JPH11325766A - Evaporative cooling device - Google Patents

Evaporative cooling device

Info

Publication number
JPH11325766A
JPH11325766A JP13826698A JP13826698A JPH11325766A JP H11325766 A JPH11325766 A JP H11325766A JP 13826698 A JP13826698 A JP 13826698A JP 13826698 A JP13826698 A JP 13826698A JP H11325766 A JPH11325766 A JP H11325766A
Authority
JP
Japan
Prior art keywords
boiler
condenser
refrigerant
liquid
vapor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13826698A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Okamoto
義之 岡本
Seiji Kawaguchi
清司 川口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP13826698A priority Critical patent/JPH11325766A/en
Publication of JPH11325766A publication Critical patent/JPH11325766A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an evaporative cooling device, capable of preventing the level of refrigerant from ascending into a condenser and restraining the deterioration of condensing performance of a low-temperature side heat exchanger. SOLUTION: When a bent part 4a is provided in a vapor ascending pipe 4, guiding vapor from an evaporating device 2 into a condenser 3 until the pipe arrives at the highest position H, the bent part 4a is provided without bending the pipe by an angle of 90 deg. or more. Then, liquid refrigerant will not stay in the bent part 4a and is dropped whereby the same is returned into the evaporating device 2. Accordingly, the increase of pressure loss can be restrained and a trouble that the level of refrigerant is ascended into the condenser 3 can be eliminated whereby the whole of the condenser 3 can be used effectively at all times.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、発熱体を収納する
筐体内を冷却する沸騰冷却装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a boiling cooling device for cooling the inside of a housing containing a heating element.

【0002】[0002]

【従来の技術】従来技術として、例えば、特開昭56−
119492号公報に開示された技術が知られている。
この沸騰冷却装置は、沸騰器と凝縮器とを環状に連結し
て蒸気と凝縮液との二相流自然循環ループを構成するも
のである。これによれば、沸騰器で沸騰した蒸気冷媒
は、蒸気上昇管を通って凝縮器へ流入し、凝縮器で放熱
して液化した冷媒は、液戻し管を通って沸騰器へ戻る。
2. Description of the Related Art As a prior art, for example,
The technique disclosed in Japanese Patent Application Laid-Open No. 119492 is known.
In this boiling cooling device, a boiler and a condenser are annularly connected to form a two-phase natural circulation loop of steam and condensate. According to this, the vapor refrigerant boiled in the boiler flows into the condenser through the vapor riser, and the refrigerant radiated by radiating heat in the condenser returns to the boiler through the liquid return pipe.

【0003】[0003]

【発明が解決しようとする課題】沸騰器から蒸気ととも
に液冷媒が蒸気上昇管内に導かれる場合がある。この液
冷媒が蒸気上昇管の屈曲部等に溜まると、蒸気上昇管に
おける蒸気冷媒の流れが悪くなり、沸騰冷却装置の高圧
側(蒸気上昇管側)の圧力が急上昇する。つまり、高圧
側の圧力損失が大きくなる。このように高圧側の圧力が
上昇すると、低圧側(液戻し管側)との圧力差(ヘッド
差)が大きくなってしまう。この圧力差の増加によっ
て、沸騰冷却装置の低圧側の液面が上昇し、凝縮器内ま
で冷媒の液面が上昇してしまう。このような現象は、沸
騰冷却装置の起動開始時や、運転中に熱負荷が急激に増
えた時など、急激な沸騰が起こる場合に発生し易い。一
方、凝縮器は、各チューブへの蒸気の分配が不均一の傾
向がある。このため、凝縮器内に冷媒の液面が上昇する
と、蒸気の分配量の少ない側のチューブ内に液冷媒が流
入し、その状態で安定化してしまい、部分的に凝縮器と
しての機能を果たさなくなってしまう(図16参照)。
In some cases, liquid refrigerant is introduced into the vapor riser together with the vapor from the boiler. When the liquid refrigerant accumulates in the bent portion of the vapor riser or the like, the flow of the vapor refrigerant in the vapor riser deteriorates, and the pressure on the high pressure side (steam riser side) of the boiling cooling device rises rapidly. That is, the pressure loss on the high pressure side increases. When the pressure on the high pressure side rises in this way, the pressure difference (head difference) from the low pressure side (liquid return pipe side) increases. Due to the increase in the pressure difference, the liquid level on the low-pressure side of the boiling cooling device rises, and the liquid level of the refrigerant rises inside the condenser. Such a phenomenon is likely to occur when sudden boiling occurs, such as when starting the boiling cooling device or when the heat load suddenly increases during operation. On the other hand, condensers tend to have uneven distribution of vapor to each tube. For this reason, when the liquid level of the refrigerant rises in the condenser, the liquid refrigerant flows into the tube on the side where the amount of vapor distribution is small, and is stabilized in that state, and partially functions as a condenser. It disappears (see FIG. 16).

