JPH11335734A - Manufacture of steel material for soft-nitriding, and soft-nitrided parts using the steel material - Google Patents

Manufacture of steel material for soft-nitriding, and soft-nitrided parts using the steel material

Info

Publication number
JPH11335734A
JPH11335734A JP14719898A JP14719898A JPH11335734A JP H11335734 A JPH11335734 A JP H11335734A JP 14719898 A JP14719898 A JP 14719898A JP 14719898 A JP14719898 A JP 14719898A JP H11335734 A JPH11335734 A JP H11335734A
Authority
JP
Japan
Prior art keywords
steel
hardness
steel material
nitrocarburizing
soft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14719898A
Other languages
Japanese (ja)
Inventor
Yasuo Kurokawa
八寿男 黒川
Shoji Nishimura
彰二 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP14719898A priority Critical patent/JPH11335734A/en
Publication of JPH11335734A publication Critical patent/JPH11335734A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide soft-nitrided parts having superior fatigue resistance and wear resistance and a method of manufacturing a steel material for soft- nitriding, used as a stock for the parts and excellent in machinability. SOLUTION: A steel, which has a composition consisting of 0.15-0.45% C, >0.10-0.50% Si, 0.2-2.5% Mn, 0.002-0.13% S, 0.5-2.0% Cr, 0.005-0.1% Nd, 0.05-0.5% V, 0.005-0.3% Al, 0-0.2% Ti, 0-0.2% Zr, 0-0.2% Nb, 0-0.35% Pb, 0-0.01% Ca, and the balance Fe with impurities, is subjected to hot working and to spheroidizing annealing to make core hardness to <=Hv180 and then to cold working to make core hardness to >=Hv250 and also make decarburized depth to 0.1 to 0.4 mm from the surface of the steel material. The composition of the steel stock may contain 0.05-0.50% Si and 0.02-0.3% of (Mo+0.5W), while containing the components mentioned above besides Si. The soft-nitrided parts have >=Hv600 surface hardness after soft-nitriding and >=0.1 mm effective case depth and are obtained by using, as a stock, the steel material for soft-nitriding manufactured by either of the above methods.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、軟窒化用鋼材の製
造方法及びその鋼材を用いた軟窒化部品に関し、より詳
しくは耐疲労特性、耐摩耗性、耐ピッチング性や耐スポ
ーリング性に優れた軟窒化部品と、その軟窒化部品の素
材となる被削性に優れた軟窒化用鋼材の製造方法に関す
る。なお、本明細書では、繰り返し面圧の負荷により材
料表面が剥離する疲労現象のうち、剥離が比較的小さい
ものを「ピッチング」、剥離が比較的大きなものを「ス
ポーリング」と呼ぶ。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a steel material for nitrocarburizing and a nitrocarburized component using the steel material, and more particularly to a steel sheet having excellent fatigue resistance, wear resistance, pitting resistance and spalling resistance. The present invention relates to a nitrocarburized component and a method for producing a nitrocarburized steel material having excellent machinability, which is a material of the nitrocarburized component. In the present specification, among the fatigue phenomena in which the material surface peels off due to the repetitive surface pressure load, those with relatively small peeling are called "pitting", and those with relatively large peeling are called "spalling".

【0002】[0002]

【従来の技術】自動車や産業機械に使用される多くの部
品、例えば歯車や軸受などには、一般に大きな疲労強度
や耐摩耗性が要求される。そのため前記部品は、所謂
「表面硬化処理」を施して製造されてきた。
2. Description of the Related Art Many parts used in automobiles and industrial machines, such as gears and bearings, generally require large fatigue strength and wear resistance. Therefore, the components have been manufactured by performing a so-called “surface hardening treatment”.

【0003】表面硬化処理としては一般に、浸炭焼入
れ、高周波焼入れ、炎焼入れ、窒化や軟窒化などの処理
が知られている。このうち、浸炭焼入れ、高周波焼入れ
や炎焼入れといったオーステナイト状態の高温域から急
冷(焼入れ)して表面を硬化させる処理では、部品に大
きな焼入れ歪が生じてしまう。更に、場合によっては焼
入れした部品に焼割れが生ずることもある。
As the surface hardening treatment, generally, carburizing quenching, induction quenching, flame quenching, nitriding and nitrocarburizing are known. Of these, in the treatment of hardening the surface by rapid cooling (quenching) from a high temperature region in an austenitic state such as carburizing quenching, induction quenching, or flame quenching, large quenching distortion occurs in components. Further, in some cases, quenched cracks may occur in the quenched parts.

【0004】このため、所要部品に対して特に低歪であ
ることが要求される場合には、窒化や軟窒化処理が施さ
れている。
[0004] For this reason, when a required component is required to have a particularly low strain, nitriding or nitrocarburizing is performed.

【0005】しかし、一般の窒化処理は、アンモニアの
気流中で500〜550℃に20〜100時間加熱後徐
冷する所謂「ガス窒化」処理であるため生産性が低くコ
ストが嵩む。このため、窒化温度が550℃前後の液体
窒化法が開発されているが、この方法の場合にも窒化に
は12時間程度を要するので、必ずしも量産部品を低コ
ストで効率よく製造するのに適した方法とは言えない。
イオン窒化法によれば短時間で窒化が可能ではあるが、
温度測定が困難なことや、陰極となる被処理部品の配置
や形状、質量などによって温度や窒化層が不安定になっ
たりするので、この方法もやはり量産部品の製造に適し
ているとは言い難い。
However, the general nitriding treatment is a so-called "gas nitriding" treatment of heating at 500 to 550 ° C. for 20 to 100 hours in a stream of ammonia and then gradually cooling, resulting in low productivity and high cost. For this reason, a liquid nitriding method at a nitriding temperature of about 550 ° C. has been developed. However, even in this method, nitridation requires about 12 hours, so that it is not necessarily suitable for efficiently producing mass-produced parts at low cost. I can't say that.
According to the ion nitriding method, nitriding is possible in a short time,
This method is not suitable for the production of mass-produced parts because it is difficult to measure the temperature, and the temperature and nitrided layer become unstable depending on the arrangement, shape, and mass of the part to be treated as the cathode. hard.

【0006】一方、軟窒化処理は、570℃程度の温度
のシアン系化合物の塩浴、又はRXガス(RXガスは吸
熱型変成ガスの商標)にアンモニアを添加したガス中に
保持することにより、鋼材表面からN(窒素)とO(酸
素)を鋼中に侵入させて表層部を硬化させる方法で、短
時間処理が可能である。このうち前者のシアン系化合物
の塩浴を用いる方法は、廃液の処理にコストが嵩むた
め、後者のガスを用いる「ガス軟窒化法」が、低歪が要
求される量産品に適した表面硬化処理方法として重用さ
れている。
On the other hand, the nitrocarburizing treatment is carried out by keeping a salt bath of a cyanide compound at a temperature of about 570 ° C. or a gas obtained by adding ammonia to RX gas (RX gas is a trademark of endothermic modified gas). A method in which N (nitrogen) and O (oxygen) penetrate into the steel from the surface of the steel material to harden the surface layer portion enables short-time processing. Of these, the former method using a salt bath of a cyanide compound increases the cost of waste liquid treatment, so the latter gas nitrocarburizing method using gas is a surface hardening method suitable for mass-produced products requiring low distortion. It is heavily used as a processing method.

【0007】従来、軟窒化用鋼としては、例えば、JIS
G 4105に規定されているクロムモリブデン鋼鋼材(SC
M435など)やJIS G 4202のアルミニウムクロムモリ
ブデン鋼鋼材(SACM645)が多く使用されてき
た。
Conventionally, as steel for nitrocarburizing, for example, JIS
Chromium molybdenum steel (SC) specified in G 4105
M435) and aluminum chromium molybdenum steel of JIS G 4202 (SACM645) have been widely used.

【0008】しかし、SCM435を初めとするJIS
に規定されたクロムモリブデン鋼鋼材を素材鋼とした部
品の場合、軟窒化処理後の表面からビッカース硬度(H
v)500の位置までの距離(以下、「有効硬化深さ」
という)は0.05mm程度と小さい。更に、表面から
0.025mmの位置におけるマイクロビッカース硬度
(以下、「表面硬度」という)もHv600以上になら
ない場合が多い。このため、疲労強度や耐摩耗性の点で
充分に満足できるものではなかった。
However, JIS including SCM435
In the case of parts made of chromium molybdenum steel as specified in JIS, the Vickers hardness (H
v) Distance to the position of 500 (hereinafter, "effective hardening depth")
Is as small as about 0.05 mm. Furthermore, the micro Vickers hardness at a position 0.025 mm from the surface (hereinafter, referred to as “surface hardness”) often does not exceed Hv600. For this reason, it was not sufficiently satisfactory in terms of fatigue strength and wear resistance.

【0009】一方、上記の欠点を改良するためにSAC
M645には窒化特性向上元素であるAl及びCrが多
量に添加されている。しかし、SACM645を素材鋼
とした場合も、軟窒化処理によって表面硬度はHvで8
00〜1100と非常に高くなるものの、有効硬化深さ
は0.08mm程度と小さい。したがって、表面部から
芯部(以下、軟窒化処理後の表面硬化されていない部分
を「芯部」という)への硬度勾配が急激になりすぎる。
そのため、高負荷の下で運転される歯車や軸受などで
は、表面硬化部と芯部の境界付近から剥離現象が起きや
すく、耐ピッチング性あるいは耐スポ−リング性が劣っ
ていた。更に、SACM645は溶製、鋳造、熱間加工
が比較的困難であるし、冷間加工性が悪く複雑な形状の
部品にはプレス成形が難しいという問題もあった。
On the other hand, in order to improve the above-mentioned disadvantage, SAC
M645 contains a large amount of Al and Cr which are nitriding property improving elements. However, even when SACM645 is used as the material steel, the surface hardness is 8 in Hv by the nitrocarburizing treatment.
Although it is very high as 00 to 1100, the effective hardening depth is as small as about 0.08 mm. Therefore, the hardness gradient from the surface portion to the core portion (hereinafter, the portion that is not surface-hardened after the nitrocarburizing treatment is referred to as “core portion”) is too sharp.
Therefore, in gears and bearings operated under a high load, a peeling phenomenon is likely to occur near the boundary between the hardened portion and the core portion, and the pitting resistance or the spoiling resistance is poor. Furthermore, SACM645 has problems that melting, casting, and hot working are relatively difficult, and that cold workability is poor and that parts having complicated shapes are difficult to press-form.

【0010】特開昭58−71357号公報には、JI
S規格鋼の問題点を解決した「軟窒化用鋼」が開示され
ている。この公報で提案された鋼を素材鋼として用いれ
ば、確かに疲労強度、耐摩耗性に優れるとともに耐ピッ
チング性、耐スポーリング性にも優れた軟窒化部品を得
ることは可能である。しかし、Siなどの強化に有効な
元素の含有量を低減して冷間加工性を向上させた鋼であ
るため、軟窒化によって表面部は硬化するものの、逆に
芯部は軟窒化時の加熱で軟化するので、軟窒化後に芯部
硬度が低くなりすぎて疲労特性が劣化する場合もあっ
た。
JP-A-58-71357 discloses JI
"Steel for nitrocarburizing" which solves the problem of S-standard steel is disclosed. If the steel proposed in this publication is used as a material steel, it is possible to obtain a nitrocarburized component having excellent fatigue strength and wear resistance, and also excellent pitting resistance and spalling resistance. However, since the steel is improved in cold workability by reducing the content of elements effective for strengthening such as Si, the surface is hardened by nitrocarburizing, whereas the core is heated during nitrocarburizing. , The core hardness becomes too low after nitrocarburizing, and the fatigue properties are sometimes deteriorated.

【0011】更に、JIS規格鋼であるSCM435な
どのクロムモリブデン鋼やアルミニウムクロムモリブデ
ン鋼のSACM645及び上記の特開昭58−7135
7号公報で提案された鋼の場合には被削性が劣る。した
がって、冷間鍛造などで所望の軟窒化部品の形状に成形
した後、例えば、油穴や部品の軽量化の目的から部品強
度に影響を及ぼさない箇所に穴をあけるというような切
削加工のコストが嵩んでしまう。このため、切削加工を
容易にし、低コスト化をはかるために被削性に優れた軟
窒化用鋼材に対する要求がますます大きくなっている。
Further, chromium molybdenum steel such as SCM435 which is JIS standard steel, SACM645 of aluminum chromium molybdenum steel and the above-mentioned Japanese Patent Application Laid-Open No. 58-7135.
In the case of the steel proposed in Japanese Patent No. 7, the machinability is inferior. Therefore, after forming into a desired nitrocarburized part shape by cold forging or the like, for example, a cutting cost such as drilling a hole in an oil hole or a place that does not affect the strength of the part for the purpose of reducing the weight of the part. Will increase. For this reason, there is an increasing demand for a nitrocarburizing steel material having excellent machinability in order to facilitate cutting and reduce costs.

【0012】[0012]

【発明が解決しようとする課題】本発明は、上記現状に
鑑みなされたもので、被削性と冷間加工性に優れた鋼材
を素材とし、冷間加工後に軟窒化処理するだけで優れた
疲労特性、耐摩耗性、耐ピッチング性や耐スポーリング
性を呈する軟窒化部品を提供することを課題とする。更
に、本発明は、上記軟窒化部品の素材となる被削性に優
れた軟窒化用鋼材の製造方法を提供することも課題とす
る。
DISCLOSURE OF THE INVENTION The present invention has been made in view of the above-mentioned circumstances, and is excellent only in that a steel material excellent in machinability and cold workability is used as a raw material and only soft nitriding is performed after cold working. An object of the present invention is to provide a nitrocarburized component exhibiting fatigue characteristics, wear resistance, pitting resistance and spalling resistance. Still another object of the present invention is to provide a method for producing a steel material for nitrocarburizing which is excellent in machinability and is used as a material for the nitrocarburized component.

【0013】[0013]

【課題を解決するための手段】本発明の要旨は、下記
(1)及び(2)に示す被削性に優れた軟窒化用鋼材の
製造方法、並びに(3)に示すその鋼材を用いた軟窒化
部品にある。
The gist of the present invention is to provide a method for producing a steel material for nitrocarburizing excellent in machinability as shown in the following (1) and (2), and using the steel material as shown in (3). It is in nitrocarburized parts.

【0014】(1)重量%で、C:0.15〜0.45
%、Si:0.10%を超え0.50%まで、Mn:
0.2〜2.5%、S:0.002〜0.13%、C
r:0.5〜2.0%、Nd:0.005〜0.1%、
V:0.05〜0.5%、Al:0.005〜0.3
%、Ti:0〜0.2%、Zr:0〜0.2%、Nb:
0〜0.2%、Pb:0〜0.35%及びCa:0〜
0.01%を含み、残部はFe及び不可避不純物の化学
組成からなる鋼を熱間加工後に球状化焼鈍して芯部硬度
をHv180以下とし、次いで冷間加工して芯部硬度を
Hv250以上とするとともに、脱炭深さを鋼材の表面
から0.1〜0.4mmにすることを特徴とする被削性
に優れた軟窒化用鋼材の製造方法。
(1) In weight%, C: 0.15 to 0.45
%, Si: more than 0.10% to 0.50%, Mn:
0.2-2.5%, S: 0.002-0.13%, C
r: 0.5 to 2.0%, Nd: 0.005 to 0.1%,
V: 0.05-0.5%, Al: 0.005-0.3
%, Ti: 0 to 0.2%, Zr: 0 to 0.2%, Nb:
0 to 0.2%, Pb: 0 to 0.35%, and Ca: 0 to 0%
0.01%, the balance being steel having the chemical composition of Fe and unavoidable impurities, after hot working, spheroidizing and annealing to reduce the core hardness to Hv180 or less, and then to cold work to increase the core hardness to Hv250 or more. And producing a steel material for nitrocarburizing excellent in machinability, wherein the decarburization depth is 0.1 to 0.4 mm from the surface of the steel material.

【0015】(2)重量%で、C:0.15〜0.45
%、Si:0.05〜0.50%、Mn:0.2〜2.
5%、S:0.002〜0.13%、Cr:0.5〜
2.0%、Nd:0.005〜0.1%、V:0.05
〜0.5%、Al:0.005〜0.3%、Mo+0.
5W:0.02〜0.3%、Ti:0〜0.2%、Z
r:0〜0.2%、Nb:0〜0.2%、Pb:0〜
0.35%及びCa:0〜0.01%を含み、残部はF
e及び不可避不純物の化学組成からなる鋼を熱間加工後
に球状化焼鈍して芯部硬度をHv180以下とし、次い
で冷間加工して芯部硬度をHv250以上とするととも
に、脱炭深さを鋼材の表面から0.1〜0.4mmにす
ることを特徴とする被削性に優れた軟窒化用鋼材の製造
方法。
(2) In weight%, C: 0.15 to 0.45
%, Si: 0.05-0.50%, Mn: 0.2-2.
5%, S: 0.002 to 0.13%, Cr: 0.5 to
2.0%, Nd: 0.005 to 0.1%, V: 0.05
-0.5%, Al: 0.005-0.3%, Mo + 0.
5W: 0.02-0.3%, Ti: 0-0.2%, Z
r: 0 to 0.2%, Nb: 0 to 0.2%, Pb: 0 to 0%
0.35% and Ca: 0 to 0.01%, with the balance being F
e and steel having a chemical composition of unavoidable impurities are subjected to spheroidizing annealing after hot working to reduce the core hardness to Hv 180 or less, and then to cold working to increase the core hardness to Hv 250 or more, and the decarburization depth to the steel material. A method for producing a steel material for nitrocarburizing excellent in machinability, wherein the thickness is 0.1 to 0.4 mm from the surface of the steel.

【0016】(3)軟窒化後の表面硬度がHv600以
上、有効硬化深さが0.1mm以上で、且つ、素材が上
記(1)又は(2)に記載の方法で製造された軟窒化用
鋼材であることを特徴とする軟窒化部品。
(3) For nitrocarburizing, the surface hardness after nitrocarburizing is Hv600 or more, the effective hardening depth is 0.1 mm or more, and the material is manufactured by the method described in (1) or (2) above. A soft-nitrided part characterized by being a steel material.

【0017】なお、「軟窒化用鋼材」とは、冷間加工や
切削加工によって所望の形状に成形されたもの、あるい
はその後で更に研磨などを施されたものなどのことをい
い、これが軟窒化処理に供される。
The term "steel material for nitrocarburizing" refers to a material formed into a desired shape by cold working or cutting, or a material which has been further polished thereafter. Provided for processing.

【0018】又、既に述べたように、「有効硬化深さ」
とは軟窒化処理後の表面からビッカース硬度(Hv)5
00の位置までの距離のことをいい、「表面硬度」とは
表面から0.025mmの位置におけるビッカース硬度
のことをいう。更に、「芯部」とは軟窒化処理後の表面
硬化されていない部分のことをいう。
As described above, the "effective hardening depth"
Means Vickers hardness (Hv) 5 from the surface after soft nitriding
The term “surface hardness” refers to the Vickers hardness at a position 0.025 mm from the surface. Further, the “core” refers to a part that has not been surface-hardened after the nitrocarburizing treatment.

【0019】なお、本発明における「脱炭」とは、「芯
部」のC含有量よりも重量%で、0.05%以上C含有
量が低下したことをいう。
In the present invention, "decarburization" means that the C content is 0.05% or more in terms of weight% of the C content of the "core".

【0020】以下において、上記(1)〜(3)に記載
のものをそれぞれ(1)〜(3)の発明という。
Hereinafter, the inventions described in the above (1) to (3) are referred to as the inventions (1) to (3), respectively.

【0021】[0021]

【発明の実施の形態】本発明者らは、冷間加工性に優れ
た鋼材を素材とし、冷間加工後に軟窒化処理するだけで
優れた耐疲労特性、耐摩耗性、耐ピッチング性や耐スポ
ーリング性を呈する軟窒化部品を提供するとともに、上
記軟窒化部品の素材となる被削性に優れた軟窒化用鋼材
の製造方法を提供することを目的として種々の調査・研
究を行った。すなわち、前記した課題を解決するため
に、軟窒化部品の素材となる鋼材の化学組成、各製造工
程における適正なミクロ組織や機械的性質に関して調査
・研究を重ねた。その結果、下記〜の知見を得た。
BEST MODE FOR CARRYING OUT THE INVENTION The present inventors have made steel materials excellent in cold workability into a material, and have excellent fatigue resistance, wear resistance, pitting resistance and pitting resistance simply by performing soft nitriding after cold working. Various investigations and studies were conducted with the aim of providing a nitrocarburized component exhibiting spalling properties and providing a method for producing a steel material for nitrocarburizing having excellent machinability as a material of the nitrocarburized component. That is, in order to solve the above-described problems, investigations and studies were repeated on the chemical composition of the steel material used as the material of the nitrocarburized parts, the appropriate microstructure and the mechanical properties in each manufacturing process. As a result, the following findings were obtained.

【0022】軟窒化部品の耐疲労特性や耐ピッチング
性を向上させるには、いずれも表面硬度と有効硬化深さ
を大きくすれば良い。又、耐摩耗性を向上させるには、
表面硬度を大きくすれば良い。一方、耐スポーリング性
を向上させるには、有効硬化深さを大きくすれば良い。
In order to improve the fatigue resistance and pitting resistance of the nitrocarburized parts, the surface hardness and the effective hardening depth may be increased. Also, to improve wear resistance,
What is necessary is just to increase surface hardness. On the other hand, in order to improve the spalling resistance, the effective hardening depth may be increased.

