JPH1133703A - Casting method for cast iron - Google Patents
Casting method for cast ironInfo
- Publication number
- JPH1133703A JPH1133703A JP21018597A JP21018597A JPH1133703A JP H1133703 A JPH1133703 A JP H1133703A JP 21018597 A JP21018597 A JP 21018597A JP 21018597 A JP21018597 A JP 21018597A JP H1133703 A JPH1133703 A JP H1133703A
- Authority
- JP
- Japan
- Prior art keywords
- mold
- molten metal
- pipe
- casting
- cast iron
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- General Induction Heating (AREA)
- Molds, Cores, And Manufacturing Methods Thereof (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、鋳鉄の鋳造時、押
湯量を大巾に減らすとともに、鋳造金属の引け巣欠陥、
中子への溶湯差込み及び外型の型張りを抑制することが
できる鋳造方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for casting iron, which significantly reduces the amount of riser and shrinkage porosity of cast metal.
The present invention relates to a casting method capable of suppressing insertion of a molten metal into a core and mold tension of an outer mold.
【0002】[0002]
【従来の技術】鉄,非鉄を問わず、金属鋳物の製造に際
して引け巣等の鋳造欠陥を防ぐために押湯は必要不可欠
なものである。普通鋳鉄で本来の鋳造品の20〜40%,ダ
クタイル鋳鉄で20〜60%,鋳鋼で30〜70%,純銅鋳物で
は30〜70%の押湯が必要となる。つまり重量1の鋳物を
作るのに、重量0.2〜0.7の無駄を作る必要があるわけで
あり、金属の溶解コスト,造型コスト,型ばらし,押湯
部の切取り作業等、押湯の存在のために計り知れない無
駄な費用が費やされるわけである。とくに押湯部の切取
り作業は、ネック部の溶断,ノコ歯切断,グラインダ切
断,ハンマリングあるいはこれらの併用によって実施さ
れているが、これらはいずれも苛酷な作業環境の中での
作業を強いられ、いわゆる3Kとして嫌われている代表
的な作業である。いかに押湯を小さくするか、そして押
湯部の切取り作業をいかに合理化するかが鋳造業界にお
ける極めて重要な問題である。2. Description of the Related Art A feeder is indispensable for preventing casting defects such as shrinkage cavities in the production of metal castings regardless of whether they are ferrous or non-ferrous. Standard cast iron requires 20-40% of the original casting, ductile iron requires 20-60%, cast steel 30-70%, and pure copper casting requires 30-70% riser. In other words, in order to make a casting with a weight of 1, it is necessary to create a waste of 0.2 to 0.7 weight, because of the presence of the feeder, such as metal melting costs, molding costs, mold separation, and cutting work of the feeder section. Inexpensive and wasted costs are spent. In particular, the cutting of the feeder is performed by fusing the neck, saw cutting, grinder cutting, hammering, or a combination of these, all of which are forced in a harsh working environment. This is a typical work that is disliked as 3K. How to reduce the size of the riser and how to streamline the work of cutting the riser are crucial issues in the casting industry.
【0003】このような状況を背景にして、過去、誘導
加熱を使って押湯の軽減を計る試みもある。特開昭55−
64958号には鋳型上部に誘導コイルを埋設して溶湯を誘
導加熱することが記載されているが、この方法は誘導コ
イルが鋳型に埋め込まれているために、鋳造,造塊後、
鋳型を壊して鋳物を取り出す際、誘導コイルを埋め込ん
だ耐火物も一緒に壊されることとなる。つまり一回の造
塊ごとに耐火物で誘導コイルを埋設する作業と埋設した
耐火物を壊してコイルを取り出す作業が必要不可欠であ
り、手間と費用がかかり過ぎる。更には、鋳込時、溶湯
の飛散やライニング材の破損等により、溶湯がコイルに
直接接触した場合、コイルの溶損,層間短絡がおこり、
コイル冷却水による水蒸気爆発を起す危険性がある等の
欠点がある。又、この方法は鉄鋼の造塊のような、大
型,単純形状の鋳造品には適用できても、いろいろな形
状を有する通常の鋳造品には適用し難い。また造塊後の
押湯部の切取りに関しても、この発明では何等問題とし
て挙げられていない。Against this background, attempts have been made in the past to reduce the riser height by using induction heating. JP-A-55-
No. 64958 describes that an induction coil is buried in the upper part of the mold and induction heating of the molten metal is performed. However, since the induction coil is embedded in the mold, after casting and ingot casting,
When the mold is broken and the casting is taken out, the refractory in which the induction coil is embedded is also broken. In other words, the work of burying the induction coil with the refractory and the work of breaking the buried refractory and taking out the coil are indispensable for each ingot, which is too laborious and costly. Furthermore, at the time of casting, if the molten metal comes into direct contact with the coil due to scattering of the molten metal or damage to the lining material, melting of the coil and interlayer short-circuiting occur.
There are drawbacks such as the danger of steam explosion due to coil cooling water. Further, this method can be applied to large-sized, simple-shaped castings such as steel ingots, but is difficult to apply to ordinary castings having various shapes. In addition, the present invention does not raise any problem regarding the cutting of the riser after ingot formation.
【0004】本発明者らはかかる問題に鑑みて、あらゆ
る形状、大きさ、少量から多量まで、そして広汎な生産
形態に自在かつ経済的に対応でき、同時に押湯部の切取
り作業の改善に顕著な効果をもたらす新しい鋳造方法を
発明し、先に出願(特願平8−152930号)している。In view of such a problem, the present inventors can freely and economically cope with various shapes, sizes, small to large amounts, and a wide variety of production forms, and at the same time, remarkably improve the cutting operation of the feeder section. We have invented a new casting method which brings about various effects and filed an application (Japanese Patent Application No. 8-152930).
【0005】[0005]
【発明が解決しようとする課題】本発明は先に出願した
発明を鋳鉄の鋳造に適用する際に、引け巣等の鋳造欠陥
がなく、中子に焼付け、差込み等が発生し難く、かつ鋳
型の型張り等が起こり難い新しい鋳造方法を提供せんと
するものである。SUMMARY OF THE INVENTION According to the present invention, there is no casting defect such as shrinkage cavities when applying the invention filed in the prior application to cast iron, and it is difficult for the core to be baked or inserted. It is an object of the present invention to provide a new casting method that hardly causes mold tensioning.
【0006】[0006]
【課題を解決するための手段】上記問題点は次の鋳造方
法によって解決される。すなわち、 1. 鋳鉄鋳物の鋳造に際して、鋳型キャビティーに連通
するように耐火性パイプを立設して鋳型と耐火性パイプ
に溶湯を注入し、該耐火性パイプの外側に配置した誘導
加熱コイルで該パイプ内の溶湯を誘導加熱して溶融状態
に保持しながら鋳型内の鋳造金属を冷却させる鋳造方法
を採用し、この際、前記耐火性パイプ内の溶融状態が前
記鋳型内の鋳造金属が共晶凝固を開始してから終了する
迄の時間内の所望時点まで保持されるように、誘導加熱
を中止するタイミングを選定することによって、鋳造金
属の引け巣欠陥,中子への溶湯の差込み及び外型の型張
りを抑制することを特徴とする鋳鉄の鋳造方法。 2. 前記耐火性パイプ内の溶融状態が前記共晶凝固の前
半期の所望時点まで保持されるようにして、鋳造金属の
引け巣欠陥を重点的に抑制することを特徴とする上記1
項に記載の鋳鉄の鋳造方法。 3. 前記耐火性パイプ内の溶融状態が前記共晶凝固の後
半期の所望時点まで保持されるようにして、鋳造金属の
中子への差込み及び外型の型張りを重点的に抑制するこ
とを特徴とする上記1項に記載の鋳鉄の鋳造方法。 4. 前記共晶凝固の開始から終了までの推移を、前記耐
火性パイプ内の溶湯の湯面レベルの変化から推定する上
記1〜3項のいずれかに記載の鋳鉄の鋳造方法。 5. 前記湯面レベルの変化を、耐火性パイプ内の溶湯に
耐火性浮子を浮かせ、該浮子の変位によって検知するこ
とを特徴とする上記4項に記載の鋳鉄の鋳造方法。 6. 前記湯面レベルの変化を、耐火性パイプの外側に配
置した誘導加熱コイルの電磁気的特性の変化によって検
知する上記4項に記載の鋳鉄の鋳造方法。 7. 前記湯面レベルの変化の信号に連動させて誘導加熱
の動作を制御する上記4〜6項のいずれかに記載の鋳鉄
の鋳造方法。The above problems are solved by the following casting method. 1. During casting of a cast iron casting, a refractory pipe is erected so as to communicate with the mold cavity, molten metal is injected into the mold and the refractory pipe, and an induction heating coil is arranged outside the refractory pipe. A casting method is employed in which the molten metal in the pipe is cooled while the molten metal in the pipe is induction-heated to keep the molten metal in the molten state. By selecting the timing of stopping the induction heating so that it is maintained until the desired time within the time from the start to the end of crystal solidification, shrinkage cavities of cast metal, insertion of molten metal into core and A method of casting cast iron, characterized in that the outer mold is kept from being stretched. 2. The shrinkage porosity defect of the cast metal is mainly controlled by maintaining the molten state in the refractory pipe until a desired point in the first half of the eutectic solidification.
