JPH11335868A - Surface treatment and apparatus therefor - Google Patents

Surface treatment and apparatus therefor

Info

Publication number
JPH11335868A
JPH11335868A JP10153709A JP15370998A JPH11335868A JP H11335868 A JPH11335868 A JP H11335868A JP 10153709 A JP10153709 A JP 10153709A JP 15370998 A JP15370998 A JP 15370998A JP H11335868 A JPH11335868 A JP H11335868A
Authority
JP
Japan
Prior art keywords
gas
flow path
active species
processing
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10153709A
Other languages
Japanese (ja)
Other versions
JP3799819B2 (en
Inventor
Takeshi Miyashita
武 宮下
Yasuhiko Asano
康彦 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP15370998A priority Critical patent/JP3799819B2/en
Publication of JPH11335868A publication Critical patent/JPH11335868A/en
Application granted granted Critical
Publication of JP3799819B2 publication Critical patent/JP3799819B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method capable of generating a stable and uniform plasma discharge in the surface treatment of an indirect discharge system by the plasma discharge under atmospheric pressure to form excitation active species, rapidly transporting the thus formed excitation active species from a discharge region and efficiently treating the surface of the work even in a remote position, and an apparatus therefor. SOLUTION: In the process of subjecting the surface treatment of the work 18 by generating the gas discharge in a prescribed gas under the atmospheric pressure or a pressure near the same to form the excitation active species, feeding the treating gas contg. the excitation active species near to the surface of the work and exposing the surface to the excitation active species, the flow velocity of the treating gas fed from the discharge region is accelerated by a pressure difference between the inside of a gas flow passage 12 and the atmosphere near the work 18 or providing the flow passage of the treating gas with a throttling means. Further, the flow passage of the treating gas is provided with a heating means, such as electric heater to maintain the high temp. of the treating gas sent near to the surface of the work 18.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、例えば被処理物の
表面をエッチング、アッシング、改質又は薄膜を形成す
る表面処理技術に関し、特に大気圧又はその近傍の圧力
下での気体放電によるプラズマ中に生成される励起活性
種を用いて被処理物を表面処理するための方法及び装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface treatment technique for etching, ashing, modifying, or forming a thin film on the surface of an object to be treated, and more particularly, to plasma treatment by gas discharge at or near atmospheric pressure. TECHNICAL FIELD The present invention relates to a method and an apparatus for surface-treating an object to be treated by using an excited active species generated at a time.

【0002】[0002]

【従来の技術】最近、例えば特開平7−245192号
公報に記載されるように、大気圧付近の圧力下でのプラ
ズマ放電により生成される化学的に活性な励起活性種を
利用して、真空設備を必要としない比較的低コストで簡
単な構成により、被処理物の表面を様々に処理する表面
処理技術が提案されている。大気圧下でのプラズマによ
る表面処理には、被処理物との間での直接放電により作
られるプラズマに被処理物を直接曝露する直接放電方式
と、1対の電極間での気体放電により作られたプラズマ
により生成される励起活性種を輸送して被処理物を曝露
する間接放電方式とがある。
2. Description of the Related Art Recently, as described in, for example, JP-A-7-245192, a vacuum is produced by utilizing a chemically active excited species generated by plasma discharge under a pressure near atmospheric pressure. Surface treatment techniques for variously treating the surface of an object to be treated with a relatively low-cost and simple configuration that does not require equipment have been proposed. Surface treatment using plasma under atmospheric pressure involves a direct discharge method in which the object is directly exposed to plasma created by a direct discharge between the object and a gas discharge between a pair of electrodes. There is an indirect discharge method of exposing an object to be processed by transporting excited active species generated by generated plasma.

【0003】図5は、大気圧プラズマを用いた間接放電
方式による従来の表面処理装置の一例を示しており、誘
電体材料からなる1対の平行板1によりその間に画定さ
れる狭いガス流路2と、その両側に対向配置された1対
の電極3、4とを備える。ガス供給源5から放電用ガス
を送給しつつ、電源6から前記両電極間に高周波電圧を
印加すると、ガス流路2内で気体放電が発生してプラズ
マが作られる。このプラズマ中で前記ガスの励起活性種
が生成され、これを含む処理ガスが放電領域から前記ガ
ス流路を輸送されかつノズル7から噴射されて、前記励
起活性種が被処理物表面に曝露され、該表面に所望の処
理が行われる。
FIG. 5 shows an example of a conventional surface treatment apparatus using an indirect discharge method using atmospheric pressure plasma, in which a narrow gas flow path defined between a pair of parallel plates 1 made of a dielectric material. 2 and a pair of electrodes 3 and 4 disposed on both sides thereof. When a high frequency voltage is applied between the two electrodes from the power supply 6 while the discharge gas is being supplied from the gas supply source 5, a gas discharge is generated in the gas flow path 2 and plasma is generated. In the plasma, excited active species of the gas are generated, and a processing gas containing the excited active species is transported from the discharge region through the gas flow path and is ejected from the nozzle 7 to expose the excited active species to the surface of the workpiece. The desired treatment is performed on the surface.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、このよ
うなプラズマによる励起活性種は、一般に大気圧下では
不安定で寿命が短く、非常に短時間で元の安定した状態
に戻る。そのため、上述した従来の間接放電式表面処理
装置では、放電領域8とノズル7間の輸送距離をできる
限り短くして、常に十分な量の励起活性種が被処理物表
面に到達し得るようにする必要があり、装置の構造や表
面処理の適用範囲が制限されたり、処理能力が低下する
という問題があった。
However, such active species excited by plasma are generally unstable under atmospheric pressure, have a short life, and return to the original stable state in a very short time. Therefore, in the above-described conventional indirect discharge type surface treatment apparatus, the transport distance between the discharge region 8 and the nozzle 7 is made as short as possible so that a sufficient amount of excited active species can always reach the surface of the workpiece. Therefore, there is a problem that the structure of the apparatus and the applicable range of the surface treatment are limited, and the processing ability is reduced.

【0005】ガス供給源5から送給される放電用ガスの
流量を上げれば、それだけ速く励起活性種を含む処理ガ
スを離れた位置に到達させることができる。ところが、
放電用ガスに安価な窒素ガス、又は窒素及び酸素を含む
ガスを用いた場合、放電周波数をMHZオーダー程度ま
で高くすると、一般に大気圧下での放電は制御が難しく
なる。特に放電用ガスの速度を上げると、放電が不安定
になったり、均一で大きな放電が得られず、十分なプラ
ズマが形成されないという問題が生じる。
[0005] If the flow rate of the discharge gas supplied from the gas supply source 5 is increased, the processing gas containing the excited active species can reach the remote position more quickly. However,
When using low-cost nitrogen gas to the discharge gas, or a gas containing nitrogen and oxygen, the higher the discharge frequency to approximately MH Z-order, generally discharge at atmospheric pressure control is difficult. In particular, when the speed of the discharge gas is increased, there are problems that the discharge becomes unstable, a uniform and large discharge cannot be obtained, and sufficient plasma cannot be formed.