【0023】軟窒化処理を施し、表面硬度をHV60
0以上、有効硬化深さを0.1mm以上とすれば、軟窒
化部品の耐疲労特性、耐摩耗性、耐ピッチング性及び耐
スポーリング性を高めることができる。
A soft nitriding treatment is performed, and the surface hardness is set to HV60.
When the hardening depth is 0 or more and the effective hardening depth is 0.1 mm or more, the fatigue resistance, wear resistance, pitting resistance and spalling resistance of the nitrocarburized component can be improved.

【0024】鋼材を球状化焼鈍して硬度をHv180
以下に低下させれば、冷間加工性が向上して金型寿命を
大幅に改善できる。
The steel material is spheroidized and annealed to have a hardness of Hv180.
If it is reduced below, the cold workability is improved and the mold life can be greatly improved.

【0025】素材鋼の化学組成を調整して、球状化焼
鈍で硬度をHv180以下にした鋼材を冷間加工で加工
硬化させ、Hv250以上の硬度にすれば、これに軟窒
化処理を施しても芯部硬度の低下は極めて小さく、Hv
250以上の値が保てる。
If the chemical composition of the base steel is adjusted and the hardness is reduced to Hv180 or lower by spheroidizing annealing, the steel is work-hardened by cold working to have a hardness of Hv250 or higher. The decrease in core hardness is extremely small, and Hv
A value of 250 or more can be maintained.

【0026】なお、特に断らない限り、軟窒化する前の
状態(例えば球状化焼鈍後や冷間加工後)の硬度とは、
軟窒化後の芯部に相当する部分(例えば「中心部」)の
硬度のことをいう。
Unless otherwise specified, the hardness before nitrocarburizing (for example, after spheroidizing annealing or after cold working) means
It refers to the hardness of a portion (for example, “center”) corresponding to the core after soft nitriding.

【0027】軟窒化後の芯部硬度がHv250以上で
あれば、例えば、自動車のミッションギアのように高い
負荷が加わる部品においても、部品内部を起点として曲
げ疲労が生ずることはない。
If the core hardness after nitrocarburizing is Hv250 or more, bending fatigue does not occur from the inside of the component as a starting point even in a component to which a high load is applied, such as a transmission gear of an automobile.

【0028】鋼に適正量のNdとSとを添加すれば、
溶鋼の比較的高温域でNd23が微細に分散して析出
し、このNd23がチップブレーカーとしての作用をす
るので、鋼の被削性を高めることができる。
By adding appropriate amounts of Nd and S to steel,
In a relatively high temperature range of the molten steel, Nd 2 S 3 is finely dispersed and precipitated, and this Nd 2 S 3 acts as a chip breaker, so that the machinability of the steel can be improved.

【0029】次に、本発明者らが重量%で、C:0.3
0%、Si:0.25%、Mn:0.6%及びAl:
0.03%を基本組成とし、C含有量だけを0.15%
から0.45%まで変化させた鋼材に軟窒化処理を行っ
たところ、軟窒化処理後の有効硬化深さはC含有量が低
い鋼材ほど大きくなることがわかった。そこで、前記の
C含有量を変化させた鋼材を種々の深さまで脱炭させ、
次いで軟窒化処理を行った。この結果、下記に示す重
要な知見が得られた。
Next, the present inventors, by weight%, C: 0.3
0%, Si: 0.25%, Mn: 0.6%, and Al:
0.03% as the basic composition, only C content 0.15%
When the nitrocarburizing treatment was performed on the steel material changed from 0.45% to 0.45%, it was found that the effective hardening depth after the nitrocarburizing treatment became larger as the C content was lower. Therefore, the steel material with the C content changed is decarburized to various depths,
Next, a soft nitriding treatment was performed. As a result, the following important findings were obtained.

【0030】軟窒化処理前の鋼材の表面を0.1〜
0.4mm脱炭させて表層部のC含有量を芯部のC含有
量より低減させた場合に、特に、軟窒化処理後の有効硬
化深さを大きく増大できる。
The surface of the steel material before the nitrocarburizing treatment is 0.1 to
When the C content in the surface layer portion is reduced from the C content in the core portion by decarburizing by 0.4 mm, the effective hardening depth after the nitrocarburizing treatment can be particularly greatly increased.

【0031】上記の〜から、下記の知見が得られ
た。
From the above, the following findings were obtained.

【0032】優れた冷間加工性を有する被削性に優れ
た鋼材を素材とし、これに冷間加工を施して加工硬化に
より充分な硬度を確保し、次に軟窒化して硬く深い窒化
層を形成させるが、この軟窒化のための加熱で前記の加
工硬化による硬度(すなわち芯部硬度)を維持するか、
硬度低下を小さく抑えることができれば、軟窒化部品に
大きな耐疲労特性、耐摩耗性、耐ピッチング性及び耐ス
ポーリング性を付与できる。特に、軟窒化前の脱炭深さ
が0.1〜0.4mmの場合には、軟窒化処理後の有効
硬化深さを大きくできるので、軟窒化部品に極めて大き
な耐疲労特性、耐摩耗性、耐ピッチング性及び耐スポー
リング性を付与できる。
A steel material having excellent cold workability and excellent machinability is used as a material, which is subjected to cold working to secure sufficient hardness by work hardening, and then soft-nitrided to form a hard and deep nitrided layer. The hardness for work hardening (that is, the core hardness) is maintained by heating for soft nitriding, or
If the decrease in hardness can be suppressed to a small value, it is possible to impart large fatigue resistance, wear resistance, pitting resistance and spalling resistance to the nitrocarburized component. In particular, when the decarburization depth before nitrocarburizing is 0.1 to 0.4 mm, the effective hardening depth after nitrocarburizing can be increased, so that the nitrocarburized parts have extremely large fatigue resistance and wear resistance. , Pitting resistance and spalling resistance.

【0033】本発明は、上記の知見に基づいて完成され
たものである。
The present invention has been completed based on the above findings.

【0034】以下、本発明の各要件について詳しく説明
する。なお、各元素の含有量の「%」表示は「重量%」
を意味する。
Hereinafter, each requirement of the present invention will be described in detail. In addition, "%" display of the content of each element is "wt%".
Means

【0035】(A)素材鋼の化学組成 C:Cは、静的強度を確保するために必要な元素であ
る。しかし、その含有量が0.15%未満では所望の静
的強度(冷間加工後に軟窒化処理した後の芯部硬度、す
なわち最終製品である軟窒化部品の芯部硬度としてHv
250以上)が確保できない。一方、0.45%を超え
ると芯部の延性、靭性の低下をきたすとともに、切削性
や冷間加工性を劣化させてしまう。更に、軟窒化後の表
面硬度及び硬化深さが却って減少するようになる。した
がって、Cの含有量を0.15〜0.45%とした。
(A) Chemical composition of raw steel C: C is an element necessary for securing static strength. However, if the content is less than 0.15%, the desired static strength (core hardness after nitrocarburizing after cold working, that is, Hv as the core hardness of the nitrocarburized component as the final product).
250 or more) cannot be secured. On the other hand, if it exceeds 0.45%, the ductility and toughness of the core are reduced, and the machinability and the cold workability are deteriorated. Further, the surface hardness and hardening depth after nitrocarburizing are rather reduced. Therefore, the content of C is set to 0.15 to 0.45%.

【0036】Si:Siは、鋼の焼入れ性を高めるとと
もに静的強度を向上させる作用を有する。しかし、
(1)の発明に係るMo、Wを含まない鋼を素材鋼とす
る軟窒化用鋼材の場合には、Siの含有量が0.10%
以下では、又、(2)の発明に係るMoの含有量とWの
含有量の半分との和であるMo+0.5Wの値が0.0
2%以上の鋼を素材鋼とする軟窒化用鋼材の場合には、
Siの含有量が0.05%未満では、それぞれ前記した
所望の静的強度を安定して確保できない場合がある。一
方、上記のいずれの発明に係る鋼を素材鋼とする軟窒化
用鋼材の場合にも、Siの含有量が0.50%を超える
と靭性の劣化を招いて、冷間加工性に悪影響を及ぼす。
Si: Si has the effect of improving the hardenability of steel and improving the static strength. But,
In the case of the steel for nitrocarburizing using the steel not containing Mo and W according to the invention of (1) as the base steel, the content of Si is 0.10%.
In the following, the value of Mo + 0.5W, which is the sum of the content of Mo and half the content of W according to the invention (2), is 0.0
In the case of nitrocarburizing steel with 2% or more steel as material steel,
If the content of Si is less than 0.05%, the above-described desired static strength may not be stably secured. On the other hand, in the case of the steel for nitrocarburizing using the steel according to any of the above-mentioned inventions as the base steel, if the content of Si exceeds 0.50%, the toughness is deteriorated, and the cold workability is adversely affected. Exert.

【0037】したがって、(1)の発明に関しては、素
材鋼のSi含有量を0.10%を超え0.50%までと
した。
Therefore, in the invention of (1), the Si content of the base steel is set to more than 0.10% and to 0.50%.

【0038】又、(2)の発明に関しては、素材鋼のS
i含有量を0.05〜0.50%とした。
Further, in the invention of (2), the S
The i content was 0.05 to 0.50%.

【0039】Mn:Mnは、焼入れ性の向上と芯部強度
の確保に有効な元素である。しかし、その含有量が0.
2%未満では添加効果に乏しく、一方、2.5%を超え
て含有させると偏析を生じて冷間加工性の劣化をもたら
す。したがって、Mnの含有量を0.2〜2.5%とし
た。なお、Mnの含有量は0.5〜1.5%とすること
が好ましい。
Mn: Mn is an element effective for improving hardenability and ensuring core strength. However, when its content is 0.1.
If it is less than 2%, the effect of the addition is poor. On the other hand, if it exceeds 2.5%, segregation occurs and the cold workability deteriorates. Therefore, the content of Mn is set to 0.2 to 2.5%. Note that the content of Mn is preferably set to 0.5 to 1.5%.

【0040】S:Sは、NdとともにNd23を形成し
てチップブレーカーの作用をし、被削性を向上させる。
しかし、その含有量が0.002%未満では所望の効果
が得られず、一方、0.13%を超えるとその効果が飽
和するばかりか、熱間加工性及び冷間加工性の著しい劣
化を招く。したがって、Sの含有量を0.002〜0.
13%とした。
S: S forms Nd 2 S 3 together with Nd, acts as a chip breaker, and improves machinability.
However, if the content is less than 0.002%, the desired effect cannot be obtained. On the other hand, if the content exceeds 0.13%, not only the effect is saturated, but also the hot workability and the cold workability deteriorate significantly. Invite. Therefore, the content of S is set to 0.002 to 0.1.
13%.

【0041】Cr:Crは、軟窒化時に鋼材表面から侵
入してくるNと結合して、表面硬度を高めるとともに硬
化深さを大きくするのに極めて有効な元素である。しか
し、その含有量が0.5%未満では上記の作用が期待で
きない。一方、Crを2.0%を超えて含有させると、
軟窒化によって表面硬度が高くなりすぎるために、表面
から芯部にかけての硬度勾配が急激なものとなってしま
い、却って耐スポーリング性や耐ピッチング性が劣化し
てしまう。したがって、Crの含有量を0.5〜2.0
%とした。
Cr: Cr is an element that is extremely effective in increasing the surface hardness and increasing the hardening depth by combining with N invading from the steel material surface during soft nitriding. However, if the content is less than 0.5%, the above effects cannot be expected. On the other hand, when Cr is contained in excess of 2.0%,
Since the surface hardness becomes too high due to soft nitriding, the hardness gradient from the surface to the core becomes steep, and the spalling resistance and the pitting resistance are rather deteriorated. Therefore, the content of Cr is set to 0.5 to 2.0.
%.

【0042】Nd:Ndは、Sと結合してNd23を形
成してチップブレーカーの作用をし、被削性を向上させ
る。しかし、その含有量が0.005%未満では前記の
効果が得難く、一方、0.1%を超えるとその効果が飽
和するばかりか疲労特性の劣化を招く。したがって、N
dの含有量を0.005〜0.1%とした。なお、Nd
の好ましい含有量は0.005〜0.08%である。
Nd: Nd combines with S to form Nd 2 S 3 and acts as a chip breaker to improve machinability. However, if the content is less than 0.005%, it is difficult to obtain the above-mentioned effects. On the other hand, if the content exceeds 0.1%, the effects are not only saturated but also the fatigue characteristics are deteriorated. Therefore, N
The content of d was set to 0.005 to 0.1%. Note that Nd
Is preferably 0.005 to 0.08%.

【0043】V:Vは、軟窒化処理時に鋼材表面から侵
入してくるN及びCと結合して微細なバナジウム炭窒化
物として析出することにより、表面硬度を高め、更に、
硬化深さを大きくする作用を有する。V添加鋼において
は上記のCr添加の場合に比べて、表面硬度の上昇割合
が小さいのに対して硬化深さの増大割合は極めて大き
く、且つ前記炭窒化物が析出して芯部硬度を高めるた
め、硬化深さの大きい、表面から芯部への硬度勾配が緩
やかな硬化曲線が得られる。しかし、V含有量が0.0
5%未満では添加効果に乏しく、一方、0.5%を超え
て含有させても前記の効果が飽和してコストが嵩むばか
りか、却って脆化現象の発現をきたすようになる。した
がって、V含有量を0.05〜0.5%とした。なお、
V含有量は0.1〜0.3%とすることが好ましい。
V: V combines with N and C invading from the steel material surface during nitrocarburizing treatment and precipitates as fine vanadium carbonitride, thereby increasing the surface hardness.
It has the effect of increasing the curing depth. In the case of V-added steel, the rate of increase in the surface hardness is very small, but the rate of increase in the hardening depth is extremely large, and the carbonitride precipitates to increase the core hardness, as compared with the case of the above Cr addition. Therefore, a hardening curve with a large hardening depth and a gentle hardness gradient from the surface to the core can be obtained. However, when the V content is 0.0
If it is less than 5%, the effect of addition is poor. On the other hand, if it exceeds 0.5%, the above effect is saturated and not only increases the cost but also causes the embrittlement phenomenon. Therefore, the V content is set to 0.05 to 0.5%. In addition,
The V content is preferably 0.1 to 0.3%.

【0044】Al:Alは、鋼の脱酸の安定化及び均質
化を図る作用がある。更に、侵入Nと結合して表面硬度
を高める効果を有する。しかし、その含有量が0.00
5%未満では上記の作用が期待できない。一方、0.3
%を超えると硬化深さを小さくしてしまう。したがっ
て、Alの含有量を0.005〜0.3%とした。な
お、Al含有量は0.005〜0.15%とすることが
好ましい。
Al: Al has the effect of stabilizing and homogenizing steel deoxidation. Furthermore, it has the effect of increasing the surface hardness by combining with the intrusion N. However, its content is 0.00
If it is less than 5%, the above effects cannot be expected. On the other hand, 0.3
%, The curing depth is reduced. Therefore, the content of Al is set to 0.005 to 0.3%. The Al content is preferably set to 0.005 to 0.15%.

【0045】Mo+0.5W:MoとWは、鋼の焼入れ
性を高めて軟窒化時の芯部の軟化抵抗を高め、前記した
所望の静的強度を確保するのに有効な元素である。又、
焼準後の組織をベイナイト含有組織とする効果も有す
る。
Mo + 0.5W: Mo and W are effective elements for enhancing the hardenability of the steel to increase the softening resistance of the core during nitrocarburizing and to secure the desired static strength described above. or,
It also has the effect of making the structure after normalization a bainite-containing structure.

【0046】しかし、(1)の発明に係るSiを0.1
0%を超えて含む鋼を素材鋼とする軟窒化用鋼材の場合
には、前記した所望の静的強度を、最終製品である軟窒
化部品に対して容易に付与できるため、Mo、Wを含有
させる必要はない。
However, the Si according to the invention of (1) is 0.1%.
In the case of a steel material for nitrocarburizing using steel containing more than 0% as a base steel, the desired static strength described above can be easily imparted to a nitrocarburized component as a final product. It is not necessary to contain it.

【0047】(2)の発明に関しては、特に0.10%
以下のSiしか含有しない鋼を素材鋼とする軟窒化用鋼
材の場合(この発明にあっては、Si:0.05〜0.
10%の場合)には、Moの含有量とWの含有量の半分
との和であるMo+0.5Wの値が0.02%未満では
添加効果に乏しい。そのため、Mo+0.5Wで0.0
2%以上のMoとWを含有させることが必要である。な
お、(2)の発明において、Siを0.10%を超えて
含む鋼を素材鋼とする軟窒化用鋼材にあっては、0.0
2%以上のMo+0.5Wが含有されていると、所望の
静的強度を最終製品である軟窒化部品に付与することが
極めて容易となり、又、焼準後の組織も容易にベイナイ
ト含有組織にすることが可能である。
Regarding the invention (2), in particular, 0.10%
In the case of a steel material for nitrocarburizing using a steel containing only the following Si as a raw material steel (in the present invention, Si: 0.05 to 0.
In the case of 10%), when the value of Mo + 0.5W, which is the sum of the Mo content and half of the W content, is less than 0.02%, the addition effect is poor. Therefore, 0.0 at Mo + 0.5W
It is necessary to contain 2% or more of Mo and W. In the invention of (2), in the case of a steel material for nitrocarburizing using steel containing more than 0.10% of Si as a material steel, 0.0%
When 2% or more of Mo + 0.5W is contained, it is extremely easy to impart a desired static strength to a final product, a nitrocarburized component, and the structure after normalization is easily changed to a bainite-containing structure. It is possible to

【0048】一方、(2)の発明に関して、(a)Si
の含有量が0.10%以下である鋼を素材鋼とする軟窒
化用鋼材、(b)0.10%を超えるSiを含有する鋼
を素材鋼とする軟窒化用鋼材、のいずれの場合にも、M
oとWがMo+0.5Wの値で0.3%を超えて含有さ
れていても所望の静的強度確保の効果及び焼準後の組織
をベイナイト含有組織とする効果が飽和してコストが嵩
むばかりとなる。したがって、(2)の発明に関して
は、素材が含有するMo+0.5Wの量を0.02〜
0.3%とした。なお、(2)の発明においてWを単独
で添加する場合のW含有量の上限は0.5%とすること
が好ましい。
On the other hand, regarding the invention of (2), (a) Si
(B) nitrocarburizing steel using steel containing 0.10% or less as a base steel, and (b) nitrocarburizing steel using steel containing more than 0.10% of steel as a base steel Also, M
Even if o and W are contained in excess of 0.3% at the value of Mo + 0.5 W, the effect of securing the desired static strength and the effect of making the structure after normalization a bainite-containing structure are saturated and the cost increases. Only. Therefore, in the invention of (2), the amount of Mo + 0.5W contained in the material is set to 0.02 to
0.3%. In the invention of (2), when W is added alone, the upper limit of the W content is preferably 0.5%.

【0049】Ti:Tiは添加しなくても良い。添加す
れば窒化物や炭窒化物として析出し、軟窒化時の芯部の
軟化抵抗を高める作用を有するので、前記した所望の静
的強度が安定して確保できる。上記の効果を確実に得る
には、Tiは0.01%以上の含有量とすることが好ま
しい。しかし、Tiを0.2%を超えて含有させると靭
性の劣化をきたす。したがって、Tiの含有量を0〜
0.2%とした。
Ti: Ti need not be added. If added, they precipitate as nitrides or carbonitrides and have the effect of increasing the softening resistance of the core during nitrocarburizing, so that the above-mentioned desired static strength can be stably secured. In order to ensure the above effects, it is preferable that the content of Ti be 0.01% or more. However, when the content of Ti exceeds 0.2%, toughness is deteriorated. Therefore, the content of Ti is 0 to
0.2%.

【0050】Zr:Zrは添加しなくても良い。添加す
れば窒化物や炭窒化物として析出し、軟窒化時の芯部の
軟化抵抗を高める作用を有するので、前記した所望の静
的強度が安定して確保できる。上記の効果を確実に得る
には、Zrは0.01%以上の含有量とすることが好ま
しい。しかし、Zrを0.2%を超えて含有させると靭
性の劣化をきたす。したがって、Zrの含有量を0〜
0.2%とした。
Zr: Zr may not be added. If added, they precipitate as nitrides or carbonitrides and have the effect of increasing the softening resistance of the core during nitrocarburizing, so that the above-mentioned desired static strength can be stably secured. To ensure the above effects, it is preferable that the content of Zr be 0.01% or more. However, when Zr exceeds 0.2%, toughness is deteriorated. Therefore, when the content of Zr is 0 to
0.2%.

【0051】Nb:Nbは添加しなくても良い。添加す
れば窒化物や炭窒化物として析出して軟窒化時の芯部の
軟化抵抗を高め、更に組織を微細化するので、前記した
所望の静的強度が安定して確保できる。上記の効果を確
実に得るには、Nbは0.01%以上の含有量とするこ
とが好ましい。しかし、Nbを0.2%を超えて含有さ
せると靭性の劣化をきたす。したがって、Nbの含有量
を0〜0.2%とした。
Nb: Nb may not be added. If it is added, it precipitates as nitride or carbonitride and raises the softening resistance of the core during nitrocarburizing and further refines the structure, so that the above-mentioned desired static strength can be stably secured. In order to ensure the above effects, it is preferable that the content of Nb is 0.01% or more. However, when Nb is contained in excess of 0.2%, toughness is deteriorated. Therefore, the content of Nb is set to 0 to 0.2%.

【0052】Pb:Pbは添加しなくても良い。添加す
れば冷間鍛造などで所望の軟窒化部品の形状に成形した
後、油穴や部品の軽量化の目的から部品強度に影響を及
ぼさない箇所に穴をあけるというような切削加工を一段
と容易にする効果を有する。この効果を確実に得るに
は、Pbは0.03%以上の含有量とすることが好まし
い。しかし、Pbを0.35%を超えて含有させると熱
間加工性が劣化して熱間圧延や熱間鍛造などの熱間加工
時に割れの発生を招く。したがって、Pbの含有量を0
〜0.35%とした。
Pb: Pb may not be added. If it is added, after forming into the desired nitrocarburized part shape by cold forging, etc., it is easier to perform cutting work such as drilling holes that do not affect the strength of the parts for the purpose of reducing oil weight and parts weight. Has the effect of In order to surely obtain this effect, the content of Pb is preferably set to 0.03% or more. However, if the content of Pb exceeds 0.35%, the hot workability is deteriorated, and cracks are caused during hot working such as hot rolling and hot forging. Therefore, the content of Pb is set to 0
-0.35%.

【0053】Ca:Caも添加しなくても良い。添加す
れば冷間鍛造などで所望の軟窒化部品の形状に成形した
後、油穴や部品の軽量化の目的から部品強度に影響を及
ぼさない箇所に穴をあけるというような切削加工を一段
と容易にする効果を有する。この効果を確実に得るに
は、Caは0.001%以上の含有量とすることが好ま
しい。一方、Caを0.01%を超えて含有させるには
特殊な溶製技術や設備を要してコストが嵩む。したがっ
て、Caの含有量を0〜0.01%とした。
Ca: Ca may not be added. If it is added, after forming into the desired nitrocarburized part shape by cold forging, etc., it is easier to perform cutting work such as drilling holes that do not affect the strength of the parts for the purpose of reducing oil weight and parts weight. Has the effect of In order to surely obtain this effect, the content of Ca is preferably set to 0.001% or more. On the other hand, if Ca is contained in an amount exceeding 0.01%, special smelting techniques and equipment are required, which increases the cost. Therefore, the content of Ca is set to 0 to 0.01%.

【0054】(B)球状化焼鈍 球状化焼鈍は上記(A)に示した化学組成を有する鋼材
を熱間加工(例えば熱間圧延)した後に、その硬度を低
下させて冷間加工性を高めるとともに、それによって金
型寿命を大幅に改善し、最終製品である所要の軟窒化部
品の製造コストを低く抑えるのに必須の処理である。
又、球状化焼鈍は鋼材に対して後述する所定の脱炭深さ
を付与するためにも必須の処理である。
(B) Spheroidizing annealing In spheroidizing annealing, after a steel material having the chemical composition shown in the above (A) is hot-worked (for example, hot-rolled), its hardness is reduced to enhance cold workability. At the same time, this is an essential process for greatly improving the mold life and keeping the production cost of the required nitrocarburized component as a final product low.
Further, the spheroidizing annealing is an essential process for imparting a predetermined decarburization depth described later to the steel material.

【0055】球状化焼鈍後の硬度、特に芯部硬度がHv
180を超えると、金型の寿命が大幅に低下してしまう
ため、最終製品である所望の軟窒化部品の製造コストが
著しく高くなる。したがって、球状化焼鈍後の芯部硬度
はHv180以下としなければならない。球状化焼鈍後
の硬度の下限値については特に制限する必要はない。
The hardness after spheroidizing annealing, especially the core hardness is Hv
If it exceeds 180, the life of the mold is greatly reduced, and the production cost of the desired nitrocarburized component as a final product is significantly increased. Therefore, the core hardness after spheroidizing annealing must be Hv180 or less. It is not necessary to particularly limit the lower limit value of the hardness after the spheroidizing annealing.

【0056】なお、鋼材に対する球状化焼鈍は熱間加工
した後そのまま行っても良いし、熱間加工後に焼準を施
してから行っても良い。更に、球状化焼鈍は、その処理
後に所望のHv180以下の芯部硬度、及び0.1mm
以上の脱炭深さが得られさえすれば何ら特殊な方法で行
う必要はなく、通常の方法で行えば良い。予備テストに
よって、球状化焼鈍前に行った熱間加工の条件及び焼準
条件との関係で球状化焼鈍後の脱炭深さを求めておくこ
とによって、球状化焼鈍の詳細なヒートパターンを決定
することが可能である。
The spheroidizing annealing of the steel material may be performed as it is after hot working, or may be performed after normalizing after hot working. Further, after the treatment, the spheroidizing annealing has a core hardness of desired Hv 180 or less, and 0.1 mm
As long as the above-mentioned decarburization depth can be obtained, it is not necessary to perform the decarburization by any special method, but may be performed by a normal method. Preliminary tests determine the detailed heat pattern of spheroidizing annealing by obtaining the decarburization depth after spheroidizing annealing in relation to the conditions of hot working performed before spheroidizing annealing and normalizing conditions It is possible to

【0057】(C)冷間加工 球状化焼鈍して芯部硬度をHv180以下に調整した上
記(B)の鋼材を、次に冷間加工して所望の軟窒化部品
の形状に仕上げる。
(C) Cold work The steel material of the above (B), whose core hardness has been adjusted to Hv 180 or less by spheroidizing annealing, is then cold worked to finish into a desired nitrocarburized component shape.

【0058】なお、既に述べたように(1)及び(2)
の発明に係る「軟窒化用鋼材」とは、軟窒化処理に供さ
れる前のものをいう。
As described above, (1) and (2)
The "steel material for nitrocarburizing" according to the invention of the present invention means a steel material before being subjected to nitrocarburizing treatment.

【0059】上記の冷間加工は、例えば、冷間鍛造、冷
間転造や冷間引き抜きなど、通常の方法で行えば良い
が、加工した部品の芯部硬度をHv250以上にする必
要がある。何故ならば、芯部硬度をHv180以下に調
整された上記(B)の鋼材は、冷間での加工を受けて芯
部硬度がHv250以上に上昇すれば、これに軟窒化処
理を施しても、軟窒化時の加熱による芯部硬度の低下は
極めて小さく、Hv250以上の値が保てるからであ
る。そして、軟窒化後の芯部硬度がHv250以上であ
れば、既に述べたように、例えば、自動車のミッション
ギアのように高い負荷が加わる部品においても、部品内
部を起点として曲げ疲労が生ずることはない。
The above cold working may be performed by a usual method such as cold forging, cold rolling or cold drawing, but the core hardness of the processed part must be Hv250 or more. . The reason is that the steel material of the above (B) whose core hardness is adjusted to Hv180 or less is subjected to cold working, and if the core hardness increases to Hv250 or more, it may be soft-nitrided. This is because the decrease in core hardness due to heating during nitrocarburizing is extremely small, and a value of Hv250 or more can be maintained. If the core hardness after nitrocarburizing is equal to or higher than Hv250, as described above, for example, even in a part to which a high load is applied, such as a transmission gear of an automobile, bending fatigue starts from the inside of the part. Absent.

【0060】上記(B)に示した球状化焼鈍して芯部硬
度をHv180以下に調整した鋼材を冷間加工して、芯
部硬度をHv250以上とするには、減面率で20%以
上の加工が加わるようにして寸法調整しておけば良い。
In order to make the core hardness Hv250 or more by cold working the steel material whose core hardness has been adjusted to Hv180 or less by the spheroidizing annealing shown in the above (B), the reduction in area is 20% or more. The dimensions may be adjusted so that the processing described above is added.

【0061】なお、冷間加工後の芯部硬度の上限値は特
に制限する必要はない。すなわち、次に述べる鋼材の表
面からの脱炭深さとして0.1〜0.4mmが得られさ
えすれば、設備上加えることが可能な最高の減面率で加
工して、極めて大きな硬度となっても良い。但し、極め
て良好な衝撃特性が求められる用途の場合には、冷間加
工後の芯部硬度の上限値をHv400に制限することが
好ましい。
The upper limit of the core hardness after cold working does not need to be particularly limited. In other words, as long as 0.1 to 0.4 mm can be obtained as the decarburization depth from the surface of the steel material described below, processing is performed with the highest surface reduction rate that can be added on equipment, and extremely high hardness and May be. However, for applications requiring extremely good impact properties, it is preferable to limit the upper limit of the core hardness after cold working to Hv400.

【0062】(D)脱炭深さ 軟窒化処理前の鋼材の表面を0.1〜0.4mm脱炭さ
せて表層部のC含有量を芯部のC含有量より低減させた
場合に、特に、軟窒化処理後の有効硬化深さを大きく増
大できる。そして、軟窒化前の脱炭深さが0.1〜0.
4mmで、且つ、芯部硬度がHv250以上の場合に
は、軟窒化後に極めて大きな耐疲労特性、耐摩耗性、耐
ピッチング性及び耐スポーリング性が得られる。
(D) Decarburization Depth When the surface of the steel material before the nitrocarburizing treatment is decarburized by 0.1 to 0.4 mm to reduce the C content in the surface layer from the C content in the core, In particular, the effective hardening depth after the nitrocarburizing treatment can be greatly increased. And the decarburization depth before soft nitriding is 0.1-0.
When it is 4 mm and the core hardness is Hv250 or more, extremely large fatigue resistance, wear resistance, pitting resistance and spalling resistance are obtained after soft nitriding.

【0063】なお、本発明における「脱炭」とは既に述
べたように、「芯部」のC含有量よりも0.05%以上
C含有量が低下したことをいう。この「脱炭」は熱間加
工、焼準及び球状化焼鈍時に生じさせることができる。
脱炭量は、鋼材表面から0.1mmの深さの位置でのC
含有量が、「芯部」におけるC含有量の半分以下となる
ことが好ましい。
As described above, "decarburization" in the present invention means that the C content is 0.05% or more lower than the C content of the "core". This "decarburization" can occur during hot working, normalizing and spheroidizing annealing.
The amount of decarburization is measured at a depth of 0.1 mm from the steel surface.
It is preferable that the content is half or less of the C content in the “core”.

【0064】脱炭深さが、鋼材表面から0.1mm未満
の場合には、軟窒化による充分な有効硬化深さが得られ
ない。一方、脱炭深さが鋼材表面から0.4mmを超え
た場合には、軟窒化処理すると、軟窒化硬化層と芯部と
の境界にC含有量の低い軟化層が残存したままとなるた
め、前記の境界付近から剥離を生じてしまう。したがっ
て、脱炭深さを鋼材の表面から0.1〜0.4mmと規
定した。
If the decarburization depth is less than 0.1 mm from the surface of the steel material, a sufficient effective hardening depth due to soft nitriding cannot be obtained. On the other hand, when the decarburization depth exceeds 0.4 mm from the steel material surface, when the soft nitriding treatment is performed, the softened layer having a low C content remains at the boundary between the hardened nitrided layer and the core. In addition, separation occurs near the boundary. Therefore, the decarburization depth is defined as 0.1 to 0.4 mm from the surface of the steel material.

【0065】なお、本発明で規定する脱炭深さは、軟窒
化処理に供する前のものであるので、前記(C)の冷間
加工を受けた鋼材が所定の脱炭深さを有しておれば、脱
炭深さを調整することなくその鋼材を軟窒化処理すれば
良い。一方、前記(C)の冷間加工した鋼材の脱炭深さ
が0.4mmを超える場合には、切削や研磨によって所
定の脱炭深さに調整してから鋼材を軟窒化処理すれば良
い。なお、研削や研磨を行った後の寸法が、所望の軟窒
化部品の寸法よりも小さくなる場合には、研削代や研磨
代を加味して冷間加工時の寸法調整をしておけば良い。
Since the decarburization depth specified in the present invention is a value before being subjected to the nitrocarburizing treatment, the steel material subjected to the cold working (C) has a predetermined decarburization depth. If so, the steel material may be nitrocarburized without adjusting the decarburization depth. On the other hand, when the decarburization depth of the cold-worked steel material of (C) exceeds 0.4 mm, the steel material may be soft-nitrided after being adjusted to a predetermined decarburization depth by cutting or polishing. . If the dimensions after grinding or polishing are smaller than the dimensions of the desired nitrocarburized part, the dimensions during cold working may be adjusted in consideration of the grinding allowance and polishing allowance. .

【0066】(B)の球状化焼鈍の項でも述べたが、予
備テストによって、球状化焼鈍前に行った熱間加工の条
件及び焼準条件との関係で球状化焼鈍後の脱炭深さを求
めておけば、前記(C)の冷間加工した鋼材の脱炭深さ
を0.1〜0.4mmに調整することは比較的容易であ
る。
As described in the section on spheroidizing annealing in (B), the preliminary test shows that the depth of decarburization after spheroidizing annealing depends on the conditions of hot working performed before spheroidizing annealing and normalizing conditions. Is determined, it is relatively easy to adjust the decarburization depth of the cold-worked steel material (C) to 0.1 to 0.4 mm.

【0067】これまで述べてきた製造方法によって、
(1)及び(2)の発明に係る「軟窒化用鋼材」が得ら
れる。この鋼材は、次に述べる軟窒化処理を施されて、
(3)の発明に係る軟窒化部品となる。
According to the manufacturing method described above,
The "steel material for nitrocarburizing" according to the inventions of (1) and (2) is obtained. This steel material is subjected to the following soft nitriding treatment,
The nitrocarburized component according to the invention of (3) is obtained.

【0068】(E)軟窒化 軟窒化用鋼材に施す軟窒化の方法は何ら制限しなくても
良く、通常の方法で行えば良い。軟窒化処理を施し、表
面硬度をHv600以上、有効硬化深さを0.1mm以
上とすれば、軟窒化部品の耐疲労特性、耐摩耗性、耐ピ
ッチング性及び耐スポーリング性を高めることができる
のである。
(E) Soft Nitriding The method of nitrocarburizing applied to the steel material for nitrocarburizing is not limited at all, and may be performed by a usual method. By performing nitrocarburizing treatment and setting the surface hardness to Hv600 or more and the effective hardening depth to 0.1 mm or more, the fatigue resistance, wear resistance, pitting resistance and spalling resistance of the nitrocarburized parts can be increased. It is.

【0069】既に述べた軟窒化用鋼材を軟窒化して表面
硬度をHv600以上、有効硬化深さを0.1mm以上
とするには、たとえば、その軟窒化用鋼材を570℃程
度の温度の、RXガスにアンモニアを添加したガス中に
3〜9時間保持し、その後油中に冷却すれば良い。
In order to nitrocarburize the above-mentioned nitrocarburizing steel to have a surface hardness of at least Hv600 and an effective hardening depth of at least 0.1 mm, for example, the nitrocarburizing steel at a temperature of about 570 ° C. What is necessary is just to hold it in the gas which added ammonia to RX gas for 3 to 9 hours, and then to cool it in oil.

【0070】なお、軟窒化後の表面硬度及び有効硬化深
さの上限値は特に制限しなくても良い。
The upper limits of the surface hardness and the effective hardening depth after nitrocarburizing need not be particularly limited.

【0071】(3)の発明に係る軟窒化部品は、素材鋼
である上記(A)の化学組成を有する鋼を、例えば通常
の方法によって溶製した後、熱間で圧延又は鍛造し、必
要に応じて焼準を施し、(B)に示した球状化焼鈍を行
い、次いで、(C)に示した冷間加工によって、あるい
は、(C)に示した冷間加工と切削加工(例えば、油穴
や部品の軽量化の目的から部品強度に影響を及ぼさない
箇所に穴をあけるような加工)によって所望の部品形状
に成形するとともに表面からの脱炭深さを調整し、更に
必要に応じて表面からの脱炭深さ調整のための切削や研
磨を行ってから軟窒化処理し、この後更に必要に応じて
研削や研磨を施して製造される。
The nitrocarburized component according to the invention (3) is obtained by melting a steel having the chemical composition of the above (A), which is a raw steel, by, for example, an ordinary method and then hot rolling or forging the steel. And spheroidizing annealing shown in (B), and then cold working and cutting shown in (C) (for example, Forming into the desired part shape by adjusting the depth of decarburization from the surface by oil holes and other parts that do not affect the strength of the part for the purpose of reducing the weight of the part. The surface is cut and polished to adjust the decarburization depth from the surface, and then soft-nitrided, and thereafter, is further subjected to grinding and polishing as necessary.

【0072】ここで、本発明が対象とする化学組成を有
する素材鋼材においては、熱間加工後に焼準して、ベイ
ナイトを含む組織としておけば、球状化焼鈍後の炭化物
(主としてセメンタイト)の球状化率が向上する。した
がって、球状化焼鈍で冷間加工前の硬度を大きく低下さ
せることができる。冷間加工前の鋼材の硬度を下げるこ
とは、冷間加工性の向上につながり、金型寿命が延びて
金型コストの削減が図れる。更に、球状化焼鈍時間を短
縮することができて、生産性の向上と製造コストの低減
が図れる。このため、(1)及び(2)の発明の軟窒化
用鋼材の製造方法においては、熱間加工後に焼準してか
ら球状化焼鈍することが好ましい。
Here, in the steel material having the chemical composition which is the object of the present invention, if the steel is subjected to normalization after hot working to form a structure containing bainite, the spherical shape of carbide (mainly cementite) after spheroidizing annealing is obtained. Conversion rate is improved. Therefore, the hardness before cold working can be greatly reduced by spheroidizing annealing. Reducing the hardness of the steel material before cold working leads to an improvement in cold workability, extending the life of the mold and reducing the cost of the mold. Further, the spheroidizing annealing time can be shortened, so that productivity can be improved and manufacturing cost can be reduced. For this reason, in the method of manufacturing the steel material for soft nitriding of the inventions of (1) and (2), it is preferable to normalize after hot working and then to perform spheroidizing annealing.

【0073】[0073]

【実施例】表1及び表2に示す化学組成を有する鋼を通
常の方法によって180kg真空溶製した。表1におけ
る鋼1〜9は化学組成が本発明で規定する範囲内にある
本発明例、表2における鋼10〜20は成分のいずれか
が本発明で規定する含有量の範囲から外れた比較例であ
る。比較例に係る鋼のうち鋼19及び鋼20はそれぞれ
JIS規格のSCM435及びSACM645に相当す
る鋼にNdを添加したものである。
EXAMPLES 180 kg of steel having the chemical compositions shown in Tables 1 and 2 was vacuum-melted by a conventional method. Steels 1 to 9 in Table 1 are examples of the present invention in which the chemical composition is within the range specified in the present invention, and Steels 10 to 20 in Table 2 are comparisons in which any of the components is out of the range of the content specified in the present invention. It is an example. Among the steels according to the comparative examples, steel 19 and steel 20 are steels corresponding to JIS-standard SCM435 and SACM645, respectively, to which Nd is added.

【0074】[0074]

【表1】 [Table 1]

【0075】[0075]

【表2】 [Table 2]

【0076】次いで、これらの鋼を通常の方法によって
鋼片とした後、1250℃に加熱してから、1250〜
950℃の温度で熱間鍛造して、直径32mmとし、更
に、ピーリング加工して黒皮を取り除き、直径30mm
の丸棒とした。
Next, these steels were made into billets by a usual method, heated to 1250 ° C.
Hot forging at a temperature of 950 ° C. to a diameter of 32 mm, followed by peeling to remove black scale, and a diameter of 30 mm
Round bar.

【0077】鋼6及び鋼9については、上記と同じ条件
で熱間鍛造して直径40mmの丸棒も作製した。なお、
この直径40mmの丸棒は、後述するようにピーリング
代を大きくするためために準備したものである。
Steels 6 and 9 were hot forged under the same conditions as above to produce round bars having a diameter of 40 mm. In addition,
The round bar having a diameter of 40 mm was prepared in order to increase the peeling allowance as described later.

【0078】こうして得られた直径30mmと40mm
の丸棒を、870〜925℃の各種温度で焼準し、次い
で、図1に示すヒートパターンで球状化焼鈍し、脱炭深
さを変化させた。
The thus obtained diameters of 30 mm and 40 mm
Was subjected to normalizing at various temperatures of 870 to 925 ° C., and then subjected to spheroidizing annealing with the heat pattern shown in FIG. 1 to change the decarburization depth.

【0079】なお、鋼2及び鋼9については、比較のた
めに、直径32mmに熱間鍛造後、直径30mmにピー
リング加工したまま、つまり焼準を行わないで球状化焼
鈍するものも加えた。
For comparison, steel 2 and steel 9 were hot forged to a diameter of 32 mm and then peeled to a diameter of 30 mm, that is, spheroidized annealing without normalizing was added.

【0080】上記のようにして得られた直径が30mm
の丸棒を用いて、下記の各種調査を行った。
The diameter obtained as described above is 30 mm
The following various investigations were performed using a round bar.

【0081】先ず、焼準ままの丸棒からは、直径が30
mmで厚さが20mmの試験片を切り出し、倍率400
倍で光学顕微鏡による中心部の組織観察を行った。
First, from the as-normalized round bar, a diameter of 30
A test piece having a thickness of 20 mm and a thickness of 20 mm was cut out, and the magnification was 400.
At a magnification of x, the central structure was observed with an optical microscope.

【0082】一方、球状化焼鈍後の各丸棒からは、直径
が30mmで厚さが20mmの硬度試験片と直径が15
mmで長さが22.5mmの冷間加工用試験片を作製し
た。
On the other hand, from each round bar after spheroidizing annealing, a hardness test piece having a diameter of 30 mm and a thickness of 20 mm and a hardness test piece having a diameter of 15 mm were obtained.
A 22.5 mm long cold working test specimen was prepared.

【0083】上記の硬度試験片を用いて、マイクロビッ
カース硬度計により中央部の硬度測定を行った。
Using the above-mentioned hardness test piece, the hardness at the center was measured by a micro Vickers hardness meter.

【0084】又、上記の冷間加工用試験片を用いて、5
00t高速プレス機による通常の方法で冷間(室温)拘
束型据え込み試験を行い、限界据え込み率を測定した。
なお、各条件ごとに3回の据え込み試験を行い、3個の
試験片のすべてに割れが発生しない最大加工率(減面
率)を限界据え込み率として評価した。
Further, using the test piece for cold working described above,
A cold (room temperature) constrained upsetting test was performed by a normal method using a 00t high-speed press machine, and the limit upsetting ratio was measured.
In addition, three upsetting tests were performed for each condition, and the maximum working rate (area reduction rate) at which cracks did not occur in all three test pieces was evaluated as the limit upsetting rate.

【0085】一方、前記のようにして得られた球状化焼
鈍後の直径30mmの各丸棒を、通常の方法により冷間
(室温)で直径25mm(減面率30.6%)までドロ
ーベンチを用いて引き抜き加工した。次いで、RXガス
にアンモニアガスを1:1の割合で添加した温度が57
0℃のガス中で6時間保持して軟窒化処理を施し、その
後油中へ冷却した。
On the other hand, each round bar having a diameter of 30 mm obtained after the spheroidizing annealing obtained as described above was cold-drawn (room temperature) to a draw bench having a diameter of 25 mm (area reduction ratio of 30.6%) by a usual method. Draw out using. Next, the temperature at which ammonia gas was added to the RX gas at a ratio of 1: 1 was 57%.
A soft nitriding treatment was performed by maintaining the gas in a gas at 0 ° C. for 6 hours, and then cooled into oil.

【0086】引き抜きままの丸棒からは、直径が25m
mで厚さが20mmの硬度試験片を作製し、マイクロビ
ッカース硬度計を用いて中央部の硬度測定を行った。
又、直径が25mmで厚さが5mmの試験片を切り出
し、EPMAを用いてC元素の線分析を行うことによ
り、表面からの脱炭深さを測定した。
From the as-pulled round bar, the diameter is 25 m.
A hardness test piece having a thickness of 20 mm and a thickness of 20 mm was prepared, and the hardness of the central portion was measured using a micro Vickers hardness meter.
In addition, a test piece having a diameter of 25 mm and a thickness of 5 mm was cut out, and a line analysis of the C element was performed using EPMA to measure a decarburization depth from the surface.

【0087】軟窒化処理した丸棒からも、直径が25m
mで厚さが20mmの硬度試験片を作製し、マイクロビ
ッカース硬度計により表面硬度(表面から0.025m
mの位置におけるHv硬度)、有効硬化深さ(表面から
Hv500の位置までの距離)及び中央部硬度の測定を
行った。
The diameter of the round bar was 25 m
m and a hardness test piece having a thickness of 20 mm were prepared, and the surface hardness (0.025 m from the surface) was measured using a micro Vickers hardness tester.
m), the effective hardening depth (distance from the surface to the position of Hv500), and the center hardness were measured.

【0088】鋼6及び鋼9の球状化焼鈍した直径が40
mmの丸棒を用いた下記の各種調査も行った。
The spheroidized annealed steel 6 and steel 9 have a diameter of 40.
The following various investigations using a mm round bar were also performed.

【0089】すなわち、直径40mmの丸棒から、直径
が25mmで長さが15mmの硬度試験片と直径が15
mmで長さが22.5mmの冷間加工用試験片を作製し
た。
That is, from a round bar having a diameter of 40 mm, a hardness test piece having a diameter of 25 mm and a length of 15 mm and a hardness test piece having a diameter of 15 mm were prepared.
A 22.5 mm long cold working test specimen was prepared.

【0090】こうして得た硬度試験片を用いて、マイク
ロビッカース硬度計により中央部の硬度測定を行った。
Using the hardness test piece thus obtained, the hardness at the center was measured by a micro Vickers hardness tester.

【0091】又、上記の冷間加工用試験片を用いて、5
00t高速プレス機による通常の方法で冷間(室温)拘
束型据え込み試験を行い、限界据え込み率を測定した。
なお、各条件ごとに3回の据え込み試験を行い、3個の
試験片のすべてに割れが発生しない最大加工率(減面
率)を限界据え込み率として評価した。
Further, using the above-described test piece for cold working,
A cold (room temperature) constrained upsetting test was performed by a normal method using a 00t high-speed press machine, and the limit upsetting ratio was measured.
In addition, three upsetting tests were performed for each condition, and the maximum working rate (area reduction rate) at which cracks did not occur in all three test pieces was evaluated as the limit upsetting rate.

【0092】一方、球状化焼鈍後の直径40mmの丸棒
を、直径25mmにピーリング加工し、この後、通常の
方法によって冷間(室温)で直径20.9mm(減面率
30.1%)までドローベンチを用いて引き抜き加工し
た。次いで、前述のRXガスにアンモニアガスを1:1
の割合で添加した温度が570℃のガス中で6時間保持
して軟窒化処理を施し、その後油中へ冷却した。
On the other hand, a round bar having a diameter of 40 mm after the spheroidizing annealing was peeled to a diameter of 25 mm, and thereafter, was cold (room temperature) 20.9 mm in diameter (surface reduction rate 30.1%) by a usual method. Until then, drawing was performed using a draw bench. Next, ammonia gas was added to the RX gas at a ratio of 1: 1.
Was maintained in a gas at a temperature of 570 ° C. for 6 hours to perform a soft nitriding treatment, and then cooled into oil.

【0093】引き抜きままの丸棒からは、直径が20.
9mmで厚さが20mmの硬度試験片を作製し、マイク
ロビッカース硬度計を用いて中央部の硬度測定を行っ
た。
From the as-pulled round bar, a diameter of 20.
A hardness test piece having a thickness of 9 mm and a thickness of 20 mm was prepared, and the hardness of the center portion was measured using a micro Vickers hardness tester.

【0094】軟窒化処理した丸棒からも、直径が20.
9mmで厚さが20mmの硬度試験片を作製し、マイク
ロビッカース硬度計により表面硬度(表面から0.02
5mmの位置におけるHv硬度)、有効硬化深さ(表面
からHv500の位置までの距離)及び中央部硬度の測
定を行った。
[0094] Even from the round bar subjected to the soft nitriding treatment, the diameter is 20.
A hardness test piece having a thickness of 9 mm and a thickness of 20 mm was prepared, and the surface hardness (0.02 from the surface) was measured with a micro Vickers hardness tester.
The Hv hardness at a position of 5 mm), the effective hardening depth (distance from the surface to the position of Hv500), and the center hardness were measured.

【0095】被削性評価のため、ドリル穿孔試験も実施
した。すなわち、既に述べた球状化焼鈍後の直径30m
mの丸棒及び引き抜き加工後の直径20.9mmの丸棒
を25mmの長さに輪切りにしたものを用いて、R/2
部(Rは丸棒の半径)についてその長さ方向に貫通孔を
あけ、刃先摩損により穿孔不能となったときの貫通孔の
個数を数え、被削性の評価を行った。穿孔条件は、JI
S高速度工具鋼SKH51のφ5mmストレートシャン
クドリルを使用し、水溶性の潤滑剤を用いて、送り0.
15mm/rev、回転数980rpmで行った。
For the evaluation of machinability, a drilling test was also performed. That is, the diameter 30 m after spheroidizing annealing already described.
m and a round bar having a diameter of 20.9 mm after drawing were cut into 25 mm lengths, and R / 2 was used.
Through holes were made in the length direction of the portion (R is the radius of the round bar), and the number of through holes when drilling was impossible due to abrasion of the cutting edge was counted to evaluate the machinability. The drilling conditions are JI
Using a φ5 mm straight shank drill made of S high speed tool steel SKH51 and using a water-soluble lubricant, the feed rate is set to 0.
The measurement was performed at 15 mm / rev and a rotation speed of 980 rpm.

【0096】表3及び表4に各種の試験結果をまとめて
示す。
Tables 3 and 4 show the results of various tests.

【0097】[0097]

【表3】 [Table 3]

【0098】[0098]

【表4】 [Table 4]

【0099】表3から、本発明例の場合には、球状化焼
鈍後の芯部硬度はいずれもHvで180を下回り、限界
据え込み率は80%を超えている。そして、減面率で3
0.6%の冷間加工(引き抜き加工)によって、容易に
Hv250を超える芯部硬度が得られている。更に、軟
窒化処理後にはHv600を超える表面硬度と、0.1
mmを超える有効硬化深さが得られており、しかも軟窒
化のための570℃での6時間の熱処理を受けても中央
部硬度(芯部硬度)はHv250を超える値に維持され
ている。更に、被削性も良好である。
From Table 3, in the case of the present invention example, the core hardness after spheroidizing annealing is less than 180 in Hv, and the limit upsetting ratio is over 80%. And the reduction rate is 3
A core hardness exceeding Hv250 is easily obtained by cold working (drawing) of 0.6%. Furthermore, after the nitrocarburizing treatment, the surface hardness exceeds Hv600 and 0.1
An effective hardening depth of more than 1 mm was obtained, and the center hardness (core hardness) was maintained at a value exceeding Hv250 even after a heat treatment at 570 ° C. for 6 hours for soft nitriding. Further, the machinability is also good.

【0100】一方、表4から下記の事項が明らかであ
る。
On the other hand, the following items are evident from Table 4.

【0101】すなわち、化学組成が本発明例に係る鋼
(鋼6及び鋼9)であっても、脱炭深さが表面から0.
1mm未満の場合には、有効硬化深さが0.1mmに達
していない。
That is, even if the steel has a chemical composition according to the present invention (steel 6 and steel 9), the decarburization depth is 0.1 mm from the surface.
If it is less than 1 mm, the effective curing depth has not reached 0.1 mm.

【0102】又、成分のいずれかが本発明で規定する含
有量の範囲から外れた比較例に係る鋼の場合には、
(イ)球状化焼鈍後の芯部硬度がHv180を超えて限
界据え込み率が低い、(ロ)冷間加工後の芯部硬度が低
いために軟窒化後の芯部硬度も低い、(ハ)冷間加工後
の芯部硬度はHv250を超えるものの軟窒化後の芯部
硬度が大きく低下する、(ニ)軟窒化後の表面硬度がH
v600を下回る、(ホ)軟窒化後の有効硬化深さが
0.1mmを下回る、(ヘ)ドリル穿孔試験における貫
通孔個数が100を大きく下回り被削性に劣る、のいず
れか1つ以上に該当する。このため、冷間加工時の金型
寿命が短くて金型コストが嵩んだり切削加工のコストが
嵩むので、所望の軟窒化部品の製造コストは極めて高い
ものとなってしまう。あるいは、製造コストは低くても
軟窒化部品の耐疲労特性、耐摩耗性、耐ピッチング性及
び耐スポーリング性は劣ったものとなってしまう。
In the case of the steel according to the comparative example in which any of the components is out of the range of the content specified in the present invention,
(A) The core hardness after spheroidizing annealing exceeds Hv180 and the critical upsetting ratio is low. (B) The core hardness after cold working is low, so the core hardness after soft nitriding is low. ) Although the core hardness after cold working exceeds Hv250, the core hardness after nitrocarburizing is greatly reduced. (D) The surface hardness after nitrocarburizing is H
(v) the effective hardening depth after nitrocarburizing is less than 0.1 mm; and (f) the number of through holes in the drilling test is significantly less than 100, resulting in poor machinability. Applicable. For this reason, the life of the mold during the cold working is short, the cost of the mold increases, and the cost of cutting increases, so that the manufacturing cost of the desired nitrocarburized component becomes extremely high. Alternatively, the fatigue resistance, wear resistance, pitting resistance, and spalling resistance of the nitrocarburized parts are inferior even though the manufacturing cost is low.

【0103】[0103]

【発明の効果】本発明の軟窒化部品には、Hv250を
超える芯部硬度、Hv600を超える表面硬度及び0.
1mmを超える有効硬化深さが得られる。このため、本
発明の軟窒化部品は耐疲労特性、耐摩耗性、耐ピッチン
グ性及び耐スポーリング性に優れる。したがって、自動
車用や産業機械用の歯車など大きな疲労強度や耐摩耗性
が要求される部品として利用することができる。この軟
窒化部品の素材となる被削性に優れた軟窒化用鋼材は、
本発明の方法によって比較的容易に製造することができ
る。
The nitrocarburized parts of the present invention have a core hardness of more than Hv250, a surface hardness of more than Hv600, and a hardness of 0.5%.
Effective cure depths of more than 1 mm are obtained. For this reason, the nitrocarburized component of the present invention is excellent in fatigue resistance, wear resistance, pitting resistance and spalling resistance. Therefore, it can be used as a part for which high fatigue strength and wear resistance are required, such as gears for automobiles and industrial machines. The steel material for nitrocarburizing, which is excellent in machinability, is
It can be manufactured relatively easily by the method of the present invention.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例における球状化焼鈍のヒートパターンを
示す図である。
FIG. 1 is a diagram showing a heat pattern of spheroidizing annealing in an example.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】重量%で、C:0.15〜0.45%、S
i:0.10%を超え0.50%まで、Mn:0.2〜
2.5%、S:0.002〜0.13%、Cr:0.5
〜2.0%、Nd:0.005〜0.1%、V:0.0
5〜0.5%、Al:0.005〜0.3%、Ti:0
〜0.2%、Zr:0〜0.2%、Nb:0〜0.2
%、Pb:0〜0.35%及びCa:0〜0.01%を
含み、残部はFe及び不可避不純物の化学組成からなる
鋼を熱間加工後に球状化焼鈍して芯部硬度をHv180
以下とし、次いで冷間加工して芯部硬度をHv250以
上とするとともに、脱炭深さを鋼材の表面から0.1〜
0.4mmにすることを特徴とする被削性に優れた軟窒
化用鋼材の製造方法。
C. 0.15 to 0.45% by weight, S
i: more than 0.10% to 0.50%, Mn: 0.2 to
2.5%, S: 0.002 to 0.13%, Cr: 0.5
To 2.0%, Nd: 0.005 to 0.1%, V: 0.0
5 to 0.5%, Al: 0.005 to 0.3%, Ti: 0
-0.2%, Zr: 0-0.2%, Nb: 0-0.2
%, Pb: 0 to 0.35%, and Ca: 0 to 0.01%, the balance being steel having the chemical composition of Fe and unavoidable impurities, after hot working, spheroidizing annealing to obtain a core hardness of Hv180.
And then cold-worked to make the core hardness Hv250 or more, and the decarburization depth from the surface of the steel material to 0.1 to
A method for producing a steel material for nitrocarburizing excellent in machinability, characterized in that the thickness is 0.4 mm.
【請求項2】重量%で、C:0.15〜0.45%、S
i:0.05〜0.50%、Mn:0.2〜2.5%、
S:0.002〜0.13%、Cr:0.5〜2.0
%、Nd:0.005〜0.1%、V:0.05〜0.
5%、Al:0.005〜0.3%、Mo+0.5W:
0.02〜0.3%、Ti:0〜0.2%、Zr:0〜
0.2%、Nb:0〜0.2%、Pb:0〜0.35%
及びCa:0〜0.01%を含み、残部はFe及び不可
避不純物の化学組成からなる鋼を熱間加工後に球状化焼
鈍して芯部硬度をHv180以下とし、次いで冷間加工
して芯部硬度をHv250以上とするとともに、脱炭深
さを鋼材の表面から0.1〜0.4mmにすることを特
徴とする被削性に優れた軟窒化用鋼材の製造方法。
2. C: 0.15 to 0.45% by weight, S
i: 0.05 to 0.50%, Mn: 0.2 to 2.5%,
S: 0.002 to 0.13%, Cr: 0.5 to 2.0
%, Nd: 0.005 to 0.1%, V: 0.05 to 0.
5%, Al: 0.005 to 0.3%, Mo + 0.5W:
0.02-0.3%, Ti: 0-0.2%, Zr: 0-0
0.2%, Nb: 0 to 0.2%, Pb: 0 to 0.35%
And Ca: 0 to 0.01%, with the balance being steel consisting of the chemical composition of Fe and unavoidable impurities, after hot working, spheroidizing and annealing to reduce the core hardness to Hv 180 or less, and then cold working to form a core. A method for producing a steel material for nitrocarburizing excellent in machinability, wherein the hardness is Hv250 or more and the decarburization depth is 0.1 to 0.4 mm from the surface of the steel material.
【請求項3】軟窒化後の表面硬度がHv600以上、有
効硬化深さが0.1mm以上で、且つ、素材が請求項1
又は請求項2に記載の方法で製造された軟窒化用鋼材で
あることを特徴とする軟窒化部品。
3. The surface hardness after nitrocarburizing is Hv600 or more, the effective hardening depth is 0.1mm or more, and the material is
A nitrocarburized component, which is a steel material for nitrocarburizing manufactured by the method according to claim 2.
JP14719898A 1998-05-28 1998-05-28 Manufacture of steel material for soft-nitriding, and soft-nitrided parts using the steel material Pending JPH11335734A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14719898A JPH11335734A (en) 1998-05-28 1998-05-28 Manufacture of steel material for soft-nitriding, and soft-nitrided parts using the steel material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14719898A JPH11335734A (en) 1998-05-28 1998-05-28 Manufacture of steel material for soft-nitriding, and soft-nitrided parts using the steel material

Publications (1)

Publication Number Publication Date
JPH11335734A true JPH11335734A (en) 1999-12-07

Family

ID=15424782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14719898A Pending JPH11335734A (en) 1998-05-28 1998-05-28 Manufacture of steel material for soft-nitriding, and soft-nitrided parts using the steel material

Country Status (1)

Country Link
JP (1) JPH11335734A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2363802A (en) * 2000-03-03 2002-01-09 Corus Uk Ltd A rare earth containing steel composition
EP2444511A1 (en) * 2009-06-17 2012-04-25 Nippon Steel Corporation Steel for nitriding and nitrided steel components
JP2017160474A (en) * 2016-03-07 2017-09-14 日新製鋼株式会社 Bearing component

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2363802A (en) * 2000-03-03 2002-01-09 Corus Uk Ltd A rare earth containing steel composition
EP2444511A1 (en) * 2009-06-17 2012-04-25 Nippon Steel Corporation Steel for nitriding and nitrided steel components
EP2444511A4 (en) * 2009-06-17 2014-03-05 Nippon Steel & Sumitomo Metal Corp Steel for nitriding and nitrided steel components
JP2017160474A (en) * 2016-03-07 2017-09-14 日新製鋼株式会社 Bearing component

Similar Documents

Publication Publication Date Title
JP5427418B2 (en) Steel for soft nitriding
JP6610808B2 (en) Soft nitriding steel and parts
JP4385019B2 (en) Manufacturing method for steel nitrocarburized machine parts
KR101726251B1 (en) Steel for nitrocarburizing and nitrocarburized component, and methods for producing said steel for nitrocarburizing and said nitrocarburized component
EP2444511A1 (en) Steel for nitriding and nitrided steel components
WO2013121794A1 (en) Soft-nitriding steel and soft-nitrided component using steel as material
JP5767594B2 (en) Steel for nitriding and nitriding member using the same
JP2006348321A (en) Steel for nitriding treatment
JP2011122208A (en) Nitrocarburized gear
JPH09324241A (en) Steel for sort-nitriding, soft-nitrided parts and its production
WO2017056896A1 (en) Preform for crankshaft, nitride crankshaft, and manufacturing method for same
JPH10226817A (en) Production of steel for soft-nitriding and soft-nitrided parts using this steel
JP2009167505A (en) Rough shaped article for quenched and tempered nitrocarburized crankshaft and quenched and tempered nitrocarburized crankshaft
JPH10226818A (en) Production of steel for soft-nitriding and soft-nitrided parts using this steel
JPH10219393A (en) Steel material for soft-nitriding, soft-nitrided parts, and their production
JPH11229032A (en) Production of steel for soft-nitriding and soft-nitrided parts using the steel
JP2019104972A (en) Carburized component
JP2007107046A (en) Steel material to be induction-hardened
JPH07157842A (en) Steel for soft-nitriding
JP7263796B2 (en) RING GEAR FOR AUTOMOBILE TRANSMISSION AND MANUFACTURING METHOD THEREOF
JPH11335734A (en) Manufacture of steel material for soft-nitriding, and soft-nitrided parts using the steel material
JP3849296B2 (en) Method of manufacturing steel for nitrocarburizing and nitrocarburized component using the steel
JP3855418B2 (en) Method of manufacturing nitrocarburizing steel material and nitrocarburized component using the steel material
JP2706940B2 (en) Manufacturing method of non-heat treated steel for nitriding
JPH04154936A (en) Precipitation hardening nitriding steel