JP2796754B2 - Mercury removal from liquid hydrocarbons - Google Patents

Mercury removal from liquid hydrocarbons

Info

Publication number
JP2796754B2
JP2796754B2 JP2157563A JP15756390A JP2796754B2 JP 2796754 B2 JP2796754 B2 JP 2796754B2 JP 2157563 A JP2157563 A JP 2157563A JP 15756390 A JP15756390 A JP 15756390A JP 2796754 B2 JP2796754 B2 JP 2796754B2
Authority
JP
Japan
Prior art keywords
mercury
liquid hydrocarbons
temperature
adsorbent
natural gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2157563A
Other languages
Japanese (ja)
Other versions
JPH0450294A (en
Inventor
昭男 古田
邦男 佐藤
正一 坂東
亨 松澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NITSUKI KK
Original Assignee
NITSUKI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NITSUKI KK filed Critical NITSUKI KK
Priority to JP2157563A priority Critical patent/JP2796754B2/en
Publication of JPH0450294A publication Critical patent/JPH0450294A/en
Application granted granted Critical
Publication of JP2796754B2 publication Critical patent/JP2796754B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 イ.発明の目的 [産業上の利用分野] 液状炭化水素である天然ガスコンデンセートは近年エ
チレンの原料として使われ始めた。天然ガスコンデンセ
ートには、産地にもよるが、最高数ppmの水銀が含まれ
ている。水銀は低温熱交換器の腐食、触媒の被毒、作業
環境の悪化の問題をおこすため除去する必要がある。
DETAILED DESCRIPTION OF THE INVENTION Object of the Invention [Industrial Application Field] Natural gas condensate, which is a liquid hydrocarbon, has recently begun to be used as a raw material for ethylene. Natural gas condensate contains up to several ppm of mercury, depending on the region of origin. Mercury must be removed because it causes corrosion of the low-temperature heat exchanger, poisoning of the catalyst, and deterioration of the working environment.

[従来の技術] [従来の技術] 天然ガスコンデンセートには単体水銀、イオン状水
銀、有機水銀(離反応性水銀)などが含まれており、そ
の量は産地によって異なる。単体水銀は吸着剤で、イオ
ン状水銀はNa2S水溶液で除去でき、有機水銀は固体酸で
除去できるが、固体酸による有機水銀除去の場合、コン
デンセート中に共存する極性化合物も吸着するため、水
銀の吸着量は小さく実用上やや問題があった。
[Prior art] [Prior art] Natural gas condensate contains elemental mercury, ionic mercury, organic mercury (reactive reactive mercury), etc., and the amount varies depending on the place of production. Elemental mercury is an adsorbent, ionic mercury can be removed with an aqueous Na 2 S solution, and organic mercury can be removed with a solid acid.However, in the case of organic mercury removal with a solid acid, polar compounds coexisting in condensate are also adsorbed. The amount of mercury adsorbed was small and had some practical problems.

[発明が解決しようとする課題] 本発明は有機水銀の経済的に優れた除去法を検討して
いるなかで見出したもので、水銀化合物の分解と水銀の
吸着を同時に行い、プロセスを大幅に簡略化し、水銀を
含む液体の廃棄物を出さないなどの利点を有する液状炭
化水素中の水銀除去法を提供することを目的とする。
[Problems to be Solved by the Invention] The present invention was discovered while studying an economically excellent method for removing organic mercury, and simultaneously decomposes mercury compounds and adsorbs mercury to greatly improve the process. It is an object of the present invention to provide a method for removing mercury in liquid hydrocarbons, which has advantages such as simplification and not producing liquid waste containing mercury.

ロ.発明の構成 [課題を解決するための手段] 本発明にかかわる液状炭化水素中の水銀除去法は、水
銀化合物を含む液状炭化水素を170〜300℃の加熱下で、
該液状炭化水素の蒸気圧以上の圧力下でモリブデンの硫
化物を主成分とする吸着剤に接触させて水銀化合物の分
解と水銀の吸着除去を同時に行うことを特徴とする。
B. Constitution of the Invention [Means for Solving the Problems] The method for removing mercury in a liquid hydrocarbon according to the present invention comprises heating a liquid hydrocarbon containing a mercury compound under heating at 170 to 300 ° C.
The method is characterized in that the liquid hydrocarbon is brought into contact with an adsorbent mainly composed of molybdenum sulfide at a pressure higher than the vapor pressure of the liquid hydrocarbon to simultaneously decompose the mercury compound and adsorb and remove the mercury.

本発明によれば、各種の液状炭化水素、特に天然ガス
コンデンセートあるいは石油随伴ガスより得られる液状
炭化水素中の水銀及び水銀化合物を除去することができ
る。
According to the present invention, it is possible to remove mercury and mercury compounds from various liquid hydrocarbons, particularly liquid hydrocarbons obtained from natural gas condensate or petroleum accompanying gas.

本発明を実施するに当って、液状炭化水素を予め水洗
することが望ましい。液状炭化水素には極性の窒素化合
物や酸素化合物、さらには固体の微粒子を含むものがあ
り、これらの物質はモリブテンの硫化物を主成分とする
吸着剤に対して悪影響を及ぼすため、水洗により除去す
ることが望ましい。
In carrying out the present invention, it is desirable to wash the liquid hydrocarbon with water in advance. Some liquid hydrocarbons contain polar nitrogen compounds and oxygen compounds, as well as solid fine particles. These substances have an adverse effect on adsorbents mainly composed of molybdenum sulfide, and are removed by washing with water. It is desirable to do.

吸着剤としては、モリブデンの硫化物或はモリブデン
にコバルト又はニッケルを加えた複合硫化物が用いられ
る。これらコバルト及び/又はニッケルの添加量は、モ
リブデンに対し原子比で0.05〜0.9、特に0.1〜0.8が好
ましい。これら硫化物はそのままでも吸着剤として用い
ることができるが、シリカ、アルミナ、その他の適当な
担体に担持して用いるのが好ましい。
As the adsorbent, a sulfide of molybdenum or a composite sulfide obtained by adding cobalt or nickel to molybdenum is used. The addition amount of these cobalt and / or nickel is preferably 0.05 to 0.9, particularly preferably 0.1 to 0.8 in terms of atomic ratio to molybdenum. Although these sulfides can be used as they are as an adsorbent, they are preferably used by being supported on silica, alumina, or another suitable carrier.

モリブデン系の吸着剤は、室温では単体水銀および低
分子の水銀化合物、例えばCH3HgCl、(C2H52Hgなどし
か吸着しない。液状炭化水素中には吸着剤で処理できな
いイオン状水銀や有機水銀があり、加熱はこれらのイオ
ン状水銀と有機水銀を単体に分解するために必要な操作
である。熱分解のみでは200〜300℃で数十分乃至数時間
かかるが、吸着剤上では温度を下げることが出来、同じ
温度では時間を短縮出来る。
At room temperature, molybdenum-based adsorbents adsorb only elemental mercury and low-molecular-weight mercury compounds such as CH 3 HgCl and (C 2 H 5 ) 2 Hg. Liquid hydrocarbons contain ionic mercury and organic mercury that cannot be treated with an adsorbent, and heating is an operation necessary to decompose these ionic mercury and organic mercury into simple substances. It takes tens of minutes to several hours at 200 to 300 ° C. only by thermal decomposition, but the temperature can be lowered on the adsorbent, and the time can be shortened at the same temperature.

接触分解の温度は170〜300℃、圧力は液状炭化水素の
蒸気圧以上の圧力下、通常5〜30kg/cm2Gで、液相で30
分程度以下、好ましくは10分程度以下接触を行うのが良
い。温度が170℃以下では分解に時間が掛かりすぎ不経
済である。一方300℃を越えると液状炭化水素の分解、
吸着剤上への炭素質生成による吸着容量の低下などが顕
著になり、好ましくない。
The catalytic cracking temperature is 170-300 ° C, the pressure is more than the vapor pressure of liquid hydrocarbon, usually 5-30 kg / cm 2 G,
The contact is preferably performed for about 10 minutes or less, preferably for about 10 minutes or less. If the temperature is lower than 170 ° C., the decomposition takes too much time and is uneconomical. On the other hand, when the temperature exceeds 300 ° C, the decomposition of liquid hydrocarbons,
The decrease in the adsorption capacity due to the formation of carbonaceous material on the adsorbent becomes remarkable, which is not preferable.

以下、実施例により本発明を具体的に説明するが、本
発明は下記の実施例に限定されるものではない。
Hereinafter, the present invention will be described specifically with reference to examples, but the present invention is not limited to the following examples.

[実施例1] 内径14mm、長さ500mmのステンレス製反応管に予め硫
化したCo−Mo系吸着剤(Mo:7%、Co:0.9%、担体:Al
2O3)を10g充填し、これに水銀として1300ppbを含め天
然ガスコンデンセートを所定温度、流量で供給して出口
の水銀濃度を測定した。測定は金アマルガム−フレーム
レス原子吸光法によった。
Example 1 A Co-Mo-based adsorbent (Mo: 7%, Co: 0.9%, carrier: Al) previously sulfided into a stainless steel reaction tube having an inner diameter of 14 mm and a length of 500 mm
10 g of 2 O 3 ) was charged, and natural gas condensate containing 1300 ppb as mercury was supplied at a predetermined temperature and flow rate, and the mercury concentration at the outlet was measured. The measurement was based on a gold amalgam-flameless atomic absorption method.

第1表に温度、流量と出口水銀濃度の測定結果を示し
た。
Table 1 shows the measurement results of the temperature, flow rate and outlet mercury concentration.

第1表から、250℃、50ml/hの条件で水銀をほとんど
除去できることがわかる。
Table 1 shows that almost all mercury can be removed under the conditions of 250 ° C. and 50 ml / h.

この吸着剤は比較例2に示したように、室温では流量
50ml/hで出口水銀濃度124ppbまでしか吸着しないので、
表の結果は天然ガスコンデンセート中の水銀化合物が分
解して単体状になり、吸着したことを示している。流量
が多い時には残水銀も多くなっているが、これは分解と
吸着が不十分なことを意味している。
This adsorbent has a flow rate at room temperature as shown in Comparative Example 2.
At 50 ml / h, it only adsorbs up to the outlet mercury concentration of 124 ppb,
The results in the table show that the mercury compounds in the natural gas condensate were decomposed to form a simple substance and adsorbed. At higher flow rates, the residual mercury is also higher, which means that decomposition and adsorption are insufficient.

[比較例1] 実施例1で用いた反応管に実施例1で使用した触媒と
同じ容量のガラスビーズを充填し、250℃で所定流量の
天然ガスコンデンセートを供給して熱分解を行った。分
解後の天然ガスコンデンセートをさらにCo−Mo硫化物10
gを充填したカラムに室温で供給したのち、水銀濃度を
測定した。結果を第2表に示した。
Comparative Example 1 The reaction tube used in Example 1 was filled with the same volume of glass beads as the catalyst used in Example 1, and a predetermined flow rate of natural gas condensate was supplied at 250 ° C. to perform thermal decomposition. The natural gas condensate after decomposition is further converted to Co-Mo sulfide 10
After supplying the column filled with g at room temperature, the mercury concentration was measured. The results are shown in Table 2.

第2表に示されるとおり、加熱だけでは十分に分解で
きなかった。
As shown in Table 2, it was not possible to sufficiently decompose only by heating.

また、熱分解温度を290℃、流量を56ml/hにした場合
においても167ppbまでしか除去出来なかった。
Further, even when the thermal decomposition temperature was 290 ° C. and the flow rate was 56 ml / h, only 167 ppb could be removed.

[比較例2] 実施例1で使用したCo−Mo硫化物10g、温度:16℃、流
量:50ml/hで実施例1と同じ天然ガスコンデンセートを
用いて吸着実験を行ったところ、出口水銀濃度は124ppb
であった。流量を25ml/hにしてもこれ以上には除去でき
ないことから、これは難吸着性の水銀と考えられる。
[Comparative Example 2] An adsorption experiment was performed using the same natural gas condensate as in Example 1 at 10 g of the Co-Mo sulfide used in Example 1, at a temperature of 16 ° C, and at a flow rate of 50 ml / h. Is 124ppb
Met. This cannot be removed any more even at a flow rate of 25 ml / h.

[比較例3] 実施例1で用いた装置で、温度:150℃、流量:210ml/h
の条件で実施例1と同じ天然ガスコンデンセートを用い
て吸着実験を行ったところ、出口水銀濃度は253ppbであ
った。この結果から、150℃では水銀の吸着除去が不十
分であることが示された。
[Comparative Example 3] With the apparatus used in Example 1, temperature: 150 ° C, flow rate: 210 ml / h
An adsorption experiment was performed using the same natural gas condensate as in Example 1 under the conditions described above, and the mercury concentration at the outlet was 253 ppb. These results indicated that at 150 ° C, adsorption and removal of mercury was insufficient.

ハ.発明の効果 1)単体水銀、イオン状水銀と同時に有機水銀の除去が
可能である。
C. Advantages of the Invention 1) Organic mercury can be removed simultaneously with simple mercury and ionic mercury.

2)プロセスが単純である。2) The process is simple.

3)水銀を含む液体の廃棄物が出ないので、廃棄物対策
が容易である。
3) Since no liquid waste containing mercury is produced, it is easy to take measures against waste.

4)装置の運転管理が容易である。4) The operation management of the device is easy.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 松澤 亨 愛知県半田市州の崎町2番110 日揮株 式会社衣浦研究所内 (56)参考文献 特開 平1−315489(JP,A) 特開 平2−2873(JP,A) (58)調査した分野(Int.Cl.6,DB名) C10G 25/06──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Toru Matsuzawa 2110 Saki-cho, Handa-shi, Aichi Prefecture, Niigata Institute of Technology, Japan (56) References JP-A-1-315489 (JP, A) JP-A-2 −2873 (JP, A) (58) Field surveyed (Int. Cl. 6 , DB name) C10G 25/06

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】水銀化合物を含む液状炭化水素を170〜300
℃の加熱下で、該液状炭化水素の蒸気圧以上の圧力下で
モリブデンの硫化物を主成分とする吸着剤に接触させて
水銀化合物の分解と水銀の吸着除去を同時に行うことを
特徴とする液状炭化水素中の水銀除去法。
1. A liquid hydrocarbon containing a mercury compound is added in an amount of 170 to 300.
Decomposition of a mercury compound and adsorption and removal of mercury are simultaneously performed by contacting an adsorbent containing molybdenum sulfide as a main component under a pressure of not less than the vapor pressure of the liquid hydrocarbon under heating at a temperature of ° C. A method for removing mercury in liquid hydrocarbons.
JP2157563A 1990-06-18 1990-06-18 Mercury removal from liquid hydrocarbons Expired - Lifetime JP2796754B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2157563A JP2796754B2 (en) 1990-06-18 1990-06-18 Mercury removal from liquid hydrocarbons

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2157563A JP2796754B2 (en) 1990-06-18 1990-06-18 Mercury removal from liquid hydrocarbons

Publications (2)

Publication Number Publication Date
JPH0450294A JPH0450294A (en) 1992-02-19
JP2796754B2 true JP2796754B2 (en) 1998-09-10

Family

ID=15652418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2157563A Expired - Lifetime JP2796754B2 (en) 1990-06-18 1990-06-18 Mercury removal from liquid hydrocarbons

Country Status (1)

Country Link
JP (1) JP2796754B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07116446B2 (en) * 1992-03-23 1995-12-13 日揮株式会社 Method for removing mercury in liquid hydrocarbons
US7862725B2 (en) * 2003-03-06 2011-01-04 University Of Florida Research Foundation Incorporated Method for mercury capture from fluid streams

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0624623B2 (en) * 1987-11-14 1994-04-06 日揮株式会社 How to remove mercury
JPH0819422B2 (en) * 1988-06-14 1996-02-28 三井石油化学工業株式会社 Method for removing trace amounts of mercury in hydrocarbon oils

Also Published As

Publication number Publication date
JPH0450294A (en) 1992-02-19

Similar Documents

Publication Publication Date Title
US5080799A (en) Hg removal from wastewater by regenerative adsorption
EP0794240B1 (en) Mercury adsorbent
JP2633484B2 (en) Method for removing mercury from liquid hydrocarbons
US4877515A (en) Use of polysulfide treated molecular sieves to remove mercury from liquefied hydrocarbons
EP0755994B1 (en) Method of eliminating mercury from liquid hydrocarbons
JPH02184501A (en) Removal of gaseous polluting compound, especially dope component compound from carrier gas containing silane halide compound
KR20120101113A (en) Mercury removal from cracked gas
JP2001019984A (en) Activated carbon fiber adsorbent for removing odorant in fuel gas
EP0145539B1 (en) Mercury adsorbent carbons and carbon molecular sieves
JPH05192507A (en) Method of desulfrization
US20070292337A1 (en) Method for Hydrogen Sulphide and/or Mercaptans Decomposition
JP2796754B2 (en) Mercury removal from liquid hydrocarbons
CN112973623A (en) Application of EAB molecular sieve in separation of methane/carbon dioxide
US4771030A (en) Process for preparing particulate aluminum metal for adsorbing mercury from natural gas
JP2978251B2 (en) Method for removing mercury from liquid hydrocarbons
KR20090031553A (en) Method for removing heavy metals from gases
CN111068642B (en) Catalyst for removing mercaptan in natural gas and preparation method thereof
JPS61197415A (en) Purification of dichlorosilane
US4717399A (en) Process for adsorbing mercury from natural gas
JP4304020B2 (en) Treatment agent and treatment method for exhaust gas containing acid gas and / or hydrocarbon
JPH0648741A (en) Production of iron sulfide for removing mercury
JPH05171160A (en) Removal of mercury in liquid hydrocarbon
JPS5917155B2 (en) Method for removing carbonyl sulfide from gaseous streams
JPH01188586A (en) Removing method for mercury in hydrocarbon base oil
JPH0633071A (en) Method for removing mercury in liquid hydrocarbon