【0006】そこで、本発明は、上述した従来の問題点
に鑑みてなされたものであり、その目的とするところ
は、大気圧下でプラズマ放電による間接放電方式の表面
処理において、安定して均一なプラズマ放電を発生さ
せ、かつそれにより生成された励起活性種を放電領域か
らより速く輸送して、離れた位置であっても被処理物表
面を効率良く処理することができる方法及び装置を提供
することにある。
Accordingly, the present invention has been made in view of the above-mentioned conventional problems, and an object of the present invention is to provide an indirect discharge type surface treatment by plasma discharge under atmospheric pressure which is stably and uniformly performed. Provided is a method and apparatus capable of generating a simple plasma discharge and transporting the excited active species generated from the discharge region faster, so that the surface of the object to be processed can be efficiently treated even at a remote position. Is to do.

【0007】[0007]

【課題を解決するための手段】本発明は、上述した目的
を達成するためのものであり、被処理物を表面処理する
ために、大気圧またはその近傍の圧力下で所定のガス中
に気体放電を生じさせることにより前記ガスの励起活性
種を生成し、該励起活性種を含む処理ガスを被処理物表
面付近に送給して該表面を励起活性種に曝露させる過程
からなり、送給される処理ガスの流速を加速する過程を
更に含むことを特徴とする表面処理方法が提供される。
SUMMARY OF THE INVENTION The present invention has been made to achieve the above-mentioned object, and in order to surface-treat an object to be treated, a gas is introduced into a predetermined gas at or near atmospheric pressure. Generating an excited active species of the gas by causing a discharge, and sending a processing gas containing the excited active species to the vicinity of the surface of the object to be exposed to expose the surface to the excited active species; The method further comprises accelerating the flow rate of the processing gas to be performed.

【0008】このようにガス供給源からの放電ガスの流
量を上げる必要がないので放電が安定し、それにより高
密度のプラズマが作られてより多くの励起活性種を生成
することができ、かつその輸送距離が長くなっても短時
間で、元の安定した状態に戻る前に被処理物表面に到達
させることができるので、被処理物を効率よく表面処理
することができる。
As described above, since it is not necessary to increase the flow rate of the discharge gas from the gas supply source, the discharge is stabilized, whereby a high-density plasma can be generated to generate more excited active species, and Even if the transport distance is long, the object can reach the surface of the object before returning to the original stable state in a short time, so that the object can be efficiently surface-treated.

【0009】或る実施例では、特に被処理物表面付近の
雰囲気をその周辺から強制的に排気することにより、被
処理物表面付近における雰囲気の圧力を低下させると、
その圧力差により放電領域からの処理ガスの流れを加速
できるので好都合である。
In one embodiment, the pressure of the atmosphere near the surface of the object is reduced by forcibly exhausting the atmosphere near the surface of the object from the periphery thereof.
The pressure difference is advantageous because the flow of the processing gas from the discharge region can be accelerated.

【0010】本発明の別の側面によれば、所定のガスを
送給するためのガス流路と、該ガス流路内で前記ガスに
大気圧又はその近傍の圧力下で気体放電を発生させ、そ
れにより前記ガスの励起活性種を生成するための1対の
電源電極及び接地電極と、ガス流路から励起活性種を含
む処理ガスを被処理物表面に向けて噴出させるノズル
と、被処理物表面付近における雰囲気の圧力を低下させ
る減圧手段とからなることを特徴とする表面処理装置が
提供される。
According to another aspect of the present invention, there is provided a gas flow path for supplying a predetermined gas, and a gas discharge is generated in the gas flow path under the atmospheric pressure or a pressure close thereto. A pair of a power supply electrode and a ground electrode for generating excited active species of the gas, a nozzle for ejecting a processing gas containing the excited active species from a gas flow path toward a surface of the workpiece, A surface treatment apparatus is provided, which comprises pressure reducing means for reducing the pressure of the atmosphere near the surface of the object.

【0011】具体的には、前記減圧手段として、被処理
物表面付近から雰囲気を外部に強制的に排出するための
排気ポンプ、排気口などからなる排気手段を設けること
ができる。
Specifically, as the decompression means, an exhaust means including an exhaust pump, an exhaust port, and the like for forcibly exhausting the atmosphere from the vicinity of the surface of the workpiece to the outside can be provided.

【0012】別の実施例では、被処理物表面付近に送給
される処理ガスの流路を縮小することにより、その縮小
された流路部分を通過する際に処理ガスの速度が高くな
るので、輸送距離が長くても励起活性種を短時間で輸送
することができる。
In another embodiment, by reducing the flow path of the processing gas supplied near the surface of the processing object, the speed of the processing gas increases when passing through the reduced flow path portion. Even if the transport distance is long, the excited active species can be transported in a short time.

【0013】具体的には、放電領域から励起活性種を含
む処理ガスを被処理物表面に向けて噴出させるノズルま
での処理ガスの流路に絞り手段を設けると、該絞り手段
を通過する処理ガスの流速が高くなり、それだけより多
くの励起活性種を被処理物表面に到達させることがで
き、かつその輸送距離を長くすることができる。
More specifically, when a throttle means is provided in a flow path of a processing gas from a discharge region to a nozzle for jetting a processing gas containing an excited active species toward a surface of an object to be processed, the processing gas passing through the throttle means is provided. The flow velocity of the gas is increased, so that more excited active species can reach the surface of the object to be treated and the transport distance thereof can be increased.

【0014】前記絞り手段は、処理ガスを被処理物表面
に向けて噴出させるノズルにより構成することができ
る。また、前記絞り手段は、放電領域からノズルまで処
理ガスを輸送する流路の全長に亘って又はその一部に設
けることができる。
The throttle means may be constituted by a nozzle for jetting the processing gas toward the surface of the workpiece. Further, the throttle means can be provided over the entire length of the flow path for transporting the processing gas from the discharge region to the nozzle or at a part thereof.

【0015】更に本発明によれば、被処理物を表面処理
するために、大気圧またはその近傍の圧力下で所定のガ
ス中に気体放電を生じさせることにより前記ガスの励起
活性種を生成し、該励起活性種を含む処理ガスを被処理
物表面付近に送給してその表面を励起活性種に曝露させ
る過程からなり、送給される処理ガスを加熱する過程を
更に含むとからなることを特徴とする表面処理方法が提
供される。
According to the present invention, in order to surface-treat an object to be treated, a gas discharge is generated in a predetermined gas at or near atmospheric pressure to generate excited active species of the gas. Sending a processing gas containing the excited active species to the vicinity of the surface of the object to be processed to expose the surface to the excited active species, and further comprising a step of heating the fed processing gas. A surface treatment method is provided.

