JPH05192507A - Method of desulfrization - Google Patents

Method of desulfrization

Info

Publication number
JPH05192507A
JPH05192507A JP4210157A JP21015792A JPH05192507A JP H05192507 A JPH05192507 A JP H05192507A JP 4210157 A JP4210157 A JP 4210157A JP 21015792 A JP21015792 A JP 21015792A JP H05192507 A JPH05192507 A JP H05192507A
Authority
JP
Japan
Prior art keywords
stream
absorbent
copper
elemental sulfur
reduction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4210157A
Other languages
Japanese (ja)
Inventor
Peter John Herbert Carnell
ピーター・ジョン・ハーバート・カーネル
Peter Wood
ピーター・ウッド
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Imperial Chemical Industries Ltd
Original Assignee
Imperial Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Imperial Chemical Industries Ltd filed Critical Imperial Chemical Industries Ltd
Publication of JPH05192507A publication Critical patent/JPH05192507A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G25/00Refining of hydrocarbon oils in the absence of hydrogen, with solid sorbents
    • C10G25/003Specific sorbent material, not covered by C10G25/02 or C10G25/03
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G53/00Treatment of hydrocarbon oils, in the absence of hydrogen, by two or more refining processes
    • C10G53/02Treatment of hydrocarbon oils, in the absence of hydrogen, by two or more refining processes plural serial stages only
    • C10G53/08Treatment of hydrocarbon oils, in the absence of hydrogen, by two or more refining processes plural serial stages only including at least one sorption step

Abstract

PURPOSE: To remove elemental sulfur in an organic substance by bringing a stream of the gaseous or liquid organic substance contaminated with the elemental sulfur into contact with an absorbent containing metal copper as an active component. CONSTITUTION: A stream 3 exiting from one of reactors 2a, 2b containing an absorbent such as zinc oxide or copper oxide is released from a reactive contaminating substance such as hydrogen sulfide and carbonyl sulfide, but still contains by-products such as water and carbon dioxide. The stream 3 passes through one of removal devices 4a, 4b, and is released from the by-products. And then the stream 3 flows into removal devices 5a, 5b containing a metal copper absorbent wherein dissolved elemental sulfur is removed and a stream of a desulfurized product 6 is produced. The preparation of the metal absorbent generally comprises the steps of the reduction of a precursor consisting of a reducing copper compound by introducing the stream 8 of hydrogen which is diluted with an inert gas stream 7 and heated to a suitable temperature for the reduction in a heat-exchanger 9 into the bed of the precursor and the exhausting of a stream 10 of an exhaust gas outside after the reduction.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】この発明は有機化合物から元素硫黄を除去
する方法に関する。
This invention relates to a method of removing elemental sulfur from organic compounds.

【0002】四塩化炭素のような有機の液体とベンゼン
と石油などの炭化水素の中には、元素硫黄が溶解し、汚
染物質として存在することが屡ある。同様に、有機の多
硫化物がそれらの液体中に屡存在し、これらの多硫化物
は容易に分解して液体中に溶解した元素硫黄を生ずる。
元素硫黄は、同じく又、硫化水素などの硫黄化合物と酸
化剤との反応から生ずることがある。更に、元素硫黄は
可成りの揮発性を持ち、気体の炭化水素の流れの中に存
在することがある。そのような元素硫黄は金属と反応す
る性質があり、有機化合物を取り扱う為に用いられるポ
ンプやその他の装置に深刻な腐食問題をもたらす原因と
なる。特に関心のあるのは水中に沈められた自動車の燃
料噴射ポンプの腐食であり、それは自動車燃料が元素硫
黄を含む時に発生する。
In organic liquids such as carbon tetrachloride and hydrocarbons such as benzene and petroleum, elemental sulfur is often dissolved and present as a pollutant. Similarly, organic polysulfides are often present in those liquids, and these polysulfides readily decompose to yield elemental sulfur dissolved in the liquid.
Elemental sulfur may also result from the reaction of sulfur compounds such as hydrogen sulfide with oxidants. In addition, elemental sulfur is of considerable volatility and may be present in gaseous hydrocarbon streams. Such elemental sulfur has the property of reacting with metals, causing serious corrosion problems for pumps and other equipment used to handle organic compounds. Of particular interest is the corrosion of vehicle fuel injection pumps submerged in water, which occurs when vehicle fuel contains elemental sulfur.

【0003】気体または液体の流れから硫化水素と硫化
カルボニル等の反応性の硫黄化合物を除去することは周
知である。しかしながら、元素硫黄は反応性の硫黄化合
物よりも除去するのが相当に難しく、そして既存の硫黄
除去方法は元素硫黄の除去に極めて役に立たない。
It is well known to remove reactive sulfur compounds such as hydrogen sulfide and carbonyl sulfide from gas or liquid streams. However, elemental sulfur is considerably more difficult to remove than reactive sulfur compounds, and existing methods of sulfur removal do little to remove elemental sulfur.

【0004】還元性の銅化合物の還元によって造られる
金属銅の活性型が、気体または液体の有機化合物の流れ
から元素硫黄を、特に液体炭化水素の流れに溶解した元
素硫黄を除去するのに使用できることが今や発見され
た。
The active form of metallic copper, produced by the reduction of reducible copper compounds, is used to remove elemental sulfur from streams of gaseous or liquid organic compounds, especially elemental sulfur dissolved in streams of liquid hydrocarbons. What we can do is now discovered.

【0005】従って、本発明は元素硫黄で汚染された気
体または液体の有機物質の流れを、活性成分として金属
銅を含む吸収剤(sorbent)と接触させることから成る元
素硫黄で汚染された気体または液体の有機物質の流れの
中の元素硫黄の含量を減少する方法を提供する。
Accordingly, the present invention therefore relates to an elemental sulfur-contaminated gas or gas comprising contacting a stream of a gaseous or liquid organic substance contaminated with elemental sulfur with a sorbent containing metallic copper as an active ingredient. A method is provided for reducing the content of elemental sulfur in a stream of liquid organic material.

【0006】本発明の方法は、好ましくは有機物質の流
れが液体状態にあるような温度と圧力の条件下に行なわ
れる。好ましくは、本発明の方法は300℃以下の温
度、特に、150℃以下の温度と最高でも100バール
(ab.)迄の圧力に於いて達成される。本発明によって処
理するのに適当な有機の液体は、例えば、石油、灯油、
液化石油ガス(LPG)、天然ガス液体(NGL)、芳香族
の液体炭化水素、液化天然ガス(LNG)を含む。
The process of the present invention is preferably carried out under conditions of temperature and pressure such that the stream of organic material is in the liquid state. Preferably, the process of the invention is carried out at temperatures below 300 ° C., in particular below 150 ° C. and at most 100 bar.
Achieved at pressures up to (ab.). Organic liquids suitable for treatment according to the invention include, for example, petroleum, kerosene,
Includes liquefied petroleum gas (LPG), natural gas liquid (NGL), aromatic liquid hydrocarbons and liquefied natural gas (LNG).

【0007】元素硫黄の最初の濃度は、通常1〜200
ppm、そして典型的には1〜50ppm(重量部)である。
The initial concentration of elemental sulfur is usually 1 to 200
ppm, and typically 1 to 50 ppm (parts by weight).

【0008】反応性の硫黄化合物を除去するのに用いら
れる酸化亜鉛をベースとした吸収剤ような慣用の吸収剤
は、元素硫黄の除去には役に立たない。有機の気体また
は液体の流れから元素硫黄を吸収するのに有効な吸収剤
の中で、金属銅を活性成分として使用できることが今や
発見された。吸収の工程の間に、金属銅は硫化銅に転換
される。一般に、吸収体の銅含量が高ければ高い程、よ
り多くの元素硫黄を次の吸収剤の補給までの間に除去す
ることができる。従って、吸収剤は少なくとも30重量
パーセント(900℃での吸収剤の強熱後に重量損失の
無い吸収剤(lossfree solvent)の中に存在する酸化銅(I
I)のパーセンテージで表わして)、更に通常は50〜9
0重量パーセントの銅含量を有する。吸収剤が元素硫黄
を吸着する能力は、同じく元素硫黄による金属銅へのア
クセシビリティーによっても影響される。一般に、銅の
金属表面積(比表面積)が高いと、匹敵する銅含量を有す
るが銅の金属表面積の低い吸収剤よりも吸着性は一層効
果的である。特に効果的な吸収剤は、銅金属表面積が2
0m2/g以上であるような物、特に銅金属表面積が20〜
40m2/gの範囲にあるような物である。銅金属表面積が
それ以上、例えば、50m2/g以上の吸収剤も同じく使用
することができる。高い銅金属表面積を持つ吸収剤は、
例えば、酸化銅、炭酸銅、硝酸銅などの銅化合物を適当
な還元剤を用いて還元することによって形成することが
できる。適当な還元剤としては、水素、吸収剤の存在で
分解して水素を生ずるような化合物、一酸化炭素、及び
一酸化炭素と水素の混合物が含まれる。銅化合物の還元
が行なわれる条件は、酸化性の先駆体物質から銅をベー
スとしたメタノール合成触媒を調製する時に用いられる
条件と類似のもので有り得る。吸収剤が還元される温度
は、ある程度は還元剤の性質に依存するだろう。典型的
には、温度は90〜250℃の範囲、そして通常は15
0〜200℃の範囲にあるだろう。
Conventional absorbents, such as the zinc oxide-based absorbents used to remove reactive sulfur compounds, do not help in the removal of elemental sulfur. It has now been discovered that metallic copper can be used as an active ingredient in absorbents that are effective in absorbing elemental sulfur from organic gas or liquid streams. During the absorption process, metallic copper is converted to copper sulfide. In general, the higher the copper content of the absorber, the more elemental sulfur can be removed before the next replenishment of the absorbent. Therefore, the absorbent should be at least 30 weight percent (copper oxide (I) present in the loss free solvent after ignition of the absorbent at 900 ° C. without loss of weight).
I), expressed as a percentage), more usually 50-9
It has a copper content of 0 weight percent. The ability of absorbents to adsorb elemental sulfur is also affected by the accessibility of elemental sulfur to metallic copper. In general, higher metal surface area (specific surface area) of copper is more effective in adsorption than absorbents with comparable copper content but lower copper metal surface area. A particularly effective absorbent has a copper metal surface area of 2
Those having a surface area of 0 m 2 / g or more, especially a copper metal surface area of 20 to
It is something like that in the range of 40 m 2 / g. Adsorbents with a copper metal surface area greater than that, for example greater than 50 m 2 / g, can likewise be used. Absorbents with high copper metal surface area
For example, it can be formed by reducing a copper compound such as copper oxide, copper carbonate or copper nitrate with a suitable reducing agent. Suitable reducing agents include hydrogen, compounds that decompose to give hydrogen in the presence of an absorbent, carbon monoxide, and mixtures of carbon monoxide and hydrogen. The conditions under which the reduction of the copper compound is conducted can be similar to those used in preparing copper-based methanol synthesis catalysts from oxidizing precursors. The temperature at which the absorbent is reduced will depend to some extent on the nature of the reducing agent. Typically the temperature is in the range 90 to 250 ° C, and usually 15
It will be in the range 0-200 ° C.

【0009】吸収剤は、例えば、米国特許第4,871,
710号、銅4,996,181号、銅4,983,367
号に記述されているような、反応性の硫黄化合物の除去
に普通に良く用いられる物と類似のサイズを有する微粒
子の形で調製するのが便利である。吸収剤は単一床(sin
gle bed)又はもっと普通には連続的に、及び/又は並流
に配置された複数の床の中に配置される。典型的には、
有機物質の各床を通る流れは、液体の時間当たりの空間
速度(LHSV)が1〜20/時間、もっと普通には1〜
10/時間を与えるに足る流量となるだろう。
Absorbents are disclosed, for example, in US Pat. No. 4,871,
710, copper 4,996,181, copper 4,983,367
It is convenient to prepare it in the form of fine particles having a size similar to that commonly used for the removal of reactive sulfur compounds, as described in US Pat. The absorbent is a single bed (sin
gle bed) or, more usually, arranged in series and / or in co-currently arranged beds. Typically,
The flow of organic material through each bed has a liquid hourly space velocity (LHSV) of 1-20 / hr, more usually 1-
That would be enough to give 10 / hour.

【0010】通常、処理される有機の流れは元素硫黄の
他に他の汚染物質を含むだろう。これらの他の汚染物質
には、硫化水素、硫化カルボニル、有機の硫黄化合物、
砒化物、及び水銀などの重金属が含まれる。金属銅吸収
剤は元素硫黄の他に此等の汚染物質の除去にも使うこと
ができる。しかしながら、有機の流れから此等の汚染物
質を除去するには、流れを金属銅吸収剤と接触させる前
に慣用の手段、例えば、酸化亜鉛および/または酸化銅
から成る吸収剤と接触させて事前に除去し、それによっ
て金属銅吸収剤の所要量を最小限度にするのが好まし
い。汚染物質と慣用の吸収剤との間の反応によって生ず
る水や二酸化炭素などの幾つかの副生物は、その後に金
属銅吸収剤と反応して有機の液体から元素硫黄を除去す
る金属銅吸収剤の効果を減少する。従って、これらの反
応副生物を金属銅吸収剤と接触させる前に事前に除去す
ることが同じく好ましい。
Generally, the organic stream to be treated will contain other contaminants in addition to elemental sulfur. These other pollutants include hydrogen sulfide, carbonyl sulfide, organic sulfur compounds,
Arsenides and heavy metals such as mercury are included. Copper metal sorbents can be used to remove these contaminants as well as elemental sulfur. However, removal of these contaminants from the organic stream may be preceded by contacting the stream with conventional means, such as an absorbent consisting of zinc oxide and / or copper oxide, before contacting with the metallic copper absorbent. Preferably to minimize the required amount of copper metal sorbent. Some by-products such as water and carbon dioxide resulting from the reaction between pollutants and conventional sorbents are subsequently reacted with the metal copper sorbent to remove elemental sulfur from organic liquids. Reduce the effect of. Therefore, it is equally preferred to remove these reaction by-products prior to contacting them with the metallic copper absorbent.

【0011】以下に、付属する図面を参照することによ
って本発明を更に具体的に説明しよう。
The present invention will be described in more detail below with reference to the accompanying drawings.

【0012】図1は、二つの互換性のある汚染物質の除
去反応装置(2a、2b)の一つに接触する有機液体の供給
原料の流れ(slream)(1)を示す。各反応装置を隔離し、
液体の流れを後続する装置の間に向ける為に必要なバル
ブ手段は説明を明瞭にする為に茲では省略されている。
反応装置(2a、2b)は、前に列記したような硫化水素、
硫化カルボニル等の反応性の汚染物質の少なくとも或る
程度を除去する為に使用され、酸化亜鉛および/または
酸化銅のような吸収剤を含んでいる。床(2a、2b)の中
で起こる反応の結果として、流れ(3)は前述の反応性の
汚染物質から解放されるが、しかし、水と二酸化炭素の
ような副生物を含んでいる。流れ(3)は、次いで床(2
a、2b)の中で製造された副生物の或る程度を流れ(3)
から吸収するのに有効な二つの床(4a、4b)の一つを通
過する。副生物から解放された流れは、次ぎに夫れぞれ
の金属銅吸収剤の床(5a、5b)の中に直に流入し、そこ
で溶存している元素硫黄が除去されて脱硫された製品の
流れ(6)を生産する。金属銅吸収剤は普通は、還元性の
銅化合物から成る先駆体物質をその場で(in situ)還元
することによって形成される。先駆体物質の還元は、不
活性な気体の流れ(7)によって希釈され熱交換器(9)の
中で適当な還元温度に加熱された水素の流れ(8)を先駆
体物質の床に通し、その後に排ガスの流れ(10)を外に
排出することによって達成される。
FIG. 1 shows a feed stream (1) of an organic liquid which contacts one of two compatible pollutant removal reactors (2a, 2b). Isolate each reactor,
The valve means necessary for directing the flow of liquid between the following devices have been omitted from the drawing for clarity.
The reactors (2a, 2b) are hydrogen sulfides as listed above,
It is used to remove at least some of the reactive contaminants such as carbonyl sulfide and contains an absorbent such as zinc oxide and / or copper oxide. As a result of the reaction taking place in the beds (2a, 2b), stream (3) is released from the reactive pollutants mentioned above, but contains water and by-products such as carbon dioxide. Stream (3) then flows to bed (2
Flowing some of the by-products produced in a, 2b) (3)
Passes through one of the two beds (4a, 4b) which is effective for absorbing from. The stream released from the by-products then flows directly into the respective beds of metallic copper absorbents (5a, 5b), where the elemental sulfur dissolved therein is removed and desulfurized. Produce stream (6). Copper metal sorbents are commonly formed by in situ reduction of precursor materials consisting of reducing copper compounds. The reduction of the precursor is carried out by passing a stream of hydrogen (8) diluted in an inert gas stream (7) and heated to an appropriate reduction temperature in a heat exchanger (9) through the bed of precursor material. , After which the exhaust gas stream (10) is discharged.

【0013】或る場合には、金属銅吸収剤の再生装置を
設けることが望ましいであろう。この再生は廃金属銅吸
収剤を水素の気流を用いて再還元することによって達成
される。典型的には、還元は200〜300℃の温度に
於いて水素の気流を用いて行なわれる。銅と元素硫黄の
反応によって生成する硫化銅は、硫化水素の同時発生を
伴なって再び元の金属銅に転換される。硫化水素は水素
の気流からガス洗浄によって除去され、次いでクラウス
炉(claus plant)のような硫黄回収プラントに供給さ
れる。
In some cases it may be desirable to provide a regenerator for the metallic copper absorbent. This regeneration is achieved by re-reducing the waste metal copper absorbent with a stream of hydrogen. Typically the reduction is carried out with a stream of hydrogen at a temperature of 200-300 ° C. Copper sulfide produced by the reaction between copper and elemental sulfur is converted back to metallic copper with the simultaneous generation of hydrogen sulfide. Hydrogen sulfide is removed from the stream of hydrogen by scrubbing and then fed to a sulfur recovery plant, such as a claus plant.

【0014】発明を下記の実施例によって更に具体的に
説明する。
The invention will be described in more detail with reference to the following examples.

【0015】[0015]

【実施例1】この実施例では、二つの吸収剤の床をシリ
ースに(直列に)使用した。第一の床は、高い表面積を有
する酸化亜鉛とセメントバインダーから成る300gの
吸収剤の顆粒から構成され、一方、第二の床は、高い比
表面積を持つ酸化銅と酸化亜鉛及びセメントバインダー
の混合物から形成された顆粒300gをその場で(in sit
u)で還元して製造した。混合物は55重量パーセントの
酸化銅を含んでいた。還元は水素の気流を用いて180
℃の温度で実施した。混合物の別のサンプルに就いて行
なった測定から、還元した後の第二の床の銅表面積は2
0m2/gであると推定された。
Example 1 In this example, two beds of absorbent were used in series (in series). The first bed is composed of 300 g of absorbent granules consisting of high surface area zinc oxide and cement binder, while the second bed is a mixture of high specific surface area copper oxide and zinc oxide and cement binder. 300g of granules formed from
It was produced by reduction in u). The mixture contained 55 weight percent copper oxide. Reduction is performed using a hydrogen stream 180
It was carried out at a temperature of ° C. From the measurements made on another sample of the mixture, the copper surface area of the second bed after reduction is 2
It was estimated to be 0 m 2 / g.

【0016】約400〜500ppm(重量部)の全硫黄−
その内の約20ppmが元素硫黄である−を含む液体ガソ
リンの流れを平均流量約500ml/時間で直列の床に2
0℃で通し、排出流体中の元素硫黄の含量を一定時間毎
にモニターした。排出流体の元素硫黄の含量が87日後
に5ppm(重量)に達した時に実験を終了した。種々の経
過時間に於ける累積流量と硫黄含量の測定値は表1に示
す通りであった。
Total sulfur of about 400-500 ppm (parts by weight)
A stream of liquid gasoline containing about 20 ppm of which-is elemental sulfur-with an average flow rate of about 500 ml / hour in a series bed.
Passing at 0 ° C., the content of elemental sulfur in the effluent fluid was monitored at regular intervals. The experiment was terminated when the elemental sulfur content of the discharge fluid reached 5 ppm (weight) after 87 days. The cumulative flow rate and the measured sulfur content at various elapsed times are shown in Table 1.

【0017】次ぎに、廃吸収剤の酸化銅/酸化亜鉛の床
を分析し、約7.2重量パーセントの硫黄含量を有する
ことを見出だした。X線回折(XRD)による検査で、床
の中に硫化第二銅は存在するが硫化第一銅、硫酸銅、又
は硫化亜鉛は存在しないことが見出だされた。廃吸収剤
である酸化銅/酸化亜鉛の床の中に硫化亜鉛が存在しな
いことは、ガソリン中に存在した硫化水素のような反応
性の硫黄化合物が第一の酸化亜鉛床によって吸着された
ことを示している。廃吸収剤である酸化銅/酸化亜鉛の
床の中に硫化第一銅よりも寧ろ硫化第二銅が存在したと
いうことは、水素を用いて還元すれば銅が再生できるこ
とを示している。何故かならば、硫化第二銅は硫化第一
銅よりも金属銅に還元し易いからである。
The waste absorbent copper oxide / zinc oxide bed was then analyzed and found to have a sulfur content of about 7.2 weight percent. Examination by X-ray diffraction (XRD) found that there was cupric sulfide but no cuprous sulfide, copper sulfate or zinc sulfide in the bed. The absence of zinc sulphide in the bed of waste absorbent copper oxide / zinc oxide means that reactive sulfur compounds such as hydrogen sulphide present in gasoline were adsorbed by the first zinc oxide bed. Is shown. The presence of cupric sulfide rather than cuprous sulfide in the bed of copper oxide / zinc oxide, a waste absorbent, indicates that copper can be regenerated by reduction with hydrogen. This is because cupric sulfide is more easily reduced to metallic copper than cuprous sulfide.

【0018】 表 1 時間(日数) 累積流量(L) 排出硫黄(ppm) 1 10.5 0 11 116.7 0.2 21 223.2 0.2 31 341.3 0.7 41 486.0 1.0 51 628.4 1.3 61 765.4 2.5 73 905.0 1.6 79 974.0 * 81 * 2.8 87 * 5.0 *=測定せず Table 1 Hour (day) Cumulative flow rate (L) Exhaust sulfur (ppm) 1 10.5 0 11 116.7 0.2 21 223.2 0.2 31 341.3 0.7 41 41 486.0 1 .0 51 628.4 1.3 61 61 765.4 2.5 73 905.0 1.6 1.6 79 974.0 * 81 * 2.8 87 * 5.0 * = Not measured

【0019】[0019]

【実施例2】一つの関心は金属銅吸収剤が、ガソリンの
オクタン価改良剤(アンチノック剤)として屡用いられる
メチルシクロペンタジエン マンガントリカルボニル(M
MT)と反応するか、又はそれを分解するということで
あった。これを検査する為に、直列に並んだ三つの触媒
床、即ち、実施例1の第一床の顆粒の酸化亜鉛吸収剤の
サンプル、実施例1の第二床の廃吸収剤、即ち、硫化し
た顆粒の吸収剤のサンプル、及び実施例1の第二床の新
鮮な酸化銅/酸化亜鉛吸収剤の顆粒のサンプルをガラス
の反応器の中に充填した。反応器の中の空気を窒素で置
換し、光線から遮蔽する為に(光はMMTの分解に影響
する)装置をアルミニウムフォイルの中に包んだ。次ぎ
に、銅化合物を金属銅に還元する為に180℃で水素を
連続する床に通した。次いで、反応器にキシレン(70
重量%)とヘプタン(30重量%)の混合物を充填した。
前述のキシレン/ヘプタン混合物に溶解したMMTの5
40ppm(重量)を含む溶液を、次ぎに大気圧で22〜2
5℃、液体の時間当たりの空間速度2/時間で48時間
に亙って連続する床に通した。床を通過する前と通過し
た後の溶液の分析は、マンガンの含量にいかなる変化も
表わさなかった。次ぎに、反応器を新鮮な溶剤でフラッ
シュし、窒素でパージした。吸収剤を110℃で乾燥
し、マンガンの存在を分析した。酸化亜鉛のサンプル中
にマンガンは全く検出されなかったが、吸着剤を含む還
元された硫化銅には約300〜500ppm(重量)のマン
ガンが含まれていた。マンガンは顆粒のバインダーとし
て使用したセメントの有り得べき汚染物質であるから、
恐らく此の見出だされたマンガンはその汚染物質に由来
するのだろう。何故かならば、床に通している間に溶液
のマンガン含量にはいかなる変化も検出されなかったか
ら。若しも、総てのMMTが分解され、吸収剤によって
吸着されたのであれば、実験後の吸収剤床の平均マンガ
ン含量は約3重量%であったろう。
Example 2 One concern is that metal copper absorbers are often used as octane number improvers (antiknock agents) in gasoline, methylcyclopentadiene manganese tricarbonyl (M).
It was to react with or decompose it. To test this, three catalyst beds in series, a sample of the zinc oxide absorbent of the first bed granules of Example 1, a waste absorbent of the second bed of Example 1, ie sulfurization, were used. Samples of the above granulated sorbents, and samples of the second bed fresh copper oxide / zinc oxide sorbent granules of Example 1 were loaded into a glass reactor. The air in the reactor was replaced with nitrogen and the device was wrapped in aluminum foil to shield it from light (light affects the decomposition of MMT). Next, hydrogen was passed through a continuous bed at 180 ° C. to reduce the copper compound to metallic copper. Then, xylene (70
%) And heptane (30% by weight).
5 of MMT dissolved in the above xylene / heptane mixture
A solution containing 40 ppm (by weight) is then added at 22 to 2 at atmospheric pressure.
The liquid was passed through a continuous bed for 48 hours at a liquid hourly space velocity of 2 / hour at 5 ° C. Analysis of the solution before and after passing through the bed did not reveal any change in manganese content. The reactor was then flushed with fresh solvent and purged with nitrogen. The absorbent was dried at 110 ° C. and analyzed for the presence of manganese. No manganese was detected in the zinc oxide sample, but the reduced copper sulfide containing adsorbent contained about 300-500 ppm (by weight) manganese. Manganese is a likely contaminant of cement used as a binder for granules,
Perhaps the manganese found here comes from the pollutants. Because no change in the manganese content of the solution was detected while passing through the bed. If all MMT had been degraded and adsorbed by the absorbent, the average manganese content of the absorbent bed after the experiment would have been about 3% by weight.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による元素硫黄の除去方法の略図的な線
図である。
FIG. 1 is a schematic diagram of a method for removing elemental sulfur according to the present invention.

【符号の説明】[Explanation of symbols]

1 元素硫黄を含む有機液体の供給原料の流れ 2a、2b 互換性のある二つの反応性汚染物質の除去装
置(反応床) 3 反応性の汚染物質を除去した後の有機液体の流れ 4a、4b 反応性の汚染物質と吸収剤の反応で生成した
副生物の除去装置(反応床) 5a、5b 金属銅吸収剤による元素硫黄の除去装置(反
応床) 6 脱硫した製品の流れ 7 不活性ガスの供給ライン 8 水素気流の供給ライン 9 熱交換器 10 排ガスの流れ
1 Organic liquid feed stream containing elemental sulfur 2a, 2b Two compatible reactive pollutant removal devices (reaction beds) 3 Organic liquid stream after removal of reactive pollutants 4a, 4b Equipment for removing by-products generated by the reaction of reactive pollutants and absorbents (reaction bed) 5a, 5b Equipment for removing elemental sulfur by metal copper absorbent (reaction bed) 6 Flow of desulfurized products 7 Inert gas Supply line 8 Hydrogen gas supply line 9 Heat exchanger 10 Exhaust gas flow

───────────────────────────────────────────────────── フロントページの続き (72)発明者 ピーター・ウッド イギリス国ティーエス23・1エルビー,ク リーヴランド,バーミンガム,ピー・オ ー・ボックス 1 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Peter Wood TS 23.1, England 23.1 Elby, Cleveland, Birmingham, P.O. Box 1

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 元素硫黄で汚染された気体、又は液体の
有機物質の流れを活性成分として金属銅を含む吸収剤と
接触させることから成る前記気体または液体の有機物質
の流れの元素硫黄含量を減少する方法。
1. The elemental sulfur content of a gaseous or liquid organic matter stream comprising contacting a gaseous or liquid organic matter stream contaminated with elemental sulfur with an absorbent containing metallic copper as an active ingredient. How to reduce.
【請求項2】 有機物質がその中に元素硫黄を溶存する
液体である請求項1記載の方法。
2. The method according to claim 1, wherein the organic substance is a liquid having elemental sulfur dissolved therein.
【請求項3】 吸収剤が少なくとも30重量パーセント
(900℃での吸収剤の強熱後に、重量減の無い吸収剤
中に存在する酸化銅(II)のパーセンテージで表示して)
の銅含量を有する請求項1又は2に記載の方法。
3. The absorbent is at least 30 weight percent.
(Expressed as percentage of copper (II) oxide present in the absorbent without weight loss after ignition of the absorbent at 900 ° C)
A method according to claim 1 or 2 having a copper content of.
【請求項4】 吸収剤が20m2/g以上の銅金属表面積を
有する請求項1乃至3のいずれか一つに記載の方法。
4. The method according to claim 1, wherein the absorbent has a copper metal surface area of 20 m 2 / g or more.
【請求項5】 有機物質の流れが元素硫黄の他に一又は
それ以上の反応性の硫黄化合物を含み、これらの反応性
の硫黄化合物が流れを金属銅吸収剤と接触させる前に酸
化亜鉛および/または酸化銅の吸収剤の床に通すことに
よって除去される請求項1乃至4のいずれか一つに記載
の方法。
5. A stream of organic material comprises, in addition to elemental sulfur, one or more reactive sulfur compounds, the reactive sulfur compounds comprising zinc oxide and zinc oxide before contacting the stream with a metallic copper sorbent. 5. A method as claimed in any one of the preceding claims, wherein the method is removed by passing it through a bed of copper oxide absorbent.
【請求項6】 反応性の硫黄化合物と酸化銅および/ま
たは酸化亜鉛の吸収剤との反応によって形成される副生
物が、有機物質の流れを金属銅吸収剤と接触させる前に
除去される請求項5記載の方法。
6. A by-product formed by the reaction of a reactive sulfur compound with a copper oxide and / or zinc oxide absorbent is removed prior to contacting the stream of organic material with the metallic copper absorbent. Item 5. The method according to Item 5.
【請求項7】 金属銅吸収剤を一定時間使用した後、廃
金属銅吸収剤を水素の流れを用いて還元することによっ
て再生する請求項1乃至6のいずれか一つに記載の方
法。
7. The process according to claim 1, wherein after the metallic copper absorbent has been used for a certain period of time, the waste metallic copper absorbent is regenerated by reducing it with a stream of hydrogen.
【請求項8】 還元が90〜250℃の温度に於いて達
成される請求項7記載の方法。
8. The method according to claim 7, wherein the reduction is achieved at a temperature of 90-250 ° C.
JP4210157A 1991-08-06 1992-08-06 Method of desulfrization Pending JPH05192507A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB919116907A GB9116907D0 (en) 1991-08-06 1991-08-06 Sulphur removal process
GB9116907.8 1991-08-06

Publications (1)

Publication Number Publication Date
JPH05192507A true JPH05192507A (en) 1993-08-03

Family

ID=10699555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4210157A Pending JPH05192507A (en) 1991-08-06 1992-08-06 Method of desulfrization

Country Status (8)

Country Link
EP (1) EP0527000A3 (en)
JP (1) JPH05192507A (en)
AU (1) AU2046392A (en)
CA (1) CA2075455A1 (en)
FI (1) FI923547A (en)
GB (1) GB9116907D0 (en)
NO (1) NO923083L (en)
ZA (1) ZA925529B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001205004A (en) * 2000-01-28 2001-07-31 Japan Energy Corp Method for removing sulfur compound
JP2003517086A (en) * 1999-12-14 2003-05-20 フイリツプス ピトローリアム カンパニー Desulfurization method and its novel bimetallic sorbent system

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU679759B2 (en) * 1993-05-28 1997-07-10 Exxon Chemical Patents Inc. Sulfur and mercaptan removal from hydrocarbon streams containing reactive unsaturates
US5866749A (en) * 1993-05-28 1999-02-02 Exxon Chemical Patents Inc. Sulfur and thiol removal from reactive hydrocarbons
DK172907B1 (en) * 1996-06-17 1999-09-27 Topsoe Haldor As Process for purifying a hydrocarbon stream
US5882614A (en) * 1998-01-23 1999-03-16 Exxon Research And Engineering Company Very low sulfur gas feeds for sulfur sensitive syngas and hydrocarbon synthesis processes
GB0113370D0 (en) * 2001-06-01 2001-07-25 Kvaerner Process Tech Ltd Process
DE102005062354A1 (en) * 2005-12-23 2007-06-28 Basf Ag Conversion of an aromatic hydrocarbon containing sulfur containing aromatic compounds comprises lowering the content of the sulfur containing compound, and hydrogenating the aromatic hydrocarbon
US8609048B1 (en) 2012-11-02 2013-12-17 Uop Llc Process for reducing corrosion, fouling, solvent degradation, or zeolite degradation in a process unit
US10696906B2 (en) 2017-09-29 2020-06-30 Marathon Petroleum Company Lp Tower bottoms coke catching device
CN110004595B (en) * 2019-04-30 2021-12-14 太原理工大学 Method for preparing normal-low temperature ZnO/SMS composite gas desulfurization material
US11352577B2 (en) 2020-02-19 2022-06-07 Marathon Petroleum Company Lp Low sulfur fuel oil blends for paraffinic resid stability and associated methods
US20220268694A1 (en) 2021-02-25 2022-08-25 Marathon Petroleum Company Lp Methods and assemblies for determining and using standardized spectral responses for calibration of spectroscopic analyzers
US11905468B2 (en) 2021-02-25 2024-02-20 Marathon Petroleum Company Lp Assemblies and methods for enhancing control of fluid catalytic cracking (FCC) processes using spectroscopic analyzers
US11898109B2 (en) 2021-02-25 2024-02-13 Marathon Petroleum Company Lp Assemblies and methods for enhancing control of hydrotreating and fluid catalytic cracking (FCC) processes using spectroscopic analyzers
CA3188122A1 (en) 2022-01-31 2023-07-31 Marathon Petroleum Company Lp Systems and methods for reducing rendered fats pour point

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB332910A (en) * 1929-02-26 1930-07-28 Stadtberger Huette Act Ges Improvements in or relating to the desulphurisation of liquid hydrocarbons
DE640204C (en) * 1931-12-04 1936-12-24 Hugo Kiemstedt Dr Process to remove the corrosive properties and bad smell of sulfur-containing hydrocarbons
US2273298A (en) * 1938-09-23 1942-02-17 Albert Chester Travis Treatment of hydrocarbons
US4419273A (en) * 1981-11-04 1983-12-06 Chevron Research Company Clay-based sulfur sorbent
GB8610196D0 (en) * 1986-04-25 1986-05-29 Ici Plc Sulphur compounds removal

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003517086A (en) * 1999-12-14 2003-05-20 フイリツプス ピトローリアム カンパニー Desulfurization method and its novel bimetallic sorbent system
JP2001205004A (en) * 2000-01-28 2001-07-31 Japan Energy Corp Method for removing sulfur compound

Also Published As

Publication number Publication date
CA2075455A1 (en) 1993-02-07
AU2046392A (en) 1993-02-11
FI923547A (en) 1993-02-07
NO923083D0 (en) 1992-08-05
FI923547A0 (en) 1992-08-06
ZA925529B (en) 1993-04-28
GB9116907D0 (en) 1991-09-18
EP0527000A2 (en) 1993-02-10
EP0527000A3 (en) 1993-04-07
NO923083L (en) 1993-02-08

Similar Documents

Publication Publication Date Title
US5080799A (en) Hg removal from wastewater by regenerative adsorption
EP0568003B1 (en) Absorption of hydrogen sulfide and absorbent composition therefor
US7820037B2 (en) Desulfurizing agent manufacturing method and hydrocarbon desulfurization method
KR100608474B1 (en) Olefin purification by adsorption of acethylenics and regeneration of adsorbent
JPH05192507A (en) Method of desulfrization
KR101623611B1 (en) Multiple fixed-fluidized beds for contaminant removal
JP5662162B2 (en) Contaminant removal from gas streams
US5053209A (en) Removal of mercury from natural gas and liquid hydrocarbons utilizing silver on alumina adsorbent
JPH0147216B2 (en)
JPS6358612B2 (en)
EP0964904B1 (en) Olefin purification by adsorption of acetylenics and regeneration of adsorbent
US4605812A (en) Process for removal of arsenic from gases
JP2010047469A (en) Method and system for abatement of impurity from gas stream
US4992620A (en) Removal of trialkyl arsines from fluids
EP2825308B1 (en) A method for producing a sulphided copper sorbent
JPH04227013A (en) Method for removing trialkyl arcine
KR20050088206A (en) Multicomponent sorption bed for the desulfurization of hydrocarbons
WO1995021146A1 (en) Removal of carbon monoxide from hydrocarbon streams
US3186789A (en) Method of removing hydrogen sulfide from gases
JPS5917155B2 (en) Method for removing carbonyl sulfide from gaseous streams
JPH07118668A (en) Method for removing sulfur compound in sulfur-containing gas
JPH02160728A (en) Removal of trace sulfur compound in hydrocarbon
JPH0450294A (en) Removal of mercury in liquid hydrocarbon
JPH1150065A (en) Removal of heavy metal in liquid hydrocarbon
JPH10195456A (en) Absorptive removal of trace amount of metal in liquid hydrocarbon oil