The casting method of the cast iron according to the paragraph. 3. Maintaining the molten state in the refractory pipe until a desired point in the second half of the eutectic solidification, thereby mainly suppressing insertion into the core of the cast metal and molding of the outer mold. 2. The method for casting cast iron according to the above item 1, wherein 4. The method for casting a cast iron according to any one of the above items 1 to 3, wherein a transition from the start to the end of the eutectic solidification is estimated from a change in the level of the molten metal in the refractory pipe. 5. The method of claim 4, wherein the change in the level of the molten metal is detected by floating a refractory float on the molten metal in the refractory pipe and detecting the displacement of the float. 6. The method of claim 4, wherein the change in the level of the molten metal is detected by a change in the electromagnetic characteristics of an induction heating coil disposed outside the refractory pipe. 7. The method for casting a cast iron according to any one of the above items 4 to 6, wherein the operation of the induction heating is controlled in conjunction with the signal of the change in the molten metal level.
【0007】[0007]
[耐火性パイプ]耐火性パイプ1は図1に例示するよう
に鋳型本体の押湯を設置する場所に該鋳型本体2のキャ
ビティー3に連通するように立設する。パイプ1の立設
箇所は、従来の鋳物の押湯設計と同じ考えに立って設置
箇所を決めればよい。つまり引け巣の発生しやすい肉厚
部に優先的に配置するようにすればよい。立設の際、あ
らかじめ用意したパイプ1を鋳型の立設箇所に埋込んで
固定しても良い。あるいはパイプ1を立てる部分の鋳型
壁4は薄いために、パイプ埋入時、鋳型壁4が壊れたり
することもあるので、パイプ1を立設する部分の鋳型壁
4を一部切取り、切取った鋳型壁4とパイプ1を組合せ
て一体型で作っておき、これを鋳型に嵌め込んでセット
するようにしてもよい。パイプ1を立設する箇所の鋳型
壁4で囲まれた部分の鋳造金属は早く冷え、また誘導加
熱の加熱効率も悪いので、条件次第ではこの部分が早く
固まる傾向がある。これを防止して、誘導加熱の効率を
良くするために、パイプ1を立設する箇所の鋳型壁4は
より薄くすることが好ましいが、薄くすると壊れやすい
問題がある。このためには、鋳型壁の中に補強用の芯材
5をいれるとよい。[Fire-Resistant Pipe] The fire-resistant pipe 1 is erected at a place where a riser of the mold body is installed so as to communicate with the cavity 3 of the mold body 2 as illustrated in FIG. The standing position of the pipe 1 may be determined based on the same concept as the conventional design of a feeder for castings. That is, it may be arranged preferentially in a thick portion where shrinkage cavities easily occur. At the time of standing, the pipe 1 prepared in advance may be embedded and fixed in the standing position of the mold. Alternatively, since the mold wall 4 where the pipe 1 is erected is thin, the mold wall 4 may be broken when the pipe is embedded. Therefore, the mold wall 4 where the pipe 1 is erected is partially cut out and cut off. Alternatively, the mold wall 4 and the pipe 1 may be combined and made into an integral type, and this may be fitted into the mold and set. The cast metal in the portion surrounded by the mold wall 4 where the pipe 1 is erected cools down quickly and the heating efficiency of induction heating is poor, so that depending on the conditions, this portion tends to solidify quickly. To prevent this and improve the efficiency of induction heating, it is preferable to make the mold wall 4 where the pipe 1 is erected thinner. For this purpose, a reinforcing core material 5 is preferably inserted in the mold wall.
【0008】図2は、鋳型壁4と耐火性パイプ1を一体
的に作り、鋳型に補強用の芯材5を入れたものである。
これを、カセットを差し込むように鋳型に差し込んでセ
ットする。耐火性パイプ1と鋳型壁4は別々の材料で作
って一体化してもよいし、同じ材料で一体的に作っても
よい。鋳型壁4は鋳型本体2を構成する鋳型材料と同じ
材料に限定されるものではなく、耐火性パイプ1と同じ
耐火性材料で作ってもよい。芯材5は鋼線,セラミック
繊維等からなる補強材であり、鋳型壁に強度が足りない
時いれるとよい。FIG. 2 shows a structure in which a mold wall 4 and a refractory pipe 1 are integrally formed, and a reinforcing core material 5 is put in the mold.
This is inserted and set in a mold so that a cassette is inserted. The refractory pipe 1 and the mold wall 4 may be made of different materials and integrated, or may be made of the same material and integrally. The mold wall 4 is not limited to the same material as the mold material constituting the mold body 2 and may be made of the same fire-resistant material as the fire-resistant pipe 1. The core material 5 is a reinforcing material made of steel wire, ceramic fiber or the like, and is preferably inserted when the strength of the mold wall is insufficient.
【0009】耐火性パイプ1の材質は、耐火性パイプ1
単独、鋳型壁4と一体の場合、いずれの場合も、少なく
とも鋳造する溶湯に耐える耐火性材質,形状であればい
かなるものでも使用できる。すなわち、シェルモールド
等の通常の鋳物の製造に常用される鋳型材で耐火性パイ
プ1を形成し、あるいはパイプ1と鋳型壁4が一体化し
たものを作り、これを鋳型にセットするようにしてもよ
い。前記パイプ1は、上記例のほか、通常の耐火物、例
えば、アルミナ,シリカ,ジルコニア,クロミア,マグ
ネシア,ムライト,コージライト,ジルコン,チタニ
ア,クロマイト,シャモット質耐火物、あるいは黒鉛系
耐火物で形成したもの、あるいは不定形耐火物を使って
形成したもの、あるいは窒化物,炭化物セラミック等の
焼結体等、種類を問わずすべて使用でき、特定の材質,
形状に限定される物ではない。また、パイプ内面,鋳型
壁内面には耐火度を上げるために必要に応じて高耐火性
粉末を塗布(塗型)して使用してもよい。The material of the refractory pipe 1 is
In any case, alone or in one piece with the mold wall 4, any material can be used as long as it is a refractory material and a shape that can withstand at least the molten metal to be cast. That is, the refractory pipe 1 is formed from a mold material commonly used in the production of ordinary castings such as shell molds, or a pipe 1 and a mold wall 4 are integrated, and this is set in a mold. Is also good. The pipe 1 is formed of a normal refractory other than the above examples, for example, alumina, silica, zirconia, chromia, magnesia, mullite, cordierite, zircon, titania, chromite, chamotte refractory, or graphite refractory. Can be used irrespective of the type, such as those made from refractories, or those made from amorphous refractories, or sintered bodies such as nitrides and carbide ceramics.
It is not limited to the shape. Further, a high refractory powder may be applied (molded) to the inner surface of the pipe and the inner surface of the mold wall as needed in order to increase the fire resistance.
【0010】耐火性パイプ1の鋳型へのセットの仕方あ
るいはセット部の鋳型の構造等、特定の物,構造に限定
されることなく、いかなる場合にも有効である。パイプ
外側には誘導コイル6を嵌着する。パイプ1内の溶湯を
有効に誘導加熱できる構造,形状,配置の仕方であれ
ば、誘導コイル6はいかなる形状,構造,配置のものも
有効に使用できる。The present invention is effective in any case, without being limited to a specific object or structure such as a method of setting the refractory pipe 1 in a mold or a structure of a mold of a set portion. An induction coil 6 is fitted to the outside of the pipe. As long as the structure, shape, and arrangement of the molten metal in the pipe 1 can be effectively induction-heated, any shape, structure, and arrangement of the induction coil 6 can be used effectively.
【0011】鋳造時パイプが割れてもコイル部を損傷さ
せないように誘導コイル6の周辺部を耐火物で保護し、
さらにコイルは何時でも脱去できるようにすることが好
ましい。例えば、誘導コイル6は耐火性パイプ1から速
やかに脱去できるように嵌脱自在に緩く嵌入するとか、
あるいは、耐火性パイプ1の構造を、内側パイプ1aの外
に外側パイプ1bを嵌めこんだ二重構造管にするとか、あ
るいは、少なくとも誘導コイル6の内面,底面に耐火物
をライニングして溶湯と接触しても溶損されないような
構造にすることが好ましい。The periphery of the induction coil 6 is protected with a refractory so as not to damage the coil even if the pipe breaks during casting.
Further, it is preferable that the coil can be removed at any time. For example, the induction coil 6 is loosely fitted so that it can be quickly removed from the refractory pipe 1,
Alternatively, the structure of the refractory pipe 1 may be a double-structured pipe in which the outer pipe 1b is fitted outside the inner pipe 1a, or at least the refractory is lined on the inner surface and the bottom surface of the induction coil 6 to form a molten metal. It is preferable to adopt a structure that does not cause erosion even when contacted.
【0012】鋳型に注湯し、溶湯は耐火性パイプ1の中
にも満たし、パイプ内の溶湯を誘導加熱して溶融状態に
保持しながら鋳型内の鋳造金属を凝固,冷却させる。溶
融したパイプ内の溶湯は、通常の鋳物鋳造の際の押湯の
役割をするもので、鋳型内の鋳造金属の凝固,冷却に伴
って形成される引け巣に溶融金属が支障なく補給される
ように、少なくとも鋳造金属に引け巣が形成される温度
時間内,溶融状態が保持されることになる。押湯を使っ
て溶湯補給すると、パイプの体積の約10〜20倍以上の溶
湯が必要となる。The molten metal is filled into the refractory pipe 1 and the molten metal in the pipe is induction-heated to solidify and cool the cast metal in the mold while maintaining the molten state in the molten state. The molten metal in the molten pipe serves as a feeder during normal casting, and the molten metal is replenished without hindrance to the shrinkage cavities formed by solidification and cooling of the cast metal in the mold. As described above, the molten state is maintained at least within the temperature and time at which shrinkage cavities are formed in the cast metal. When the molten metal is replenished using a riser, the molten metal needs to be about 10 to 20 times the volume of the pipe.
【0013】一般に金属の凝固では凝固時に体積が収縮
するが、鋳鉄では、共晶凝固が始まると逆に体積が膨脹
する。特に球状黒鉛鋳鉄,CV黒鉛鋳鉄では、鋳型に凝
固物のスキンが形成され、内部が粥状凝固する凝固形態
をとり、共晶凝固時の体積膨脹はとりわけ顕著であり、
本発明方法の場合でいえばパイプ内溶湯の液面が大きく
押し上げられる。しかして、共晶凝固のある時点で誘導
加熱を中止して、パイプ内の溶湯を凝固させて鋳造金属
の体積膨脹を拘束すると、それ以後の体積膨脹は逃げ道
を失い、体積膨脹分は、鋳造金属の鋳造組織を圧縮する
力に転化され、鋳造組織が緻密化される。In general, in the solidification of metal, the volume shrinks during solidification, but in cast iron, the volume expands conversely when eutectic solidification starts. In particular, in the case of spheroidal graphite cast iron and CV graphite cast iron, a solidified skin is formed in the mold, and the inside takes a solidified form in which the inside is solidified, and the volume expansion during eutectic solidification is particularly remarkable.
In the case of the method of the present invention, the liquid level of the molten metal in the pipe is greatly pushed up. However, at some point during eutectic solidification, induction heating is stopped and the molten metal in the pipe is solidified to restrain the volume expansion of the cast metal.After that, the volume expansion loses its escape route, and the volume expansion is This is converted into a force for compressing the metal cast structure, and the cast structure is densified.
【0014】一方、上記体積膨脹の拘束によって体積膨
脹分を鋳造金属の鋳造組織を圧縮する力に転化させる
と、溶湯が加圧されて中子の砂にしみ込んで、砂の焼き
付きが起こったり、最悪の場合、中子の中に溶湯が入っ
てしまい砂が溶融金属で短絡される事態が生じうる。ま
た体積膨脹の逃げ道が閉ざされた結果、鋳物が外に向か
って膨脹して鋳型の外型が張出してくる外型の型張りも
起こりうる。On the other hand, when the volume expansion is converted into a force for compressing the casting structure of the cast metal by the restraint of the volume expansion, the molten metal is pressurized and penetrates into the core sand to cause seizure of the sand. In the worst case, the molten metal may enter the core and short-circuit the sand with the molten metal. In addition, as a result of closing the escape path for volume expansion, the outer mold may be stretched in which the casting expands outward and the outer mold of the mold projects.
【0015】上述のように鋳造組織の緻密化と、中
子砂への溶湯差し込みや外型の型張りの抑制という二律
背反的な課題は簡単には両立させにくいので、鋳鉄の種
類のほか、製品ないしは鋳型の形状,寸法等に応じて重
要な方の課題に主眼を置きながらも、他方の課題が犠牲
とならない範囲のバランスのよい時期にパイプ内の溶湯
が凝固するように誘導加熱の中止タイミングを選定する
ことが肝要である。As described above, it is difficult to easily achieve the trade-offs between densification of the casting structure and suppression of the insertion of the molten metal into the core sand and the molding of the outer mold. Or the timing of stopping the induction heating so that the molten metal in the pipe is solidified at a well-balanced time within a range that does not sacrifice the other problem, while focusing on the important problem depending on the shape and size of the mold It is important to select
【0016】例えば、片状黒鉛組織を持つ鋳鉄の中でC
r,Mo,P,Cu,Sn,Sb等の合金元素を添加さ
れた低合金鋳鉄は、微小引け巣の多い組織になりやす
く、鋳造の難しい鋳鉄である。この様な鋳鉄は、本発明
では、共晶凝固終了間際あるいは終了時までパイプ内溶
湯を溶融状態に保って十分に溶湯補給してやると、健全
な組織のものが得られる。Cr:0〜2%,Mo:0〜
2%,Ni:0〜2%,Co:0〜1%,P:0〜1
%,Cu:0〜2%,Sn:0〜0.1%,Sb:0〜0.1
%等の合金元素を持つ低合金片状黒鉛鋳鉄などがこれに
該当する。For example, in cast iron having a flaky graphite structure, C
Low-alloy cast iron to which alloying elements such as r, Mo, P, Cu, Sn, and Sb are added tends to have a structure with many shrinkage cavities and is difficult to cast. In the present invention, such a cast iron has a sound structure when the molten metal in the pipe is maintained in a molten state and is sufficiently replenished just before or until the end of the eutectic solidification. Cr: 0 to 2%, Mo: 0 to 0%
2%, Ni: 0 to 2%, Co: 0 to 1%, P: 0 to 1
%, Cu: 0 to 2%, Sn: 0 to 0.1%, Sb: 0 to 0.1%
For example, low alloy flake graphite cast iron having an alloying element such as%.
【0017】又、前記球状黒鉛,CV黒鉛鋳鉄等の引け
巣欠陥を重点的に抑制したい場合、共晶凝固の始まりか
ら概ね前半期内の特定時点までパイプ内が溶融状態に保
持されるように誘導加熱を中止するタイミングを選定す
れば良く、共晶凝固の開始時点や開始直後が加熱中止の
好適タイミングとなることもある。焼付き,差込みを重
点的に抑制したい場合は、共晶凝固の概ね後半期内の特
定時点までパイプ内が溶融状態に保持されるように誘導
加熱を中止するタイミングを選定すれば良く、共晶凝固
の終了間際や終了時点、更には終了後、即ち凝固の終了
が確認された時点が適正タイミングとなることもある。
中子の焼付き、中子への溶湯の差込みの防止あるいは引
け巣欠陥の防止にも、上記のような後半寄りでの加熱中
止が有利に作用する。なお、上述の共晶凝固の前半期と
は、凝固開始から凝固が半ば進んだ時期迄を、又、後半
期とは、凝固が半ば進んだ時期から凝固終了後迄を指す
目安的な意味合いのものであるが、時間的に二分した前
半,後半と概ね合致すると考えてよい。When it is desired to mainly suppress shrinkage porosity defects such as the above-mentioned spheroidal graphite and CV graphite cast iron, the inside of the pipe is maintained in a molten state from the start of eutectic solidification to a specific point in time in the first half of the first half. The timing at which induction heating is stopped may be selected, and the starting point or immediately after the start of eutectic solidification may be a suitable timing for stopping heating. If you want to suppress seizures and insertions, you can select the timing to stop induction heating so that the inside of the pipe is maintained in a molten state until a specific point in the second half of eutectic solidification. The appropriate timing may be just before or after the end of coagulation, or even after the end, that is, when the end of coagulation is confirmed.
The above-described stoppage of the heating in the latter half of the length of the core is also advantageous in preventing seizure of the core, insertion of the molten metal into the core, and prevention of shrinkage cavity defects. The first half of the above-mentioned eutectic solidification is from the start of solidification to the time when solidification has progressed halfway, and the latter half has a rough meaning from the time when the solidification has progressed halfway to after solidification has ended. Although it is a thing, it may be considered that the first half and the second half which are temporally divided substantially match.
【0018】ここで、実際の鋳物の共晶凝固の開始と終
了は何を使って知るかが問題となる。鋳物に熱電対を差
込んで溶湯の熱分析をすれば、共晶凝固を明確に把握で
きるが、これは鋳物の中に熱電対を差込んだ孔が残るの
で許されない場合が多い。よって、温度以外の代用特性
値で共晶凝固の開始と終了を識別するのが好ましく、た
とえば耐火性パイプの中の溶湯の湯面レベルの変化で検
知する方法が推奨される。Here, it is important to know how to actually start and end the eutectic solidification of the casting. Eutectic solidification can be clearly understood by inserting a thermocouple into the casting and performing a thermal analysis of the molten metal. However, this is often not allowed because a hole in which the thermocouple is inserted remains in the casting. Therefore, it is preferable to identify the start and end of the eutectic solidification by a substitute characteristic value other than the temperature. For example, a method of detecting the change in the level of the molten metal in the refractory pipe is recommended.
【0019】即ち、鋳型内の溶湯自体の収縮あるいは、
注湯後の鋳型の型張りにともない、耐火性パイプ内の溶
湯の湯面は下降する。次に共晶凝固が始まると、体積が
膨脹するために、湯面の下降が一旦停止し、次いで湯面
の上昇が始まる。この、湯面下降→下降停止→湯面上昇
という推移における下降停止が共晶凝固の始まりの予兆
であり、これで共晶凝固の始まりを知ることができる。
共晶凝固の終了時には、湯面上昇が徐々にゆるやかにな
ってから止まるので、これで共晶凝固の終了を知ること
ができる。なお、共晶凝固の開始時期及び終了時期を予
め求めておいて、これを基に本発明方法による鋳造を行
ってもよく、又、鋳造作業中に上記時期を検知しながら
本発明方法を実施してもよい。That is, shrinkage of the molten metal itself in the mold or
The level of the molten metal in the refractory pipe falls as the mold is cast after pouring. Next, when the eutectic solidification starts, the lowering of the molten metal level temporarily stops because the volume expands, and then the rising of the molten metal level starts. This descent stop in the transition of the descent of the metal surface → stop of descent → elevation of the molten metal is a sign of the start of the eutectic solidification, and it is possible to know the start of the eutectic solidification.
At the end of the eutectic solidification, the rise in the molten metal level gradually stops and then stops, so that the end of the eutectic solidification can be known. The start time and end time of the eutectic solidification may be determined in advance, and the casting according to the method of the present invention may be performed on the basis thereof, or the method of the present invention may be performed while detecting the above-mentioned time during the casting operation. May be.
【0020】パイプ内の湯面レベルの変化は、超音波等
を使った非接触式の液面センサーあるいは直接接触させ
た液面センサー等適宜使用して検知できるが、簡便な方
法として湯面に耐火性の浮子を浮かせておき、浮子の変
位で検知する方法が推奨される。The change in the level of the liquid level in the pipe can be detected by using a non-contact type liquid level sensor using ultrasonic waves or the like or a liquid level sensor directly contacted as appropriate. It is recommended to use a method in which a refractory float is floated and the displacement is detected.
【0021】更には、電気的あるいは磁気的特性値の変
化で検知する方法も簡便である。例えば、誘導加熱コイ
ルで囲まれたパイプ内の湯面レベルが変化すると、コイ
ルのインダクタンスが変化するので、このインダクタン
スの変化パターンと凝固のパターンの相関的な関係か
ら、共晶凝固の開始,終了を検知することができる。い
ずれの場合も、検知した湯面レベルの変化の信号に連動
して誘導加熱の作動,停止といった動作を制御する回路
を設けて自動化し、更にはプログラム制御化することが
できる。Further, a method of detecting by a change in an electric or magnetic characteristic value is also simple. For example, when the level of the molten metal in the pipe surrounded by the induction heating coil changes, the inductance of the coil changes. Therefore, the correlation between the change pattern of the inductance and the solidification pattern indicates the start and end of the eutectic solidification. Can be detected. In either case, a circuit for controlling the operation such as activation and stop of the induction heating in conjunction with the detected signal indicating the change in the level of the molten metal level can be provided for automation and further for program control.
【0022】なお、本発明で鋳鉄とは、片状黒鉛鋳鉄,
球状黒鉛鋳鉄,CV黒鉛鋳鉄等、黒鉛を晶出する鋳鉄
等、成分の如何を問わず、すべて包含するものであり、
とりわけ本発明方法は球状黒鉛鋳鉄,CV黒鉛鋳鉄,低
合金片状黒鉛鋳鉄に有効であり、特に球状黒鉛鋳鉄,C
V黒鉛鋳鉄の鋳造に最も適している。In the present invention, cast iron is flaky graphite cast iron,
Spheroidal graphite cast iron, CV graphite cast iron, etc., including graphite crystallization cast iron, etc.
In particular, the method of the present invention is effective for spheroidal graphite cast iron, CV graphite cast iron, and low alloy flake graphite cast iron.
Most suitable for casting V graphite cast iron.
【0023】[0023]
実施例1 従来方式の鋳造法と本発明鋳造法について比較した。本
発明方式は図1に示す鋳型を、従来方式は、図4に示す
発熱押湯鋳型をそれぞれ使用した。 <本発明鋳型(図1)> 鋳型キャビティー寸法:131×131×131mm 鋳型寸法 :200×200×250mm 鋳型キャビティー部はCO2プロセスで造型した。 耐火性パイプ :内管、外管二重管方式を採用 内管の寸法 :内径20mm,外径30mm,長さ200mm 内管の材質 :シャモット質 外管の寸法 :内径60mm,外径75mm,長さ200mm 外管の材質 :内管と同材質のシャモット質 内管,外管は図1のように鋳型の上から差し込んで立設
した。鋳型内の鋳造金属の温度測定のために熱電対7を
図1の様に鋳型の中心まで差し込んで固定した。 <従来鋳型> 鋳型 :図1の鋳型と同じ。 鋳型の製法:図1の鋳型と同じCO2プロセスで造型。 鋳型上部に図4で示したような釣鐘形状の発熱保温材8
(フォセコ・ジャパン社製)を載置した。発熱保温部の
釣鐘状部の体積は鋳型キャビティー体積の約10%。 <溶湯組成>FCD−450材質で、一般に供されてい
る下記組成の球状黒鉛鋳鉄を使用した。成分組成は以下
の通り(重量%) C Si Mn P S Mg 3.65 2.39 0.22 0.031 0.009 0.034 <鋳造条件> 溶解温度 :1510℃ 球状化処理温度 :1480℃ 鋳込温度 :1400℃ 球状化処理 :球状化剤OGRC3: 1.4%添加 取鍋置注法による <誘導加熱>注湯後、誘導コイルを耐火性パイプに嵌入
し、周波数20kHz、出力9kWで加熱を開始し、鋳型に差
し込んだ熱電対で溶湯温度測定し、共晶凝固が始まった
時点で誘導加熱を中止した。なお、従来鋳型のものにつ
いては鋳型内でそのまま冷却した。 [結果] <本発明方式>冷却後鋳型から取り出し切断して引けの
状況を調べた。本発明のものについては、耐火性パイプ
内部の金属、および鋳型キャビティー内の金属、いずれ
にも引けはまったく認められなかった。耐火性パイプ内
部の金属は、わずか2分で切除できた。 ミクロ組織 :鋳物を二つに切断し切断面のミク
ロ組織を観察した。組織は緻密で、微小引け巣は認めら
れなかった。 <従来方式> 発熱押湯鋳型 :鋳物鋳型キャビティー内金属、押
湯部、いずれにも引けはなかった。ただし、押湯部の切
断除去に12分必要とした。 ミクロ組織 :鋳物を二つに切断し切断面のミク
ロ組織観察をした。ミクロシュリンケージは認められな
かった。 以上のテストで、本発明方法は、従来の大きな押湯と同
じような押し湯効果があることを確認できた。また、型
ばらし後の押湯部(耐火性パイプ内部の金属)除去作業
は従来の押し湯に比べ極めて短時間で実施でき、また押
し湯量も数百分の一に減らすことができ、省力、省人、
省エネに極めて効果があることが確認できた。また、共
晶凝固開始時、誘導加熱を停止することによって鋳造組
織を緻密化できることが確認できた。Example 1 A comparison was made between the conventional casting method and the casting method of the present invention. In the method of the present invention, the mold shown in FIG. 1 was used, and in the conventional method, the heating feeder mold shown in FIG. <Mold of the Present Invention (FIG. 1)> Mold cavity size: 131 × 131 × 131 mm Mold size: 200 × 200 × 250 mm The mold cavity was formed by a CO 2 process. Fire-resistant pipe: Double pipe of inner pipe and outer pipe adopted Inner pipe dimensions: Inner diameter 20mm, outer diameter 30mm, length 200mm Inner pipe material: chamotte quality Outer pipe dimensions: inner diameter 60mm, outer diameter 75mm, length Material of outer tube: Outer tube material: Chamotte material of the same material as the inner tube The inner tube and the outer tube were inserted from the top of the mold as shown in Fig. 1 and erected. In order to measure the temperature of the cast metal in the mold, a thermocouple 7 was inserted to the center of the mold and fixed as shown in FIG. <Conventional mold> Mold: Same as the mold in FIG. Mold making method: Molding by the same CO 2 process as the mold in FIG. A bell-shaped heat insulating material 8 as shown in FIG.
(Manufactured by Foseco Japan). The bell-shaped part of the heat insulation part is about 10% of the mold cavity volume. <Molten metal composition> Spheroidal graphite cast iron of the following composition, which is generally made of FCD-450, was used. The component composition is as follows (% by weight): C Si Mn P S Mg 3.65 2.39 0.22 0.031 0.009 0.034 <Casting conditions> Melting temperature: 1510 ° C Spheroidizing temperature: 1480 ° C Pouring temperature: 1400 ° C Spheroidizing: Spheroidizing OGRC3: 1.4% added By ladle placing and injection <Induction heating> After pouring, an induction coil is inserted into a refractory pipe, heating is started at a frequency of 20 kHz and an output of 9 kW, and the temperature of the molten metal is inserted by a thermocouple inserted into a mold. The induction heating was stopped when the eutectic solidification started. In addition, the thing of the conventional mold was cooled as it was in the mold. [Results] <Method of the Present Invention> After cooling, the mold was taken out from the mold, cut and examined for shrinkage. In the case of the present invention, no shrinkage was observed in any of the metal inside the refractory pipe and the metal inside the mold cavity. The metal inside the refractory pipe could be removed in just two minutes. Microstructure: The casting was cut into two, and the microstructure of the cut surface was observed. The tissue was dense and no micro-shrinkage cavities were observed. <Conventional method> Heating feeder mold: There was no contraction in any of the metal and the feeder in the cavity of the casting mold. However, it took 12 minutes to cut and remove the riser. Microstructure: The casting was cut into two parts, and the microstructure of the cut surface was observed. No microshrinkage was observed. From the above test, it was confirmed that the method of the present invention has the same feeder effect as a conventional large feeder. In addition, the work of removing the feeder part (metal inside the refractory pipe) after removing the mold can be performed in a much shorter time than conventional feeder, and the amount of feeder can be reduced to several hundredths. Labor saving,
It was confirmed that energy saving was extremely effective. It was also confirmed that the casting structure could be densified by stopping the induction heating at the start of the eutectic solidification.
【0024】実施例2(砂中子を使用する例) シリンダーヘッドには迷路の様に細い冷却水循環路が通
っている。細い循環路は細い砂中子を入れて鋳造する。
中子砂の焼き付き、溶湯の中子への差し込みで中子砂が
取れなくなったり、穴が塞がるトラブルが多発する。本
例はディーゼルエンジンのシリンダーヘッドについてテ
ストしたものである。材料としてはCV黒鉛鋳鉄を使用
した。概ね420(L)×350(W)×200(H)mmの鋳型キャビィテ
ィーの中にジャケット中子をセット、その最も細い箇所
は、φ12mm,長さ25mm。砂中子の材質,製法は、ウオー
タージャケット中子についてはシェル砂使用(フェノー
ルレジン:3.2%)、吸,排気ポート中子についてはCO2
砂(水ガラス:5.5%、CO2ガス:9%) 締付けボルト中子、寄せ中子はフラン砂使用(フランレ
ンジ:0.7%、キャタリスト:レジン対比で40%) <本発明鋳型> 鋳型の製法 :フラン自硬性砂プロセスで造型 耐火性パイプ :内管、外管二重管方式を採用 内管の寸法 :内径30mm,外径40mm,長さ200mm 内管の材質 :シャモット質 外管の寸法 :内径60mm,外径75mm,長さ200mm 外管の材質 :シャモット質 内管、外管は鋳型の上から差し込んで立設した。 <従来鋳型>発熱押湯鋳型使用。鋳型上部に発熱保温材
(フォセコ・ジャパン社製)を載置した。 <溶湯組成>下記組成でCV黒鉛鋳鉄を鋳造した。(重
量%) C Si Mn P S Mg 3.75 2.52 0.26 0.028 0.018 0.012 <鋳造条件> 溶解温度 :1520℃ CV化処理温度 :1520℃ 鋳込み温度 :1400℃ CV黒鉛化処理 :0.95%添加(CVアロイ:大阪特殊合金(株)製) 取鍋置注法による。 <誘導加熱>注湯後、誘導コイルを耐火性パイプに嵌入
し、周波数20kHz、出力12kWで加熱を開始し、鋳型のパ
イプ直下部に差し込んだ熱電対で溶湯温度測定し、共晶
凝固が終了したことを確認した後誘導加熱を中止した。
なお、従来鋳型のものについては鋳型内でそのまま冷却
した。 [結果]本方法で20例繰り返し鋳造した。中子の砂の焼
き付きは皆無で、救済不可能なほど中子へ溶湯が差し込
んだのは1例も認められなかった。また外型の型張りも
認められなかった。本方法では、焼付き,溶湯の差し込
み防止,外型の型張り防止に著効があることが確認でき
た。因みに従来方法では、焼付き,溶湯の差し込みが10
0例中約10例認められ、そのうち救済の仕様がなく廃棄
されるのも2〜3例見られた。Embodiment 2 (Example of using a sand core) A cooling water circulation path as narrow as a maze passes through the cylinder head. The narrow circuit is cast with a fine sand core.
Core sand is burned in, and core sand cannot be removed due to the insertion into the core of the molten metal. This example tests a cylinder head of a diesel engine. CV graphite cast iron was used as the material. The jacket core is set in a mold cavity of approximately 420 (L) x 350 (W) x 200 (H) mm. The narrowest part is φ12 mm and length 25 mm. The material and manufacturing method of the sand core are shell sand used for the water jacket core (phenol resin: 3.2%), and CO 2 for the intake and exhaust port cores.
Sand (water glass: 5.5%, CO 2 gas: 9%) Tightening bolt core and squeezing core use furan sand (furan range: 0.7%, catalyst: 40% compared to resin) <Mold of the present invention> Manufacturing method: Molding with the self-hardening sand process of furan Refractory pipe: Adopt inner pipe, outer pipe double pipe method Inner pipe dimensions: Inner diameter 30mm, outer diameter 40mm, length 200mm Inner pipe material: Chamotte quality Outer pipe dimensions : Inner diameter 60 mm, outer diameter 75 mm, length 200 mm Outer pipe material: Chamotte inner pipe and outer pipe were inserted from above the mold and erected. <Conventional mold> Heating feeder mold is used. An exothermic heat insulating material (manufactured by Foseco Japan) was placed on the upper part of the mold. <Molten metal composition> CV graphite cast iron was cast with the following composition. (Weight%) C Si Mn PS Mg 3.75 2.52 0.26 0.028 0.018 0.012 <Casting conditions> Melting temperature: 1520 ° C CV conversion temperature: 1520 ° C Casting temperature: 1400 ° C CV graphitization: 0.95% added (CV alloy: Osaka Made by Tokuyo Gokin Co., Ltd.) <Induction heating> After pouring, the induction coil is inserted into a refractory pipe, heating is started at a frequency of 20 kHz and an output of 12 kW, the temperature of the molten metal is measured with a thermocouple inserted just below the pipe of the mold, and eutectic solidification is completed. After confirming that the heating was completed, the induction heating was stopped.
In addition, the thing of the conventional mold was cooled as it was in the mold. [Result] Twenty cases were repeatedly cast by this method. There was no seizure of the sand in the core, and no case was found in which the molten metal had been inserted into the core so that it could not be remedied. Also, no external mold tension was observed. It was confirmed that this method was extremely effective in preventing seizure, insertion of molten metal, and prevention of mold closing of the outer mold. By the way, in the conventional method, seizure and insertion of molten metal are 10
Approximately 10 of the 0 cases were recognized, and a few were discarded without any relief specifications.
【0025】実施例3(低合金ねずみ鋳鉄の例) 従来方式の鋳造法と本発明鋳造法について比較した。本
発明方式は図1に示す鋳型。従来方式は、図4に示す発
熱押湯鋳型を使用した。 <本発明鋳型> 鋳型キャビティー寸法:131×131×131mm 鋳型寸法 :200×200×250mm 鋳型キャビティー部はCO2プロセスで造型した。 耐火性パイプ :内管、外管二重管方式を採用 内管の寸法 :内径20mm,外径30mm,長さ200mm 内管の材質 :シャモット質 外管の寸法 :内径60mm,外径75mm,長さ200mm 外管の材質 :内管と同材質のシャモット質 内管,外管は図1のように鋳型の上から差し込んで立設
した。鋳型内の鋳造金属の温度測定のために熱電対を図
の様に鋳型の中心まで差し込んで固定した。 <従来鋳型> 鋳型 :図4の鋳型と同じ。 鋳型の製法:図4の鋳型と同じCO2プロセスで造型。 鋳型上部に図4で示したような釣鐘形状の発熱保温材8
(フォセコ・ジャパン社製)を載置した。発熱保温部の
釣鐘状部の体積は鋳型キャビティー体積の約10%。 <溶湯組成> 低合金片状黒鉛鋳鉄 成分組成は以下の通り C Si Mn P S Cu Cr 3.03 1.93 0.62 0.33 0.063 0.008 0.34 <鋳造条件> 溶解温度 :1530℃ 鋳込温度 :1395℃ <誘導加熱>注湯後、誘導コイルを耐火性パイプに嵌入
し、周波数20kHz、出力9kWで加熱を開始し、鋳型に差
し込んだ熱電対で溶湯温度測定し、共晶凝固終了時点で
誘導加熱を中止した。なお、従来鋳型のものについては
鋳型内でそのまま冷却した。 [結果] <本発明方式>冷却後鋳型から取り出し切断して引けの
状況を調べた。本発明のものについては、耐火性パイプ
内部の金属、および鋳型キャビティー内金属、いずれに
も引けはまったく認められなかった。 ミクロ組織 :鋳物を二つに切断し切断面のミク
ロ組織を観察した。組織は緻密で微小引け巣の存在は認
められなかった。 <従来方式> 発熱押湯鋳型 :鋳型キャビティー内金属、押湯部
に引け巣が発見された。 ミクロ組織 :鋳物を二つに切断し切断面のミク
ロ組織を観察した。微小引け巣が切断面の一部に観察さ
れた。 以上のテストで、本発明方法は、低合金ねずみ鋳鉄につ
いても、引け巣の発生,微小引け巣の発生の防止に著効
があることが確認できた。Example 3 (Example of low alloy gray cast iron) A comparison was made between the conventional casting method and the casting method of the present invention. The method of the present invention is a mold shown in FIG. In the conventional method, a heating feeder mold shown in FIG. 4 was used. <Mold of the Present Invention> Mold cavity size: 131 × 131 × 131 mm Mold size: 200 × 200 × 250 mm The mold cavity was formed by a CO 2 process. Fire-resistant pipe: Double pipe of inner pipe and outer pipe adopted Inner pipe dimensions: Inner diameter 20mm, outer diameter 30mm, length 200mm Inner pipe material: chamotte quality Outer pipe dimensions: inner diameter 60mm, outer diameter 75mm, length Material of outer tube: Outer tube material: Chamotte material of the same material as the inner tube The inner tube and the outer tube were inserted from the top of the mold as shown in Fig. 1 and erected. To measure the temperature of the cast metal in the mold, a thermocouple was inserted into the center of the mold as shown in the figure and fixed. <Conventional mold> Mold: Same as the mold in FIG. Mold production method: Molding by the same CO 2 process as the mold in FIG. A bell-shaped heat insulating material 8 as shown in FIG.
(Manufactured by Foseco Japan). The bell-shaped part of the heat insulation part is about 10% of the mold cavity volume. <Molten composition> Low alloy flake graphite cast iron The composition of the components is as follows: C Si Mn PS Cu Cr 3.03 1.93 0.62 0.33 0.063 0.008 0.34 <Casting conditions> Melting temperature: 1530 ° C Pouring temperature: 1395 ° C <Induction heating> Note After the hot water, the induction coil was inserted into a refractory pipe, heating was started at a frequency of 20 kHz and an output of 9 kW, the temperature of the molten metal was measured with a thermocouple inserted into a mold, and the induction heating was stopped at the end of the eutectic solidification. In addition, the thing of the conventional mold was cooled as it was in the mold. [Results] <Method of the Present Invention> After cooling, the mold was taken out from the mold, cut and examined for shrinkage. In the case of the present invention, no shrinkage was observed in any of the metal inside the refractory pipe and the metal inside the mold cavity. Microstructure: The casting was cut into two, and the microstructure of the cut surface was observed. The tissue was dense and no microscopic shrinkage cavities were observed. <Conventional method> Heating feeder mold: A shrinkage cavity was found in the metal in the mold cavity and the feeder section. Microstructure: The casting was cut into two, and the microstructure of the cut surface was observed. Micro shrinkage cavities were observed on a part of the cut surface. From the above test, it was confirmed that the method of the present invention was very effective in preventing shrinkage cavities and minute shrinkage cavities even in low alloy gray cast iron.
【0026】実施例4(シリンダーヘッドの例) 本例はディーゼルエンジン用シリンダーヘッドの鋳造に
本発明方式を適用したものである。 製品寸法 :570(L)×750(W)×445(H)mm 重量 :784kg 材質 :CV黒鉛鋳鉄 鋳型に使用した砂 :フラン砂(レジン0.8%、キャタ
リスト(対レジン)40%) CV化処理温度 :1510℃ CV化剤添加量 :バーミックアロイ(標品名)0.95
% 接種剤 :Fe−Si 0.8% 耐火性パイプの寸法:内径40mm、長さ7mm 本実施例で使用した鋳型に立設した耐火性パイプ周辺の
構造を図4に示す。 <溶湯組成>下記組成でCV黒鉛鋳鉄を鋳造した。(重
量%) C Si Mn P S Mg 3.75 2.52 0.26 0.028 0.018 0.013 <誘導加熱>注湯後、耐火性パイプに誘導コイルを遊嵌
し、周波数20kHz、出力4〜6kWで加熱を実施。約25分
で共晶凝固の始まりを現す陶管スリーブの中の溶湯液面
の上昇が始まった。上昇開始後、4分30秒経過し、70mm
上昇したろころで加熱を中止した。 [結果]中子の砂の焼き付き、溶湯の差し込みは皆無で
あった。外型の型張りも認められなかった。鋳造後の仕
上げ研掃時間は約50分。因みに釣鐘型の発熱保温材を使
った従来の方式の押湯で鋳造したとき、締め付けボルト
中子(φ57mm)、起動弁中子(φ30mm)の一部に砂の焼
付きが発生し、1個当りの仕上げ、研掃に4〜5時間を
要していた。本例は従来方式の約1/5で済ますことが
できた。Embodiment 4 (Example of Cylinder Head) In this embodiment, the present invention is applied to the casting of a cylinder head for a diesel engine. Product dimensions: 570 (L) x 750 (W) x 445 (H) mm Weight: 784 kg Material: CV graphite cast iron Sand used in the mold: Furan sand (resin 0.8%, catalyst (against resin) 40%) CV conversion Processing temperature: 1510 ° C CV agent addition amount: Vermic Alloy (brand name) 0.95
% Inoculant: Fe-Si 0.8% Dimensions of refractory pipe: inner diameter 40 mm, length 7 mm FIG. 4 shows the structure around the refractory pipe erected on the mold used in the present example. <Molten metal composition> CV graphite cast iron was cast with the following composition. (Weight%) C Si Mn P S Mg 3.75 2.52 0.26 0.028 0.018 0.013 <Induction heating> After pouring, the induction coil was loosely fitted into the refractory pipe and heated at a frequency of 20 kHz and an output of 4 to 6 kW. In about 25 minutes, the liquid level in the pot sleeve began to rise, indicating the onset of eutectic solidification. 4 minutes and 30 seconds after the start of ascent, 70 mm
The heating was stopped at the time of the rise. [Results] There was no burning of the core sand and no insertion of the molten metal. No outer mold was found. The finish cleaning time after casting is about 50 minutes. By the way, when casting with a conventional type of hot water using a bell-shaped heat insulating material, sand seizure occurred on a part of the tightening bolt core (φ57 mm) and a part of the starting valve core (φ30 mm), and one piece It took 4 to 5 hours for finishing and polishing. In this example, it was possible to reduce the cost by about 1/5 of the conventional method.
【0027】[0027]
1.球状黒鉛鋳鉄、CV黒鉛鋳鉄の組織の緻密化に多大の
効果がある。 2.中子砂の焼付き防止、中子への溶湯差し込み防止、外
型の型張り防止に多大の効果がある。 3.低合金片状黒鉛合金鋳鉄の鋳造欠陥の発生防止に多大
の効果がある。 4.押湯部分を極小化でき、鋳物歩留まりの大巾な改善が
できる。 5.押湯切り取りに要する作業時間を大巾に短縮できる。1. It has a great effect on densification of the structure of spheroidal graphite cast iron and CV graphite cast iron. 2. It has a great effect on preventing core sand from seizing, preventing molten metal from being inserted into the core, and preventing the outer mold from being closed. 3. It has a great effect in preventing the occurrence of casting defects in low alloy flake graphite alloy cast iron. 4. The feeder part can be minimized, and the casting yield can be greatly improved. 5. The working time required for cutting the riser can be greatly reduced.
【図1】本発明の実施例に使用した鋳型の構造例を説明
するための断面図。FIG. 1 is a cross-sectional view for explaining an example of the structure of a mold used in an embodiment of the present invention.
【図2】鋳型の一部と耐火性パイプが一体になった構造
を説明するための斜視図。FIG. 2 is a perspective view for explaining a structure in which a part of a mold and a refractory pipe are integrated.
【図3】本発明の実施例に使用した鋳型の要部を説明す
るための断面図。FIG. 3 is a cross-sectional view for explaining a main part of a mold used in an example of the present invention.
【図4】従来方式の鋳造に使用される鋳型の構造を説明
するための断面図。FIG. 4 is a cross-sectional view for explaining the structure of a mold used for conventional casting.
1 耐火性パイプ 2 鋳型本体 3 キャビティ 4 鋳型壁 5 補強用の芯材 6 誘導コイル DESCRIPTION OF SYMBOLS 1 Refractory pipe 2 Mold main body 3 Cavity 4 Mold wall 5 Core material for reinforcement 6 Induction coil
───────────────────────────────────────────────────── フロントページの続き (72)発明者 杉 山 隆 博 島根県出雲市神西沖町2400番地 ダイハツ 金属工業株式会社内 (72)発明者 松 原 洋 一 神奈川県川崎市川崎区殿町2丁目17番8号 第一高周波工業株式会社内 (72)発明者 平 山 鋼 太 郎 神奈川県川崎市川崎区殿町2丁目17番8号 第一高周波工業株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Takahiro Sugiyama 2400, Kansai-oki-cho, Izumo-shi, Shimane Inside Daihatsu Metal Industry Co., Ltd. No. 8 Daiichi Kogyo Kogyo Co., Ltd. (72) Inventor Kotaro Hirayama 2-17-8 Tonomachi, Kawasaki-ku, Kawasaki City, Kanagawa Prefecture
Claims (7)
ィーに連通するように耐火性パイプを立設して鋳型と耐
火性パイプに溶湯を注入し、該耐火性パイプの外側に配
置した誘導加熱コイルで該パイプ内の溶湯を誘導加熱し
て溶融状態に保持しながら鋳型内の鋳造金属を冷却させ
る鋳造方法を採用し、この際、前記耐火性パイプ内の溶
融状態が前記鋳型内の鋳造金属が共晶凝固を開始してか
ら終了する迄の時間内の所望時点まで保持されるよう
に、誘導加熱を中止するタイミングを選定することによ
って、鋳造金属の引け巣欠陥,中子への溶湯の差込み及
び外型の型張りを抑制することを特徴とする鋳鉄の鋳造
方法。1. A cast iron casting, in which a refractory pipe is erected so as to communicate with a mold cavity, molten metal is injected into the mold and the refractory pipe, and an induction heating coil is disposed outside the refractory pipe. A casting method in which the molten metal in the pipe is cooled while the molten metal in the pipe is induction-heated and kept in a molten state while cooling the molten metal in the mold is adopted. By selecting the timing of stopping the induction heating so that it is maintained until the desired time within the time from the start to the end of eutectic solidification, shrinkage porosity defects in the cast metal and insertion of the molten metal into the core And a method for casting cast iron, characterized by suppressing mold tension of an outer mold.
晶凝固の前半期の所望時点まで保持されるようにして、
鋳造金属の引け巣欠陥を重点的に抑制することを特徴と
する請求項1に記載の鋳鉄の鋳造方法。2. The molten state in the refractory pipe is maintained until a desired point in the first half of the eutectic solidification,
2. The method for casting cast iron according to claim 1, wherein shrinkage cavities of the cast metal are mainly suppressed.
晶凝固の後半期の所望時点まで保持されるようにして、
鋳造金属の中子への差込み及び外型の型張りを重点的に
抑制することを特徴とする請求項1に記載の鋳鉄の鋳造
方法。3. The molten state in the refractory pipe is maintained until a desired point in the latter half of the eutectic solidification,
The method for casting a cast iron according to claim 1, wherein insertion of a cast metal into a core and mold tension of an outer mold are mainly suppressed.
を、前記耐火性パイプ内の溶湯の湯面レベルの変化から
推定する請求項1〜3のいずれかに記載の鋳鉄の鋳造方
法。4. The method according to claim 1, wherein a transition from the start to the end of the eutectic solidification is estimated from a change in the level of the molten metal in the refractory pipe.
内の溶湯に耐火性浮子を浮かせ、該浮子の変位によって
検知することを特徴とする請求項4に記載の鋳鉄の鋳造
方法。5. The method according to claim 4, wherein the change in the level of the molten metal is detected by floating a refractory float on the molten metal in the refractory pipe and detecting the displacement of the float.
の外側に配置した誘導加熱コイルの電磁気的特性の変化
によって検知する請求項4に記載の鋳鉄の鋳造方法。6. The method according to claim 4, wherein the change in the level of the molten metal is detected by a change in the electromagnetic characteristics of an induction heating coil disposed outside the refractory pipe.
て誘導加熱の動作を制御する請求項4〜6のいずれかに
記載の鋳鉄の鋳造方法。7. The method for casting cast iron according to claim 4, wherein the operation of induction heating is controlled in conjunction with the signal of the change in the molten metal level.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21018597A JP4218993B2 (en) | 1997-07-22 | 1997-07-22 | Cast iron casting method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21018597A JP4218993B2 (en) | 1997-07-22 | 1997-07-22 | Cast iron casting method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH1133703A true JPH1133703A (en) | 1999-02-09 |
JP4218993B2 JP4218993B2 (en) | 2009-02-04 |
Family
ID=16585202
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21018597A Expired - Lifetime JP4218993B2 (en) | 1997-07-22 | 1997-07-22 | Cast iron casting method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4218993B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009255138A (en) * | 2008-04-17 | 2009-11-05 | Tajima Keikinzoku:Kk | Low-pressure casting apparatus and method |
US8056608B2 (en) | 2008-04-25 | 2011-11-15 | Goodwin Plc | Method of mitigating against thermal contraction induced cracking during casting of a super Ni alloy |
WO2014177052A1 (en) * | 2013-05-03 | 2014-11-06 | 燕山大学 | Induction heating and electromagnetic stirring device for riser head of steel ingot |
CN111627979A (en) * | 2019-02-27 | 2020-09-04 | 丰田自动车株式会社 | Semiconductor device and method for manufacturing the same |
CN114505455A (en) * | 2022-01-24 | 2022-05-17 | 武汉西赛冶金工程有限责任公司 | Heating feeding method and device for vertical continuous casting blank |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11856678B2 (en) * | 2019-10-29 | 2023-12-26 | Senic Inc. | Method of measuring a graphite article, apparatus for a measurement, and ingot growing system |
-
1997
- 1997-07-22 JP JP21018597A patent/JP4218993B2/en not_active Expired - Lifetime
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009255138A (en) * | 2008-04-17 | 2009-11-05 | Tajima Keikinzoku:Kk | Low-pressure casting apparatus and method |
US8056608B2 (en) | 2008-04-25 | 2011-11-15 | Goodwin Plc | Method of mitigating against thermal contraction induced cracking during casting of a super Ni alloy |
WO2014177052A1 (en) * | 2013-05-03 | 2014-11-06 | 燕山大学 | Induction heating and electromagnetic stirring device for riser head of steel ingot |
CN111627979A (en) * | 2019-02-27 | 2020-09-04 | 丰田自动车株式会社 | Semiconductor device and method for manufacturing the same |
CN111627979B (en) * | 2019-02-27 | 2023-10-24 | 株式会社电装 | Semiconductor device and method for manufacturing the same |
CN114505455A (en) * | 2022-01-24 | 2022-05-17 | 武汉西赛冶金工程有限责任公司 | Heating feeding method and device for vertical continuous casting blank |
Also Published As
Publication number | Publication date |
---|---|
JP4218993B2 (en) | 2009-02-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
SU1066464A3 (en) | Process and mold for making cooling element of metallurgical furnace | |
KR100939699B1 (en) | Treating molten metals by moving electric arc | |
JP3080582B2 (en) | Metal casting method | |
AU2002222478A1 (en) | Treating molten metals by moving electric arc | |
JP4218993B2 (en) | Cast iron casting method | |
CN111468695A (en) | Inner chill process for improving shrinkage porosity of vermicular iron cylinder cover | |
CA1207124A (en) | Metal founding | |
CN111468703B (en) | Casting method of double-liquid composite hammer head | |
US6245287B1 (en) | Molten metal vessel and molten metal holding furnace | |
JP3370649B2 (en) | Horizontal continuous casting of hypoeutectic cast iron | |
JP3289118B2 (en) | Shrinkage hole reduction device in continuous casting | |
SU616053A1 (en) | Chill mould | |
US6176298B1 (en) | Continuous casting mould | |
JPH1133678A (en) | Mold for casting metal | |
JP2023025999A (en) | metal casting method | |
JP3061794B1 (en) | Mold for horizontal continuous casting of hypoeutectic cast iron and horizontal continuous casting method | |
JPS5935311B2 (en) | Manufacturing method of cooling mold for continuous casting | |
JPS6055211B2 (en) | Horizontal continuous casting method | |
SU1296283A1 (en) | Machine for producing hollow ingots | |
Joshi | Aluminium Foundry Practice | |
JPH05337600A (en) | Feeder head sleeve with neck-down core | |
SU450637A1 (en) | Metal rod melted | |
RU2016696C1 (en) | Metal mould | |
ALLEN et al. | The iron readily separates from the molten slag especially if slag forming compounds such as calcium fluoride are added and consequently this “Thermit mixture” is and has been extensively used for welding rails, for welding jobs generally and for all those jobs where liquid steel is required and where no melting equipment is available. Such a material is also used in steelworks and foundries | |
AU2008200261B2 (en) | Treating molten metals by moving electric arc |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040513 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20051028 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070612 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070802 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070918 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071012 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20081014 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20081111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111121 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111121 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121121 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121121 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131121 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |