JPH11335822A - Nialmo sputtering target and its production - Google Patents
Nialmo sputtering target and its productionInfo
- Publication number
- JPH11335822A JPH11335822A JP14294698A JP14294698A JPH11335822A JP H11335822 A JPH11335822 A JP H11335822A JP 14294698 A JP14294698 A JP 14294698A JP 14294698 A JP14294698 A JP 14294698A JP H11335822 A JPH11335822 A JP H11335822A
- Authority
- JP
- Japan
- Prior art keywords
- sputtering target
- sintered body
- pressure
- nialmo
- sintering
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Powder Metallurgy (AREA)
- Physical Vapour Deposition (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、耐食膜、光学干渉
膜、LCDの配線形成用導電膜などをスパッタリング法
により成膜する際に用いられるNiAlMoスパッタリ
ングターゲットおよびその製造方法に関するものであ
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a NiAlMo sputtering target used for forming a corrosion resistant film, an optical interference film, a conductive film for forming a wiring of an LCD by a sputtering method, and a method for manufacturing the same.
【0002】[0002]
【従来の技術】近年、耐食膜、光学干渉膜、LCDの配
線形成用導電膜等の機能性薄膜として高融点のMo(モ
リブデン)を含有する合金薄膜が用いられているが、ス
パッタリング特性や得られる膜の均一性から、これらの
機能性薄膜の成膜に用いられるスパッタリングターゲッ
トもその組成に対応した合金ターゲット、または各構成
元素が微細に分散した複合ターゲットであることが好ま
しい。2. Description of the Related Art In recent years, alloy thin films containing high melting point Mo (molybdenum) have been used as functional thin films such as corrosion resistant films, optical interference films, and conductive films for wiring of LCDs. From the viewpoint of the uniformity of the resulting film, the sputtering target used for forming these functional thin films is also preferably an alloy target corresponding to the composition or a composite target in which each constituent element is finely dispersed.
【0003】従来、このようなスパッタリングターゲッ
トの製造法としては溶解法や粉末冶金法などが知られて
いる。Conventionally, as a method of manufacturing such a sputtering target, a melting method, a powder metallurgy method, and the like are known.
【0004】しかしながら溶解法により、Moのような
高融点元素を含有するターゲットを作製する場合、原料
の溶解に高温を必要とし、装置コストや消費エネルギー
の観点から好ましくない。また、溶解法により作製され
るターゲットは引け巣に代表されるような空隙が内部に
残ることがあり、それらの空隙はスパッタリング時に異
常放電などを引き起こすといった問題があった。通常こ
れらの空隙は鍛造、圧延等の塑性加工により取り除くこ
とが可能であるが、生成される金属間化合物が脆い合金
系の場合には、鍛造、圧延などの塑性加工により内部の
空隙を取り除くことは不可能である。[0004] However, when a target containing a high melting point element such as Mo is produced by a melting method, a high temperature is required for melting the raw material, which is not preferable from the viewpoint of apparatus cost and energy consumption. In addition, voids typified by shrinkage cavities may remain inside the target manufactured by the melting method, and these voids cause an abnormal discharge or the like during sputtering. Normally, these voids can be removed by plastic working such as forging and rolling.However, when the intermetallic compound to be produced is a brittle alloy system, the internal voids must be removed by plastic working such as forging or rolling. Is impossible.
【0005】一方、粉末冶金法については例えば特開平
6−279910に見られるように、Mo粉末にNi−
Al合金粉末を加えて熱間等方圧プレス(HIP)や冷
間等方圧プレス(CIP)あるいは成型・押し出しした
あとに高温で焼結することにより高い焼結密度を有する
NiAlMo合金の製造が可能であることが知られてい
る。しかしながら、このような方法では予めNi−Al
合金粉末を作成しておかなければならない等、製造プロ
セスが煩雑であると同時に焼結温度が1300℃〜16
00℃と高温であるという問題があった。On the other hand, with respect to the powder metallurgy method, as disclosed in, for example, JP-A-6-279910, Mo-
By adding Al alloy powder and hot isostatic pressing (HIP) or cold isostatic pressing (CIP) or molding and extruding and then sintering at high temperature, NiAlMo alloy with high sintering density can be manufactured. It is known that this is possible. However, in such a method, Ni-Al
The sintering temperature is 1300 ° C. to 16
There was a problem that the temperature was as high as 00 ° C.
【0006】[0006]
【発明が解決しようとする課題】本発明の目的は、高融
点金属であるMoと低融点金属であるAlを含み、しか
も生成される金属間化合物が脆い合金系であるNiAl
Mo合金の膜を形成するためのNiAlMoスパッタリ
ングターゲットに関し、前述のような従来技術における
問題点を解決し、スパッタリング特性が良好で、かつ得
られる膜の均一性の良い、構成元素が微細に分散しかつ
緻密な焼結体よりなるNiAlMoスパッタリングター
ゲット及び簡便なプロセスで該ターゲットの作製を可能
にする製造方法を提供することである。SUMMARY OF THE INVENTION It is an object of the present invention to provide NiAl which contains a high melting point metal Mo and a low melting point metal Al and has a brittle intermetallic compound produced.
With respect to a NiAlMo sputtering target for forming a Mo alloy film, the problems in the prior art as described above are solved, the sputtering characteristics are good, and the uniformity of the obtained film is good, and the constituent elements are finely dispersed. Another object of the present invention is to provide a NiAlMo sputtering target made of a dense sintered body and a manufacturing method capable of manufacturing the target with a simple process.
【0007】[0007]
【課題を解決するための手段】本発明者らは上記問題点
を解決するために鋭意検討を行った結果、Ni,Al,
Moの各金属粉末を十分混合したのち、ホットプレス装
置などにより加圧焼結することにより、簡便に構成元素
が微細に分散しかつ緻密な焼結体よりなるスパッタリン
グターゲットが得られることを見出した。Means for Solving the Problems The present inventors have conducted intensive studies in order to solve the above problems, and as a result, have found that Ni, Al,
After sufficiently mixing each of the Mo metal powders, by pressing and sintering with a hot press device or the like, it has been found that a sputtering target composed of a dense sintered body in which constituent elements are finely dispersed and easily obtained can be easily obtained. .
【0008】従来MoとAlのように、その融点が大き
く異なる金属粉末を混合し焼結しようとする場合、融点
の低い金属が先に溶解してしまい、均一で緻密な焼結体
は得られないと考えられていたが、Alと容易に反応し
て、比較的融点の高い金属間化合物を形成するNiを共
存させることにより、Alが溶解し流れ出すようなこと
が無く、簡便なプロセスでNiAlMoスパッタリング
ターゲットを作製可能であることを見出し本発明を完成
するに至った。つまりAl粉末とNi粉末を粒径の十分
に小さいMo粉末と混合して加圧焼結することにより、
加圧焼結時にAlとNiが合金化し、微細なMo粒子の
間に緻密な合金相を形成させることができ、密度が高く
かつ組成が均一な焼結体よりなるスパッタリングターゲ
ットの作製が可能であることを見出した。Conventionally, when mixing and sintering metal powders such as Mo and Al whose melting points are greatly different from each other, a metal having a low melting point is dissolved first, and a uniform and dense sintered body can be obtained. Although it was thought that there was no such problem, by coexisting Ni which easily reacts with Al to form an intermetallic compound having a relatively high melting point, there is no possibility that Al is dissolved and flows out, and NiAlMo is produced by a simple process. The inventors have found that a sputtering target can be manufactured, and have completed the present invention. In other words, by mixing Al powder and Ni powder with Mo powder having a sufficiently small particle size and sintering under pressure,
Al and Ni are alloyed during pressure sintering, and a dense alloy phase can be formed between fine Mo particles, making it possible to produce a sputtering target composed of a sintered body having a high density and a uniform composition. I found something.
【0009】即ち、本発明のスパッタリングターゲット
は、Ni,AlおよびMoを主成分とし、残部が不可避
的不純物からなり、かつその組成が均一な焼結体からな
ることを特徴とするNiAlMoスパッタリングターゲ
ットである。また、本発明のスパッタリングターゲット
は、NiとAlが合金化して基質を形成しており、その
基質中に微細なMo粒子が分散した組織を有する焼結体
からなるNiAlMoスパッタリングターゲットであ
る。なお、基質中に分散するMo粒子の平均粒径は5μ
m以下であることが好ましい。また、本発明のスパッタ
リングターゲットに用いられる焼結体は、その理論密度
を、Ni,AlおよびMoの各構成元素単体の密度の体
積比加重平均値と仮定して得られた相対密度が100%
以上である緻密な焼結体であることが好ましい。That is, the sputtering target of the present invention is a NiAlMo sputtering target characterized by comprising Ni, Al and Mo as main components, the remainder being unavoidable impurities, and a sintered body having a uniform composition. is there. Further, the sputtering target of the present invention is a NiAlMo sputtering target formed of a sintered body having a structure in which Ni and Al are alloyed to form a substrate and fine Mo particles are dispersed in the substrate. The average particle size of the Mo particles dispersed in the substrate is 5 μm.
m or less. The relative density obtained by assuming the theoretical density of the sintered body used for the sputtering target of the present invention as a volume ratio weighted average of the densities of the individual constituent elements of Ni, Al and Mo is 100%.
A dense sintered body as described above is preferable.
【0010】さらに、本発明のスパッタリングターゲッ
トの製造方法は、Ni,Al,Moの各金属粉末を混合
後、加圧焼結することを特徴とする上記のNiAlMo
スパッタリングターゲットの製造方法であり、好ましく
は、平均粒径が5μm以下のMo粉末を用い、また、N
i,Al,Moの各金属粉末を混合後、1000℃以上
1300℃未満の温度、かつ200kg/cm2以上の
圧力で2時間以上加圧焼結するか、または、その条件と
同等以上の焼結効果が得られる条件、例えば、950℃
以上の温度、1.5ton/cm2以上の圧力で2時間
以上加圧焼結することが好ましい。Further, the method of manufacturing a sputtering target according to the present invention is characterized in that, after mixing the respective metal powders of Ni, Al and Mo, the mixture is sintered under pressure.
This is a method for producing a sputtering target, preferably using Mo powder having an average particle size of 5 μm or less.
After mixing the respective metal powders of i, Al, and Mo, the mixture is subjected to pressure sintering at a temperature of 1000 ° C. or more and less than 1300 ° C. and a pressure of 200 kg / cm 2 or more for 2 hours or more, Conditions under which a sintering effect is obtained, for example, 950 ° C.
It is preferable to perform pressure sintering at the above temperature and at a pressure of 1.5 ton / cm 2 or more for 2 hours or more.
【0011】以下本発明を詳細に説明する。Hereinafter, the present invention will be described in detail.
【0012】本発明で用いるNi粉末およびAl粉末
は、本発明のスパッタリングターゲットの微細組織を達
成するため、その平均粒径が3〜150μmであること
が好ましい。またMo粉末はその平均粒径が5μm以下
のものを用いる。これらの金属粉末を、例えば、ボール
ミル、V字型ブレンダー、クロスミキサーなどの粉末混
合装置により十分混合し混合粉末とする。つぎにこの混
合粉末をホットプレス、HIPなどの加圧焼結装置を用
い、真空中または不活性ガス雰囲気中で500〜120
0℃の温度で100kg/cm2以上の圧力を加え焼結
を行う。このようにして得られた焼結体はその相対密度
が60%以上であり、平均粒径150μm以下の微細な
組織を持つ。The Ni powder and Al powder used in the present invention preferably have an average particle size of 3 to 150 μm in order to achieve the fine structure of the sputtering target of the present invention. Mo powder having an average particle diameter of 5 μm or less is used. These metal powders are sufficiently mixed by a powder mixing device such as a ball mill, a V-shaped blender, a cross mixer, etc. to obtain a mixed powder. Next, this mixed powder is heated in a vacuum or an inert gas atmosphere in a pressure of 500 to 120 using a pressure sintering apparatus such as hot press or HIP.
Sintering is performed by applying a pressure of 100 kg / cm 2 or more at a temperature of 0 ° C. The sintered body thus obtained has a relative density of 60% or more and a fine structure with an average particle size of 150 μm or less.
【0013】またこの焼結体の密度は、焼結温度、焼結
圧力、および焼結時間により制御することが可能であ
り、焼結温度を高くする、焼結圧力を大きくする、焼結
時間を長くするといった操作は、いずれも焼結体の密度
向上に効果がある。The density of the sintered body can be controlled by the sintering temperature, the sintering pressure, and the sintering time. Any of the operations of increasing the length is effective in improving the density of the sintered body.
【0014】一般に、高密度の焼結体からなるスパッタ
リングターゲットを用いることにより、例えば内包ガス
などに起因するスパッタリング時のスプラッシュを防止
し、パーティクルの発生を抑制することができ、ターゲ
ットの使用時間を長く出来るなど、ターゲットとしての
良好な特性を得ることができるが、本発明のNiAlM
oスパッタリングターゲットでは相対密度が100%以
上の緻密な焼結体を用いることが好ましい。In general, by using a sputtering target made of a high-density sintered body, it is possible to prevent a splash at the time of sputtering caused by, for example, an included gas or the like, to suppress the generation of particles, and to reduce the time required for using the target. Although good characteristics as a target can be obtained, for example, it can be lengthened, the NiAlM of the present invention can be obtained.
o It is preferable to use a dense sintered body having a relative density of 100% or more in the sputtering target.
【0015】相対密度100%以上の緻密な焼結体は、
例えば、焼結温度1000℃以上、かつ焼結圧力200
kg/cm2以上で2時間以上保持することにより得る
ことができる。あるいはそれと同等以上の焼結効果が得
られる焼結温度、焼結圧力、保持時間の組合せにより得
ることができる。つまり、たとえ焼結温度が1000℃
未満であっても焼結圧力を増加することにより、相対密
度100%以上の緻密な焼結体を得ることは可能であ
る。同様に保持時間を延ばすことにより焼結温度100
0℃未満であっても、相対密度100%以上の緻密な焼
結体を得ることは可能である。例えば、焼結圧力を1.
5ton/cm2以上とすることにより、焼結温度95
0℃、2時間の保持時間で相対密度100%以上の緻密
な焼結体を得ることができる。なお、焼結温度が130
0℃以上になると液相を生じることがあり、また、装置
コストやエネルギー消費の観点からも、焼結温度は13
00℃未満とすることが好ましい。A dense sintered body having a relative density of 100% or more is
For example, a sintering temperature of 1000 ° C. or more and a sintering pressure of 200
It can be obtained by holding at kg / cm 2 or more for 2 hours or more. Alternatively, it can be obtained by a combination of a sintering temperature, a sintering pressure, and a holding time at which a sintering effect equivalent to or more than that is obtained. In other words, even if the sintering temperature is 1000 ° C
By increasing the sintering pressure even if it is less than 1, it is possible to obtain a dense sintered body having a relative density of 100% or more. Similarly, by increasing the holding time, the sintering temperature can be increased to 100.
Even if the temperature is lower than 0 ° C., it is possible to obtain a dense sintered body having a relative density of 100% or more. For example, if the sintering pressure is 1.
The sintering temperature of 95 tons / cm 2 or more
A dense sintered body having a relative density of 100% or more can be obtained at 0 ° C. for 2 hours. The sintering temperature is 130
When the temperature is 0 ° C. or higher, a liquid phase may be generated, and the sintering temperature is set at 13 ° C. from the viewpoint of equipment cost and energy consumption.
Preferably, the temperature is lower than 00 ° C.
【0016】ここで、本発明で使用される相対密度の定
義を次式に示す。Here, the following formula defines the relative density used in the present invention.
【0017】 相対密度(%)=(嵩密度/体積平均密度)×100 ここで、嵩密度(g/cm3)とは、例えば作製された
ターゲットの寸法と重量から計算した実測の値である。
また体積平均密度(g/cm3)とはターゲットを構成
する各元素の固有密度をそのターゲット組成における体
積比加重で平均した値(体積比加重平均値)である。た
とえば、元素A、元素Bが各々a(vol%)、b(v
ol%)(ここでa+b=100(%))であるとき、
その体積平均密度は(aρA+bρB)/100で表され
る。ここで、ρAおよびρBは各々元素Aの固有密度およ
び元素Bの固有密度を表す。Relative density (%) = (bulk density / volume average density) × 100 Here, the bulk density (g / cm 3 ) is, for example, an actually measured value calculated from the dimensions and weight of a manufactured target. .
Further, the volume average density (g / cm 3 ) is a value obtained by averaging the intrinsic densities of the respective elements constituting the target by weighting the volume ratio in the target composition (volume ratio weighted average value). For example, element A and element B are a (vol%) and b (v
ol%) (where a + b = 100 (%)),
Its volume average density is represented by (aρ A + bρ B ) / 100. Here, ρ A and ρ B represent the specific density of the element A and the specific density of the element B, respectively.
【0018】本発明では相対密度が100%を越えるこ
とがあるが、これは、焼結体の基質を構成するNiとA
lからなる合金の嵩密度が、Ni単体及びAl単体の体
積比加重平均値より予想される理論密度より大幅に高く
なることに起因している。In the present invention, the relative density may exceed 100%.
This is due to the fact that the bulk density of the alloy consisting of 1 is much higher than the theoretical density expected from the weighted average of the volume ratios of Ni alone and Al alone.
