JPH11329450A - Manufacture of sintered substrate for alkaline storage battery - Google Patents

Manufacture of sintered substrate for alkaline storage battery

Info

Publication number
JPH11329450A
JPH11329450A JP10127617A JP12761798A JPH11329450A JP H11329450 A JPH11329450 A JP H11329450A JP 10127617 A JP10127617 A JP 10127617A JP 12761798 A JP12761798 A JP 12761798A JP H11329450 A JPH11329450 A JP H11329450A
Authority
JP
Japan
Prior art keywords
microcapsules
slurry
sintered substrate
nickel
expanded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10127617A
Other languages
Japanese (ja)
Inventor
Munehiro Tabata
宗弘 田端
Tamao Kojima
環生 小島
Masakazu Tanahashi
正和 棚橋
Osamu Kaita
理 貝田
Yoshiki Murakami
義樹 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP10127617A priority Critical patent/JPH11329450A/en
Publication of JPH11329450A publication Critical patent/JPH11329450A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Powder Metallurgy (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a high-porosity sintered substrate by expanding a micro-capsule uniformly and sufficiently and dispersing it uniformly in nickel slurry, in a manufacturing method of the sintered substrate by mixing the thermally expansive micro-capsule in the nickel slurry. SOLUTION: A micro-capsule, which is expanded by being heated, and nickel powder are dispersed in a dispersion medium, and heated up to the temperature at which the micro-capsule is expanded, and then a thickner is added and mixed to thereby prepare slurry, and the slurry is applied on a metal core material, heated, dried and afterwards sintered in a reducing atmosphere. The micro-capsule can be expanded sufficiently and dispersed uniformly in the slurry by this method, therefore, the sintered substrate for an alkaline storage battery, having a high porosity and a uniform hole distribution, can be obtained. As a result, nickel hydroxide, used as active material, can be filled easily and in a larger quantity, to thereby enable to obtain an electrode having a large electric capacity density.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、アルカリ蓄電池の
極板において活物質保持体に用いる焼結基板の製造方法
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a sintered substrate used as an active material holder in an electrode plate of an alkaline storage battery.

【0002】[0002]

【従来の技術】従来、アルカリ蓄電池用焼結基板は、カ
ーボニルニッケル等のニッケル粉末、水、およびメチル
セルロースなどの樹脂からなる増粘剤を混合したスラリ
を、ニッケルメッキした金属芯材の両面に塗着し乾燥し
た後、還元雰囲気中で焼結することによって製造されて
いた。ニッケル・カドミウム蓄電池やニッケル・水素蓄
電池等のアルカリ蓄電池用電極は、この焼結基板を硝酸
ニッケル溶液に浸漬して電気化学的あるいは化学的に焼
結基板の空孔に活物質となる水酸化ニッケルを充填する
ことにより得られる。この活物質を多く充填することに
より電極の電気容量が大きくなる。そのため、活物質を
詰めるための空孔の量、すなわち焼結基板の多孔度を大
きくする方法が種々提案されてきた。
2. Description of the Related Art Conventionally, a sintered substrate for an alkaline storage battery is coated on both sides of a nickel-plated metal core with a slurry obtained by mixing a thickener composed of nickel powder such as carbonyl nickel, water, and a resin such as methyl cellulose. It was manufactured by sintering in a reducing atmosphere after being applied and dried. Electrodes for alkaline storage batteries such as nickel-cadmium storage batteries and nickel-metal hydride storage batteries are manufactured by immersing this sintered substrate in a nickel nitrate solution and electrochemically or chemically forming nickel hydroxide, which becomes an active material in the pores of the sintered substrate. Is obtained by filling. By filling a large amount of the active material, the electric capacity of the electrode is increased. Therefore, various methods have been proposed for increasing the amount of pores for filling the active material, that is, increasing the porosity of the sintered substrate.

【0003】この多孔度を大きくする方法として、スラ
リに、加熱によって殻壁が軟化して内包する炭化水素の
蒸気圧で膨張するマイクロカプセルを添加する方法が提
案されている(特開昭58−169773号公報)。ス
ラリを金属芯材に塗着した後の乾燥工程で、熱によって
塗膜中のマイクロカプセルが膨張し、その後の焼結工程
でマイクロカプセルの存在していた部分が空孔となり、
焼結基板の多孔度を大きくすることができる。この中空
のマイクロカプセルによる高多孔度化の方法は、中実の
樹脂ボール等を添加する場合と比較して、少ない樹脂量
で多孔度を大きくすることができ、焼結後に基板中に残
るカーボン量を低減できると共に価格面でも有利であ
る。
As a method of increasing the porosity, there has been proposed a method of adding microcapsules to a slurry, whose shell walls are softened by heating and expanded by the vapor pressure of the contained hydrocarbon (Japanese Patent Laid-Open No. 58-1983). 169773). In the drying process after applying the slurry to the metal core material, the microcapsules in the coating film expand due to heat, and the portion where the microcapsules existed in the subsequent sintering process becomes voids,
The porosity of the sintered substrate can be increased. This method of increasing the porosity by using hollow microcapsules can increase the porosity with a smaller amount of resin compared to the case of adding a solid resin ball or the like, and the carbon remaining in the substrate after sintering The amount can be reduced and the price is also advantageous.

【0004】しかし、上記従来の製造方法で製造された
焼結基板は、乾燥時にマイクロカプセルを膨張させる場
合に、乾燥が進むにつれてスラリ塗膜の粘度が増加し、
増粘剤となる樹脂によってニッケル粉の骨格が形成され
て、塗膜中のマイクロカプセルが自由に膨張できないと
いう問題があった。その問題を解決するために、水の沸
点100℃よりも低い軟化点を有するマイクロカプセル
を用いて、加熱時にスラリ表面に水蒸気を存在させるこ
とで、塗着したスラリを乾燥させずにマイクロカプセル
を膨張させる方法が提案されている(特公平5−771
49号公報)。この方法では、加熱乾燥時における温度
ばらつきや塗着後の基板内での温度分布により、マイク
ロカプセルが均一に膨張できず、均一な空孔分布を持っ
た焼結基板を得るのが難しい。また、マイクロカプセル
の軟化点が100℃以下に限定されるために、膨張後の
乾燥工程で基板の温度が150℃程度まで上がると、軟
化点が低すぎるために、折角膨張したマイクロカプセル
が萎んでしまい、十分な造孔効果が得られなかった。
However, when the sintered substrate manufactured by the above-mentioned conventional manufacturing method expands the microcapsules during drying, the viscosity of the slurry coating increases as the drying proceeds,
There is a problem in that the skeleton of the nickel powder is formed by the resin serving as the thickener, and the microcapsules in the coating film cannot freely expand. In order to solve the problem, using microcapsules having a softening point lower than the boiling point of water of 100 ° C., by allowing steam to exist on the slurry surface during heating, the microcapsules can be dried without drying the applied slurry. A method of inflating has been proposed (Japanese Patent Publication No. 5-771).
No. 49). In this method, the microcapsules cannot be uniformly expanded due to temperature variations during heating and drying and the temperature distribution in the substrate after coating, and it is difficult to obtain a sintered substrate having a uniform pore distribution. In addition, since the softening point of the microcapsules is limited to 100 ° C. or less, if the temperature of the substrate is raised to about 150 ° C. in the drying step after expansion, the softened point is too low, so that the microcapsules that have undergone angular expansion may shrink. As a result, a sufficient hole-forming effect could not be obtained.

【0005】このマイクロカプセルを十分に膨張させる
という課題を解決するために、あらかじめ加熱して膨張
させたマイクロカプセルをニッケル粉末及び増粘剤と共
に混合してスラリにする方法が提案されている(特開平
2−276160号公報)。この方法は、あらかじめ加
熱によってマイクロカプセルを膨張させるために、マイ
クロカプセルの軟化点は100℃以下に限定されること
はない。しかし、膨張させた後のマイクロカプセルの比
重が0.02〜0.2程度と極めて小さく、空気中に浮
遊しやすいため取り扱いが極めて困難であり、スラリ中
でも浮遊しやすいために分散し難かった。この分散性を
上げるために、スラリ混練時に高いシアをかけると、マ
イクロカプセルは既に膨張して殻壁が薄くなっているた
めに、シアに耐え切れず割れてしまい、十分な造孔効果
が得られなかった。
[0005] In order to solve the problem of sufficiently expanding the microcapsules, a method has been proposed in which the microcapsules which have been expanded in advance by heating are mixed with nickel powder and a thickener to form a slurry (particularly). JP-A-2-276160). In this method, since the microcapsules are expanded in advance by heating, the softening point of the microcapsules is not limited to 100 ° C. or lower. However, the specific gravity of the microcapsules after being expanded is as extremely small as about 0.02 to 0.2, and it is very difficult to handle because they are easily suspended in the air. If high shear is applied during slurry kneading to increase this dispersibility, the microcapsules have already expanded and the shell wall has become thin, so they will not be able to withstand the shear and will break, resulting in a sufficient pore-forming effect. I couldn't.

【0006】[0006]

【発明が解決しようとする課題】本発明は、以上の問題
を解決し、マイクロカプセルを十分かつ均一に膨張させ
ると共に、スラリ中での分散性も良く、割れることもな
いために十分な造孔効果が得られるアルカリ蓄電池用焼
結基板の製造方法を提供することを目的とする。
DISCLOSURE OF THE INVENTION The present invention solves the above-mentioned problems, expands the microcapsules sufficiently and uniformly, has a good dispersibility in the slurry, and has a sufficient pore formation because it does not crack. It is an object of the present invention to provide a method for producing a sintered substrate for an alkaline storage battery, which can provide an effect.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するため
に本発明のアルカリ蓄電池用焼結基板の製造方法は、低
沸点炭化水素を内包し、加熱により内包した炭化水素の
蒸気圧でシェルが膨張するマイクロカプセルとニッケル
粉末とを分散媒中に分散させる工程、その分散媒を前記
マイクロカプセルが膨張する温度まで加熱した後、増粘
剤を添加し混合してスラリを調製する工程、得られたス
ラリを金属芯材に塗着して加熱乾燥し、還元性雰囲気中
で焼結する工程を有することを特徴とする。ここで、マ
イクロカプセルとニッケル粉末とを分散媒中に分散させ
る工程では、マイクロカプセルを分散媒中に先に分散さ
せた後、ニッケル粉末を投入して分散させることが好ま
しい。本発明は、マイクロカプセルとニッケル粉末を分
散させた分散媒を、増粘剤の存在しない状態で、加熱す
ることによりマイクロカプセルを膨張させるものである
から、マイクロカプセル十分に膨張させることができ
る。また、マイクロカプセルとニッケル粉末は、あらか
じめ分散されているため、増粘剤を入れた後に高いシア
をかけなくても均一な分散状態のスラリが得られる。
In order to solve the above-mentioned problems, a method of manufacturing a sintered substrate for an alkaline storage battery according to the present invention comprises: a shell containing a low boiling hydrocarbon; A step of dispersing the expanding microcapsules and the nickel powder in a dispersion medium, heating the dispersion medium to a temperature at which the microcapsules expand, and then adding and mixing a thickener to prepare a slurry; The method is characterized in that the method comprises a step of applying the obtained slurry to a metal core material, drying by heating, and sintering in a reducing atmosphere. Here, in the step of dispersing the microcapsules and the nickel powder in the dispersion medium, it is preferable to first disperse the microcapsules in the dispersion medium and then add and disperse the nickel powder. Since the present invention expands the microcapsules by heating the dispersion medium in which the microcapsules and the nickel powder are dispersed in the absence of the thickener, the microcapsules can be sufficiently expanded. In addition, since the microcapsules and the nickel powder are dispersed in advance, a slurry in a uniform dispersion state can be obtained without applying high shear after adding the thickener.

【0008】[0008]

【発明の実施の形態】以下、本発明をその好ましい実施
の形態により詳細に説明する。まず、低沸点炭化水素と
してイソブタンを内包し、アクリロニトリル主体の殻壁
からなる粒径10〜20μmのマイクロカプセルを作製
した。分散媒となる水10kgにこのマイクロカプセル
200gを分散させてから、さらにカーボニルニッケル
粉末10kgを投入し、プラネタリミキサで混練した。
この時のマイクロカプセルは、未膨張で、比重は約1.
1であり、膨張後の比重0.02〜0.2と比較して大
きいため、空気中への浮遊も少なく扱いは容易である。
また、分散時にマイクロカプセルは未膨張なので、ニッ
ケル粉末との比重差も膨張後と比較して小さく、容易に
分散できる。さらに、マイクロカプセルとニッケル粉末
が均一に分散するまで高いシアで混練しても、未膨張の
マイクロカプセルの殻壁は十分厚いので割れることはな
い。ここで、マイクロカプセルとニッケル粉末を分散媒
に一括投入して混練すると、マイクロカプセルの凝集が
残って分散が不均一になる場合がある。上記のようにマ
イクロカプセルを先に分散媒に分散させることで、マイ
クロカプセルはニッケル粉末とより均一に混ざり合う。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail by preferred embodiments. First, isobutane was encapsulated as a low-boiling hydrocarbon, and microcapsules having a particle size of 10 to 20 μm and comprising a shell wall mainly composed of acrylonitrile were produced. After 200 g of the microcapsules were dispersed in 10 kg of water serving as a dispersion medium, 10 kg of carbonyl nickel powder was further charged and kneaded with a planetary mixer.
The microcapsules at this time are not expanded and have a specific gravity of about 1.
1, which is larger than the specific gravity after expansion of 0.02 to 0.2, so that it is less likely to float in the air and is easy to handle.
In addition, since the microcapsules are not expanded at the time of dispersion, the difference in specific gravity from the nickel powder is smaller than that after the expansion, and can be easily dispersed. Further, even if the microcapsules and the nickel powder are kneaded with a high shear until they are uniformly dispersed, the shell walls of the unexpanded microcapsules do not break because the shell walls are sufficiently thick. Here, when the microcapsules and the nickel powder are put into a dispersion medium at once and kneaded, the aggregation of the microcapsules may remain and the dispersion may be non-uniform. By dispersing the microcapsules first in the dispersion medium as described above, the microcapsules are more uniformly mixed with the nickel powder.

【0009】次に、マイクロカプセルとニッケル粉末を
水に十分均一に分散させた後、150℃の熱風乾燥機に
入れて乾燥した。この時、マイクロカプセルの表面には
メチルセルロースなどの増粘剤は存在しておらず、周囲
にニッケル粉体があってもニッケル粉の骨格が固まって
しまうことがないので、マイクロカプセルは自由に膨張
することができる。すなわち、乾燥していても膨張する
ので、乾燥機も赤外線タイプや熱風タイプなど自由に選
ぶことができ、水蒸気を導入する必要もない。こうして
できた乾燥粉体を光学顕微鏡で観察したところ、ニッケ
ル粉の間にマイクロカプセルが均一に分散されていた。
このマイクロカプセルの膨張状態を調べるために、10
0個のマイクロカプセルの粒径を光学顕微鏡で計測した
ところ、平均粒径は40μmであり、粒径の平均膨張倍
率は2.7倍で十分に膨張していることが確認された。
この乾燥粉体中のマイクロカプセルは、ニッケル粉の間
に均一に分散されているために、膨張したマイクロカプ
セル自体の比重は軽くても、空気中に容易に浮遊してし
まうことはなく、取り扱いは容易である。
Next, the microcapsules and the nickel powder were sufficiently uniformly dispersed in water, and then placed in a hot-air dryer at 150 ° C. and dried. At this time, there is no thickener such as methylcellulose on the surface of the microcapsules, and even if there is nickel powder in the surroundings, the skeleton of the nickel powder does not solidify, so the microcapsules expand freely. can do. That is, even if it is dried, it expands, so that the dryer can be freely selected, such as an infrared type or a hot air type, and there is no need to introduce steam. Observation of the resulting dry powder with an optical microscope revealed that the microcapsules were uniformly dispersed between the nickel powders.
In order to examine the state of expansion of this microcapsule, 10
When the particle diameter of zero microcapsules was measured with an optical microscope, the average particle diameter was 40 μm, and the average expansion ratio of the particle diameter was 2.7 times, confirming that the microcapsules were sufficiently expanded.
Since the microcapsules in this dry powder are uniformly dispersed between the nickel powders, even if the specific gravity of the expanded microcapsules themselves is light, they do not easily float in the air, Is easy.

【0010】この乾燥粉体にメチルセルロースと水から
なる増粘剤12kgを入れて混練した。この時、マイク
ロカプセルは、ニッケル粉の間に均一に分散されている
ため、高いシアをかけて混練しなくても容易に均一分散
されたスラリが得られる。そのため、膨張して殻壁が薄
くなったマイクロカプセルは割れることなくスラリ中に
存在する。このスラリを、表面にニッケルメッキした金
属芯材に塗布して、150℃の熱風乾燥機で乾燥させ
た。この時、マイクロカプセルは既に膨張しているの
で、スラリ表面に水蒸気を存在させる必要はなく、乾燥
機も赤外線タイプや熱風タイプなど自由に選ぶことがで
きる。また、多少の温度分布があっても、マイクロカプ
セルの周りには増粘剤のメチルセルロースが存在するの
で、これ以上膨張して焼結基板の空孔分布にばらつきを
生じる恐れはない。この乾燥した膜をエポキシ樹脂で埋
め込んで研磨し、断面を光学顕微鏡で観察すると、膨張
したマイクロカプセルが膜中に均一に分布しており、割
れたり萎んだりしたマイクロカプセルは見当たらなかっ
た。マイクロカプセルの殻壁の軟化温度は約130℃で
あり、基板の温度が乾燥時に150℃に上がっても割れ
たり萎んだりすることはない。そのため、焼結後の多孔
度も下がることはない。この様に、マイクロカプセルの
軟化温度は水の沸点100℃以下のものに限定されるこ
とはなく、乾燥温度に応じて自由に選択することができ
る。
[0010] To this dry powder, 12 kg of a thickener consisting of methylcellulose and water was added and kneaded. At this time, since the microcapsules are uniformly dispersed between the nickel powders, a uniformly dispersed slurry can be easily obtained without kneading with high shear. Therefore, the microcapsules that have expanded and the shell wall has become thinner are present in the slurry without cracking. This slurry was applied to a metal core material whose surface was nickel-plated, and dried with a hot-air dryer at 150 ° C. At this time, since the microcapsules have already expanded, there is no need to allow water vapor to exist on the slurry surface, and a dryer can be freely selected, such as an infrared type or a hot air type. Even if there is some temperature distribution, since the thickener methylcellulose exists around the microcapsules, there is no possibility that the swelling will expand further and the pore distribution of the sintered substrate will be uneven. When the dried film was buried with an epoxy resin and polished, and the cross section was observed with an optical microscope, the expanded microcapsules were uniformly distributed in the film, and no cracked or withered microcapsules were found. The softening temperature of the shell wall of the microcapsule is about 130 ° C., and the substrate does not crack or shrink even if the temperature of the substrate rises to 150 ° C. during drying. Therefore, the porosity after sintering does not decrease. As described above, the softening temperature of the microcapsules is not limited to those having a boiling point of water of 100 ° C. or less, and can be freely selected according to the drying temperature.

【0011】この乾燥膜を、水素を含む還元雰囲気中に
おいて約1000℃で熱処理して焼結基板を得た。この
焼結基板は、ニッケル部の厚さが片面約300μmで約
88%の多孔度を有しており、マイクロカプセルを添加
していないスラリを用いた場合の多孔度81%に比べて
7%増加した。
The dried film was heat-treated at about 1000 ° C. in a reducing atmosphere containing hydrogen to obtain a sintered substrate. This sintered substrate has a nickel portion having a thickness of about 300 μm on one side and a porosity of about 88%, which is 7% compared to a porosity of 81% when a slurry without microcapsules is used. Increased.

【0012】比較のために、同じマイクロカプセル20
0gをメチルセルロースと水からなる増粘剤12kgに
分散させてから、カーボニルニッケル粉末10kgを投
入しプラネタリミキサで混練してスラリを調製し、この
スラリを表面にニッケルメッキした金属芯材に塗布し
て、150℃の熱風乾燥機で乾燥した。この時のマイク
ロカプセルの膨張状態を調べるために、乾燥塗膜中に存
在する100個のマイクロカプセルの粒径を光学顕微鏡
で計測したところ、平均粒径は15μmであり、粒径の
平均膨張倍率は1倍でほとんど膨張していなかった。こ
れは、マイクロカプセルの表面にはメチルセルロースが
存在しており、乾燥によってスラリ塗膜の粘度が上がっ
てニッケル粉の骨格が固まってしまうので、マイクロカ
プセルが自由に膨張することができないためである。こ
の乾燥後の塗膜を、水素を含む還元雰囲気中約1000
℃で熱処理して焼結基板を得た。この焼結基板は、ニッ
ケル部の厚さが片面約300μmで約82%の多孔度を
有しており、マイクロカプセルを添加していないスラリ
を用いた場合の多孔度81%に比べて1%しか増加して
いなかった。
For comparison, the same microcapsules 20
After dispersing 0 g in 12 kg of a thickener composed of methylcellulose and water, 10 kg of carbonyl nickel powder was added and kneaded with a planetary mixer to prepare a slurry, and this slurry was applied to a metal core material whose surface was nickel-plated. And dried with a hot air dryer at 150 ° C. In order to examine the state of expansion of the microcapsules at this time, when the particle diameter of 100 microcapsules present in the dried coating film was measured with an optical microscope, the average particle diameter was 15 μm, and the average expansion ratio of the particle diameter was 15 μm. Was one-time and hardly expanded. This is because methylcellulose is present on the surface of the microcapsules, and the viscosity of the slurry coating film is increased by drying and the skeleton of the nickel powder is solidified, so that the microcapsules cannot expand freely. The dried coating film is placed in a reducing atmosphere containing hydrogen for about 1000
Heat treatment was performed at ℃ to obtain a sintered substrate. This sintered substrate has a nickel portion having a thickness of about 300 μm on one side and a porosity of about 82%, which is 1% as compared with a porosity of 81% when a slurry without microcapsules is used. Only increased.

【0013】さらに比較のために、同じマイクロカプセ
ル200gを150℃であらかじめ膨張させてから、メ
チルセルロースと水からなる増粘剤12kgに分散さ
せ、次にカーボニルニッケル粉末10kgを投入してプ
ラネタリミキサで混練した。膨張後のマイクロカプセル
は、比重が小さいために容易に空気中に浮遊して取り扱
いが困難であった。また、マイクロカプセルをニッケル
粉末より先に増粘剤に分散させてもその比重が小さいた
めに上部に浮いて、均一な分散状態が得られなかった。
ニッケル粉末を投入してプラネタリミキサで混練する際
に、シアが低いとマイクロカプセルは割れることはない
が分散性が悪い。すなわち、マイクロカプセルやニッケ
ル粉末が部分的に多い場所や少ない場所が存在した。そ
の分散性を改善するためにシアを高くすると、スラリ中
のマイクロカプセルに割れや萎みが見られた。このスラ
リを、表面にニッケルメッキした金属芯材に塗布して、
150℃の熱風乾燥機で乾燥し、水素を含む還元雰囲気
中約1000℃で熱処理して焼結基板を得た。この焼結
基板は、ニッケル部の厚さが片面約300μmで約84
%の多孔度を有しており、マイクロカプセルを添加して
いないスラリを用いた場合の多孔度81%に比べて3%
しか増加していなかった。これは、スラリ中のマイクロ
カプセルの割れや萎みのため、十分な造孔効果が得られ
なかったためと考えられる。
For further comparison, 200 g of the same microcapsules were pre-expanded at 150 ° C., dispersed in 12 kg of a thickener composed of methylcellulose and water, and then 10 kg of carbonyl nickel powder was charged and kneaded with a planetary mixer. did. The microcapsules after expansion were easily suspended in the air due to low specific gravity and were difficult to handle. Further, even if the microcapsules were dispersed in the thickener prior to the nickel powder, the microcapsules floated on the upper portion because of their low specific gravity, and a uniform dispersion state could not be obtained.
When the nickel powder is charged and kneaded with a planetary mixer, if the shear is low, the microcapsules do not crack but have poor dispersibility. That is, there were places where microcapsules and nickel powder were partially large or small. When the shear was increased to improve the dispersibility, microcapsules in the slurry were cracked and withered. Apply this slurry to a metal core material with nickel plating on the surface,
It was dried with a hot air dryer at 150 ° C. and heat-treated at about 1000 ° C. in a reducing atmosphere containing hydrogen to obtain a sintered substrate. This sintered substrate has a thickness of about 300 μm on one side and a thickness of about 84 μm.
Porosity of 3% compared to porosity of 81% when using a slurry without microcapsules.
Only increased. This is presumably because the microcapsules in the slurry were cracked or withered, so that a sufficient pore-forming effect could not be obtained.

【0014】従来、マイクロカプセルによって多孔度を
上げる技術が多く知られているが、それらは全てマイク
ロカプセルとニッケル粉体と増粘剤を一括して混練する
ことでスラリを作製していたため、マイクロカプセルを
均一に十分膨張させることと、均一にスラリ中に分散さ
せることの両立が困難であった。本発明では、マイクロ
カプセルをニッケル粉末と共に分散媒中に分散させ、増
粘剤の存在しない状態で、加熱してマイクロカプセルを
膨張させるものであるから、乾燥していてもマイクロカ
プセルを十分に膨張させることができる。また、マイク
ロカプセルとニッケル粉末とは、あらかじめ分散されて
いるため、増粘剤を入れた後に高いシアをかけなくても
均一な分散状態のスラリが得られるという利点がある。
このような技術は、未だかつて報告されたことがない。
Conventionally, there are many known techniques for increasing the porosity by using microcapsules. However, since all of these techniques have been used to collectively knead microcapsules, nickel powder, and a thickener, slurry has been produced. It has been difficult to achieve both a sufficient and uniform expansion of the capsule and a uniform dispersion in the slurry. In the present invention, the microcapsules are dispersed in a dispersion medium together with the nickel powder, and the microcapsules are expanded by heating in the absence of a thickening agent. Can be done. Further, since the microcapsules and the nickel powder are dispersed in advance, there is an advantage that a slurry in a uniform dispersion state can be obtained without applying high shear after adding the thickener.
Such a technique has never been reported before.

【0015】以上のように、本発明は、低沸点炭化水素
を内包し、加熱により内包した炭化水素の蒸気圧でシェ
ルが膨張するマイクロカプセルとニッケル粉末とを分散
媒中に分散させ、その後前記マイクロカプセルが膨張す
る温度まで加熱した後、増粘剤を添加し混合してスラリ
を調製し、このスラリを金属芯材に塗着して加熱乾燥
し、還元性雰囲気中で焼結することにより、アルカリ蓄
電池用焼結基板を製造するため、マイクロカプセルを十
分に膨張させることができると共にスラリ中に均一に分
散できるので、多孔度が大きく、空孔分布が均一なアル
カリ蓄電池用焼結基板が得られる。その結果、空孔が多
いために容易にかつより多く活物質となる水酸化ニッケ
ルを充填することができ、電極の電気容量が大きくなっ
て、大容量のアルカリ蓄電池を構成することができる。
また、多孔度が大きくなることで、電解液の入り込む隙
間が増えて液拡散がし易くなり、電池の急速充放電特性
も向上する。
As described above, the present invention disperses nickel capsules and microcapsules containing low-boiling hydrocarbons, whose shell expands due to the vapor pressure of the contained hydrocarbons by heating, in a dispersion medium. After heating to the temperature at which the microcapsules expand, a thickener is added and mixed to prepare a slurry, the slurry is applied to a metal core material, dried by heating, and sintered in a reducing atmosphere. In order to manufacture a sintered substrate for an alkaline storage battery, the microcapsules can be sufficiently expanded and uniformly dispersed in the slurry, so that a sintered substrate for an alkaline storage battery having a large porosity and a uniform pore distribution can be obtained. can get. As a result, nickel hydroxide, which is an active material, can be easily filled because of many pores, and the electric capacity of the electrode is increased, so that a large-capacity alkaline storage battery can be formed.
In addition, since the porosity is increased, the gap into which the electrolyte enters is increased, so that the liquid is easily diffused, and the rapid charge / discharge characteristics of the battery are also improved.

【0016】なお、上記の例では、アクリロニトリル主
体の殻壁からなるマイクロカプセルを選んだが、材質と
してはそれに限らず塩化ビニリデン系やメタクリル樹脂
系なども用いることができる。マイクロカプセルの材質
としては、焼結工程で完全に熱分解して、焼結基板中に
残留カーボンを残さない材料であることが好ましい。ま
た、上記の例では、10〜20μmの粒径のマイクロカ
プセルを用いたが、膨張後の粒径が1〜100μmにな
る粒径のものを使うことができる。1μm未満の小さい
粒径のマイクロカプセルは、ニッケル粒子の隙間に入り
込むだけで大きな造孔効果が得られない。また、100
μmを越えるマイクロカプセルでは、焼結基板にできる
空孔が大き過ぎて基板強度が弱くなったり、その後の充
填工程で活物質の入らない無効な空洞になったりするた
め好ましくない。また、分散媒として水を用いたが、マ
イクロカプセルの膨張性に影響を与えず、分散性のよい
液体であればよく、アルコールなどの有機溶媒を用いる
こともできる。上記の例では、マイクロカプセルを膨張
させるための乾燥温度は150℃にしたが、マイクロカ
プセルの軟化温度以上であれば良く、温度と処理時間を
変えることで膨張倍率を制御することもできる。乾燥処
理後の粉体は完全に乾燥している必要はなく、マイクロ
カプセルが十分膨張していれば、分散媒が残留していて
も問題はない。
In the above example, the microcapsules composed of shell walls mainly composed of acrylonitrile are selected, but the material is not limited thereto, and vinylidene chloride-based or methacrylic resin-based materials can be used. The material of the microcapsules is preferably a material that is completely thermally decomposed in the sintering step and does not leave residual carbon in the sintered substrate. In the above example, microcapsules having a particle size of 10 to 20 μm are used, but microcapsules having a particle size after expansion of 1 to 100 μm can be used. Microcapsules having a small particle size of less than 1 μm do not achieve a large pore-forming effect merely by entering into the gaps between nickel particles. Also, 100
Microcapsules having a size of more than μm are not preferable because the pores formed in the sintered substrate are too large and the strength of the substrate is weakened, or an invalid cavity in which the active material does not enter in the subsequent filling step is not preferable. Although water is used as the dispersion medium, any liquid that does not affect the expandability of the microcapsules and has good dispersibility may be used, and an organic solvent such as alcohol can also be used. In the above example, the drying temperature for expanding the microcapsules was set to 150 ° C., but may be any temperature higher than the softening temperature of the microcapsules, and the expansion ratio can be controlled by changing the temperature and the processing time. The powder after the drying treatment does not need to be completely dried. If the microcapsules are sufficiently expanded, there is no problem even if the dispersion medium remains.

【0017】[0017]

【発明の効果】以上のように本発明によれば、マイクロ
カプセルを十分に膨張させることができると共にスラリ
中に均一に分散できるので、多孔度が大きく、空孔分布
が均一なアルカリ蓄電池用焼結基板が得られる。その結
果、活物質となる水酸化ニッケルを容易にかつより多く
充填することができるため、電気容量密度の大きい電極
を提供することができる。
As described above, according to the present invention, the microcapsules can be sufficiently expanded and uniformly dispersed in the slurry, so that the porosity is large and the pore distribution is uniform. A bonding substrate is obtained. As a result, nickel hydroxide as an active material can be easily and more filled, so that an electrode having a large electric capacity density can be provided.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 貝田 理 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 村上 義樹 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Osamu Kaida 1006 Kadoma Kadoma, Kazuma, Osaka Prefecture Inside Matsushita Electric Industrial Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 低沸点炭化水素を内包し、加熱により内
包した炭化水素の蒸気圧でシェルが膨張するマイクロカ
プセルとニッケル粉末とを分散媒中に分散させる工程、
その分散媒を前記マイクロカプセルが膨張する温度まで
加熱した後、増粘剤を添加し混合してスラリを調製する
工程、および得られたスラリを金属芯材に塗着して加熱
乾燥し、還元性雰囲気中で焼結する工程を有することを
特徴とするアルカリ蓄電池用焼結基板の製造方法。
A step of dispersing nickel powder and microcapsules in which a low-boiling-point hydrocarbon is encapsulated and whose shell expands due to the vapor pressure of the enclosed hydrocarbon by heating;
After heating the dispersion medium to a temperature at which the microcapsules expand, a step of adding and mixing a thickener to prepare a slurry, and applying the obtained slurry to a metal core material, heating and drying, and reducing A method for producing a sintered substrate for an alkaline storage battery, comprising a step of sintering in a neutral atmosphere.
【請求項2】 マイクロカプセルとニッケル粉末とを分
散媒中に分散させる工程が、マイクロカプセルを分散媒
中に先に分散させた後、ニッケル粉末を投入して分散さ
せることからなる請求項1記載のアルカリ蓄電池用焼結
基板の製造方法。
2. The method according to claim 1, wherein the step of dispersing the microcapsules and the nickel powder in the dispersion medium comprises first dispersing the microcapsules in the dispersion medium and then charging and dispersing the nickel powder. Of manufacturing a sintered substrate for an alkaline storage battery.
JP10127617A 1998-05-11 1998-05-11 Manufacture of sintered substrate for alkaline storage battery Pending JPH11329450A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10127617A JPH11329450A (en) 1998-05-11 1998-05-11 Manufacture of sintered substrate for alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10127617A JPH11329450A (en) 1998-05-11 1998-05-11 Manufacture of sintered substrate for alkaline storage battery

Publications (1)

Publication Number Publication Date
JPH11329450A true JPH11329450A (en) 1999-11-30

Family

ID=14964528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10127617A Pending JPH11329450A (en) 1998-05-11 1998-05-11 Manufacture of sintered substrate for alkaline storage battery

Country Status (1)

Country Link
JP (1) JPH11329450A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116825941B (en) * 2022-04-01 2024-04-09 江苏大学 Manganese oxide-based positive electrode of zinc-manganese quasi-solid flow battery and semi-dry electrode manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116825941B (en) * 2022-04-01 2024-04-09 江苏大学 Manganese oxide-based positive electrode of zinc-manganese quasi-solid flow battery and semi-dry electrode manufacturing method thereof

Similar Documents

Publication Publication Date Title
CN105722868A (en) Method for producing thermally expandable microspheres and use of same
US3408180A (en) Method of producing an inorganic foam and product
CN112473579B (en) Metal phase change microcapsule with thermal expansion cavity and preparation method thereof
US20070292758A1 (en) Nickel Hydroxide Powder and Method for Producing Same
US4225346A (en) Process for fabricating porous nickel bodies
CN110890550B (en) Air electrode and preparation method and application thereof
JP2009510266A (en) High porosity metal dual pore porous foam
CN103515561A (en) Isolating membrane of electrochemical device and preparation method of isolating membrane
US3009979A (en) Positive electrode
US3625765A (en) Production of battery electrode
JPH11329450A (en) Manufacture of sintered substrate for alkaline storage battery
JPH05325978A (en) Nickel sintered substrate and manufacture thereof for alkaline storage battery
JPWO2004075317A1 (en) Storage battery separator, storage battery and storage battery manufacturing method
JP3783457B2 (en) Method for producing sintered substrate for alkaline storage battery
JPS6359228B2 (en)
US3511689A (en) Layered foam product
US20140272410A1 (en) Energy storing fractal and process therefor
JP2798700B2 (en) Method for producing sintered substrate for alkaline storage battery
JPS6329450A (en) Manufacture of electrode for cell
JP4079667B2 (en) Sintered substrate for alkaline storage battery and manufacturing method thereof
JPH0366780B2 (en)
JPS62100945A (en) Manufacture of sintered substrate for nickel-cadmium-alkaline storage battery
JPH04248269A (en) Manufacture of sintered substrate for alkaline storage battery
JPS6065464A (en) Manufacture of sintered substrate for battery
JPH0577149B2 (en)