【0016】一般に気体の熱拡散は、その温度が高いほ
ど速く進む。従って、放電領域から送給される処理ガス
は、加熱することによってより有効に拡散させることが
できるので、より多くの励起活性種を輸送中に元の安定
した状態に戻すことなく、被処理物表面に到達させるこ
とができる。しかも、高温の処理ガスが噴射される被処
理物表面では化学反応が促進されて、処理速度が速くな
る。
In general, the thermal diffusion of a gas proceeds faster as its temperature is higher. Therefore, the processing gas supplied from the discharge region can be more effectively diffused by heating, and the object to be processed can be processed without returning more excited active species to the original stable state during transportation. Can reach the surface. In addition, the chemical reaction is promoted on the surface of the workpiece to which the high-temperature processing gas is injected, and the processing speed is increased.

【0017】具体的には、励起活性種を含む処理ガスを
放電領域から被処理物表面に向けて噴出させるまでの流
路に、処理ガスを加熱する電気ヒータ等の加熱手段を設
けることができる。
Specifically, a heating means such as an electric heater for heating the processing gas can be provided in a flow path until the processing gas containing the excited active species is ejected from the discharge region toward the surface of the workpiece. .

【0018】[0018]

【発明の実施の形態】図1は、本発明による表面処理装
置の好適な実施例を示している。この表面処理装置は、
ガラス板などの誘電体材料からなる2枚の矩形薄板11
を僅かな隙間をもって対向配置することにより、その内
側に画定される狭いスリット状のガス流路12と、これ
を挟むように配置された1対の電源電極13及び接地電
極14とを有する。ガス流路12の上端はガス供給源1
5に接続され、かつ下端のノズル部16には、その前後
方向に延長する処理ガスの流路制御板17が取り付けら
れている。ノズル部16及び流路制御板17の直ぐ下側
には、被処理物18が僅かな間隙をもって移動可能なテ
ーブル19上に載置される。
FIG. 1 shows a preferred embodiment of a surface treatment apparatus according to the present invention. This surface treatment device
Two rectangular thin plates 11 made of a dielectric material such as a glass plate
Are arranged to face each other with a small gap, thereby having a narrow slit-like gas flow path 12 defined inside thereof, and a pair of a power supply electrode 13 and a ground electrode 14 disposed so as to sandwich the gas flow path 12. The upper end of the gas flow path 12 is the gas supply source 1
The nozzle 16 at the lower end is connected to a processing gas flow path control plate 17 extending in the front-rear direction. Just below the nozzle section 16 and the flow path control plate 17, a workpiece 18 is placed on a movable table 19 with a slight gap.

【0019】本実施例の流路制御板17は、図5に関連
して説明した従来の流路制御板10と同様に、ノズル部
16からの処理ガスの流れを被処理物表面との間に画定
される狭い空間内に制限する。流路制御板17には、被
処理物表面を処理した後の処理ガスを前記空間から外部
に強制的に排出するために、排気ポンプに接続された排
気口20、21がノズル部16の前後両側に設けられて
いる。
The flow path control plate 17 of the present embodiment, like the conventional flow path control plate 10 described with reference to FIG. Within a narrow space defined by Exhaust ports 20 and 21 connected to an exhaust pump are provided at the front and rear of the nozzle section 16 in order to forcibly discharge the processing gas after processing the surface of the workpiece from the space to the outside. It is provided on both sides.

【0020】前記排気ポンプの能力は、ノズル部16近
傍における被処理物表面付近の雰囲気の圧力がガス流路
12内の圧力より低くなるように決定する。別の実施例
では、前記排気ポンプに代えてブロワなどを用いても、
同様の圧力差を生じさせることができる。両排気口2
0、21の位置は、ノズル部16から噴射された処理ガ
スが被処理物表面に沿って十分な距離を流れるように、
かつ外部から入ってくる空気の流量ができる限り少なく
なるように、ノズル部16及び流路制御板17の前後両
端双方から或る程度の距離をおいて前記流路制御板の中
間に設定する。
The capacity of the exhaust pump is determined so that the pressure of the atmosphere near the surface of the workpiece near the nozzle portion 16 is lower than the pressure in the gas passage 12. In another embodiment, even if a blower or the like is used instead of the exhaust pump,
Similar pressure differences can be created. Both exhaust ports 2
The positions of 0 and 21 are set so that the processing gas injected from the nozzle unit 16 flows a sufficient distance along the surface of the workpiece.
In order to minimize the flow rate of air entering from the outside, the distance is set at a certain distance from both the front and rear ends of the nozzle section 16 and the flow path control plate 17, and set at the middle of the flow control plate.

【0021】使用時には、従来の大気圧プラズマによる
表面処理と同様に、ガス供給源15から所定の放電ガス
を所定の流量で供給しつつ、電源22から両電極13、
14間に高周波電圧を印加して、安定した気体放電をガ
ス流路12内に発生させる。本実施例では、ガス供給源
15から放電ガスを高速で供給する必要がないので、放
電ガスに窒素ガス又は窒素と酸素との混合ガスを用いた
場合でも、常に安定した放電が得られる。この放電によ
り作られる高密度のプラズマにより励起活性種が多量に
安定して生成され、この励起活性種を含む処理ガスが、
ノズル部16から被処理物表面に向けて送給される。
In use, as in the case of the conventional surface treatment using atmospheric pressure plasma, a predetermined discharge gas is supplied from the gas supply source 15 at a predetermined flow rate, and the power supply 22 supplies the two electrodes 13.
A high-frequency voltage is applied between 14 and a stable gas discharge is generated in the gas channel 12. In the present embodiment, since it is not necessary to supply the discharge gas from the gas supply source 15 at a high speed, a stable discharge can always be obtained even when a nitrogen gas or a mixed gas of nitrogen and oxygen is used as the discharge gas. A large amount of excited active species is stably generated by the high-density plasma created by this discharge, and the processing gas containing this excited active species is
It is fed from the nozzle section 16 toward the surface of the workpiece.

【0022】このとき、前記排気ポンプの排気作用によ
り被処理物表面付近の雰囲気の圧力が適当に低下してい
るので、前記励起活性種を含む処理ガスは、ガス流路1
2内との圧力差により吸引されて、放電領域からノズル
部16に向けて従来より速い速度でガス流路12を通過
する。従って、前記処理ガスに含まれる多くの励起活性
種を元の安定した状態に戻る前に被処理物表面に到達さ
せることができ、処理速度及び効率が向上する。
At this time, since the pressure of the atmosphere near the surface of the object to be treated is appropriately reduced due to the evacuation action of the evacuation pump, the processing gas containing the excited active species is supplied to the gas flow path 1.
The gas is sucked by the pressure difference from the inside of the nozzle 2 and passes through the gas flow path 12 from the discharge region toward the nozzle portion 16 at a higher speed than the conventional one. Therefore, many excited active species contained in the processing gas can reach the surface of the workpiece before returning to the original stable state, and the processing speed and efficiency are improved.

【0023】また、本実施例では、テーブル19を矢印
Aの方向に駆動して被処理物18を移動させながら表面
処理を行うので、広い被処理物表面全面を効率よく良好
に処理できる。当然ながら、テーブル19を固定して表
面処理装置を移動可能にすることにより、同様に広い面
積を処理することができる。
In this embodiment, the table 19 is driven in the direction of arrow A to perform the surface treatment while moving the object 18, so that the entire surface of the object to be processed can be efficiently and satisfactorily processed. Naturally, by fixing the table 19 and making the surface treatment apparatus movable, a large area can be treated similarly.

【0024】図2は、図1に示す第1実施例の変形例を
示しており、被処理物18がハウジング23内に画定さ
れる密閉された狭い処理室24に配置される点が異な
る。ハウジング23の中央上部にはガス流路12が接続
されて、ノズル部16が前記処理室内に開口している。
ハウジング23の前後両端部には、図1の場合と同様に
排気ポンプに接続された排気口25、26が設けられて
いる。本実施例では、被処理物18が固定した位置に配
置されているが、別の実施例では、処理室24内で又は
処理室の中と外との間で搬送可能に構成することができ
る。
FIG. 2 shows a modification of the first embodiment shown in FIG. 1, and is different from the first embodiment in that an object 18 is disposed in a closed narrow processing chamber 24 defined in a housing 23. The gas flow path 12 is connected to the upper center of the housing 23, and the nozzle portion 16 is opened in the processing chamber.
Exhaust ports 25 and 26 connected to an exhaust pump are provided at both front and rear ends of the housing 23 as in the case of FIG. In the present embodiment, the workpiece 18 is arranged at a fixed position, but in another embodiment, the workpiece 18 can be transported inside the processing chamber 24 or between inside and outside the processing chamber. .

【0025】使用時には、ガス供給源15からガス流路
12内に放電ガスを供給し、かつ電源22から両電極1
3、14間に高周波電圧を印加して、気体放電を発生さ
せると同時に、前記排気ポンプを作動させる。安定した
放電より生成される多量の励起活性種を含む処理ガス
は、処理室24が適当に減圧されていることにより、放
電領域から従来より速い速度でガス流路12を通過し、
処理室24内に送給される。従って、同様に多くの励起
活性種を元の安定した状態に戻る前に被処理物表面に到
達させることができ、処理速度及び効率が向上する。
In use, a discharge gas is supplied from the gas supply source 15 into the gas flow channel 12, and both electrodes 1 are supplied from the power supply 22.
A high-frequency voltage is applied between 3 and 14 to generate gas discharge and at the same time to operate the exhaust pump. The processing gas containing a large amount of excited active species generated from the stable discharge passes through the gas flow path 12 from the discharge region at a higher speed than in the past because the processing chamber 24 is appropriately depressurized.
It is fed into the processing chamber 24. Therefore, similarly, many excited active species can reach the surface of the object before returning to the original stable state, and the processing speed and efficiency are improved.

【0026】図3は、本発明による表面処理装置の第2
実施例を示している。この表面処理装置は、2枚の平行
なガラス薄板11からなるガス流路12の下端にノズル
ユニット27が取り付けられている。ノズルユニット2
7は、ガス流路12より断面積の小さいオリフィスから
なる処理ガスの噴射通路28を有する。更にノズルユニ
ット27には、その前後方向に延長する処理ガスの流路
制御板29が一体に設けられている。ノズルユニット2
7の直ぐ下側には、被処理物18が僅かな間隙をもって
移動可能なテーブル19上に載置される。
FIG. 3 shows a second embodiment of the surface treatment apparatus according to the present invention.
An example is shown. In this surface treatment apparatus, a nozzle unit 27 is attached to a lower end of a gas flow path 12 composed of two parallel thin glass plates 11. Nozzle unit 2
7 has a processing gas injection passage 28 formed of an orifice having a smaller sectional area than the gas flow path 12. Further, the nozzle unit 27 is provided integrally with a processing gas flow control plate 29 extending in the front-rear direction. Nozzle unit 2
Immediately below 7, a workpiece 18 is placed on a movable table 19 with a slight gap.

【0027】ガス供給源15から放電ガスを一定の流量
でガス流路12内に供給し、電源22から両電極13、
14間に高周波電圧を印加して、安定した気体放電を発
生させる。この放電により作られたプラズマによる励起
活性種を含む処理ガスは、放電領域からガス流路12及
び噴射通路28を通過して、被処理物表面に噴射され
る。このとき、処理ガスが噴射通路28を通過する速度
は、その流路が該噴射通路で急激に絞られることによ
り、ガス流路12における速度よりも速くなる。従っ
て、前記励起活性種はより短時間で、元の安定した状態
に戻る前に被処理物表面に到達することができ、処理能
力が向上する。
A discharge gas is supplied from the gas supply source 15 into the gas flow channel 12 at a constant flow rate.
A high-frequency voltage is applied between 14 to generate a stable gas discharge. The processing gas containing the active species excited by the plasma generated by the discharge passes through the gas flow path 12 and the injection passage 28 from the discharge region and is injected onto the surface of the workpiece. At this time, the speed at which the processing gas passes through the injection passage 28 becomes faster than the speed in the gas passage 12 because the flow passage is rapidly narrowed by the injection passage. Therefore, the excited active species can reach the surface of the object to be processed in a shorter time before returning to the original stable state, and the processing capacity is improved.

【0028】図4は、本発明による表面処理装置の第3
実施例を示している。この表面処理装置は、2枚の平行
なガラス薄板11により形成されるガス流路12の下端
のノズル部16に、図5の従来例と同様の流路制御板3
0が取り付けられている。被処理物18は、ノズル部1
6及び流路制御板17の直ぐ下側に僅かな間隙をもって
搬送テーブル19上に配置される。ガラス薄板11の外
面には、電極13、14とノズル部16との間に電気ヒ
ータ31が配設されている。
FIG. 4 shows a third embodiment of the surface treatment apparatus according to the present invention.
An example is shown. This surface treatment apparatus includes a nozzle 16 at the lower end of a gas flow channel 12 formed by two parallel thin glass plates 11, and a flow control plate 3 similar to the conventional example of FIG.
0 is attached. The workpiece 18 is the nozzle 1
6 and the flow path control plate 17, are disposed on the transport table 19 with a slight gap. An electric heater 31 is provided on the outer surface of the glass thin plate 11 between the electrodes 13 and 14 and the nozzle unit 16.

【0029】上記各実施例と同様に、ガス供給源15か
ら放電ガスを一定の流量でガス流路12内に供給しつ
つ、両電極13、14間に高周波電圧を印加して、安定
した気体放電を発生させ、それにより作られたプラズマ
による励起活性種を含む処理ガスをノズル部16から被
処理物表面に噴射する。このとき、放電領域からノズル
部16に向けてガス流路12を通過する処理ガスは、電
気ヒータ31により加熱される。従って、前記処理ガス
は放電領域からノズル部までその温度を実質的に維持し
たまま又は温度をあまり下げずに輸送される。
As in the above embodiments, a high-frequency voltage is applied between the electrodes 13 and 14 while a discharge gas is supplied from the gas supply source 15 into the gas flow path 12 at a constant flow rate. A discharge is generated, and a processing gas containing active species excited by the plasma generated by the discharge is injected from the nozzle unit 16 onto the surface of the workpiece. At this time, the processing gas passing through the gas flow path 12 from the discharge region toward the nozzle unit 16 is heated by the electric heater 31. Therefore, the processing gas is transported from the discharge region to the nozzle portion while maintaining its temperature substantially or without significantly lowering the temperature.

【0030】上述したように、気体の温度が高いほどそ
の熱拡散が速く進む。従って、電気ヒータ31で加熱さ
れた処理ガスはより有効に拡散するので、より多くの励
起活性種が放電領域からの輸送中に元の安定した状態に
戻らずに被処理物表面に到達し、処理効率が高くなる。
更に、噴射される処理ガスの温度が高いことにより、被
処理物表面における化学反応が促進され、処理速度が速
くなる。
As described above, the higher the temperature of the gas, the faster its thermal diffusion proceeds. Therefore, the processing gas heated by the electric heater 31 diffuses more effectively, so that more excited active species reach the surface of the workpiece without returning to the original stable state during transport from the discharge region, Processing efficiency is increased.
Further, since the temperature of the processing gas to be injected is high, a chemical reaction on the surface of the processing object is promoted, and the processing speed is increased.

【0031】以上、本発明の好適な実施例について詳細
に説明したが、本発明はその技術的範囲内において上記
実施例に様々な変形・変更を加えて実施することができ
る。例えばガス流路は、2枚の平行なガラス薄板を用い
た平板状のものに代えて、円形ガラス管等で形成するこ
とができ、またそれらに対応して様々な電極構造を用い
ることができる。また、上記各実施例において、放電領
域とノズル部との間を別個の管路により連結し、より長
い距離で励起活性種を輸送することができる。更に、第
3実施例の電気ヒータを図1〜図3の実施例に付加する
ことにより、処理能力をより一層高めることができる。
Although the preferred embodiment of the present invention has been described in detail above, the present invention can be implemented by adding various modifications and changes to the above embodiment within the technical scope thereof. For example, the gas flow path can be formed of a circular glass tube or the like instead of a flat plate using two parallel thin glass plates, and various electrode structures can be used correspondingly. . Further, in each of the above embodiments, the discharge region and the nozzle portion are connected by a separate conduit, and the excited active species can be transported over a longer distance. Further, by adding the electric heater of the third embodiment to the embodiment of FIGS. 1 to 3, the processing capacity can be further enhanced.

【0032】[0032]

【発明の効果】本発明は、以上のように構成されている
ので、以下に記載されるような効果を奏する。本発明の
表面処理方法及び装置によれば、大気圧プラズマによる
間接放電方式の表面処理において、放電領域から被処理
物表面に送給される処理ガスの流速を加速することによ
り、放電を安定させた状態で多くの励起活性種を生成
し、かつそれをより短時間で元の安定した状態に戻る前
に被処理物表面に到達させることができる。従って、被
処理物を効率よく表面処理できるだけでなく、放電領域
から被処理物まで励起活性種を輸送する距離を従来より
長くできるので、表面処理装置の設計の自由度が高くな
り、より広範な用途に大気圧プラズマによる表面処理を
適用することができる。
Since the present invention is configured as described above, it has the following effects. According to the surface treatment method and apparatus of the present invention, in the surface treatment of the indirect discharge method by the atmospheric pressure plasma, the discharge is stabilized by accelerating the flow rate of the processing gas supplied from the discharge region to the surface of the workpiece. In this state, many excited active species can be generated, and can reach the surface of the object to be processed before returning to the original stable state in a shorter time. Therefore, not only can the surface of the object to be treated be efficiently processed, but also the distance for transporting the excited active species from the discharge region to the object to be processed can be longer than before. Surface treatment by atmospheric pressure plasma can be applied to the application.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による表面処理装置の第1実施例の構成
を示す概略図である。
FIG. 1 is a schematic diagram showing a configuration of a first embodiment of a surface treatment apparatus according to the present invention.

【図2】図1の変形例を示す図である。FIG. 2 is a diagram showing a modification of FIG.

【図3】本発明による表面処理装置の第2実施例の構成
を示す概略図である。
FIG. 3 is a schematic diagram showing the configuration of a second embodiment of the surface treatment apparatus according to the present invention.

【図4】本発明による表面処理装置の第3実施例の構成
を示す概略図である。
FIG. 4 is a schematic view showing the configuration of a third embodiment of the surface treatment apparatus according to the present invention.

【図5】従来の表面処理装置の構成を示す概略図であ
る。
FIG. 5 is a schematic diagram showing a configuration of a conventional surface treatment apparatus.

【符号の説明】[Explanation of symbols]

1 平行板 2 ガス流路 3、4 電極 5 ガス供給源 6 電源 7 ノズル部 8 被処理物 9 テーブル 10 流路制御板 11 薄板 12 ガス流路 13 電源電極 14 接地電極 15 ガス供給源 16 ノズル部 17 流路制御板 18 被処理物 19 テーブル 20、21 排気口 22 電源 23 ハウジング 24 処理室 25、26 排気口 27 ノズルユニット 28 噴射通路 29、30 流路制御板 31 電気ヒータ DESCRIPTION OF SYMBOLS 1 Parallel plate 2 Gas flow path 3, 4 electrode 5 Gas supply source 6 Power supply 7 Nozzle part 8 Workpiece 9 Table 10 Flow path control plate 11 Thin plate 12 Gas flow path 13 Power supply electrode 14 Ground electrode 15 Gas supply source 16 Nozzle part Reference Signs List 17 flow path control plate 18 workpiece 19 table 20, 21 exhaust port 22 power supply 23 housing 24 processing chamber 25, 26 exhaust port 27 nozzle unit 28 injection passage 29, 30 flow path control plate 31 electric heater

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI H01L 21/3065 H05H 1/24 H05H 1/24 1/46 A 1/46 H01L 21/302 B ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI H01L 21/3065 H05H 1/24 H05H 1/24 1/46 A 1/46 H01L 21/302 B