【0019】本発明のNiAlMoスパッタリングター
ゲットの製造方法によればNiとAlは500℃程度の
低温から、例えばα−Niやβ−NiAlのような合金
を形成しはじめるが、さらに焼結温度を上げてもNi、
Alいずれの元素もMoとはほとんど反応せず、Ni−
Al合金の基質中にMoの粒子が分散した組織の焼結体
が得られる。したがって、得られる焼結体は最初に添加
したMo粉末の粒径に対応した均一で微細な組織とな
る。特に、最初に添加するMo粉末の平均粒径を5μm
以下とすることにより、スパッタリング時に異常放電が
起き難く、また得られる膜の均一性の良い、均一で微細
な組織をもつスパッタリングターゲットを得ることがで
きる。According to the method for manufacturing a NiAlMo sputtering target of the present invention, Ni and Al begin to form an alloy such as α-Ni or β-NiAl at a low temperature of about 500 ° C., but the sintering temperature is further increased. Even Ni,
Al element hardly reacts with Mo, and Ni-
A sintered body having a structure in which Mo particles are dispersed in an Al alloy substrate is obtained. Therefore, the obtained sintered body has a uniform and fine structure corresponding to the particle size of the Mo powder added first. In particular, the average particle size of the Mo powder added first is 5 μm.
By performing the following, an abnormal discharge is less likely to occur during sputtering, and a sputtering target having good uniformity of the obtained film and having a uniform and fine structure can be obtained.
【0020】[0020]
【実施例】(実施例1)原料粉末として、平均粒径が5
μmのNi粉末およびMo粉末と、平均粒径が150μ
mのAl粉末を用いた。これらの金属粉末をNiとAl
の原子比が3:1で残部がMoである組成(A組成)と
なるように秤量し、ボールミルにより16時間混合し
た。この混合粉末をカーボン製の鋳型に充填しホットプ
レス装置により550℃〜1150℃の温度、200k
g/cm2の圧力で2時間保持した時に得られる焼結体
の密度を図1に示す。図1から1000℃以上で、相対
密度100%以上の緻密な焼結体が得られることがわか
る。(Example 1) As a raw material powder, the average particle size was 5
μm Ni powder and Mo powder with an average particle size of 150μ
m of Al powder was used. Ni and Al
Was weighed so as to have a composition (composition A) having an atomic ratio of 3: 1 and the balance of Mo, and mixed by a ball mill for 16 hours. This mixed powder is filled in a carbon mold and heated at a temperature of 550 ° C. to 1150 ° C., 200 k
FIG. 1 shows the density of the sintered body obtained when the pressure was maintained at a pressure of g / cm 2 for 2 hours. From FIG. 1, it can be seen that a dense sintered body having a relative density of 100% or more can be obtained at 1000 ° C. or more.
【0021】相対密度が100%を超える焼結体の断面
を鏡面研磨し、その組織をEPMAにより観察したとこ
ろ、相対密度が100%を超える焼結体については以下
のような結果が得られた。観察結果の一例として、焼結
温度1150℃で得られた相対密度108.5%の焼結
体の様子を図2及び図3に示す。図2に示す二次電子線
像から、この焼結体がポアの無い緻密な焼結体であるこ
とが判る。また図3(a)〜(c)に示すNi,Al,
Moの各元素の特性X線像(白い部分がその元素の濃集
部を示す)から、この焼結体がNiとAlが合金化して
基質を形成し、その基質中に平均粒径5μm以下のMo
粒子が均一に分散した組織であることが判る。さらに、
図4に示すこの焼結体のX線回折測定の結果から、この
NiとAlの合金はα−Ni相とβ−NiAl相の混合
相であることが判る。The cross section of the sintered body having a relative density exceeding 100% was mirror-polished and its structure was observed by EPMA. The following results were obtained for the sintered body having a relative density exceeding 100%. . As an example of the observation results, FIGS. 2 and 3 show a state of a sintered body having a relative density of 108.5% obtained at a sintering temperature of 1150 ° C. From the secondary electron beam image shown in FIG. 2, it can be seen that this sintered body is a dense sintered body without pores. 3A to 3C, Ni, Al,
From the characteristic X-ray image of each element of Mo (the white part indicates the concentrated part of the element), this sintered body alloys Ni and Al to form a substrate, and the average particle size in the substrate is 5 μm or less. Mo
It can be seen that the particles have a uniformly dispersed structure. further,
From the results of the X-ray diffraction measurement of this sintered body shown in FIG. 4, it can be seen that this alloy of Ni and Al is a mixed phase of α-Ni phase and β-NiAl phase.
【0022】この焼結体を所定の形状に加工し、バッキ
ングプレートに接合してスパッタリングターゲットとし
た。This sintered body was processed into a predetermined shape and joined to a backing plate to obtain a sputtering target.
