JPH1133353A - Process for removing hydrogen sulfide by using active carbon fiber - Google Patents

Process for removing hydrogen sulfide by using active carbon fiber

Info

Publication number
JPH1133353A
JPH1133353A JP9212543A JP21254397A JPH1133353A JP H1133353 A JPH1133353 A JP H1133353A JP 9212543 A JP9212543 A JP 9212543A JP 21254397 A JP21254397 A JP 21254397A JP H1133353 A JPH1133353 A JP H1133353A
Authority
JP
Japan
Prior art keywords
hydrogen sulfide
activated carbon
gas
carbon fiber
active carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9212543A
Other languages
Japanese (ja)
Inventor
Isao Mochida
勲 持田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP9212543A priority Critical patent/JPH1133353A/en
Publication of JPH1133353A publication Critical patent/JPH1133353A/en
Pending legal-status Critical Current

Links

Landscapes

  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Treating Waste Gases (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To remove effectively hydrogen sulfide from gas containing hydrogen sulfide or gas containing oxygen and hydrogen sulfide. SOLUTION: Active carbon fibers are used as an adsorbent, and gas containing hydrogen sulfide is brought into contact with the active carbon fibers in a process for removing hydrogen sulfide contained in hydrogen sulfide containing gas. As the active carbon fibers, PAN active carbon fibers or pitch active carbon fibers are used preferably, and the temperature at the time of contact operation is 70-180 deg.C preferably. In the case oxygen is also contained in the hydrogen sulfide gas, the effectiveness is more remarkable.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、硫化水素を含むガ
ス又は酸素と硫化水素を含むガス中の硫化水素除去方法
に関し、より具体的には吸着剤として活性炭素繊維を用
いる硫化水素含有ガス中の硫化水素除去方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for removing hydrogen sulfide from a gas containing hydrogen sulfide or a gas containing oxygen and hydrogen sulfide, and more specifically, to a method for removing hydrogen sulfide using activated carbon fibers as an adsorbent. To a method for removing hydrogen sulfide.

【0002】[0002]

【従来の技術】硫化水素は大気汚染悪臭物質として規制
されているが、硫化水素は地熱発電、石油精製、天然ガ
ス精製、レーヨン製造、下水処理、汚泥処理、ゴミ処理
などに際して発生する。従来、硫化水素の除去技術とし
ては、まず硫化水素含有ガスを常温において活性炭に接
触させて吸着させることにより硫化水素を除去する方法
が知られている。
2. Description of the Related Art Hydrogen sulfide is regulated as an air polluting odorant, but hydrogen sulfide is generated in geothermal power generation, oil refining, natural gas refining, rayon production, sewage treatment, sludge treatment, garbage disposal, and the like. Conventionally, as a technique for removing hydrogen sulfide, there has been known a method for removing hydrogen sulfide by first bringing a hydrogen sulfide-containing gas into contact with and adsorbing activated carbon at normal temperature.

【0003】上記方法は例えば図1(a)に示すような
態様で実施されるが、この方法では活性炭による硫化水
素の吸着量が少なく、このため活性炭の頻繁な再生や交
換が必要である。またトリメチルアミンや硫化水素、メ
チルメルカプタンなどの吸着量を向上させたものとし
て、例えば特開平8ー281113号があるが、この技
術では活性炭や含水珪酸マグネシウム質粘土鉱物、或い
はシリカゲルなどの吸着担体に遷移元素及び/又はその
化合物、及びハロゲン又はハロゲン化合物を添加し、こ
れによって実用環境下に優れた脱臭性能を発揮し得ると
している。
The above method is carried out, for example, as shown in FIG. 1 (a). However, in this method, the amount of hydrogen sulfide adsorbed by activated carbon is small, and frequent regeneration or replacement of activated carbon is required. Japanese Patent Application Laid-Open No. Hei 8-281113 discloses an improved adsorption amount of trimethylamine, hydrogen sulfide, methyl mercaptan, and the like. It is stated that an element and / or a compound thereof, and a halogen or a halogen compound are added, whereby excellent deodorizing performance can be exhibited in a practical environment.

【0004】また硫化水素含有ガス中の硫化水素の一部
を部分燃焼により二酸化硫黄にし、さらに触媒を用いて
高温で硫黄に転化して回収する方法も知られている。こ
の方法は例えば図1(b)に示すような態様で実施され
るが、この方法では硫化水素の部分燃焼による二酸化硫
黄の生成、これに続く転化触媒による硫化水素と該生成
二酸化硫黄の硫黄への転化というように大がかりな装置
が必要であり、またこの方法は特にガス中硫化水素の濃
度が低い場合には硫化水素の除去がしにくいという問題
があった。
There is also known a method in which a part of hydrogen sulfide in a hydrogen sulfide-containing gas is converted into sulfur dioxide by partial combustion, and then converted to sulfur at a high temperature using a catalyst and recovered. This method is carried out, for example, in the mode as shown in FIG. 1 (b). In this method, sulfur dioxide is produced by partial combustion of hydrogen sulfide, and is subsequently converted into hydrogen sulfide by the conversion catalyst and the sulfur of the produced sulfur dioxide. This method has a problem that a large-scale apparatus such as conversion of hydrogen is required, and it is difficult to remove hydrogen sulfide particularly when the concentration of hydrogen sulfide in the gas is low.

【0005】このほか、例えば特開平8ー299420
号においては、活性炭は脱臭成分を吸着するだけではな
く、人体にとって有害な細菌、かび、バクテリヤ、或い
は原生動物なども吸着し、これらが増殖して脱臭が必要
な環境を返って汚染してしまうとし、この問題を解決す
るため活性炭の内外部表面に電解法によって金属亜鉛及
び酸化亜鉛からなる群から選ばれた少なくとも一種の抗
菌剤を析出、付着させてる。しかし、この技術は具体的
にはアセトアルデヒド(実施例1)や河川水(実施例
3)、或いは空気清浄用(実施例4)として用いられて
いるもので、活性炭を硫化水素の吸着除去剤として使用
するのではない。
In addition, for example, Japanese Patent Application Laid-Open No. 8-299420
In the item, activated carbon not only adsorbs deodorizing components, but also adsorbs bacteria, molds, bacteria, or protozoa that are harmful to the human body, which multiplies and returns to the environment where deodorization is required and contaminates. In order to solve this problem, at least one antibacterial agent selected from the group consisting of zinc metal and zinc oxide is deposited and adhered to the inner and outer surfaces of the activated carbon by an electrolytic method. However, this technique is specifically used for acetaldehyde (Example 1), river water (Example 3), or air purification (Example 4), and activated carbon is used as a hydrogen sulfide adsorption and removal agent. Do not use.

【0006】[0006]

【発明が解決しようとする課題】本発明者は、硫化水素
ガスの吸着剤として特に活性炭素繊維に着目し、活性炭
素繊維が優れた硫化水素吸着能を有し、この性能が酸素
存在の有無に拘らず優れた硫化水素吸着能を有すること
を見い出した。本発明はこの知見を基にして、活性炭素
繊維吸着剤に対して硫化水素を含むガス又は酸素と硫化
水素を含むガスを接触させることを特徴とする硫化水素
含有ガス中の硫化水素除去方法を提供することを目的と
する。
SUMMARY OF THE INVENTION The present inventor has paid special attention to activated carbon fibers as an adsorbent for hydrogen sulfide gas, and the activated carbon fibers have excellent hydrogen sulfide adsorbing ability. In spite of this, it has been found that it has excellent hydrogen sulfide adsorption ability. Based on this finding, the present invention provides a method for removing hydrogen sulfide in a hydrogen sulfide-containing gas, which comprises contacting a gas containing hydrogen sulfide or a gas containing oxygen and hydrogen sulfide with an activated carbon fiber adsorbent. The purpose is to provide.

【0007】[0007]

【課題を解決するための手段】本発明は、吸着剤として
活性炭素繊維を用い、該活性炭素繊維に硫化水素を含む
ガス又は酸素と硫化水素を含むガスを接触させることを
特徴とする硫化水素含有ガス中の硫化水素除去方法であ
る。
According to the present invention, hydrogen sulfide is used, wherein activated carbon fiber is used as an adsorbent and a gas containing hydrogen sulfide or a gas containing oxygen and hydrogen sulfide is brought into contact with the activated carbon fiber. This is a method for removing hydrogen sulfide from contained gas.

【0008】[0008]

【発明の実施の形態】本発明においては活性炭素繊維を
ガス中の硫化水素の吸着除去剤として使用する。活性炭
素繊維(Active Carbon Fiber:以
下適宜「ACF」と指称する)はカーボン繊維とも称さ
れるもので、レーヨンやポリアクリルニトリルなどの有
機繊維、或いはコールタールピッチや精製した石油ピッ
チを紡糸してつくった繊維を不活性気体中で熱処理し炭
化して製造される。本発明においてはこれら何れの活性
炭素繊維も使用されるが、より好ましくはPAN系活性
炭素繊維(ポリアクリルニトリルを製造原料とする活性
炭素繊維)又はピッチ系活性炭素繊維(コールタールピ
ッチや石油ピッチを紡糸してつくった繊維を製造原料と
する活性炭素繊維)が用いられる。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, activated carbon fibers are used as an adsorbent for hydrogen sulfide in a gas. Activated carbon fiber (Active Carbon Fiber: hereinafter referred to as “ACF” as appropriate) is also referred to as carbon fiber, and is formed by spinning organic fiber such as rayon or polyacrylonitrile, or coal tar pitch or refined petroleum pitch. It is produced by heat-treating the produced fiber in an inert gas and carbonizing. In the present invention, any of these activated carbon fibers is used, but more preferably PAN-based activated carbon fiber (activated carbon fiber using polyacrylonitrile as a raw material for production) or pitch-based activated carbon fiber (coal tar pitch or petroleum pitch) Activated carbon fiber using a fiber produced by spinning the same as a production raw material) is used.

【0009】本発明における上記接触時の操作温度は好
ましくは70〜180℃の範囲、特に好ましくは100
〜150℃の範囲で実施される。また、前述のとおり硫
化水素は大気汚染悪臭物質として規制されているが、本
発明によれば、地熱発電、石油精製、天然ガス精製、レ
ーヨン製造、下水処理、汚泥処理、ゴミ処理などに際し
て発生する硫化水素をきわめて有効に除去することがで
きる。
In the present invention, the operating temperature during the contact is preferably in the range of 70 to 180 ° C., particularly preferably 100 to 180 ° C.
It is carried out in the range of 150150 ° C. In addition, as described above, hydrogen sulfide is regulated as an air pollutant odor substance. However, according to the present invention, hydrogen sulfide is generated during geothermal power generation, petroleum refining, natural gas refining, rayon production, sewage treatment, sludge treatment, waste disposal, and the like. Hydrogen sulfide can be removed very effectively.

【0010】本発明においては(1)硫化水素を含むガ
ス、または(2)酸素と硫化水素を含むガスを活性炭素
繊維(ACF)に対して接触させるが、これらガスには
他のガスが含まれていても差し支えない。図2は本発明
を実施する装置の態様例を示すものである。図2中、1
は硫化水素含有ガス導入管、2はACF充填層(反応
管)、3は処理済みガス導出管である。導入管1から導
入される硫化水素含有ガス中の硫化水素は、活性炭素繊
維充填層2で吸着除去されるか、または分解吸着されて
導出管3から排出される。
In the present invention, (1) a gas containing hydrogen sulfide or (2) a gas containing oxygen and hydrogen sulfide is brought into contact with activated carbon fiber (ACF), and these gases include other gases. It does not matter. FIG. 2 shows an example of an embodiment of an apparatus for implementing the present invention. In FIG. 2, 1
Is a hydrogen sulfide-containing gas inlet tube, 2 is an ACF packed bed (reaction tube), and 3 is a treated gas outlet tube. Hydrogen sulfide in the hydrogen sulfide-containing gas introduced from the introduction pipe 1 is adsorbed and removed by the activated carbon fiber packed bed 2 or decomposed and adsorbed and discharged from the extraction pipe 3.

【0011】[0011]

【実施例】以下、実施例に基づき本発明をさらに詳しく
説明するが、本発明がこれら実施例により制限されない
ことはもちろんである。以下におけるACFによる硫化
水素除去活性は破過試験(breakーthrough
ーtest)によって調べた。使用装置としては図2に
示すような装置を用いた。反応管2にACFを充填し、
硫化水素含有ガス導入管1から所定濃度のH2S(濃度
=C0)を導入流通させ、反応管2の出口におけるガス
中のH2S(濃度=C) をGCーFPD(炎光光度検出
器付きのガスクロマトグラフ)により連続的に測定、検
出した。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to Examples, but it is needless to say that the present invention is not limited by these Examples. The hydrogen sulfide removal activity by ACF in the following was measured by a break-through test.
-Test). An apparatus as shown in FIG. 2 was used. Fill the reaction tube 2 with ACF,
Is introducing-circulating a predetermined concentration of H 2 S (concentrations = C 0) from the hydrogen sulfide-containing gas inlet tube 1, H 2 S (concentration = C) the GC chromatography FPD (flame photometric in the gas at the outlet of the reaction tube 2 (Gas chromatography with a detector).

【0012】反応管2の入口及び出口におけるH2Sの
濃度(C0、C:図2参照)を基に硫化水素相対濃度
(%)を下記式(1)により算出した。なお、全体(1
00%)から下記式(1)で計算される硫化水素相対濃
度(%)の値を差し引いた値がACFによるH2S の捕
捉率(転化率)に相当する。
The relative concentration (%) of hydrogen sulfide was calculated by the following equation (1) based on the concentration of H 2 S at the inlet and outlet of the reaction tube 2 (C 0 , C: see FIG. 2). In addition, the whole (1
The value obtained by subtracting the value of the relative concentration of hydrogen sulfide (%) calculated from the following formula (1) from the ratio (00%) corresponds to the capture rate (conversion rate) of H 2 S by the ACF.

【0013】[0013]

【数 1】 [Equation 1]

【0014】表1は本実施例で用いた各種ACFの性状
等を示すものである。表1中、例1〜4はPAN系活性
炭素繊維(繊維直径:10〜15μm)であり、例5〜
9はピッチ系活性炭素繊維(繊維直径:10〜15μ
m)である。表1のとおりPAN系である例1〜4はB
ET表面積が150〜880m2/g と比較的小さく、
炭素含有量も70%程度である。窒素含有量は3〜12
%と多少ばらつきはあるものの、ピッチ系に比べてその
比率は高い。一方、ピッチ系活性炭素繊維である例5〜
9は炭素含有量が90%前後と高いが、窒素含有量は
0.3〜0.7%となっている。ピッチ系活性炭素繊維
のBET表面積は、PAN系のものに比べて大きく、例
9では例2の約5倍弱にも相当している。
Table 1 shows properties of the various ACFs used in this embodiment. In Table 1, Examples 1 to 4 are PAN-based activated carbon fibers (fiber diameter: 10 to 15 μm).
9 is a pitch-based activated carbon fiber (fiber diameter: 10 to 15 μm)
m). As shown in Table 1, Examples 1 to 4 which are PAN-based
ET surface area is relatively small as 150 to 880 m 2 / g,
The carbon content is also about 70%. Nitrogen content is 3-12
%, But the ratio is higher than that of the pitch type. On the other hand, Example 5 which is a pitch-based activated carbon fiber
9 has a high carbon content of about 90%, but has a nitrogen content of 0.3 to 0.7%. The BET surface area of the pitch-based activated carbon fiber is larger than that of the PAN-based activated carbon fiber. In Example 9, it corresponds to about 5 times less than that of Example 2.

【0015】[0015]

【表 1】 [Table 1]

【0016】《実施例1:窒素雰囲気中》図3は上記P
AN系及びピッチ系の各種ACFを用いてH2S を吸着
した場合の破過曲線である。設定通気温度は30℃、A
CF量は0.3g、窒素雰囲気(N2 carrior)
中でH2S の濃度は100ppm、ガス流量は100m
L/minとした。図3のとおり、ピッチ系ACFであ
る例5〜例9では、すべて10分以内に破過してしまい
2S 捕捉能はきわめて低かった。これに対してPAN
系ACFではH2S 捕捉能力が格段に優れ、例4では3
時間、例3では4時間、例2では6時間の間、H2S を
完全に捕捉することができた。
<< Example 1: In a nitrogen atmosphere >> FIG.
Using the AN and pitch-based variety ACF is a breakthrough curve when adsorbed H 2 S. Set ventilation temperature is 30 ℃, A
CF amount 0.3g, nitrogen atmosphere (N 2 carrier)
In which the concentration of H 2 S is 100 ppm and the gas flow rate is 100 m
L / min. As shown in FIG. 3, in Examples 5 to 9, which are pitch-based ACFs, all broke within 10 minutes, and the H 2 S capturing ability was extremely low. On the other hand, PAN
In the system ACF, the H 2 S trapping ability is remarkably excellent.
H 2 S could be completely captured for a period of time, 4 hours in Example 3 and 6 hours in Example 2.

【0017】また図3中、例4(800℃)、例4(6
00℃)及び例2(600℃)として示しているのは、
それぞれ、PAN系である例4のACFを800℃、6
00℃で焼成し、同じくPAN系である例2のACFを
600℃で焼成したものについてのデータである。図3
のとおり、PAN系ACFを焼成すると、共にH2S捕
捉能は低下し、破過開始までの時間が20分〜2時間短
くなることを示している。これはACFを焼成すること
により繊維表面の酸素官能基がなくなるか、殆んどなく
なり、焼成しない場合に比べれば早目にH2S を捕捉し
なくなるためと考えられる。
In FIG. 3, Example 4 (800 ° C.) and Example 4 (6
00 ° C.) and Example 2 (600 ° C.)
The ACF of Example 4 which is a PAN system was heated at 800 ° C. and 6
It is the data about what baked at 00 degreeC, and also baked at 600 degreeC of the ACF of Example 2 which is also a PAN system. FIG.
Of As, when firing the PAN-based ACF, both H 2 S trapping ability decreases, the time until breakthrough start indicating that made 2 hours 20 minutes shorter. This is presumably because the firing of the ACF eliminates or almost eliminates the oxygen functional groups on the fiber surface, and does not capture H 2 S earlier than in the case where the firing is not performed.

【0018】《実施例2:窒素雰囲気中、温度依存性試
験》図4は、例1〜例9のうちH2S 捕捉能の最も優れ
ている例2について通気温度を変化させた場合の捕捉試
験結果である。設定通気温度はそれぞれ30℃、5
0℃、70℃、100℃、200℃とし、ACF
量は0.2g、窒素雰囲気(N2 carrior)中で
2S 濃度は100ppmとし、流量は100mL/m
inとした。図4のとおり、通気温度を高くするにつれ
て吸着保持時間は長くなり、100℃の時にH2S を最
もよく吸着し、3時間25分で破過した。しかし、20
0℃にすると逆に最も早く2時間弱で破過した。これら
の事実からすると、操作温度が70〜180℃程度の範
囲でより優れた硫化水素除去効果が得られることを示し
ている。
Example 2 Temperature Dependence Test in a Nitrogen Atmosphere FIG. 4 shows Example 2 which has the best H 2 S capturing ability among Examples 1 to 9 when the aeration temperature was changed. It is a test result. Set ventilation temperatures are 30 ° C and 5 ° C, respectively.
0 ° C, 70 ° C, 100 ° C, 200 ° C, ACF
The amount was 0.2 g, the H 2 S concentration was 100 ppm in a nitrogen atmosphere (N 2 carrier), and the flow rate was 100 mL / m 2.
in. As shown in FIG. 4, as the aeration temperature was increased, the adsorption holding time was prolonged. At 100 ° C., H 2 S was adsorbed best, and breakthrough occurred in 3 hours and 25 minutes. However, 20
At 0 ° C., on the contrary, it broke through the earliest in less than 2 hours. These facts show that an excellent hydrogen sulfide removing effect can be obtained when the operating temperature is in the range of about 70 to 180 ° C.

【0019】《実施例3:窒素雰囲気中》図5はH2
濃度を窒素雰囲気(N2 carrior)中200pp
mにし、例2を用いること以外の条件は実施例2と同一
にした時の破過曲線である(流量:200mL/mi
n、ACF量:0.2g)。図5のとおり通気温度が
30℃の場合は1時間で破過し、100℃の場合1時
間35分で破過した。
Example 3 In a Nitrogen Atmosphere FIG. 5 shows H 2 S
200 pp in nitrogen atmosphere (N 2 carrier)
m and the breakthrough curve when the conditions were the same as in Example 2 except that Example 2 was used (flow rate: 200 mL / mi).
n, ACF amount: 0.2 g). As shown in FIG. 5, when the ventilation temperature was 30 ° C., the breakthrough occurred in 1 hour, and when the ventilation temperature was 100 ° C., the breakthrough occurred in 1 hour and 35 minutes.

【0020】以上、実施例1〜3の事実によると、窒素
ガス(酸素を含まないガス)中における破過特性につい
ては、PAN系ACFの方が硫化水素除去活性が高く、
ピッチ系ACFは低いが、両者を比較した場合、同程度
の比表面積を有しているにも拘らず、破過特性に係る捕
捉能が大きく異なることから、繊維表面の官能基がその
活性に大きく関与しているものと認められる。特に、P
AN系ACFの場合には窒素含有量が多いことが活性に
寄与している可能性が考えられる。
As described above, according to the facts of Examples 1 to 3, regarding the breakthrough characteristics in nitrogen gas (gas containing no oxygen), PAN-based ACF has higher hydrogen sulfide removal activity,
Although pitch-based ACF is low, when compared, although the two have substantially the same specific surface area, the ability to capture the breakthrough characteristics is greatly different. It is recognized that they are greatly involved. In particular, P
In the case of AN-based ACF, it is considered that a large nitrogen content may contribute to the activity.

【0021】《実施例4:酸素存在下、捕捉試験》図6
はPAN系ACFである例2についての空気中における
2S 捕捉試験の結果である。例2を用いた場合には、
通気温度30℃においては7時間まで、100℃で
は16時間まで、H2S を完全に捕捉でき、雰囲気が窒
素のみの場合に比べてH2S 捕捉能がそれぞれ3.5
倍、4.6倍も増大している。このように、本発明によ
れば酸素の存在により、より優れたH2S 吸着能の向上
効果が得られることが明らかである。
Example 4: Capture test in the presence of oxygen FIG. 6
Is the result of H 2 S capture test in air for Example 2 is a PAN type ACF. When using Example 2,
H 2 S can be completely captured up to 7 hours at an aeration temperature of 30 ° C. and up to 16 hours at 100 ° C., and the H 2 S capturing ability is 3.5 in comparison with the case where the atmosphere is only nitrogen.
And 4.6 times. Thus, according to the present invention, it is clear that the presence of oxygen provides a better effect of improving the H 2 S adsorption ability.

【0022】《実施例5:酸素存在下、捕捉試験》図7
はピッチ系ACF(例5〜例9)ついての空気中におけ
るH2S 捕捉試験の結果である。図7のとおり例6〜例
9のすべてのACFについて、通気温度100℃におい
て通気開始後、即座に破過が起こるが、その後は定常の
捕捉活性を示している。表2はその定常活性を転化率
(%)として示したものである。表2のとおり、活性順
序は例5、例6、例7、例8、例9の順であり、それぞ
れ転化率(=捕捉率)90%、88%、87%、76
%、69%であった。また比較のため賦活処理していな
い不融化系でも活性評価を行ったが、H2S に対してほ
とんど活性がないことが確認された(図7参照)。
Example 5: Capture test in the presence of oxygen FIG. 7
9 shows the results of an H 2 S capture test in the air for pitch-based ACFs (Examples 5 to 9). As shown in FIG. 7, for all the ACFs of Examples 6 to 9, breakthrough occurs immediately after the start of aeration at an aeration temperature of 100 ° C., but thereafter shows a steady capture activity. Table 2 shows the steady-state activity as a conversion (%). As shown in Table 2, the activation order was Example 5, Example 6, Example 7, Example 8, and Example 9, and the conversion rates (= capture rates) were 90%, 88%, 87%, and 76, respectively.
%, 69%. For comparison, the activity of an infusibilized system that had not been activated was also evaluated, and it was confirmed that there was almost no activity against H 2 S (see FIG. 7).

【0023】[0023]

【表 2】 [Table 2]

【0024】上記実施例4〜5によると、酸素存在下の
反応では、PAN系ACFの場合、捕捉時間が4〜5倍
に増大しており、酸素による活性向上が発現している。
一方ピッチ系ACFでは、通気開始後すぐに破過が起こ
るが、その後、例5では約90%、例9でも69%とい
うように高い定常捕捉を示し、優れたH2S 除去能を有
することが分かる。この点、その作用の詳細は不明であ
るが、そのような高い定常捕捉能からして、恐らく酸素
の存在によりH2S が酸化され、硫黄がACFの表面に
捕捉されているものと推認される。
According to the above Examples 4 and 5, in the reaction in the presence of oxygen, in the case of the PAN-based ACF, the capture time is increased by 4 to 5 times, and the improvement of the activity by oxygen is exhibited.
On the other hand, in the pitch-based ACF, breakthrough occurs immediately after the start of ventilation, but after that, high steady-state trapping is observed, such as about 90% in Example 5 and 69% in Example 9, and has excellent H 2 S removal ability. I understand. In this respect, the details of the action are unclear. However, from such a high steady-state trapping ability, it is presumed that H 2 S is probably oxidized due to the presence of oxygen, and sulfur is trapped on the surface of the ACF. You.

【0025】[0025]

【発明の効果】本発明によれば、地熱発電、石油精製、
天然ガス精製、レーヨン製造、下水処理、汚泥処理、ゴ
ミ処理などに際して発生する硫化水素を含むガスから硫
化水素をきわめて有効に除去することができる。硫化水
素を含むガスが酸素を含む場合にはさらに有効である。
According to the present invention, geothermal power generation, oil refining,
Hydrogen sulfide can be removed very effectively from gas containing hydrogen sulfide generated during natural gas purification, rayon production, sewage treatment, sludge treatment, waste disposal, and the like. It is more effective when the gas containing hydrogen sulfide contains oxygen.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来の硫化水素の除去技術における装置態様例
を示す図。
FIG. 1 is a diagram showing an example of an apparatus in a conventional hydrogen sulfide removal technique.

【図2】本発明を実施する装置の態様例を示す図。FIG. 2 is a diagram showing an example of an embodiment of an apparatus for implementing the present invention.

【図3】PAN系及びピッチ系の各種ACFを用いたH
2S 吸着の破過曲線を示す図(窒素雰囲気中)。
FIG. 3 shows H using various PAN-based and pitch-based ACFs.
The figure which shows the breakthrough curve of 2 S adsorption (in nitrogen atmosphere).

【図4】PAN系ACF(例2)についての窒素雰囲気
中における通気温度を変化させた場合の捕捉試験結果を
示す図。
FIG. 4 is a diagram showing the results of a capture test of a PAN-based ACF (Example 2) when the ventilation temperature in a nitrogen atmosphere was changed.

【図5】PAN系ACF(例2)を用い、図4における
条件を替えた場合の破過曲線を示す図。
FIG. 5 is a view showing a breakthrough curve when a PAN-based ACF (Example 2) is used and the conditions in FIG. 4 are changed.

【図6】PAN系ACF(例2)についての空気中にお
けるH2S 捕捉試験結果を示す図。
FIG. 6 is a graph showing the results of a H 2 S trap test in air for a PAN-based ACF (Example 2).

【図7】ピッチ系ACF(例5〜例9)ついての空気中
におけるH2S 捕捉試験の結果を示す図。
FIG. 7 is a diagram showing the results of a H 2 S capture test in air for pitch-based ACFs (Examples 5 to 9).

【符号の説明】[Explanation of symbols]

1 硫化水素含有ガス導入管 2 活性炭素繊維充填層(反応管) 3 処理済みガス導出管 1 gas introduction pipe containing hydrogen sulfide 2 packed bed of activated carbon fiber (reaction tube) 3 treated gas outlet pipe

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】吸着剤として活性炭素繊維を用い、該活性
炭素繊維に硫化水素を含むガスを接触させることを特徴
とする硫化水素含有ガス中の硫化水素除去方法。
1. A method for removing hydrogen sulfide in a hydrogen sulfide-containing gas, comprising using activated carbon fiber as an adsorbent and contacting the activated carbon fiber with a gas containing hydrogen sulfide.
【請求項2】上記硫化水素を含むガスが、酸素と硫化水
素を含むガスである請求項1記載の硫化水素含有ガス中
の硫化水素除去方法。
2. The method according to claim 1, wherein the gas containing hydrogen sulfide is a gas containing oxygen and hydrogen sulfide.
【請求項3】上記活性炭素繊維吸着剤がPAN系活性炭
素繊維又はピッチ系活性炭素繊維である請求項1記載の
硫化水素含有ガス中の硫化水素除去方法。
3. The method according to claim 1, wherein the activated carbon fiber adsorbent is a PAN-based activated carbon fiber or a pitch-based activated carbon fiber.
【請求項4】上記接触時の操作温度が70〜180℃で
ある請求項1記載の硫化水素含有ガス中の硫化水素除去
方法。
4. The method for removing hydrogen sulfide from a hydrogen sulfide-containing gas according to claim 1, wherein the operating temperature during the contact is 70 to 180 ° C.
JP9212543A 1997-07-23 1997-07-23 Process for removing hydrogen sulfide by using active carbon fiber Pending JPH1133353A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9212543A JPH1133353A (en) 1997-07-23 1997-07-23 Process for removing hydrogen sulfide by using active carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9212543A JPH1133353A (en) 1997-07-23 1997-07-23 Process for removing hydrogen sulfide by using active carbon fiber

Publications (1)

Publication Number Publication Date
JPH1133353A true JPH1133353A (en) 1999-02-09

Family

ID=16624430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9212543A Pending JPH1133353A (en) 1997-07-23 1997-07-23 Process for removing hydrogen sulfide by using active carbon fiber

Country Status (1)

Country Link
JP (1) JPH1133353A (en)

Similar Documents

Publication Publication Date Title
JP2001019984A (en) Activated carbon fiber adsorbent for removing odorant in fuel gas
EP1341719A2 (en) Activated carbon for odor control and method for making same
EP0776246B1 (en) Process for regenerating nitrogen-treated carbonaceous chars used for hydrogen sulfide removal
JP2009536876A (en) Method and system for regenerating activated carbon catalyst bed
WO1997012671A1 (en) Heat treated activated carbon for denitration, process for preparing the same, method of denitration using the same, and system of denitration using the same
JP2008188492A (en) Water treatment system
JPH10109016A (en) Treatment of heavy metal-containing waste gas and device therefor
CN112624244A (en) Method for efficiently removing volatile organic compounds in petrochemical wastewater
JP2010172871A (en) Adsorbent of lower aldehydes and method for manufacturing the same
JPH1133353A (en) Process for removing hydrogen sulfide by using active carbon fiber
JP2006035042A (en) Regeneration method of gas purifying apparatus, and gas purifying method using the same
KR20010016595A (en) Preparation method and use of Metal(Cu, Zn, Cr, v, Mo, Ti, Fe etc)-Impregnated activated carbon fiber for removal of toxicity, noxious gas
JP2000015053A (en) Method for activation of active carbon fibrous desulfurizer and activated active carbon fibrous desulfurizer
JP3947285B2 (en) Manufacturing method of activated carbon for desulfurization and denitration with high denitration performance
JP3773668B2 (en) Advanced treatment method for incinerator exhaust gas
JP4901193B2 (en) Pyrolysis gas purification method and apparatus
JP2006104598A (en) Activated carbon fiber, method for producing the same and gas purification method
JP5301113B2 (en) Reusing copper-based absorbent
JP2000093798A (en) Catalyst for decomposing organic chlorine compound, its production, and method for treating exhaust gas
JP2796754B2 (en) Mercury removal from liquid hydrocarbons
JPH03207448A (en) Catalyst and method for decomposition of nitrogen oxide
JPH0598942A (en) Method for processing exhaust gas of light oil combustion equipment, active carbon and manufacture thereof
JP4573560B2 (en) Photocatalytic functional material production method and photocatalytic functional material produced by this method
JP2001276198A (en) Deodorant
JPH09308830A (en) Agent for removing acidic gas and basic gas