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 被処理物を表面処理するために、大気圧
またはその近傍の圧力下で所定のガス中に気体放電を生
じさせることにより前記ガスの励起活性種を生成し、前
記励起活性種を含む処理ガスを前記被処理物表面付近に
送給して該表面を前記励起活性種に曝露させる過程から
なり、送給される前記処理ガスの流速を加速する過程を
更に含むことを特徴とする表面処理方法。
In order to surface-treat an object, a gas discharge is generated in a predetermined gas at or near atmospheric pressure to generate an excited active species of the gas, and the excited active species of the gas is generated. And supplying a processing gas containing the same to the vicinity of the surface of the object to be processed to expose the surface to the excited active species, and further comprising a step of accelerating a flow rate of the supplied processing gas. Surface treatment method.
【請求項2】 前記被処理物表面付近における雰囲気の
圧力を低下させることにより、前記処理ガスの流速を加
速することを特徴とする請求項1記載の表面処理方法。
2. The surface treatment method according to claim 1, wherein the flow rate of the treatment gas is accelerated by reducing the pressure of the atmosphere near the surface of the treatment object.
【請求項3】 前記被処理物表面付近の雰囲気を前記被
処理物周辺から強制的に排気することを特徴とする請求
項2記載の表面処理方法。
3. The surface treatment method according to claim 2, wherein an atmosphere around the surface of the object is forcibly exhausted from around the object.
【請求項4】 前記被処理物表面付近に送給される前記
処理ガスの流路を縮小することにより、該処理ガスの流
速を加速することを特徴とする請求項1記載の表面処理
方法。
4. The surface treatment method according to claim 1, wherein a flow rate of the processing gas is accelerated by reducing a flow path of the processing gas supplied near the surface of the processing object.
【請求項5】 被処理物を表面処理するために、大気圧
またはその近傍の圧力下で所定のガス中に気体放電を生
じさせることにより前記ガスの励起活性種を生成し、前
記励起活性種を含む処理ガスを前記被処理物表面付近に
送給して該表面を前記励起活性種に曝露させる過程から
なり、送給される前記処理ガスを加熱する過程を更に含
むことを特徴とする表面処理方法。
5. In order to surface-treat an object to be treated, an excited active species of the gas is generated by causing a gas discharge in a predetermined gas at or near atmospheric pressure. A step of supplying a processing gas containing near to the surface of the object to be processed to expose the surface to the excited active species, and further comprising a step of heating the supplied processing gas. Processing method.
【請求項6】 所定のガスを送給するためのガス流路
と、前記ガス流路内で前記ガスに大気圧又はその近傍の
圧力下で気体放電を発生させ、それにより前記ガスの励
起活性種を生成するための1対の電源電極及び接地電極
と、前記ガス流路から前記励起活性種を含む処理ガスを
前記被処理物表面に向けて噴出させるノズルと、前記被
処理物表面付近における雰囲気の圧力を低下させる減圧
手段とからなることを特徴とする表面処理装置。
6. A gas flow path for supplying a predetermined gas, and a gas discharge is generated in the gas flow path at or near atmospheric pressure in the gas flow path, thereby exciting the gas. A pair of a power electrode and a ground electrode for generating seeds, a nozzle for jetting a processing gas containing the excited active species from the gas flow path toward the surface of the workpiece, and a nozzle near the surface of the workpiece. A surface treatment apparatus comprising a pressure reducing means for reducing the pressure of an atmosphere.
【請求項7】 前記減圧手段が、前記被処理物表面付近
から前記雰囲気を外部に強制的に排出する排気手段であ
ることを特徴とする請求項6記載の表面処理装置。
7. The surface treatment apparatus according to claim 6, wherein the pressure reducing means is an exhaust means for forcibly discharging the atmosphere from the vicinity of the surface of the workpiece to the outside.
【請求項8】 所定のガスを送給するためのガス流路
と、前記ガス流路内で前記ガスに大気圧又はその近傍の
圧力下で気体放電を発生させ、それにより前記ガスの励
起活性種を生成するための1対の電源電極及び接地電極
と、前記ガス流路から前記励起活性種を含む処理ガスを
前記被処理物表面に向けて噴出させるノズルと、前記処
理ガスの流路に設けられた絞り手段とからなることを特
徴とする表面処理装置。
8. A gas flow path for delivering a predetermined gas, and a gas discharge is generated in the gas flow path at or near atmospheric pressure in the gas flow path, thereby exciting the gas. A pair of a power electrode and a ground electrode for generating a seed, a nozzle for jetting a processing gas containing the excited active species from the gas flow path toward the surface of the processing target, and a flow path for the processing gas. A surface treatment apparatus comprising: an aperture unit provided.
【請求項9】 前記絞り手段が前記ノズルからなること
を特徴とする請求項8記載の表面処理装置。
9. A surface treatment apparatus according to claim 8, wherein said throttle means comprises said nozzle.
【請求項10】 所定のガスを送給するためのガス流路
と、前記ガス流路内で前記ガスに大気圧又はその近傍の
圧力下で気体放電を発生させ、それにより前記ガスの励
起活性種を生成するための1対の電源電極及び接地電極
と、前記励起活性種を含む処理ガスを前記被処理物表面
に向けて噴出させるノズルと、前記ノズルに送られる前
記処理ガスを加熱するための加熱手段とからなることを
特徴とする表面処理装置。
10. A gas flow path for feeding a predetermined gas, and a gas discharge is generated in the gas flow at or near atmospheric pressure in the gas flow path, thereby exciting the gas. A pair of a power electrode and a ground electrode for generating seeds, a nozzle for ejecting a processing gas containing the excited active species toward the surface of the workpiece, and heating the processing gas sent to the nozzle. And a heating means.
【請求項11】 前記加熱手段が電気ヒータであること
を特徴とする請求項10記載の表面処理装置。
11. The surface treatment apparatus according to claim 10, wherein said heating means is an electric heater.
JP15370998A 1998-05-20 1998-05-20 Surface treatment method and apparatus Expired - Fee Related JP3799819B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15370998A JP3799819B2 (en) 1998-05-20 1998-05-20 Surface treatment method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15370998A JP3799819B2 (en) 1998-05-20 1998-05-20 Surface treatment method and apparatus

Publications (2)

Publication Number Publication Date
JPH11335868A true JPH11335868A (en) 1999-12-07
JP3799819B2 JP3799819B2 (en) 2006-07-19

Family

ID=15568393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15370998A Expired - Fee Related JP3799819B2 (en) 1998-05-20 1998-05-20 Surface treatment method and apparatus

Country Status (1)

Country Link
JP (1) JP3799819B2 (en)

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020085149A (en) * 2001-05-07 2002-11-16 주식회사 우광유니텍 Plasma Dry type Cleaning apparatus in ambient temperature/atmospheric
JP2004288899A (en) * 2003-03-24 2004-10-14 Tokyo Electron Ltd Method for depositing film and substrate processing apparatus
JP2006134828A (en) * 2004-11-09 2006-05-25 Seiko Epson Corp Plasma treatment apparatus
JP2006228658A (en) * 2005-02-21 2006-08-31 Sekisui Chem Co Ltd Plasma treatment apparatus
JP2006286551A (en) * 2005-04-05 2006-10-19 Sekisui Chem Co Ltd Plasma treatment device
KR100706663B1 (en) 2005-08-09 2007-04-12 세메스 주식회사 treating apparatus by plasma
JP2007265583A (en) * 2006-03-30 2007-10-11 Hoya Corp Manufacturing method of magnetic recording disk
JPWO2005093810A1 (en) * 2004-03-26 2008-02-14 積水化学工業株式会社 Oxynitride film and method for forming nitride film, forming apparatus, oxynitride film, nitride film, and substrate
JP2008038246A (en) * 2006-08-07 2008-02-21 Ind Technol Res Inst Plasma deposition apparatus, and deposition method utilizing the same
JP2008090919A (en) * 2006-09-30 2008-04-17 Hoya Corp Method for manufacturing magnetic disk
DE112004000057B4 (en) * 2003-05-27 2008-09-25 Matsushita Electric Works, Ltd., Kadoma Plasma treatment apparatus and plasma treatment method
JP2008251233A (en) * 2007-03-29 2008-10-16 Sekisui Chem Co Ltd Plasma processing device
JP2008286539A (en) * 2007-05-15 2008-11-27 Hitachi High-Technologies Corp Reaction cell for autoanalyzer, and method for surface finishing of the same
JP2009082796A (en) * 2007-09-28 2009-04-23 Tokyo Institute Of Technology Plasma treatment device/method
JP2009129666A (en) * 2007-11-22 2009-06-11 Seiko Epson Corp Surface treatment method of substrate, and plasma treatment device
JP2011247904A (en) * 2011-08-29 2011-12-08 Hitachi High-Technologies Corp Manufacturing method of reaction cell for autoanalyzer
JP2013544965A (en) * 2010-10-16 2013-12-19 ケンブリッジ・ナノテック・インコーポレイテッド ALD coating system
US20140216343A1 (en) 2008-08-04 2014-08-07 Agc Flat Glass North America, Inc. Plasma source and methods for depositing thin film coatings using plasma enhanced chemical vapor deposition
JP2016096116A (en) * 2014-11-17 2016-05-26 エア・ウォーター株式会社 Atmospheric pressure plasma processing apparatus
US9721764B2 (en) 2015-11-16 2017-08-01 Agc Flat Glass North America, Inc. Method of producing plasma by multiple-phase alternating or pulsed electrical current
US9721765B2 (en) 2015-11-16 2017-08-01 Agc Flat Glass North America, Inc. Plasma device driven by multiple-phase alternating or pulsed electrical current
JP2017152624A (en) * 2016-02-26 2017-08-31 国立大学法人大阪大学 Numerical control plasma processing method and device therefor
JP2018032488A (en) * 2016-08-23 2018-03-01 沖野 晃俊 Plasma transport method and plasma transport device
KR20180083901A (en) 2016-01-18 2018-07-23 도시바 미쓰비시덴키 산교시스템 가부시키가이샤 Active gas generating apparatus and film forming apparatus
JP2018134601A (en) * 2017-02-22 2018-08-30 春日電機株式会社 Surface treatment apparatus
KR20180135041A (en) 2016-05-27 2018-12-19 도시바 미쓰비시덴키 산교시스템 가부시키가이샤 Active gas generator
US10242846B2 (en) 2015-12-18 2019-03-26 Agc Flat Glass North America, Inc. Hollow cathode ion source
US10573499B2 (en) 2015-12-18 2020-02-25 Agc Flat Glass North America, Inc. Method of extracting and accelerating ions
US10586685B2 (en) 2014-12-05 2020-03-10 Agc Glass Europe Hollow cathode plasma source
US10755901B2 (en) 2014-12-05 2020-08-25 Agc Flat Glass North America, Inc. Plasma source utilizing a macro-particle reduction coating and method of using a plasma source utilizing a macro-particle reduction coating for deposition of thin film coatings and modification of surfaces
JP2020194971A (en) * 2016-02-26 2020-12-03 国立大学法人大阪大学 Plasma processing apparatus