【0023】(実施例2)実施例1と同様に、原料粉末
として、平均粒径が5μmのNi粉末およびMo粉末
と、平均粒径が150μmのAl粉末を用い、これらの
金属粉末をNiとAlの原子比が2:1で残部がMoで
ある組成(B組成)となるように秤量し、ボールミルに
より16時間混合した。この混合粉末をカーボン製の鋳
型に充填しホットプレス装置により550℃〜1150
℃の温度、200kg/cm2の圧力で2時間保持した
時に得られる焼結体の密度を図1に示す。図1から10
00℃以上で、相対密度100%以上の緻密な焼結体が
得られることがわかる。Example 2 In the same manner as in Example 1, Ni powder and Mo powder having an average particle diameter of 5 μm and Al powder having an average particle diameter of 150 μm were used as raw material powders. The composition was weighed so that the composition was such that the atomic ratio of Al was 2: 1 and the balance was Mo (composition B), and the mixture was mixed by a ball mill for 16 hours. This mixed powder is filled in a carbon mold and heated at 550 ° C. to 1150 ° C.
FIG. 1 shows the density of the sintered body obtained when the temperature was maintained at a temperature of 200 ° C. and a pressure of 200 kg / cm 2 for 2 hours. Figures 1 to 10
It is understood that a dense sintered body having a relative density of 100% or more can be obtained at a temperature of 00 ° C. or more.
【0024】相対密度が100%を超える焼結体の断面
を鏡面研磨し、その組織をEPMAにより観察したとこ
ろ、実施例1と同様に、この焼結体がポアの無い緻密な
焼結体であること、NiとAlが合金化して基質を形成
しその基質中に平均粒径5μm以下のMo粒子が均一に
分散した組織を有することがわかった。さらに、焼結温
度1150℃で得られた焼結体のX線回折測定の結果を
図4に示すが、この測定結果から、このNiとAlの合
金はα−Ni相とβ−NiAl相の混合相であり、実施
例1との比較から、その量比は最初に加えたNiとAl
の量比に対応していることが分かる。The cross section of the sintered body having a relative density exceeding 100% was mirror-polished and its structure was observed by EPMA. As in Example 1, the sintered body was a dense sintered body having no pores. It was found that Ni and Al were alloyed to form a substrate, and the substrate had a structure in which Mo particles having an average particle size of 5 μm or less were uniformly dispersed. FIG. 4 shows the results of X-ray diffraction measurement of the sintered body obtained at a sintering temperature of 1150 ° C. From the measurement results, it can be seen that the alloy of Ni and Al has an α-Ni phase and a β-NiAl phase. It is a mixed phase, and from the comparison with Example 1, the quantitative ratio is Ni and Al added first.
It can be seen that it corresponds to the quantitative ratio of.
【0025】実施例1と同様に、得られた焼結体を所定
の形状に加工し、バッキングプレートに接合してスパッ
タリングターゲットとした。As in Example 1, the obtained sintered body was processed into a predetermined shape and joined to a backing plate to obtain a sputtering target.
【0026】(実施例3)実施例1と同様の手順により
A組成の混合粉末を作製し、この混合粉末をゴム型に充
填したのちCIPにより加圧成形した。得られた成形体
を、HIPにより焼結温度950℃、焼結圧力1.5t
on/cm2、保持時間2時間で焼結した。表1に示す
ように、焼結温度1000℃、焼結圧力200kg/c
m2で、2時間保持したときに得られる焼結体の相対密
度は102.9%であるのに対し焼結圧力の増加によ
り、得られた焼結体の相対密度は107.5%に上昇し
た。(Example 3) A mixed powder having the composition A was prepared in the same procedure as in Example 1, and the mixed powder was filled in a rubber mold and then subjected to pressure molding by CIP. The obtained compact was sintered by HIP at a sintering temperature of 950 ° C. and a sintering pressure of 1.5 t.
The sintering was performed at on / cm 2 for 2 hours. As shown in Table 1, sintering temperature 1000 ° C, sintering pressure 200kg / c
m 2 , the relative density of the sintered body obtained after holding for 2 hours was 102.9%, but the increase in the sintering pressure caused the relative density of the obtained sintered body to be 107.5%. Rose.
【0027】[0027]
【表1】 [Table 1]
【0028】(実施例4)実施例1と同様の手順により
A組成の混合粉末を作製し、実施例1と同様にホットプ
レス装置により1000℃の温度、200kg/cm2
の圧力で5時間保持した。保持時間の延長により、得ら
れた焼結体の相対密度は表1に示すように104.7%
に上昇した。(Example 4) A mixed powder of the A composition was prepared in the same procedure as in Example 1, and the temperature was set to 1000 ° C and 200 kg / cm 2 by a hot press device in the same manner as in Example 1.
For 5 hours. Due to the extension of the holding time, the relative density of the obtained sintered body was 104.7% as shown in Table 1.
Rose.
【0029】[0029]
【発明の効果】本発明によれば、高融点金属であるMo
と低融点金属であるAlとを含み、しかも脆い金属間化
合物が生成するNiAlMo合金に対しても、構成元素
が微細に分散しかつ緻密な焼結体からなるNiAlMo
スパッタリングターゲットを容易に得ることができる。
さらに、本発明のNiAlMoスパッタリングターゲッ
トは、構成元素が微細に分散しかつ緻密で高密度の焼結
体からなるため、スパッタリング時に異常放電が起き難
くなり、均一性の良い薄膜を形成することができるとと
もに、内包ガスなどに起因するスパッタリング時のスプ
ラッシュを防止し、パーティクルの発生を抑制すること
ができ、かつターゲットの使用時間を長くすることが出
来る。According to the present invention, Mo, which is a high melting point metal, is used.
And a low-melting-point metal, Al, and also a NiAlMo alloy in which a brittle intermetallic compound is formed.
A sputtering target can be easily obtained.
Furthermore, since the NiAlMo sputtering target of the present invention is formed of a dense and high-density sintered body in which the constituent elements are finely dispersed, abnormal discharge is unlikely to occur during sputtering, and a thin film with good uniformity can be formed. At the same time, splash at the time of sputtering caused by an included gas or the like can be prevented, generation of particles can be suppressed, and the target can be used for a longer time.
【0030】したがって、本発明のNiAlMoスパッ
タリングターゲットは、耐食膜、光学干渉膜、LCDの
配線形成用導電膜等の機能性薄膜を成膜するためのスパ
ッタリングターゲットとして好適である。Therefore, the NiAlMo sputtering target of the present invention is suitable as a sputtering target for forming a functional thin film such as a corrosion-resistant film, an optical interference film, and a conductive film for forming a wiring of an LCD.
【図1】実施例1および実施例2の焼結温度と相対密度
の関係を示す図である。FIG. 1 is a diagram showing the relationship between the sintering temperature and the relative density in Examples 1 and 2.
【図2】実施例1における焼結体の二次電子線像の一例
を示す図である。FIG. 2 is a view showing an example of a secondary electron beam image of a sintered body in Example 1.
【図3】実施例1における焼結体の特性X線像の一例を
示す図である。(a)Ni特性X線像、(b)Al特性
X線像、(c)Mo特性X線像FIG. 3 is a view showing an example of a characteristic X-ray image of a sintered body in Example 1. (A) Ni characteristic X-ray image, (b) Al characteristic X-ray image, (c) Mo characteristic X-ray image
【図4】実施例1および実施例2における焼結体のX線
回折による測定結果を示す図である。FIG. 4 is a view showing the measurement results of the sintered bodies in Example 1 and Example 2 by X-ray diffraction.
Claims (6)
部が不可避的不純物からなり、かつその組成が均一な焼
結体からなることを特徴とするNiAlMoスパッタリ
ングターゲット。1. A NiAlMo sputtering target comprising Ni, Al and Mo as main components, the remainder being inevitable impurities, and a sintered body having a uniform composition.
おり、その基質中に微細なMo粒子が分散した組織を持
つ焼結体からなることを特徴とする請求項1に記載のN
iAlMoスパッタリングターゲット。2. The N alloy according to claim 1, wherein Ni and Al are alloyed to form a matrix, and the sintered body has a structure in which fine Mo particles are dispersed in the matrix.
iAlMo sputtering target.
5μm以下であることを特徴とする請求項2に記載のN
iAlMoスパッタリングターゲット。3. The N particle according to claim 2, wherein the Mo particles dispersed in the substrate have an average particle size of 5 μm or less.
iAlMo sputtering target.
成元素単体の密度の体積比加重平均値と仮定して得られ
た焼結体の相対密度が100%以上であることを特徴と
する請求項1〜3のいずれか1項に記載のNiAlMo
スパッタリングターゲット。4. A relative density of a sintered body obtained by assuming a theoretical density as a volume ratio weighted average value of densities of individual constituent elements of Ni, Al and Mo is 100% or more. The NiAlMo according to any one of claims 1 to 3,
Sputtering target.
後、加圧焼結することを特徴とする請求項1〜4のいず
れか1項に記載のNiAlMoスパッタリングターゲッ
トの製造方法。5. The method for producing a NiAlMo sputtering target according to claim 1, wherein the respective metal powders of Ni, Al, and Mo are mixed and then sintered under pressure.
後、1000℃以上1300℃未満の温度、かつ200
kg/cm2以上の圧力で2時間以上加圧焼結するか、
またはその条件と同等以上の焼結効果が得られる条件で
加圧焼結することを特徴とする請求項1〜4のいずれか
1項に記載のNiAlMoスパッタリングターゲットの
製造方法。6. After mixing each metal powder of Ni, Al, and Mo, a temperature of 1000 ° C. or more and less than 1300 ° C. and 200
pressure sintering at a pressure of at least kg / cm 2 for at least 2 hours,
5. The method for producing a NiAlMo sputtering target according to claim 1, wherein pressure sintering is performed under a condition that achieves a sintering effect equal to or higher than the above condition. 6.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14294698A JP4140083B2 (en) | 1998-05-25 | 1998-05-25 | NiAlMo sputtering target and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14294698A JP4140083B2 (en) | 1998-05-25 | 1998-05-25 | NiAlMo sputtering target and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH11335822A true JPH11335822A (en) | 1999-12-07 |
JP4140083B2 JP4140083B2 (en) | 2008-08-27 |
Family
ID=15327335
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14294698A Expired - Fee Related JP4140083B2 (en) | 1998-05-25 | 1998-05-25 | NiAlMo sputtering target and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4140083B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101857925A (en) * | 2010-07-07 | 2010-10-13 | 哈尔滨工业大学 | Preparation method of ultrafine grained Ni-Al alloy |
CN115255367A (en) * | 2022-08-01 | 2022-11-01 | 宁波江丰电子材料股份有限公司 | Nickel-aluminum alloy sputtering target material and hot-pressing preparation method thereof |
-
1998
- 1998-05-25 JP JP14294698A patent/JP4140083B2/en not_active Expired - Fee Related
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101857925A (en) * | 2010-07-07 | 2010-10-13 | 哈尔滨工业大学 | Preparation method of ultrafine grained Ni-Al alloy |
CN115255367A (en) * | 2022-08-01 | 2022-11-01 | 宁波江丰电子材料股份有限公司 | Nickel-aluminum alloy sputtering target material and hot-pressing preparation method thereof |
CN115255367B (en) * | 2022-08-01 | 2024-04-16 | 宁波江丰电子材料股份有限公司 | Nickel-aluminum alloy sputtering target material and hot pressing preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP4140083B2 (en) | 2008-08-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105683407B (en) | Sputter target and its manufacturing method | |
CN110541104B (en) | Low-density two-phase high-entropy alloy material and preparation method thereof | |
JP2860064B2 (en) | Method for producing Ti-Al alloy target material | |
EP3124647B1 (en) | Sputtering target comprising al-te-cu-zr alloy, and method for producing same | |
US5821441A (en) | Tough and corrosion-resistant tungsten based sintered alloy and method of preparing the same | |
CN114058892A (en) | Wear-resistant corrosion-resistant high-entropy alloy-based composite material and preparation method thereof | |
JP2005097697A (en) | Sputtering target and method for manufacturing the same | |
JP2901049B2 (en) | Al-Ti alloy target material for arc ion plating | |
JPH044362B2 (en) | ||
JP5988140B2 (en) | Manufacturing method of MoTi target material and MoTi target material | |
JPH0832934B2 (en) | Manufacturing method of intermetallic compounds | |
JP2019536897A (en) | Sputtering target | |
JPH0790318A (en) | Production of titanium sintered body by metal powder injection molding method | |
JPH11335822A (en) | Nialmo sputtering target and its production | |
US20100140084A1 (en) | Method for production of aluminum containing targets | |
KR20080058333A (en) | Material mixture, sputter target, method for the production thereof and used of the material mixture | |
JPH08283921A (en) | High strength aluminum alloy consolidation material and its production | |
CN113798488A (en) | Aluminum-based powder metallurgy material and preparation method thereof | |
JP2000096162A (en) | Aluminum matrix composite material and its production | |
JP2021127494A (en) | Cr-Al alloy sputtering target | |
JP2003155537A (en) | High-toughness hard alloy and its manufacturing method | |
JPH05247642A (en) | Target member and manufacture therefor | |
JPH09202901A (en) | Production of sintered compact of titanium-nickel alloy | |
KR20160085756A (en) | Sputtering target and production method | |
JP2000129316A (en) | Production of alloy powder |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050428 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050428 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080218 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080226 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080418 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080520 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080602 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110620 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110620 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110620 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120620 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120620 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130620 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees |