) Optical irradiating furnace
JP2860144B2 (en) Plate temperature measuring device
JPH11337413A (en) Apparatus and method for noncontact temperature measurement
US4989991A (en) Emissivity calibration apparatus and method
JPH11354526A (en) Plate body heating device
KR100413646B1 (en) Temperature-detecting element
JPH02298829A (en) Heat treatment apparatus
US3287976A (en) Compensation radiation pyrometer
JP2982026B2 (en) Temperature measuring device and temperature measuring device for body to be heated using the same
JPH0346527A (en) Protecting tube made of sic for thermocouple
JPH1090076A (en) Surface temperature distribution measuring apparatus
JPH0458569B2 (en)
JPS62231148A (en) Thermal analysis instrument