Cited By (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020085149A (en) * 2001-05-07 2002-11-16 주식회사 우광유니텍 Plasma Dry type Cleaning apparatus in ambient temperature/atmospheric
JP2004288899A (en) * 2003-03-24 2004-10-14 Tokyo Electron Ltd Method for depositing film and substrate processing apparatus
US7543546B2 (en) 2003-05-27 2009-06-09 Matsushita Electric Works, Ltd. Plasma processing apparatus, method for producing reaction vessel for plasma generation, and plasma processing method
DE112004000057B4 (en) * 2003-05-27 2008-09-25 Matsushita Electric Works, Ltd., Kadoma Plasma treatment apparatus and plasma treatment method
JP4624991B2 (en) * 2004-03-26 2011-02-02 積水化学工業株式会社 Method and apparatus for forming oxynitride film
JPWO2005093810A1 (en) * 2004-03-26 2008-02-14 積水化学工業株式会社 Oxynitride film and method for forming nitride film, forming apparatus, oxynitride film, nitride film, and substrate
JP2006134828A (en) * 2004-11-09 2006-05-25 Seiko Epson Corp Plasma treatment apparatus
JP4576983B2 (en) * 2004-11-09 2010-11-10 セイコーエプソン株式会社 Plasma processing equipment
JP2006228658A (en) * 2005-02-21 2006-08-31 Sekisui Chem Co Ltd Plasma treatment apparatus
JP4574387B2 (en) * 2005-02-21 2010-11-04 積水化学工業株式会社 Plasma processing equipment
JP2006286551A (en) * 2005-04-05 2006-10-19 Sekisui Chem Co Ltd Plasma treatment device
KR100706663B1 (en) 2005-08-09 2007-04-12 세메스 주식회사 treating apparatus by plasma
JP2007265583A (en) * 2006-03-30 2007-10-11 Hoya Corp Manufacturing method of magnetic recording disk
JP2008038246A (en) * 2006-08-07 2008-02-21 Ind Technol Res Inst Plasma deposition apparatus, and deposition method utilizing the same
JP4603566B2 (en) * 2006-08-07 2010-12-22 財団法人工業技術研究院 Plasma vapor deposition apparatus and vapor deposition method thereof
JP2008090919A (en) * 2006-09-30 2008-04-17 Hoya Corp Method for manufacturing magnetic disk
JP2008251233A (en) * 2007-03-29 2008-10-16 Sekisui Chem Co Ltd Plasma processing device
JP2008286539A (en) * 2007-05-15 2008-11-27 Hitachi High-Technologies Corp Reaction cell for autoanalyzer, and method for surface finishing of the same
JP2009082796A (en) * 2007-09-28 2009-04-23 Tokyo Institute Of Technology Plasma treatment device/method
JP2009129666A (en) * 2007-11-22 2009-06-11 Seiko Epson Corp Surface treatment method of substrate, and plasma treatment device
JP4582140B2 (en) * 2007-11-22 2010-11-17 セイコーエプソン株式会社 Substrate surface treatment method
US9478401B2 (en) 2008-08-04 2016-10-25 Agc Flat Glass North America, Inc. Plasma source and methods for depositing thin film coatings using plasma enhanced chemical vapor deposition
US10580624B2 (en) 2008-08-04 2020-03-03 Agc Flat Glass North America, Inc. Plasma source and methods for depositing thin film coatings using plasma enhanced chemical vapor deposition
US20140216343A1 (en) 2008-08-04 2014-08-07 Agc Flat Glass North America, Inc. Plasma source and methods for depositing thin film coatings using plasma enhanced chemical vapor deposition
US20150004330A1 (en) 2008-08-04 2015-01-01 Agc Flat Glass North America, Inc. Plasma source and methods for depositing thin film coatings using plasma enhanced chemical vapor deposition
US20150002021A1 (en) 2008-08-04 2015-01-01 Agc Flat Glass North America, Inc. Plasma source and methods for depositing thin film coatings using plasma enhanced chemical vapor deposition
TWI641292B (en) * 2008-08-04 2018-11-11 Agc北美平面玻璃公司 Plasma source
TWI578854B (en) * 2008-08-04 2017-04-11 Agc北美平面玻璃公司 Method of forming coating using plasma enhanced chemical vapor deposition (pecvd)
US10438778B2 (en) 2008-08-04 2019-10-08 Agc Flat Glass North America, Inc. Plasma source and methods for depositing thin film coatings using plasma enhanced chemical vapor deposition
US10580625B2 (en) 2008-08-04 2020-03-03 Agc Flat Glass North America, Inc. Plasma source and methods for depositing thin film coatings using plasma enhanced chemical vapor deposition
US9567670B2 (en) 2010-10-16 2017-02-14 Ultratech, Inc. Method for high-velocity and atmospheric-pressure atomic layer deposition with substrate and coating head separation distance in the millimeter range
JP2013544965A (en) * 2010-10-16 2013-12-19 ケンブリッジ・ナノテック・インコーポレイテッド ALD coating system
US9783888B2 (en) 2010-10-16 2017-10-10 Ultratech, Inc. Atomic layer deposition head
JP2011247904A (en) * 2011-08-29 2011-12-08 Hitachi High-Technologies Corp Manufacturing method of reaction cell for autoanalyzer
JP2016096116A (en) * 2014-11-17 2016-05-26 エア・ウォーター株式会社 Atmospheric pressure plasma processing apparatus
US10586685B2 (en) 2014-12-05 2020-03-10 Agc Glass Europe Hollow cathode plasma source
US10755901B2 (en) 2014-12-05 2020-08-25 Agc Flat Glass North America, Inc. Plasma source utilizing a macro-particle reduction coating and method of using a plasma source utilizing a macro-particle reduction coating for deposition of thin film coatings and modification of surfaces
US11875976B2 (en) 2014-12-05 2024-01-16 Agc Flat Glass North America, Inc. Plasma source utilizing a macro-particle reduction coating and method of using a plasma source utilizing a macro-particle reduction coating for deposition of thin film coatings and modification of surfaces
US10559452B2 (en) 2015-11-16 2020-02-11 Agc Flat Glass North America, Inc. Plasma device driven by multiple-phase alternating or pulsed electrical current
US9721764B2 (en) 2015-11-16 2017-08-01 Agc Flat Glass North America, Inc. Method of producing plasma by multiple-phase alternating or pulsed electrical current
US20170309458A1 (en) 2015-11-16 2017-10-26 Agc Flat Glass North America, Inc. Plasma device driven by multiple-phase alternating or pulsed electrical current
US9721765B2 (en) 2015-11-16 2017-08-01 Agc Flat Glass North America, Inc. Plasma device driven by multiple-phase alternating or pulsed electrical current
US10242846B2 (en) 2015-12-18 2019-03-26 Agc Flat Glass North America, Inc. Hollow cathode ion source
US10573499B2 (en) 2015-12-18 2020-02-25 Agc Flat Glass North America, Inc. Method of extracting and accelerating ions
KR20180083901A (en) 2016-01-18 2018-07-23 도시바 미쓰비시덴키 산교시스템 가부시키가이샤 Active gas generating apparatus and film forming apparatus
US10793953B2 (en) 2016-01-18 2020-10-06 Toshiba Mitsubishi-Electric Industrial Systems Corporation Activated gas generation apparatus and film-formation treatment apparatus
JP2020194971A (en) * 2016-02-26 2020-12-03 国立大学法人大阪大学 Plasma processing apparatus
JP2017152624A (en) * 2016-02-26 2017-08-31 国立大学法人大阪大学 Numerical control plasma processing method and device therefor
US10418226B2 (en) 2016-05-27 2019-09-17 Toshiba Mitsubishi-Electric Industrial Systems Corporation Activated gas generation apparatus
KR20180135041A (en) 2016-05-27 2018-12-19 도시바 미쓰비시덴키 산교시스템 가부시키가이샤 Active gas generator
JP2018032488A (en) * 2016-08-23 2018-03-01 沖野 晃俊 Plasma transport method and plasma transport device
JP2018134601A (en) * 2017-02-22 2018-08-30 春日電機株式会社 Surface treatment apparatus

Also Published As

Publication number Publication date
JP3799819B2 (en) 2006-07-19

Similar Documents

Publication Publication Date Title
JPH11335868A (en) Surface treatment and apparatus therefor
KR101177867B1 (en) Plasma doping method and plasma doping apparatus
KR940000384B1 (en) Treating apparatus of plasma
JP2748886B2 (en) Plasma processing equipment
WO2010008021A1 (en) Plasma treatment method and plasma treatment device
US20050164523A1 (en) Substrate treating method
KR100614065B1 (en) Plasma processing equipment
WO2006106872A1 (en) Plasma doping method and system
JP3704983B2 (en) Surface treatment equipment
JP2005142234A5 (en)
JPH10151338A (en) Gas exciter
JP3266567B2 (en) Vacuum processing equipment
JP2015195113A (en) Surface treatment apparatus and surface treatment method
JPH11335869A (en) Surface treatment and device therefor
JP2008159802A (en) Plasma doping method and device
JPH0523579A (en) Surface processing and its device
JP2001144088A (en) Method of manufacturing semiconductor
JP2007317699A (en) Surface-treating apparatus and method
JP2004269983A (en) Surface treatment device and surface treatment method
JPH02149339A (en) Apparatus for microwave plasma treatment
JP2001326216A (en) Plasma processing device
JP3690853B2 (en) Iodine laser generation method and apparatus
JPS6328883A (en) Plasma reactor
JPH0722389A (en) Plasma treatment equipment
JP2007317700A (en) Surface-treating apparatus and surface treatment method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040602

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050816

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060417

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120512

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130512

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140512

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees