JPH1132773A - 耐熱性グリセロールキナーゼ及びそれをコードするdna - Google Patents
耐熱性グリセロールキナーゼ及びそれをコードするdnaInfo
- Publication number
- JPH1132773A JPH1132773A JP9198961A JP19896197A JPH1132773A JP H1132773 A JPH1132773 A JP H1132773A JP 9198961 A JP9198961 A JP 9198961A JP 19896197 A JP19896197 A JP 19896197A JP H1132773 A JPH1132773 A JP H1132773A
- Authority
- JP
- Japan
- Prior art keywords
- dna
- ala
- protein
- amino acid
- glu
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Investigating Or Analysing Biological Materials (AREA)
- Enzymes And Modification Thereof (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Peptides Or Proteins (AREA)
Abstract
(57)【要約】
【課題】 耐熱性グリセロールキナーゼ及びそれをコー
ドするDNAを提供する。 【解決手段】 超好熱始原菌Pyrococcus sp. KOD1株の
ゲノムDNAを鋳型とし、公知のグリセロールキナーゼ
のアミノ酸配列に基づいて作製したオリゴヌクレオチド
をプライマーとして用いたPCR反応により増幅された
DNA断片をプローブとして用いてPyrococcus sp. KOD
1株のゲノムDNAに対してサザン分析を行うことによ
り、Pyrococcus sp. KOD1株由来グリセロールキナーゼ
遺伝子をクローニングし、さらにグリセロールキナーゼ
の大量発現系を構築する。
ドするDNAを提供する。 【解決手段】 超好熱始原菌Pyrococcus sp. KOD1株の
ゲノムDNAを鋳型とし、公知のグリセロールキナーゼ
のアミノ酸配列に基づいて作製したオリゴヌクレオチド
をプライマーとして用いたPCR反応により増幅された
DNA断片をプローブとして用いてPyrococcus sp. KOD
1株のゲノムDNAに対してサザン分析を行うことによ
り、Pyrococcus sp. KOD1株由来グリセロールキナーゼ
遺伝子をクローニングし、さらにグリセロールキナーゼ
の大量発現系を構築する。
Description
【0001】
【発明の属する技術分野】本発明は、耐熱性グリセロー
ルキナーゼ及びそれをコードするDNAに関する。
ルキナーゼ及びそれをコードするDNAに関する。
【0002】
【従来の技術】グリセロールキナーゼは、ヌクレオシド
三リン酸(主にATP)とグリセロールとから、グリセ
ロール−3−リン酸とヌクレオシド二リン酸を生成する
反応を触媒する酵素である。グリセロールは、中性脂
肪、リン脂質、糖脂質の構成成分であることから、グリ
セロールキナーゼは脂質の測定用の酵素として用いられ
ている。
三リン酸(主にATP)とグリセロールとから、グリセ
ロール−3−リン酸とヌクレオシド二リン酸を生成する
反応を触媒する酵素である。グリセロールは、中性脂
肪、リン脂質、糖脂質の構成成分であることから、グリ
セロールキナーゼは脂質の測定用の酵素として用いられ
ている。
【0003】血清中の中性脂肪(トリグリセリド)は、
高脂血症、動脈硬化症などの診断の指標として重要であ
るため、血清中の中性脂肪測定のためのキットが提供さ
れている。現在市販されている中性脂肪測定用キットに
は、例えば、トリグリセリドをリパーゼでグリセロール
と脂肪酸に分解し、生じたグリセロールをグリセロール
キナーゼによりリン酸化してグリセロール−3−リン酸
にし、生じたグリセロール−3−リン酸と酸素とからグ
リセロリン酸オキシダーゼによりジヒドロキシアセトン
リン酸と過酸化水素とを生成させ、生じた過酸化水素を
ペルオキシダーゼを用いて定量する方法に基づくものが
ある。
高脂血症、動脈硬化症などの診断の指標として重要であ
るため、血清中の中性脂肪測定のためのキットが提供さ
れている。現在市販されている中性脂肪測定用キットに
は、例えば、トリグリセリドをリパーゼでグリセロール
と脂肪酸に分解し、生じたグリセロールをグリセロール
キナーゼによりリン酸化してグリセロール−3−リン酸
にし、生じたグリセロール−3−リン酸と酸素とからグ
リセロリン酸オキシダーゼによりジヒドロキシアセトン
リン酸と過酸化水素とを生成させ、生じた過酸化水素を
ペルオキシダーゼを用いて定量する方法に基づくものが
ある。
【0004】しかしながら、上記キットに用いられてい
る酵素はいずれも非耐熱性生物から単離されたものであ
るため、その耐熱性が低く保存期間をあまり長くできな
いという制約がある。そこで、グリセロールキナーゼを
はじめ中性脂肪測定に必要な各種酵素を耐熱性細菌から
単離する試みがなされており、例えば、好熱菌Thermus
falvus由来のグリセロールキナーゼが報告されている
(J. Fermentation and Bioengineering, 83, 328-332(1
997))が、さらに耐熱性に優れるグリセロールキナーゼ
が得られれば、中性脂肪測定用、特に診断用の試薬とし
て一層有用である。
る酵素はいずれも非耐熱性生物から単離されたものであ
るため、その耐熱性が低く保存期間をあまり長くできな
いという制約がある。そこで、グリセロールキナーゼを
はじめ中性脂肪測定に必要な各種酵素を耐熱性細菌から
単離する試みがなされており、例えば、好熱菌Thermus
falvus由来のグリセロールキナーゼが報告されている
(J. Fermentation and Bioengineering, 83, 328-332(1
997))が、さらに耐熱性に優れるグリセロールキナーゼ
が得られれば、中性脂肪測定用、特に診断用の試薬とし
て一層有用である。
【0005】
【発明が解決しようとする課題】本発明は、耐熱性グリ
セロールキナーゼ及びそれをコードするDNAを得るこ
とを課題とする。
セロールキナーゼ及びそれをコードするDNAを得るこ
とを課題とする。
【0006】
【課題を解決するための手段】本発明者らは、超好熱始
原菌Pyrococcus sp. KOD1株より、グリセロールキナー
ゼをクローニングすることに成功し、本発明を完成する
に至った。
原菌Pyrococcus sp. KOD1株より、グリセロールキナー
ゼをクローニングすることに成功し、本発明を完成する
に至った。
【0007】すなわち本発明は、以下の(a)又は
(b)のタンパク質をコードするDNA(以下、本発明
DNAともいう)を提供する。 (a)配列番号2のアミノ酸配列からなるタンパク質 (b)配列番号2のアミノ酸配列において1若しくは数
個のアミノ酸が欠失、置換若しくは付加されたアミノ酸
配列からなり、かつ(a)のタンパク質と同等の耐熱性
のグリセロールキナーゼ活性を有するタンパク質
(b)のタンパク質をコードするDNA(以下、本発明
DNAともいう)を提供する。 (a)配列番号2のアミノ酸配列からなるタンパク質 (b)配列番号2のアミノ酸配列において1若しくは数
個のアミノ酸が欠失、置換若しくは付加されたアミノ酸
配列からなり、かつ(a)のタンパク質と同等の耐熱性
のグリセロールキナーゼ活性を有するタンパク質
【0008】本発明DNAは、好ましくは、配列番号2
のアミノ酸配列からなるタンパク質をコードする。本発
明DNAとして、具体的には、上記(a)又は(b)の
タンパク質をコードする以下の(c)又は(d)の塩基
配列を有するDNAが挙げられる。 (c)配列番号1に示す塩基配列における塩基番号82
〜1572の塩基配列を有するDNA (d)(c)のDNAの塩基配列に相補的な塩基配列を
有するDNAとストリンジェントな条件下でハイブリダ
イズするDNA
のアミノ酸配列からなるタンパク質をコードする。本発
明DNAとして、具体的には、上記(a)又は(b)の
タンパク質をコードする以下の(c)又は(d)の塩基
配列を有するDNAが挙げられる。 (c)配列番号1に示す塩基配列における塩基番号82
〜1572の塩基配列を有するDNA (d)(c)のDNAの塩基配列に相補的な塩基配列を
有するDNAとストリンジェントな条件下でハイブリダ
イズするDNA
【0009】また、本発明は、以下の(a)又は(b)
のタンパク質からなる耐熱性グリセロールキナーゼ(以
下、本発明酵素ともいう)を提供する。 (a)配列番号2のアミノ酸配列からなるタンパク質 (b)配列番号2のアミノ酸配列において1若しくは数
個のアミノ酸が欠失、置換若しくは付加されたアミノ酸
配列からなり、かつ(a)のタンパク質と同等の耐熱性
のグリセロールキナーゼ活性を有するタンパク質
のタンパク質からなる耐熱性グリセロールキナーゼ(以
下、本発明酵素ともいう)を提供する。 (a)配列番号2のアミノ酸配列からなるタンパク質 (b)配列番号2のアミノ酸配列において1若しくは数
個のアミノ酸が欠失、置換若しくは付加されたアミノ酸
配列からなり、かつ(a)のタンパク質と同等の耐熱性
のグリセロールキナーゼ活性を有するタンパク質
【0010】本発明酵素は、好ましくは、配列番号2の
アミノ酸配列からなるタンパク質からなる。Thermus fl
avus等の好熱菌(高度好熱菌)の生育至適温度が80℃
前後であるのに対し、超好熱菌の生育至適温度は90℃
前後であるので、超好熱菌に由来する本発明酵素は、好
熱菌由来のグリセロールキナーゼよりも高い耐熱性を有
することが期待される。
アミノ酸配列からなるタンパク質からなる。Thermus fl
avus等の好熱菌(高度好熱菌)の生育至適温度が80℃
前後であるのに対し、超好熱菌の生育至適温度は90℃
前後であるので、超好熱菌に由来する本発明酵素は、好
熱菌由来のグリセロールキナーゼよりも高い耐熱性を有
することが期待される。
【0011】
【発明の実施の形態】以下、本発明を詳細に説明する。
本発明DNAは、耐熱性に優れたグリセロールキナー
ゼ、すなわち、以下の(a)又は(b)のタンパク質を
コードする。 (a)配列番号2に示すアミノ酸配列を有するタンパク
質をコードするDNA (b)配列番号2に示すアミノ酸配列において1若しく
は数個のアミノ酸が欠失、置換若しくは付加されたアミ
ノ酸配列から成り、かつ(a)のタンパク質と同等の耐
熱性のグリセロールキナーゼ活性を有するタンパク質
本発明DNAは、耐熱性に優れたグリセロールキナー
ゼ、すなわち、以下の(a)又は(b)のタンパク質を
コードする。 (a)配列番号2に示すアミノ酸配列を有するタンパク
質をコードするDNA (b)配列番号2に示すアミノ酸配列において1若しく
は数個のアミノ酸が欠失、置換若しくは付加されたアミ
ノ酸配列から成り、かつ(a)のタンパク質と同等の耐
熱性のグリセロールキナーゼ活性を有するタンパク質
【0012】アミノ酸残基の置換、欠失又は挿入は、部
位特異的突然変異などの公知の方法によって塩基配列に
ヌクレオチドの置換、欠失、挿入などの変異を導入する
ことによって生じさせることができる。グリセロールキ
ナーゼ活性の測定方法及びその耐熱性の評価方法は公知
であり(例えば、J. Fermentation and Bioengineerin
g, 83, 328-332(1997)参照)、この耐熱性のグリセロー
ルキナーゼ活性を実質的に害さない1以上のアミノ酸残
基の置換、欠失又は挿入を当業者は容易に選択すること
ができる。
位特異的突然変異などの公知の方法によって塩基配列に
ヌクレオチドの置換、欠失、挿入などの変異を導入する
ことによって生じさせることができる。グリセロールキ
ナーゼ活性の測定方法及びその耐熱性の評価方法は公知
であり(例えば、J. Fermentation and Bioengineerin
g, 83, 328-332(1997)参照)、この耐熱性のグリセロー
ルキナーゼ活性を実質的に害さない1以上のアミノ酸残
基の置換、欠失又は挿入を当業者は容易に選択すること
ができる。
【0013】好ましくは、(b)のタンパク質のアミノ
酸配列は、(a)のタンパク質のアミノ酸配列と80%
以上、さらに好ましくは90%以上の相同性を有する。
また、タンパク質の構造の一部を、自然又は人工の突然
変異によって耐熱性のグリセロールキナーゼ活性を実質
的に変えずに変化させることも可能である。本発明DN
Aのコードするタンパク質は、上記(a)のタンパク質
の同種変異型に相当する構造を有するタンパク質も包含
する。
酸配列は、(a)のタンパク質のアミノ酸配列と80%
以上、さらに好ましくは90%以上の相同性を有する。
また、タンパク質の構造の一部を、自然又は人工の突然
変異によって耐熱性のグリセロールキナーゼ活性を実質
的に変えずに変化させることも可能である。本発明DN
Aのコードするタンパク質は、上記(a)のタンパク質
の同種変異型に相当する構造を有するタンパク質も包含
する。
【0014】本発明DNAの具体例としては、上記
(a)又は(b)のタンパク質をコードする以下の
(c)又は(d)の塩基配列を有するDNAが挙げられ
る。 (c)配列番号1に示す塩基配列における塩基番号82
〜1572の塩基配列からなるDNA (d)このDNAの塩基配列に相補的な塩基配列を有す
るDNAとストリンジェントな条件下でハイブリダイズ
するDNA
(a)又は(b)のタンパク質をコードする以下の
(c)又は(d)の塩基配列を有するDNAが挙げられ
る。 (c)配列番号1に示す塩基配列における塩基番号82
〜1572の塩基配列からなるDNA (d)このDNAの塩基配列に相補的な塩基配列を有す
るDNAとストリンジェントな条件下でハイブリダイズ
するDNA
【0015】ここでストリンジェントな条件とは、いわ
ゆる特異的なハイブリッドが形成され、非特異的なハイ
ブリッドが形成されない条件をいう。この条件を明確に
数値化することは困難であるが、一例を示せば、相同性
が高い核酸同士、例えば完全にマッチしたハイブリッド
のTmから該Tmより10℃低い温度までの範囲の温
度、あるいは80%以上の相同性を有するDNA同士が
ハイブリダイズし、それより相同性が低い核酸同士がハ
イブリダイズしない条件が挙げられる。
ゆる特異的なハイブリッドが形成され、非特異的なハイ
ブリッドが形成されない条件をいう。この条件を明確に
数値化することは困難であるが、一例を示せば、相同性
が高い核酸同士、例えば完全にマッチしたハイブリッド
のTmから該Tmより10℃低い温度までの範囲の温
度、あるいは80%以上の相同性を有するDNA同士が
ハイブリダイズし、それより相同性が低い核酸同士がハ
イブリダイズしない条件が挙げられる。
【0016】上述のように、グリセロールキナーゼ活性
の測定方法及びその耐熱性の評価方法は公知であり、上
記(c)のDNAの塩基配列に相補的な塩基配列を有す
るDNAとストリンジェントな条件下でハイブリダイズ
するDNAからこの耐熱性のグリセロールキナーゼ活性
を有するタンパク質をコードするDNA(すなわち上記
(d)のDNA)を、当業者は容易に選択することがで
きる。
の測定方法及びその耐熱性の評価方法は公知であり、上
記(c)のDNAの塩基配列に相補的な塩基配列を有す
るDNAとストリンジェントな条件下でハイブリダイズ
するDNAからこの耐熱性のグリセロールキナーゼ活性
を有するタンパク質をコードするDNA(すなわち上記
(d)のDNA)を、当業者は容易に選択することがで
きる。
【0017】本発明DNAは、好ましくは配列番号2に
示すアミノ酸配列をコードするものであり、さらに好ま
しくは上記(c)のDNAである。本発明DNAは、2
本鎖であっても1本鎖であってもよく、また、RNAと
2本鎖を形成してもよい。
示すアミノ酸配列をコードするものであり、さらに好ま
しくは上記(c)のDNAである。本発明DNAは、2
本鎖であっても1本鎖であってもよく、また、RNAと
2本鎖を形成してもよい。
【0018】本発明DNAは、本発明により後記実施例
に示すようにその塩基配列の一つ(配列番号1)が決定
されたので、この配列に基づいて合成することが可能で
ある。また、この塩基配列に基づいて作成したオリゴヌ
クレオチドプライマー又はプローブを用いたPCR又は
ハイブリダイゼーションによって超好熱始原菌染色体D
NAから得ることもできる。あるいは、超好熱始原菌の
cDNAライブラリーを、上記塩基配列の全部又は一部
を有するポリヌクレオチドをプローブとしてスクリーニ
ングすることによっても得ることができる。
に示すようにその塩基配列の一つ(配列番号1)が決定
されたので、この配列に基づいて合成することが可能で
ある。また、この塩基配列に基づいて作成したオリゴヌ
クレオチドプライマー又はプローブを用いたPCR又は
ハイブリダイゼーションによって超好熱始原菌染色体D
NAから得ることもできる。あるいは、超好熱始原菌の
cDNAライブラリーを、上記塩基配列の全部又は一部
を有するポリヌクレオチドをプローブとしてスクリーニ
ングすることによっても得ることができる。
【0019】本発明酵素は、本発明DNAがコードす
る、以下の(a)又は(b)のタンパク質である。 (a)配列番号2のアミノ酸配列からなるタンパク質 (b)配列番号2のアミノ酸配列において1若しくは数
個のアミノ酸が欠失、置換若しくは付加されたアミノ酸
配列からなり、かつ(a)のタンパク質と同等の耐熱性
のグリセロールキナーゼ活性を有するタンパク質
る、以下の(a)又は(b)のタンパク質である。 (a)配列番号2のアミノ酸配列からなるタンパク質 (b)配列番号2のアミノ酸配列において1若しくは数
個のアミノ酸が欠失、置換若しくは付加されたアミノ酸
配列からなり、かつ(a)のタンパク質と同等の耐熱性
のグリセロールキナーゼ活性を有するタンパク質
【0020】上述のように、この耐熱性のグリセロール
キナーゼ活性を実質的に害さない1以上のアミノ酸残基
の置換、欠失又は置換は当業者であれば容易に選択する
ことができる。
キナーゼ活性を実質的に害さない1以上のアミノ酸残基
の置換、欠失又は置換は当業者であれば容易に選択する
ことができる。
【0021】好ましくは、(b)のタンパク質のアミノ
酸配列は、(a)のタンパク質のアミノ酸配列と80%
以上、さらに好ましくは90%以上の相同性を有する。
また、本発明酵素には、タンパク質の構造の一部が、自
然又は人工の突然変異によって耐熱性のグリセロールキ
ナーゼ活性を実質的に変えずに変化した、配列番号2に
示すアミノ酸配列を有するポリペプチドの同種変異型に
相当する構造を有するタンパク質も包含される。
酸配列は、(a)のタンパク質のアミノ酸配列と80%
以上、さらに好ましくは90%以上の相同性を有する。
また、本発明酵素には、タンパク質の構造の一部が、自
然又は人工の突然変異によって耐熱性のグリセロールキ
ナーゼ活性を実質的に変えずに変化した、配列番号2に
示すアミノ酸配列を有するポリペプチドの同種変異型に
相当する構造を有するタンパク質も包含される。
【0022】配列番号2のアミノ酸配列は、大腸菌及び
枯草菌由来のグリセロールキナーゼと高い相同性(それ
ぞれ、57.6%及び57.5%)を有する。また、こ
れらのグリセロールキナーゼと比較して、一次構造上、
基質結合部位のアミノ酸残基(配列番号2のアミノ酸番
号16、82、83及び132)や活性中心のアミノ酸
残基(配列番号2のアミノ酸番号9及び239)もよく
保存されている。本発明酵素と大腸菌由来酵素とのアミ
ノ酸組成の比較から、本発明酵素はイオンペアーの増強
により耐熱化しているものと考えられる。
枯草菌由来のグリセロールキナーゼと高い相同性(それ
ぞれ、57.6%及び57.5%)を有する。また、こ
れらのグリセロールキナーゼと比較して、一次構造上、
基質結合部位のアミノ酸残基(配列番号2のアミノ酸番
号16、82、83及び132)や活性中心のアミノ酸
残基(配列番号2のアミノ酸番号9及び239)もよく
保存されている。本発明酵素と大腸菌由来酵素とのアミ
ノ酸組成の比較から、本発明酵素はイオンペアーの増強
により耐熱化しているものと考えられる。
【0023】配列番号2のアミノ酸配列を有するグリセ
ロールキナーゼの、SDS-PAGEにより推定される分子量は
約56,000である。ゲル濾過クロマトグラフィーにより推
定される分子量はその約2倍なので、本酵素は二量体と
して機能すると考えられる。また、配列番号2のアミノ
酸配列を有するグリセロールキナーゼの反応最適pHは9.
0であり、活性には2 mM程度のZn2+やCo2+等の2価陽イ
オンが要求される。
ロールキナーゼの、SDS-PAGEにより推定される分子量は
約56,000である。ゲル濾過クロマトグラフィーにより推
定される分子量はその約2倍なので、本酵素は二量体と
して機能すると考えられる。また、配列番号2のアミノ
酸配列を有するグリセロールキナーゼの反応最適pHは9.
0であり、活性には2 mM程度のZn2+やCo2+等の2価陽イ
オンが要求される。
【0024】本発明酵素は、本発明DNAを細胞に導入
して形質転換された細胞を得、形質転換された細胞を、
好適な培地で培養し、本発明酵素を培養物中に生成蓄積
させ、その培養物から該酵素を採取することによって製
造することができる。
して形質転換された細胞を得、形質転換された細胞を、
好適な培地で培養し、本発明酵素を培養物中に生成蓄積
させ、その培養物から該酵素を採取することによって製
造することができる。
【0025】本発明DNAの細胞への導入は、公知の発
現ベクターに本発明DNAを挿入して組換えプラスミド
を構築し、この組換えプラスミドを導入することによっ
て行うことができる。
現ベクターに本発明DNAを挿入して組換えプラスミド
を構築し、この組換えプラスミドを導入することによっ
て行うことができる。
【0026】細胞及び発現ベクターとしては、外来タン
パク質の発現に通常用いられる宿主−ベクター系を使用
することができ、例としては、大腸菌等の原核細胞とそ
れに適した発現ベクター(例えば、大腸菌BL21株とベク
ターpET8c)、哺乳類細胞等の真核細胞とそれに適した
発現ベクターの組み合わせが挙げられる。培地や培養条
件は、用いる細胞に合わせて適宜選択される。
パク質の発現に通常用いられる宿主−ベクター系を使用
することができ、例としては、大腸菌等の原核細胞とそ
れに適した発現ベクター(例えば、大腸菌BL21株とベク
ターpET8c)、哺乳類細胞等の真核細胞とそれに適した
発現ベクターの組み合わせが挙げられる。培地や培養条
件は、用いる細胞に合わせて適宜選択される。
【0027】本発明酵素は、単独に発現させてもよい
し、他のタンパク質との融合タンパク質として発現させ
てもよい。また、本発明酵素は全長を発現させてもよい
し、一部を部分ペプチドとして発現させてもよい。
し、他のタンパク質との融合タンパク質として発現させ
てもよい。また、本発明酵素は全長を発現させてもよい
し、一部を部分ペプチドとして発現させてもよい。
【0028】培養物とは、培地および当該培地中の細胞
であり、培養物からの本発明酵素の採取は、上記の本発
明酵素の活性等を指標にして、菌体破砕、硫安分画、陰
イオン交換クロマトグラフィーなどの公知のタンパク質
の精製手段によって行うことができる。また、本発明酵
素は耐熱性であるため、宿主由来のタンパク質等を熱処
理により変性させることで精製が容易になるので、精製
において熱処理を行うことが好ましい。精製方法の一例
としては、培養により得られた細胞を超音波処理により
破砕し、得られた抽出液を90℃で30分間熱処理して
沈殿を除去した後、硫安分画(90%飽和の硫安で沈
殿)を行い、次いでHi-TrapQカラム(ファルマシアバイ
オテク)等を用いる陰イオン交換クロマトグラフィーを
行う方法が挙げられる。
であり、培養物からの本発明酵素の採取は、上記の本発
明酵素の活性等を指標にして、菌体破砕、硫安分画、陰
イオン交換クロマトグラフィーなどの公知のタンパク質
の精製手段によって行うことができる。また、本発明酵
素は耐熱性であるため、宿主由来のタンパク質等を熱処
理により変性させることで精製が容易になるので、精製
において熱処理を行うことが好ましい。精製方法の一例
としては、培養により得られた細胞を超音波処理により
破砕し、得られた抽出液を90℃で30分間熱処理して
沈殿を除去した後、硫安分画(90%飽和の硫安で沈
殿)を行い、次いでHi-TrapQカラム(ファルマシアバイ
オテク)等を用いる陰イオン交換クロマトグラフィーを
行う方法が挙げられる。
【0029】
【実施例】以下、本発明を実施例によりさらに具体的に
説明する。
説明する。
【0030】
【実施例1】耐熱性グリセロールキナーゼをコードする
DNAのクローニング 既報の大腸菌やHaemophilus influenzae由来のグリセロ
ールキナーゼのアミノ酸配列のうち活性中心を含む保存
性の高い2つの領域(Leu-Asp-Gln-Gly-Thr-Thr-Ser(配
列番号3)及びAla-Gly-Asp-Gln-Gln-Ala-Ala(配列番号
4))に対応するDNA配列を設計及び合成した(それ
ぞれ、CTTGACCAGGGTACAACATCC(配列番号5)及びGGCGGCC
TGCTGGTCACCGGC(配列番号6))。DNA配列の設計に当
たってはPyrococcus sp. KOD1株の最頻用コドンを参考
にした。これらの合成DNAをプライマーとし、Pyroco
ccus sp. KOD1株のゲノムDNAを鋳型としたPCR反
応により約700bpのDNA断片(以下、700bpDNA断片
という)を増幅して取得した。PCR反応は市販のVent
DNA polymerase (NEB)の説明書に従って行った。続い
てこの700bpDNA断片をプローブとしてPyrococcus s
p. KOD1株のゲノムDNAに対してサザン解析を行った
ところ、BamHI 5,000bp(5kbp)DNA断片にシグナルが
検出された。そこでPyrococcus sp. KOD1株のゲノムD
NAをBamHIで切断した後、消化物を1%アガロースゲ
ル電気泳動にかけ、約5kbpのDNA断片を切出し抽出し
て精製した。次に、このDNA断片を、大腸菌用クロー
ニングベクターpUC18のBamHI部位に連結し、得られたベ
クターで大腸菌JM109株を形質転換した。なお、連結反
応は市販のライゲーションキット(Takara)を用い、添付
の説明書に従って行った。得られた形質転換体約250
株について700bpDNA断片をプローブDNAとしたコ
ロニーハイブリダイゼーションにより目的とするBamHI5
kbpDNA断片保持株を選択した。
DNAのクローニング 既報の大腸菌やHaemophilus influenzae由来のグリセロ
ールキナーゼのアミノ酸配列のうち活性中心を含む保存
性の高い2つの領域(Leu-Asp-Gln-Gly-Thr-Thr-Ser(配
列番号3)及びAla-Gly-Asp-Gln-Gln-Ala-Ala(配列番号
4))に対応するDNA配列を設計及び合成した(それ
ぞれ、CTTGACCAGGGTACAACATCC(配列番号5)及びGGCGGCC
TGCTGGTCACCGGC(配列番号6))。DNA配列の設計に当
たってはPyrococcus sp. KOD1株の最頻用コドンを参考
にした。これらの合成DNAをプライマーとし、Pyroco
ccus sp. KOD1株のゲノムDNAを鋳型としたPCR反
応により約700bpのDNA断片(以下、700bpDNA断片
という)を増幅して取得した。PCR反応は市販のVent
DNA polymerase (NEB)の説明書に従って行った。続い
てこの700bpDNA断片をプローブとしてPyrococcus s
p. KOD1株のゲノムDNAに対してサザン解析を行った
ところ、BamHI 5,000bp(5kbp)DNA断片にシグナルが
検出された。そこでPyrococcus sp. KOD1株のゲノムD
NAをBamHIで切断した後、消化物を1%アガロースゲ
ル電気泳動にかけ、約5kbpのDNA断片を切出し抽出し
て精製した。次に、このDNA断片を、大腸菌用クロー
ニングベクターpUC18のBamHI部位に連結し、得られたベ
クターで大腸菌JM109株を形質転換した。なお、連結反
応は市販のライゲーションキット(Takara)を用い、添付
の説明書に従って行った。得られた形質転換体約250
株について700bpDNA断片をプローブDNAとしたコ
ロニーハイブリダイゼーションにより目的とするBamHI5
kbpDNA断片保持株を選択した。
【0031】この保持株のBamHI 5kbpDNA断片の塩基
配列を決定した。決定された塩基配列中のオープンリー
ディングフレーム及びその上流の塩基配列並びにその塩
基配列から予想されるアミノ酸配列を配列番号1に、ア
ミノ酸配列のみを配列番号2に示す。この塩基配列から
予想されるタンパク質のアミノ酸残基数は497であ
る。
配列を決定した。決定された塩基配列中のオープンリー
ディングフレーム及びその上流の塩基配列並びにその塩
基配列から予想されるアミノ酸配列を配列番号1に、ア
ミノ酸配列のみを配列番号2に示す。この塩基配列から
予想されるタンパク質のアミノ酸残基数は497であ
る。
【0032】公知のアミノ酸配列に対するホモロジー検
索の結果、大腸菌や枯草菌のグリセロールキナーゼと高
い相同性(それぞれ57.6%、57.5%)を有する
ことが判明した。また、一次構造上、基質結合部位や活
性中心のアミノ酸残基(それぞれ、配列番号2における
アミノ酸番号9及び239並びにアミノ酸番号16、8
2、83及び132)もよく保存されていた。KOD1
株由来グリセロールキナーゼと大腸菌由来グリセロール
キナーゼとのアミノ酸組成の比較により、KOD1株由
来のものはイオンペアーの増強により耐熱化しているこ
とが示唆された。
索の結果、大腸菌や枯草菌のグリセロールキナーゼと高
い相同性(それぞれ57.6%、57.5%)を有する
ことが判明した。また、一次構造上、基質結合部位や活
性中心のアミノ酸残基(それぞれ、配列番号2における
アミノ酸番号9及び239並びにアミノ酸番号16、8
2、83及び132)もよく保存されていた。KOD1
株由来グリセロールキナーゼと大腸菌由来グリセロール
キナーゼとのアミノ酸組成の比較により、KOD1株由
来のものはイオンペアーの増強により耐熱化しているこ
とが示唆された。
【0033】次に、5’上流プライマー(GAGTACACTTAA
AAAGCTCGGGC(配列番号7))と3’下流プライマー(GAT
GCCTCTCTTAAAATACTGG(配列番号8))とによりグリセロ
ールキナーゼ遺伝子全長のみを含む約1630bpのDNA断
片をPCR反応により増幅した。得られた約1630bpのD
NA断片を1%アガロースゲル電気泳動にかけ、約1630
bpのDNA断片を切出し抽出して精製した。次にこのD
NA断片を、大腸菌用クローニングベクターpUC18のSma
I部位に連結して耐熱性グリセロールキナーゼ遺伝子を
含む安定な組換えプラスミドpUC-gkを構築した。
AAAGCTCGGGC(配列番号7))と3’下流プライマー(GAT
GCCTCTCTTAAAATACTGG(配列番号8))とによりグリセロ
ールキナーゼ遺伝子全長のみを含む約1630bpのDNA断
片をPCR反応により増幅した。得られた約1630bpのD
NA断片を1%アガロースゲル電気泳動にかけ、約1630
bpのDNA断片を切出し抽出して精製した。次にこのD
NA断片を、大腸菌用クローニングベクターpUC18のSma
I部位に連結して耐熱性グリセロールキナーゼ遺伝子を
含む安定な組換えプラスミドpUC-gkを構築した。
【0034】
【実施例2】耐熱性グリセロールキナーゼの製造 (1)大量生産系の構築 実施例1で得られたpUC-gkを鋳型DNAとし、NcoIの制
限酵素部位を含む5'側プライマー(ATATACCATGGAAAAGTT
CGTTCTTTC(配列番号9)、NcoI部位にアンダーラインを
付記)と、BamHIの制限酵素部位を含む3'側プライマー
(AATGGATCCATATCAATTTGATTTTGCACT(配列番号10)、Ba
mHI部位にアンダーラインを付記)とにより約1500bpの
DNA断片をPCR反応により増幅した。PCR反応は
市販のVentDNA polymerase (NEB)の説明書に従って行っ
た。得られた約1500bpのDNA断片を制限酵素NcoIとBa
mHIとで切断した後、消化物を1%アガロースゲル電気
泳動にかけ、約1500bpのDNA断片を切出し抽出して精
製した。次にこのDNA断片を、大腸菌用発現ベクター
pET8c(米国Novagen社)の対応クローニング部位に連結
して発現プラスミドpET-gkを構築した。このようにして
得られたプラスミドpET-gkで大腸菌BL21(DE3)株を形質
転換し耐熱性グリセロールキナーゼを大量発現する形質
転換体BL21(DE3)/pET-gkを得た。
限酵素部位を含む5'側プライマー(ATATACCATGGAAAAGTT
CGTTCTTTC(配列番号9)、NcoI部位にアンダーラインを
付記)と、BamHIの制限酵素部位を含む3'側プライマー
(AATGGATCCATATCAATTTGATTTTGCACT(配列番号10)、Ba
mHI部位にアンダーラインを付記)とにより約1500bpの
DNA断片をPCR反応により増幅した。PCR反応は
市販のVentDNA polymerase (NEB)の説明書に従って行っ
た。得られた約1500bpのDNA断片を制限酵素NcoIとBa
mHIとで切断した後、消化物を1%アガロースゲル電気
泳動にかけ、約1500bpのDNA断片を切出し抽出して精
製した。次にこのDNA断片を、大腸菌用発現ベクター
pET8c(米国Novagen社)の対応クローニング部位に連結
して発現プラスミドpET-gkを構築した。このようにして
得られたプラスミドpET-gkで大腸菌BL21(DE3)株を形質
転換し耐熱性グリセロールキナーゼを大量発現する形質
転換体BL21(DE3)/pET-gkを得た。
【0035】(2)精製 大腸菌形質転換体BL21(DE3)/pET-gkを、100μg/lのアン
ピシリンを含むNZCYM培地1.5 l中、37℃で振盪培養し
た。培養液の660 nmにおける吸光度が0.6を超えた時点
でIPTG(isopropyl-1-thio-β-D-galactoside)を終濃
度1 mMになるように添加し、遺伝子発現を誘導した。4
〜8時間振盪培養を続けた後、遠心分離により集菌し
た。得られた菌体を元の培養液の1/5量の50 mMリン酸緩
衝液(pH 7.5)に懸濁した後、氷中で超音波処理により菌
体を破砕した(2分間、10回)。15,000rpmで30分間
遠心して得た上清(粗抽出液)を90℃で30分間処理する
ことにより大腸菌由来タンパク質を沈殿除去した。上清
に最終濃度90%飽和となるように硫安を加え、氷中に3
時間放置した後、15,000rpmで30分間遠心して沈殿を集
めた。この沈殿を30 mlの50 mMリン酸緩衝液(pH 7.5)に
溶解した後、同緩衝液に対して4℃で一晩透析した。そ
の後、同緩衝液で平衡化した陰イオン交換カラムHi-Tra
pQ(5 ml)(ファルマシアバイオテク)に供し、流速1
ml/minでNaCl濃度を0から1Mまで直線的に上昇させる
ことにより、耐熱性グリセロールキナーゼを溶出(約0.
5 Mの位置)させた。得られた本酵素はSDS-PAGEで単一
バンドを与えた。ゲル濾過カラムクロマトグラフィーで
も、本酵素は単一ピークを与え、推定分子量は125,000
であった。この分子量は、SDS-PAGEから推定される分子
量56,000の約2倍なので、本酵素は二量体として機能す
ることが示唆された。本酵素の反応最適pHは9.0であ
り、活性には2 mM程度のZn2+やCo2+が要求され、37℃で
活性測定したところ、Thermus flavus由来酵素(比活
性:56.7 units/mg)と比較して約1.7倍の比活性(95.7 u
nits/mg)を示した。活性測定は公知の方法(J. Fermen
t. Bioeng. 83, 328-332(1997))により行った。
ピシリンを含むNZCYM培地1.5 l中、37℃で振盪培養し
た。培養液の660 nmにおける吸光度が0.6を超えた時点
でIPTG(isopropyl-1-thio-β-D-galactoside)を終濃
度1 mMになるように添加し、遺伝子発現を誘導した。4
〜8時間振盪培養を続けた後、遠心分離により集菌し
た。得られた菌体を元の培養液の1/5量の50 mMリン酸緩
衝液(pH 7.5)に懸濁した後、氷中で超音波処理により菌
体を破砕した(2分間、10回)。15,000rpmで30分間
遠心して得た上清(粗抽出液)を90℃で30分間処理する
ことにより大腸菌由来タンパク質を沈殿除去した。上清
に最終濃度90%飽和となるように硫安を加え、氷中に3
時間放置した後、15,000rpmで30分間遠心して沈殿を集
めた。この沈殿を30 mlの50 mMリン酸緩衝液(pH 7.5)に
溶解した後、同緩衝液に対して4℃で一晩透析した。そ
の後、同緩衝液で平衡化した陰イオン交換カラムHi-Tra
pQ(5 ml)(ファルマシアバイオテク)に供し、流速1
ml/minでNaCl濃度を0から1Mまで直線的に上昇させる
ことにより、耐熱性グリセロールキナーゼを溶出(約0.
5 Mの位置)させた。得られた本酵素はSDS-PAGEで単一
バンドを与えた。ゲル濾過カラムクロマトグラフィーで
も、本酵素は単一ピークを与え、推定分子量は125,000
であった。この分子量は、SDS-PAGEから推定される分子
量56,000の約2倍なので、本酵素は二量体として機能す
ることが示唆された。本酵素の反応最適pHは9.0であ
り、活性には2 mM程度のZn2+やCo2+が要求され、37℃で
活性測定したところ、Thermus flavus由来酵素(比活
性:56.7 units/mg)と比較して約1.7倍の比活性(95.7 u
nits/mg)を示した。活性測定は公知の方法(J. Fermen
t. Bioeng. 83, 328-332(1997))により行った。
【0036】
【発明の効果】本発明によれば、耐熱性グリセロールキ
ナーゼ及びそれをコードするDNAが提供される。耐熱
性グリセロールキナーゼを測定キット又は診断薬用の酵
素として用いることで、測定キット又は診断薬の保存性
の向上が期待できる。また、耐熱性の酵素は熱処理によ
り容易に精製できることから、生産性の向上も期待でき
る。
ナーゼ及びそれをコードするDNAが提供される。耐熱
性グリセロールキナーゼを測定キット又は診断薬用の酵
素として用いることで、測定キット又は診断薬の保存性
の向上が期待できる。また、耐熱性の酵素は熱処理によ
り容易に精製できることから、生産性の向上も期待でき
る。
【0037】
配列番号:1 配列の長さ:1575 配列の型:核酸 鎖の数:2本鎖 トポロジー:直鎖状 配列の種類:Genomic DNA 起源 生物名:Pyrococcus sp. 株名:KOD1 配列の特徴 特徴を表す記号:CDS 存在位置:82..1575 配列 GAGTACACTT AAAAAGCTCG GGCTGAGATG AGCAAGTCTT AATAAGTTCT CTTTCCTCTA 60 ATTTTTCTTA GGTGATTGCA G ATG GAA AAG TTC GTT CTT TCT CTT GAC GAG 111 Met Glu Lys Phe Val Leu Ser Leu Asp Glu 1 5 10 GGT ACA ACT TCC GCC AGG GCG ATA ATC TTC GAC AGG GAG AGC GAC ATC 159 Gly Thr Thr Ser Ala Arg Ala Ile Ile Phe Asp Arg Glu Ser Asp Ile 15 20 25 CAC GGA ATA GGC CAG TAT GAG TTC CCC CAG CAC TAT CCA AGG CCG GGA 207 His Gly Ile Gly Gln Tyr Glu Phe Pro Gln His Tyr Pro Arg Pro Gly 30 35 40 TGG GTC GAG CAC AAT CCC GAG GAG ATA TGG GAC GCC CAG CTC AGG GCG 255 Trp Val Glu His Asn Pro Glu Glu Ile Trp Asp Ala Gln Leu Arg Ala 45 50 55 ATA AAA GAT GCC ATC CAG AGC GCT AGA ATA GAG CCG AAT CAG ATA GCG 303 Ile Lys Asp Ala Ile Gln Ser Ala Arg Ile Glu Pro Asn Gln Ile Ala 60 65 70 GCG ATA GGA GTT ACC AAC CAG CGC GAG ACG ACG CTT GTA TGG GAC AAA 351 Ala Ile Gly Val Thr Asn Gln Arg Glu Thr Thr Leu Val Trp Asp Lys 75 80 85 90 GAT GGT AAG CCG CTC TAC AAC GCA ATA GTC TGG CAG TGC AGA AGA ACG 399 Asp Gly Lys Pro Leu Tyr Asn Ala Ile Val Trp Gln Cys Arg Arg Thr 95 100 105 GCT GAA ATG GTT GAG GAG ATA AAG CGT GAG TAC GGG ACG ATG ATA AAG 447 Ala Glu Met Val Glu Glu Ile Lys Arg Glu Tyr Gly Thr Met Ile Lys 110 115 120 GAG AAG ACC GGC CTC GTC CCC GAT GCC TAC TTT TCT GCC TCG AAG CTC 495 Glu Lys Thr Gly Leu Val Pro Asp Ala Tyr Phe Ser Ala Ser Lys Leu 125 130 135 AAG TGG CTC CTT GAC AAC GTT CCA GGT TTA AGG GAG AAG GCC GAG AAA 543 Lys Trp Leu Leu Asp Asn Val Pro Gly Leu Arg Glu Lys Ala Glu Lys 140 145 150 GGC GAG GTG ATG TTC GGA ACG GTC GAT ACC TTC CTC ATC TAC CGC CTT 591 Gly Glu Val Met Phe Gly Thr Val Asp Thr Phe Leu Ile Tyr Arg Leu 155 160 165 170 ACA GGA GAG CAC GTT ACG GAC TAT TCC AAT GCC TCA AGG ACG ATG CTC 639 Thr Gly Glu His Val Thr Asp Tyr Ser Asn Ala Ser Arg Thr Met Leu 175 180 185 TTC AAC ATT AAG AAG CTC GAC TGG GAC GAT GAG CTC CTT GAG CTC TTC 687 Phe Asn Ile Lys Lys Leu Asp Trp Asp Asp Glu Leu Leu Glu Leu Phe 190 195 200 GAC ATT CCT GAG AGC GTT TTA CCT GAG GTC AGG GAG TCT AGT GAA GTT 735 Asp Ile Pro Glu Ser Val Leu Pro Glu Val Arg Glu Ser Ser Glu Val 205 210 215 TAC GGC TAC ACA AAG AAG GAG CTT CTC GGG GCT GAG ATT CCC GTA AGC 783 Tyr Gly Tyr Thr Lys Lys Glu Leu Leu Gly Ala Glu Ile Pro Val Ser 220 225 230 GGC GAT GCA GGT GAC CAG CAG GCG GCC CTC TTC GGA CAG GCG GCG TTC 831 Gly Asp Ala Gly Asp Gln Gln Ala Ala Leu Phe Gly Gln Ala Ala Phe 235 240 245 250 GAG GCG GGA ATG GTG AAG GCC ACC TAT GGT ACG GGG AGC TTT ATC CTC 879 Glu Ala Gly Met Val Lys Ala Thr Tyr Gly Thr Gly Ser Phe Ile Leu 255 260 265 GTG AAC ACG GAC AAG ATG GTG CTC TAT TCG GAC AAC CTG CTC ACG ACG 927 Val Asn Thr Asp Lys Met Val Leu Tyr Ser Asp Asn Leu Leu Thr Thr 270 275 280 ATA GCA TGG GGC CTA AAT GGA AGG GTC AGC TAC GCC CTC GAG GGG AGC 975 Ile Ala Trp Gly Leu Asn Gly Arg Val Ser Tyr Ala Leu Glu Gly Ser 285 290 295 ATT TTC GTA ACT GGA GCG GCA GTC CAG TGG CTC AGA GAC GGA ATA AAA 1023 Ile Phe Val Thr Gly Ala Ala Val Gln Trp Leu Arg Asp Gly Ile Lys 300 305 310 ATC ATA AAG CAT GCC TCT GAG ACA GAG GAA CTC GCC ACA AAG CTT GAG 1071 Ile Ile Lys His Ala Ser Glu Thr Glu Glu Leu Ala Thr Lys Leu Glu 315 320 325 330 AGC AAC GAA GGC GTT TAT TTC GTT CCC GCC TTC GTT GGT CTA GGG GCT 1119 Ser Asn Glu Gly Val Tyr Phe Val Pro Ala Phe Val Gly Leu Gly Ala 335 340 345 CCC TAC TGG GAT CAG TTT GCC AGG GGC ATT ATA ATC GGC ATA ACG CGC 1167 Pro Tyr Trp Asp Gln Phe Ala Arg Gly Ile Ile Ile Gly Ile Thr Arg 350 355 360 GGC ACG GGC AGG GAG CAT CTC GCG AGG GCG ACG CTT GAG GCG ATA GCA 1215 Gly Thr Gly Arg Glu His Leu Ala Arg Ala Thr Leu Glu Ala Ile Ala 365 370 375 TAC CTT ACC AGG GAT GTT GTT GAC GAG ATG GAA AAG CTC GTC CAG ATC 1263 Tyr Leu Thr Arg Asp Val Val Asp Glu Met Glu Lys Leu Val Gln Ile 380 385 390 AAG GAG CTC CGC GTC GAT GGT GGC GCC ACC GCA AAC GAC TTT CTC ATG 1311 Lys Glu Leu Arg Val Asp Gly Gly Ala Thr Ala Asn Asp Phe Leu Met 395 400 405 410 CAG TTC CAG GCG GAC ATC TTG AAC AGA AAG GTG ATA AGG CCC GTC GTG 1359 Gln Phe Gln Ala Asp Ile Leu Asn Arg Lys Val Ile Arg Pro Val Val 415 420 425 AAG GAG ACA ACG GCT CTT GGC GCC GCT TAC CTC GCG GGG CTT GCC GTT 1407 Lys Glu Thr Thr Ala Leu Gly Ala Ala Tyr Leu Ala Gly Leu Ala Val 430 435 440 GAT TAT TGG GCG GAC ACG AGA GAA ATA GCC GAG CTG TGG AAG GCT GAA 1455 Asp Tyr Trp Ala Asp Thr Arg Glu Ile Ala Glu Leu Trp Lys Ala Glu 445 450 455 AGA ATT TTC GAG CCG AAG ATG GAT GAG AAA ACT AGG GAG AGA CTC TAC 1503 Arg Ile Phe Glu Pro Lys Met Asp Glu Lys Thr Arg Glu Arg Leu Tyr 460 465 470 AAA GGC TGG AAA GAA GCA GTA AAG AGG GCT ATG GGG TGG GCA AAG GTC 1551 Lys Gly Trp Lys Glu Ala Val Lys Arg Ala Met Gly Trp Ala Lys Val 475 480 485 490 GTT GAT AGT GCA AAA TCA AAT TGA 1575 Val Asp Ser Ala Lys Ser Asn 495
【0038】配列番号:2 配列の長さ:497 配列の型:アミノ酸 トポロジー:直鎖状 配列の種類:タンパク質 配列 Met Glu Lys Phe Val Leu Ser Leu Asp Glu Gly Thr Thr Ser Ala Arg 1 5 10 15 Ala Ile Ile Phe Asp Arg Glu Ser Asp Ile His Gly Ile Gly Gln Tyr 20 25 30 Glu Phe Pro Gln His Tyr Pro Arg Pro Gly Trp Val Glu His Asn Pro 35 40 45 Glu Glu Ile Trp Asp Ala Gln Leu Arg Ala Ile Lys Asp Ala Ile Gln 50 55 60 Ser Ala Arg Ile Glu Pro Asn Gln Ile Ala Ala Ile Gly Val Thr Asn 65 70 75 80 Gln Arg Glu Thr Thr Leu Val Trp Asp Lys Asp Gly Lys Pro Leu Tyr 85 90 95 Asn Ala Ile Val Trp Gln Cys Arg Arg Thr Ala Glu Met Val Glu Glu 100 105 110 Ile Lys Arg Glu Tyr Gly Thr Met Ile Lys Glu Lys Thr Gly Leu Val 115 120 125 Pro Asp Ala Tyr Phe Ser Ala Ser Lys Leu Lys Trp Leu Leu Asp Asn 130 135 140 Val Pro Gly Leu Arg Glu Lys Ala Glu Lys Gly Glu Val Met Phe Gly 145 150 155 160 Thr Val Asp Thr Phe Leu Ile Tyr Arg Leu Thr Gly Glu His Val Thr 165 170 175 Asp Tyr Ser Asn Ala Ser Arg Thr Met Leu Phe Asn Ile Lys Lys Leu 180 185 190 Asp Trp Asp Asp Glu Leu Leu Glu Leu Phe Asp Ile Pro Glu Ser Val 195 200 205 Leu Pro Glu Val Arg Glu Ser Ser Glu Val Tyr Gly Tyr Thr Lys Lys 210 215 220 Glu Leu Leu Gly Ala Glu Ile Pro Val Ser Gly Asp Ala Gly Asp Gln 225 230 235 240 Gln Ala Ala Leu Phe Gly Gln Ala Ala Phe Glu Ala Gly Met Val Lys 245 250 255 Ala Thr Tyr Gly Thr Gly Ser Phe Ile Leu Val Asn Thr Asp Lys Met 260 265 270 Val Leu Tyr Ser Asp Asn Leu Leu Thr Thr Ile Ala Trp Gly Leu Asn 275 280 285 Gly Arg Val Ser Tyr Ala Leu Glu Gly Ser Ile Phe Val Thr Gly Ala 290 295 300 Ala Val Gln Trp Leu Arg Asp Gly Ile Lys Ile Ile Lys His Ala Ser 305 310 315 320 Glu Thr Glu Glu Leu Ala Thr Lys Leu Glu Ser Asn Glu Gly Val Tyr 325 330 335 Phe Val Pro Ala Phe Val Gly Leu Gly Ala Pro Tyr Trp Asp Gln Phe 340 345 350 Ala Arg Gly Ile Ile Ile Gly Ile Thr Arg Gly Thr Gly Arg Glu His 355 360 365 Leu Ala Arg Ala Thr Leu Glu Ala Ile Ala Tyr Leu Thr Arg Asp Val 370 375 380 Val Asp Glu Met Glu Lys Leu Val Gln Ile Lys Glu Leu Arg Val Asp 385 390 395 400 Gly Gly Ala Thr Ala Asn Asp Phe Leu Met Gln Phe Gln Ala Asp Ile 405 410 415 Leu Asn Arg Lys Val Ile Arg Pro Val Val Lys Glu Thr Thr Ala Leu 420 425 430 Gly Ala Ala Tyr Leu Ala Gly Leu Ala Val Asp Tyr Trp Ala Asp Thr 435 440 445 Arg Glu Ile Ala Glu Leu Trp Lys Ala Glu Arg Ile Phe Glu Pro Lys 450 455 460 Met Asp Glu Lys Thr Arg Glu Arg Leu Tyr Lys Gly Trp Lys Glu Ala 465 470 475 480 Val Lys Arg Ala Met Gly Trp Ala Lys Val Val Asp Ser Ala Lys Ser 485 490 495 Asn
【0039】配列番号:3 配列の長さ:7 配列の型:アミノ酸 トポロジー:直鎖状 配列の種類:ペプチド
【0040】配列番号:4 配列の長さ:7 配列の型:アミノ酸 トポロジー:直鎖状 配列の種類:ペプチド
【0041】配列番号:5 配列の長さ:21 配列の型:核酸 鎖の数:1本鎖 トポロジー:直鎖状 配列の種類:他の核酸 合成DNA 配列 CTTGACCAGG GTACAACATC C 21
【0042】配列番号:6 配列の長さ:21 配列の型:核酸 鎖の数:1本鎖 トポロジー:直鎖状 配列の種類:他の核酸 合成DNA 配列 GGCGGCCTGC TGGTCACCGG C 21
【0043】配列番号:7 配列の長さ:23 配列の型:核酸 鎖の数:1本鎖 トポロジー:直鎖状 配列の種類:他の核酸 合成DNA 配列 GAGTACACTT AAAAAGCTCG GGC 23
【0044】配列番号:8 配列の長さ:22 配列の型:核酸 鎖の数:1本鎖 トポロジー:直鎖状 配列の種類:他の核酸 合成DNA 配列 GATGCCTCTC TTAAAATACT GG 22
【0045】配列番号:9 配列の長さ:27 配列の型:核酸 鎖の数:1本鎖 トポロジー:直鎖状 配列の種類:他の核酸 合成DNA 配列 ATATACCATG GAAAAGTTCG TTCTTTC 27
【0046】配列番号:10 配列の長さ:30 配列の型:核酸 鎖の数:1本鎖 トポロジー:直鎖状 配列の種類:他の核酸 合成DNA 配列 AATGGATCCA TATCAATTTG ATTTTGCACT 30
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI (C12N 15/09 ZNA C12R 1:01) (C12N 1/21 C12R 1:19) (C12N 9/12 C12R 1:19)
Claims (5)
- 【請求項1】 以下の(a)又は(b)のタンパク質を
コードするDNA。 (a)配列番号2のアミノ酸配列からなるタンパク質 (b)配列番号2のアミノ酸配列において1若しくは数
個のアミノ酸が欠失、置換若しくは付加されたアミノ酸
配列からなり、かつ(a)のタンパク質と同等の耐熱性
のグリセロールキナーゼ活性を保持するタンパク質 - 【請求項2】 配列番号2のアミノ酸配列からなるタン
パク質をコードするDNA。 - 【請求項3】 以下の塩基配列を有する請求項1又は2
に記載のDNA。 (c)配列番号1に示す塩基配列における塩基番号82
〜1572の塩基配列からなるDNA (d)(c)のDNAの塩基配列に相補的な塩基配列を
有するDNAとストリンジェントな条件下でハイブリダ
イズするDNA - 【請求項4】 以下の(a)又は(b)のタンパク質。 (a)配列番号1のアミノ酸配列からなるタンパク質 (b)配列番号1のアミノ酸配列において1若しくは数
個のアミノ酸が欠失、置換若しくは付加されたアミノ酸
配列からなり、かつ(a)のタンパク質と同等の耐熱性
のグリセロールキナーゼ活性を保持するタンパク質 - 【請求項5】 配列番号1のアミノ酸配列からなるタン
パク質。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9198961A JPH1132773A (ja) | 1997-07-24 | 1997-07-24 | 耐熱性グリセロールキナーゼ及びそれをコードするdna |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9198961A JPH1132773A (ja) | 1997-07-24 | 1997-07-24 | 耐熱性グリセロールキナーゼ及びそれをコードするdna |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH1132773A true JPH1132773A (ja) | 1999-02-09 |
Family
ID=16399819
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9198961A Pending JPH1132773A (ja) | 1997-07-24 | 1997-07-24 | 耐熱性グリセロールキナーゼ及びそれをコードするdna |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH1132773A (ja) |
-
1997
- 1997-07-24 JP JP9198961A patent/JPH1132773A/ja active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2235773C2 (ru) | Модифицированная термостабильная днк-полимераза, способ её получения и применение | |
EP0822256B1 (en) | Modified thermostable DNA polymerase, and DNA polymerase composition for nucleic acid amplification | |
US6130045A (en) | Thermostable polymerase | |
JP3742659B2 (ja) | Dnaポリメラーゼ関連因子 | |
KR19990076834A (ko) | 신규 dna 폴리머라제 | |
KR20080031255A (ko) | 변이형 pcna | |
USH1531H (en) | Thermophilic DNA polymerase | |
EP2981609B1 (en) | Novel dna-polymerases | |
US20020076768A1 (en) | Modified thermostable DNA polymerase | |
García‐Ortiz et al. | Arabidopsis thaliana AtPOLK encodes a DinB‐like DNA polymerase that extends mispaired primer termini and is highly expressed in a variety of tissues | |
Dabrowski et al. | Cloning, expression, and purification of the His6-tagged thermostable b-galactosidase from Pyrococcus woesei in Escherichia coli and some properties of the isolated enzyme | |
WO2008043765A1 (en) | Thermus eggertssonii dna polymerases | |
US20040259123A1 (en) | Heat-resistant DNA ligase | |
JP5617075B2 (ja) | 酵素 | |
JP4146095B2 (ja) | 耐熱性グルコキナーゼ遺伝子、それを含有する組換えベクター、その組換えベクターを含有する形質転換体及びその形質転換体を用いた耐熱性グルコキナーゼの製造方法 | |
US20100297706A1 (en) | Mutant dna polymerases and their genes from thermococcus | |
JPH07298879A (ja) | 超好熱始原菌由来のdnaポリメラーゼ遺伝子およびその用途 | |
JP2002253265A (ja) | 改変された耐熱性dnaポリメラーゼ | |
WO2007117331A2 (en) | Novel dna polymerase from thermoanaerobacter tengcongenesis | |
JPH1132773A (ja) | 耐熱性グリセロールキナーゼ及びそれをコードするdna | |
EP1553172B1 (en) | Thermostable ribonuclease h | |
JP3498808B2 (ja) | Dnaポリメラーゼ遺伝子 | |
JP3856162B2 (ja) | エキソヌクレアーゼ活性が低減された耐熱性dnaポリメラーゼおよびその用途 | |
JP3487394B2 (ja) | 改変された耐熱性dnaポリメラーゼおよびその用途 | |
EP4435098A1 (en) | Chimeric dna polymerase and use thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040616 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040616 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060704 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20061121 |