【0004】[0004]

【発明の目的】本発明は、上記の事情に基づいて成され
たもので、その目的は、凝縮器内に冷媒の液面が上昇す
るのを防ぎ、低温側熱交換器の凝縮性能の低下を抑制で
きる沸騰冷却装置の提供にある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and an object of the present invention is to prevent a rise in the level of refrigerant in a condenser and reduce the condensation performance of a low-temperature side heat exchanger. It is an object of the present invention to provide a boiling cooling device capable of suppressing the temperature.

【0005】[0005]

【課題を解決するための手段】〔請求項1の手段〕請求
項1を採用したことにより、沸騰器から最高位置に達す
るまでの間、蒸気上昇管は90°を超えて屈曲すること
なく立ち上げられているため、液冷媒が蒸気冷媒ととも
に蒸気上昇管内に導かれても、曲折部で液冷媒が滞留す
ることなく落下して沸騰器へ戻される。このように、蒸
気上昇管内で液冷媒が溜まらないため、高圧側(蒸気上
昇管側)の圧力損失の増加を抑制できる。この結果、凝
縮器内に冷媒の液面が上昇する不具合がなく、凝縮器の
全体を有効に使うことができる。
Means for Solving the Problems [Means of claim 1] By adopting claim 1, the steam riser stands without bending more than 90 ° until it reaches the highest position from the boiler. Since the liquid refrigerant is raised, even if the liquid refrigerant is guided into the vapor riser together with the vapor refrigerant, the liquid refrigerant falls without stagnating at the bent portion and returns to the boiler. As described above, since the liquid refrigerant does not accumulate in the vapor riser, an increase in pressure loss on the high pressure side (the vapor riser side) can be suppressed. As a result, there is no problem that the liquid level of the refrigerant rises in the condenser, and the entire condenser can be used effectively.

【0006】〔請求項2の手段〕請求項2を採用したこ
とにより、液冷媒が蒸気冷媒とともに蒸気上昇管内に導
かれても、蒸気上昇管の途中に接続されたバイパス管
が、蒸気上昇管に導かれた液冷媒を沸騰器へ戻すため、
蒸気上昇管内で液冷媒が溜まらない。このため、高圧側
(蒸気上昇管側)の圧力損失の増加を抑制できる。この
結果、凝縮器内に冷媒の液面が上昇する不具合がなく、
凝縮器の全体を有効に使うことができる。
According to the second aspect of the present invention, even when the liquid refrigerant is introduced into the vapor riser together with the vapor refrigerant, the bypass pipe connected in the middle of the vapor riser is connected to the vapor riser. To return the liquid refrigerant guided to the boiler,
Liquid refrigerant does not accumulate in the vapor riser. For this reason, an increase in pressure loss on the high pressure side (steam riser tube side) can be suppressed. As a result, there is no problem that the liquid level of the refrigerant rises in the condenser,
The entire condenser can be used effectively.

【0007】〔請求項3の手段〕請求項3を採用したこ
とにより、液溜めで蓄えられた液冷媒を沸騰器へ戻すこ
とができ、蒸気が沸騰器へ戻る不具合を抑制できる。
[0007] According to the third aspect of the present invention, the liquid refrigerant stored in the liquid reservoir can be returned to the evaporator, and the problem that the vapor returns to the evaporator can be suppressed.

【0008】〔請求項4の手段〕請求項4を採用したこ
とにより、細いバイパス管によって蒸気流の通過が抑制
でき、蒸気が沸騰器へ戻る不具合を抑制できる。
According to the fourth aspect of the present invention, the passage of the steam flow can be suppressed by the thin bypass pipe, and the problem that the steam returns to the boiler can be suppressed.

【0009】〔請求項5の手段〕請求項5を採用したこ
とにより、沸騰器の蒸気流出口付近に設けられた干渉手
段が液冷媒の通過を阻止するため、液冷媒の蒸気上昇管
への進入が抑制される。このため、蒸気上昇管内で液冷
媒が溜まらなくなり、高圧側(蒸気上昇管側)の圧力損
失の増加を抑制できる。この結果、凝縮器内に冷媒の液
面が上昇する不具合がなく、凝縮器の全体を有効に使う
ことができる。
According to the fifth aspect of the present invention, since the interference means provided near the vapor outlet of the boiler blocks the passage of the liquid refrigerant, the liquid refrigerant is supplied to the vapor riser. Ingress is suppressed. For this reason, the liquid refrigerant does not accumulate in the vapor riser, and an increase in pressure loss on the high pressure side (the vapor riser side) can be suppressed. As a result, there is no problem that the liquid level of the refrigerant rises in the condenser, and the entire condenser can be used effectively.

【0010】〔請求項6の手段〕請求項6を採用したこ
とにより、高圧側(蒸気上昇管側)の圧力損失が増加し
て、低圧側(液戻し管側)との圧力差(ヘッド差)が大
きくなって、低圧側の液面が上昇しても、液溜めによっ
て、低圧側の液面上昇が抑えられる。この結果、凝縮器
内に冷媒の液面が上昇する不具合がなく、凝縮器の全体
を有効に使うことができる。
According to the sixth aspect of the present invention, the pressure loss on the high pressure side (steam riser pipe side) increases, and the pressure difference (head difference) from the low pressure side (liquid return pipe side) increases. ) Is increased and the liquid level on the low pressure side rises, but the liquid reservoir suppresses the rise in the liquid level on the low pressure side. As a result, there is no problem that the liquid level of the refrigerant rises in the condenser, and the entire condenser can be used effectively.

【0011】〔請求項7の手段〕請求項7を採用したこ
とにより、高圧側(蒸気上昇管側)の圧力損失が増加し
て、低圧側(液戻し管側)との圧力差(ヘッド差)が大
きくなって、低圧側の液面が上昇しても、蛇行あるいは
旋回して所定量の液冷媒を蓄える液戻し管によって、低
圧側の液面上昇が抑えられる。この結果、凝縮器内に冷
媒の液面が上昇する不具合がなく、凝縮器の全体を有効
に使うことができる。
According to the seventh aspect of the present invention, the pressure loss on the high-pressure side (steam riser tube side) increases, and the pressure difference (head difference) from the low-pressure side (liquid return tube side) increases. ) Is increased, and even if the liquid level on the low pressure side rises, the liquid return pipe, which meanders or turns and stores a predetermined amount of liquid refrigerant, suppresses the rise in the liquid level on the low pressure side. As a result, there is no problem that the liquid level of the refrigerant rises in the condenser, and the entire condenser can be used effectively.

【0012】[0012]

【発明の実施の形態】次に、本発明の実施の形態を、複
数の実施例を用いて説明する。 (第1実施例)図1は沸騰冷却装置1の冷媒回路図であ
る。沸騰冷却装置1は、図示しない筐体(例えば携帯電
話等の移動無線電話の基地局であり、内部に発熱体であ
る通信機器を収納している)の内部に配置される沸騰器
2、筐体の外部に配置される凝縮器3、沸騰器2と凝縮
器3とを連結する配管(蒸気上昇管4と液戻し管5)を
備え、その内部の密閉空間に所定量の冷媒(例えば、H
FC134a等のフロン系冷媒)が封入されている。ま
た、沸騰冷却装置1は、沸騰器2に内気(発熱体の発生
する熱によって高温になっている)を送風する内気ファ
ン6(符号、図15参照)、凝縮器3に低温の外気を送
風する外気ファン7(符号、図15参照)を備え、この
内気ファン6および外気ファン7は、図示しない制御回
路によって通電制御されている。
Next, embodiments of the present invention will be described with reference to a plurality of examples. (First Embodiment) FIG. 1 is a refrigerant circuit diagram of a boiling cooling device 1. The boiling cooling device 1 includes a boiler 2 and a casing that are arranged inside a casing (not shown) (for example, a base station of a mobile radio telephone such as a mobile phone, which houses therein a communication device that is a heating element). A condenser 3 disposed outside the body, a pipe (steam riser pipe 4 and a liquid return pipe 5) connecting the boiler 2 and the condenser 3 are provided, and a predetermined amount of refrigerant (for example, H
Freon-based refrigerant such as FC134a) is sealed. In addition, the ebullient cooling device 1 sends an inside air fan 6 (symbol, see FIG. 15) for blowing inside air (having a high temperature due to heat generated by the heating element) to the boiler 2, and sends low temperature outside air to the condenser 3. The inside air fan 6 and the outside air fan 7 are energized by a control circuit (not shown).

【0013】沸騰器2は、並列に配置された複数本のチ
ューブ2aと、各チューブ2aの端に接続された上下の
ヘッダ2b、2cと、各チューブ2a間に配置されたコ
ルゲートフィン2dとから構成され、一体ろう付けされ
たもので、各構成部品は伝熱性に優れた金属(例えば、
アルミニウムや銅等)からなる。凝縮器3は、沸騰器2
と同様、複数本のチューブ3aと、上下のヘッダ3b、
3cと、各チューブ3a間に配置されたコルゲートフィ
ン3dとから構成されて、一体ろう付けされたもので、
各構成部品は伝熱性に優れた金属(例えば、アルミニウ
ムや銅等)からなる。
The boiler 2 is composed of a plurality of tubes 2a arranged in parallel, upper and lower headers 2b and 2c connected to ends of each tube 2a, and corrugated fins 2d arranged between the tubes 2a. It is composed and brazed integrally, and each component is a metal with excellent heat conductivity (for example,
Aluminum or copper). The condenser 3 is a boiler 2
Similarly, a plurality of tubes 3a and upper and lower headers 3b,
3c and corrugated fins 3d arranged between the tubes 3a, and are integrally brazed.
Each component is made of a metal having excellent heat conductivity (for example, aluminum or copper).

【0014】蒸気上昇管4および液戻し管5は、例えば
アルミニウム等の金属パイプを所定の長さに切断して使
用されるもので、蒸気上昇管4は、沸騰器2で発生し
て、沸騰器2の上部ヘッダ2b内に収集された蒸気冷媒
を、凝縮器3の上部ヘッダ3b内へ導くものである。ま
た、液戻し管5は、凝縮器3の下部ヘッダ3c内に収集
された液冷媒を、沸騰器2の下部ヘッダ2c内へ導くも
のである。
The vapor riser pipe 4 and the liquid return pipe 5 are used by cutting a metal pipe made of, for example, aluminum or the like into a predetermined length, and the vapor riser pipe 4 is generated by the boiler 2 and boiled. The vapor refrigerant collected in the upper header 2b of the vessel 2 is guided into the upper header 3b of the condenser 3. The liquid return pipe 5 guides the liquid refrigerant collected in the lower header 3c of the condenser 3 into the lower header 2c of the boiler 2.

【0015】沸騰器2の上方に凝縮器3が配置されるた
め、蒸気上昇管4は、沸騰器2の上部ヘッダ2bから、
少なくとも凝縮器3の上部ヘッダ3bまで立ち上げられ
るものである。蒸気上昇管4は、沸騰器2から最高位置
Hに達するまでの間、90°を超えて屈曲することなく
立ち上げられるもので、この実施例の蒸気上昇管4は、
沸騰器2の上部ヘッダ2bから最高位置Hに達するまで
の間、ストレートに立ち上げられている。
Since the condenser 3 is disposed above the boiler 2, the steam riser 4 is connected to the upper header 2 b of the boiler 2.
At least up to the upper header 3b of the condenser 3 can be started. The steam riser 4 is started without bending beyond 90 ° from the boiler 2 until reaching the highest position H. The steam riser 4 of this embodiment is
It is straightly raised from the upper header 2b of the boiler 2 until it reaches the highest position H.

【0016】沸騰冷却装置1の作動を説明する。沸騰冷
却装置1の運転状態では、内気ファン6の作動によって
筐体内の高温内気が沸騰器2に送風され、外気ファン7
の作動によって低温外気が凝縮器3に送風される。沸騰
器2内では液冷媒が高温内気から受熱して沸騰する。沸
騰した蒸気冷媒は、沸騰器2から蒸気上昇管4内に導か
れ、蒸気上昇管4を通って上昇し、低温外気に晒されて
低温、低圧になっている凝縮器3内に流入する。凝縮器
3に流入した蒸気冷媒は、外気ファン7によって通過す
る低温外気に熱を奪われて凝縮器3のチューブ3aの内
壁に液化凝縮し、自重により下部に滴下する。滴下した
液冷媒は、液戻し管5を通って下降し、沸騰器2の下部
に戻され、上記のサイクルを繰り返す。以上のように、
冷媒が沸騰と凝縮とを繰り返して沸騰器2と凝縮器3と
を循環することにより、高温内気と低温外気とが混合す
ることなく、筐体内の熱を外部へ効率良く排出させるこ
とができ、筐体内の温度上昇が抑制できる。
The operation of the boiling cooling device 1 will be described. In the operation state of the boiling cooling device 1, the high-temperature inside air in the housing is blown to the boiler 2 by the operation of the inside air fan 6, and the outside air fan 7 is
The low temperature outside air is blown to the condenser 3 by the operation of. In the boiler 2, the liquid refrigerant receives heat from high-temperature inside air and boils. The boiled vapor refrigerant is guided from the boiler 2 into the vapor riser 4, rises through the vapor riser 4, and flows into the condenser 3 which is exposed to low-temperature outside air and has a low temperature and a low pressure. The vapor refrigerant flowing into the condenser 3 is deprived of heat by the low-temperature outside air passing through the outside air fan 7 and liquefied and condensed on the inner wall of the tube 3 a of the condenser 3, and drops down by its own weight. The dropped liquid refrigerant descends through the liquid return pipe 5, is returned to the lower part of the boiler 2, and repeats the above cycle. As mentioned above,
By circulating the refrigerant between the boiler 2 and the condenser 3 by repeatedly boiling and condensing the refrigerant, the heat inside the housing can be efficiently discharged to the outside without mixing the high-temperature inside air and the low-temperature outside air, The temperature rise in the housing can be suppressed.

【0017】(第1実施例の効果)この実施例の蒸気上
昇管4は、沸騰器2から最高位置Hに達するまでの間、
ストレートに立ち上げられている。このため、液冷媒が
蒸気冷媒とともに蒸気上昇管4内に導かれても、蒸気上
昇管4内で液冷媒が滞留することなく落下して沸騰器2
へ戻される。このように、蒸気上昇管4内で液冷媒が溜
まらないため、高圧側(蒸気上昇管4側)の圧力損失の
増加を抑制できる。このため、沸騰冷却装置1の高圧側
と低圧側との圧力差(ヘッド差)の増加が抑えられるこ
ととなり、沸騰冷却装置1の低圧側の液面の上昇が抑え
られ、凝縮器3内に冷媒の液面が上昇する不具合がな
い。この結果、従来の不具合(凝縮器3内に上昇した液
冷媒が、蒸気の分配量の少ない側のチューブ3a内に流
入し、その状態で安定化してしまい、部分的に凝縮機能
を果たさなくなってしまう不具合)の発生がなく、常に
凝縮器3全体を有効に使用できる。
(Effects of the First Embodiment) The steam riser 4 of this embodiment is used for a period from the boiler 2 until the highest position H is reached.
It is launched straight. For this reason, even if the liquid refrigerant is guided into the vapor riser pipe 4 together with the vapor refrigerant, the liquid refrigerant falls without staying in the vapor riser pipe 4 and falls to the evaporator 2.
Returned to As described above, since the liquid refrigerant does not accumulate in the vapor riser 4, an increase in pressure loss on the high pressure side (the vapor riser 4 side) can be suppressed. Therefore, an increase in the pressure difference (head difference) between the high-pressure side and the low-pressure side of the boiling cooling device 1 is suppressed, and the rise in the liquid level on the low-pressure side of the boiling cooling device 1 is suppressed. There is no problem that the liquid level of the refrigerant rises. As a result, the conventional problem (the liquid refrigerant that has risen into the condenser 3 flows into the tube 3a on the side where the amount of vapor distribution is small, stabilizes in that state, and the condensing function is partially lost. No problem), and the entire condenser 3 can always be used effectively.

【0018】(第1実施例の変形例)上記の第1実施例
では、沸騰器2から最高位置Hに達するまでの間、蒸気
上昇管4をストレートに立ち上げた例を示した。しかる
に、沸騰器2と凝縮器3との配置や、筐体を貫通する際
の傾き等の制約により、沸騰器2から最高位置Hに達す
るまでの間に、蒸気上昇管4に屈曲部4aを1つあるい
は複数設ける必要性が生じる場合がある。このような場
合でも、蒸気上昇管4は、沸騰器2から最高位置Hに達
するまでの間、90°を超えて屈曲することなく立ち上
げられる。つまり、図2に示すように、沸騰器2から最
高位置Hに達するまでの間に設ける屈曲部4aの曲げ角
度は、90°を超えるように設ける。このように設ける
ことにより、最高位置Hに達するまでの屈曲部4aに液
冷媒が滞留する不具合がなく、上記実施例で示した効果
が得られる。
(Modification of First Embodiment) In the first embodiment described above, an example was described in which the steam riser pipe 4 was started up straight from the boiler 2 until it reached the highest position H. However, due to the arrangement of the boiler 2 and the condenser 3 and restrictions such as the inclination when penetrating the housing, the bent portion 4a is formed in the steam riser pipe 4 from the boiler 2 to the highest position H. It may be necessary to provide one or more. Even in such a case, the steam riser pipe 4 is started up from the boiler 2 without bending beyond 90 ° until reaching the highest position H. That is, as shown in FIG. 2, the bending angle of the bent portion 4a provided from the evaporator 2 to the highest position H is provided so as to exceed 90 °. With this arrangement, there is no problem that the liquid refrigerant stays in the bent portion 4a until reaching the highest position H, and the effect shown in the above embodiment can be obtained.

【0019】(第2実施例)図3は沸騰冷却装置1の冷
媒回路図である。この第2実施例は、蒸気上昇管4内に
進入した液冷媒を沸騰器2へ戻すことで従来の不具合を
解決するものである。蒸気上昇管4内の液冷媒を沸騰器
2へ戻す手段は、バイパス管8であり、このバイパス管
8は、沸騰器2から最高位置Hに達するまでの途中に設
けられた屈曲部4aと、沸騰器2の下部ヘッダ2cとを
接続するものである。このバイパス管8は、蒸気上昇管
4に比較して十分細く設けられ、バイパス管8を介して
蒸気冷媒が沸騰器2へ戻される不具合を防いでいる。
(Second Embodiment) FIG. 3 is a refrigerant circuit diagram of the boiling cooling device 1. The second embodiment solves the conventional problem by returning the liquid refrigerant that has entered the vapor riser pipe 4 to the boiler 2. Means for returning the liquid refrigerant in the vapor riser pipe 4 to the boiler 2 is a bypass pipe 8, which is provided with a bent portion 4a provided on the way from the boiler 2 to the highest position H, It connects the lower header 2c of the evaporator 2 to the lower header 2c. The bypass pipe 8 is provided sufficiently thinner than the steam riser pipe 4 to prevent a problem that the vapor refrigerant is returned to the boiler 2 via the bypass pipe 8.

【0020】(第2実施例の効果)この第2実施例で
は、液冷媒が蒸気冷媒とともに蒸気上昇管4内に導かれ
ても、蒸気上昇管4の途中に接続されたバイパス管8に
よって液冷媒が沸騰器2に戻されるため、蒸気上昇管4
内で液冷媒が滞留しない。このため、沸騰冷却装置1の
高圧側の圧力損失の増加が抑制されて、高圧側と低圧側
との圧力差の増加が抑えられることとなり、沸騰冷却装
置1の低圧側の液面の上昇が抑えられ、凝縮器3内に冷
媒の液面が上昇する不具合がない。この結果、従来の不
具合の発生がなく、常に凝縮器3全体を有効に使用でき
る。
(Effect of the Second Embodiment) In the second embodiment, even if the liquid refrigerant is introduced into the vapor riser pipe 4 together with the vapor refrigerant, the liquid refrigerant is supplied by the bypass pipe 8 connected in the middle of the vapor riser pipe 4. Since the refrigerant is returned to the boiler 2, the vapor riser 4
The liquid refrigerant does not stay inside. Therefore, an increase in pressure loss on the high-pressure side of the boiling cooling device 1 is suppressed, and an increase in the pressure difference between the high-pressure side and the low-pressure side is suppressed. It is suppressed, and there is no problem that the liquid level of the refrigerant rises in the condenser 3. As a result, the conventional condenser 3 can be effectively used at all times without occurrence of the conventional trouble.

【0021】(第2実施例の変形例)上記の第2実施例
では、バイパス管8の下端を沸騰器2に接続したが、図
4に示すように、液戻し管5の途中に接続しても良い。
また、上記の第2実施例のバイパス管8は、蒸気上昇管
4と接続される部分から下方へ向かう例を示したが、図
4に示すように、バイパス管8の上部(蒸気上昇管4と
接続される付近)を水平方向に設けても良い。
(Modification of the Second Embodiment) In the second embodiment described above, the lower end of the bypass pipe 8 is connected to the evaporator 2, but as shown in FIG. May be.
In addition, the bypass pipe 8 of the second embodiment has been described as being directed downward from a portion connected to the steam riser pipe 4, but as shown in FIG. May be provided in the horizontal direction.

【0022】(第3実施例)図5は沸騰冷却装置1の冷
媒回路図である。この第3実施例では、バイパス管8に
よって液冷媒のみを沸騰器2へ戻すために、バイパス管
8の途中に容器状の液溜め9が設けられている。この液
溜め9は、図6に示すように、気液分離して液冷媒のみ
を下方のバイパス管8内に導くものである。このため、
液溜め9内に蓄えられた液冷媒のみが、下方のバイパス
管8を介して沸騰器2へ戻されることとなり、バイパス
管8を介して蒸気冷媒が沸騰器2へ戻される不具合を確
実に防ぐことができる。なお、この第3実施例では、液
溜め9の上部のバイパス管8も、下部のバイパス管8と
同様、蒸気上昇管4に比較して十分細いものである。
(Third Embodiment) FIG. 5 is a refrigerant circuit diagram of the boiling cooling device 1. In the third embodiment, a container-like liquid reservoir 9 is provided in the middle of the bypass pipe 8 in order to return only the liquid refrigerant to the boiler 2 by the bypass pipe 8. As shown in FIG. 6, the liquid reservoir 9 separates gas and liquid and guides only the liquid refrigerant into the lower bypass pipe 8. For this reason,
Only the liquid refrigerant stored in the liquid reservoir 9 is returned to the boiler 2 via the lower bypass pipe 8, thereby reliably preventing the vapor refrigerant from returning to the boiler 2 via the bypass pipe 8. be able to. In the third embodiment, the bypass pipe 8 on the upper part of the liquid reservoir 9 is sufficiently thinner than the vapor riser pipe 4 like the bypass pipe 8 on the lower part.

【0023】(第3実施例の変形例、その一)上記の第
3実施例では、液溜め9の上部のバイパス管8も、下部
のバイパス管8と同様、細く設けた例を示したが、図7
に示すように、液溜め9の上部のバイパス管8の太さを
蒸気上昇管4と同じ太さに設け、下部のバイパス管8の
み細く設けても良い。これにより、液溜め9内への液冷
媒の落下が容易になる。
(Modification of Third Embodiment, Part 1) In the third embodiment described above, an example is shown in which the bypass pipe 8 on the upper part of the liquid reservoir 9 is also provided as narrow as the bypass pipe 8 on the lower part. , FIG.
As shown in (2), the bypass pipe 8 above the liquid reservoir 9 may be provided with the same thickness as the vapor riser pipe 4 and only the lower bypass pipe 8 may be provided thin. This facilitates the drop of the liquid refrigerant into the liquid reservoir 9.

【0024】(第3実施例の変形例、その二)上記の第
3実施例では、バイパス管8の途中に液溜め9を配置し
たが、図8に示すように、蒸気上昇管4の途中に液溜め
9を配置し、液溜め9内の液冷媒をバイパス管8で沸騰
器2へ戻すように設けても良い。
(Modification of the Third Embodiment, Part 2) In the third embodiment, the liquid reservoir 9 is arranged in the middle of the bypass pipe 8, but as shown in FIG. May be provided so that the liquid refrigerant in the liquid reservoir 9 is returned to the boiler 2 by the bypass pipe 8.

【0025】(第4実施例)図9は沸騰器2の概略正面
図である。この第4実施例は、蒸気上昇管4内に液冷媒
が進入するのを防ぐことで、圧力損失の増加を防ぐもの
である。蒸気上昇管4内に液冷媒が進入するのを防ぐ手
段として、蒸気冷媒は通過させるが、液冷媒の通過は阻
止する干渉手段10を用いたものである。この第4実施
例に示す干渉手段10は、図10に示すように、蒸気上
昇管4の入口(蒸気進入口)に配置された格子で、この
格子は一重あるいは多重配置された金網等よりなる。
(Fourth Embodiment) FIG. 9 is a schematic front view of a boiler 2. In the fourth embodiment, the liquid refrigerant is prevented from entering the vapor rise pipe 4, thereby preventing an increase in pressure loss. As means for preventing the liquid refrigerant from entering the vapor riser pipe 4, an interfering means 10 for passing the vapor refrigerant but preventing the liquid refrigerant from passing is used. The interference means 10 shown in the fourth embodiment is, as shown in FIG. 10, a grid arranged at the inlet (steam entrance) of the steam riser 4, and this grid is made of a single or multiple wire mesh. .

【0026】(第4実施例の効果)この第4実施例で
は、液冷媒が蒸気冷媒とともに蒸気上昇管4内に進入し
ようとしても、液冷媒は干渉手段10によって蒸気上昇
管4への通過が阻止され、蒸気冷媒のみが蒸気上昇管4
内に進入する。このように、蒸気上昇管4内へ液冷媒が
進入しないため、蒸気上昇管4内で液冷媒が溜まらなく
なり、沸騰冷却装置1の高圧側の圧力損失の増加が抑制
される。このため、高圧側と低圧側との圧力差の増加が
抑えられることとなり、沸騰冷却装置1の低圧側の液面
の上昇が抑えられ、凝縮器3内に冷媒の液面が上昇する
不具合がない。この結果、従来の不具合の発生がなく、
常に凝縮器3全体を有効に使用できる。
(Effect of the Fourth Embodiment) In the fourth embodiment, even if the liquid refrigerant tries to enter the vapor riser 4 together with the vapor refrigerant, the liquid refrigerant passes through the vapor riser 4 by the interference means 10. It is blocked, and only the vapor refrigerant
To enter. As described above, since the liquid refrigerant does not enter the vapor riser 4, the liquid refrigerant does not accumulate in the vapor riser 4, and an increase in the pressure loss on the high pressure side of the boiling cooling device 1 is suppressed. Therefore, an increase in the pressure difference between the high-pressure side and the low-pressure side is suppressed, and the rise in the liquid level on the low-pressure side of the boiling cooling device 1 is suppressed. Absent. As a result, there is no occurrence of the conventional problems,
The entire condenser 3 can always be used effectively.

【0027】(第4実施例の変形例、その一)上記の第
4実施例では、干渉手段10の一例として、蒸気上昇管
4の入口に格子を配置した例を示したが、図11に示す
ように、蒸気上昇管4の入口にルーバを用いて液冷媒の
通過を阻止しても良い。
(Modification of Fourth Embodiment, One of the Sames) In the above-described fourth embodiment, an example in which a lattice is arranged at the entrance of the steam riser pipe 4 is shown as an example of the interference means 10, but FIG. As shown, a louver may be used at the entrance of the vapor riser 4 to block the passage of the liquid refrigerant.

【0028】(第4実施例の変形例、その二)上記の第
4実施例では、干渉手段10を蒸気上昇管4の入口に配
置した例を示したが、図12に示すように、沸騰器2の
上部ヘッダ2b内に干渉手段10(格子やルーバ等)を
配置し、液冷媒が蒸気上昇管4に進入するのを防ぐよう
に設けても良い。
(Modification of Fourth Embodiment, Part 2) In the above fourth embodiment, an example was shown in which the interference means 10 was disposed at the inlet of the steam riser pipe 4. However, as shown in FIG. The interference means 10 (a lattice, a louver, or the like) may be arranged in the upper header 2 b of the vessel 2 so as to prevent the liquid refrigerant from entering the vapor riser 4.

【0029】(第5実施例)図13は沸騰冷却装置1の
冷媒回路図である。この第5実施例は、これまでの実施
例のように、圧力損失を抑えることで凝縮器3内に冷媒
の液面が上昇するのを防ぐものではなく、例え圧力損失
が増加しても凝縮器3内に冷媒の液面が上昇するのを防
ぐものである。その手段として、この第5実施例では、
液戻し管5の途中に液冷媒を収容可能な液溜め9を配置
している。この液溜め9は、図14に示すように、所定
量の液冷媒を蓄えることが可能な容器状のものであり、
できるだけ高い位置に設置するのが好ましい。
(Fifth Embodiment) FIG. 13 is a refrigerant circuit diagram of the boiling cooling device 1. The fifth embodiment does not prevent the liquid level of the refrigerant from rising in the condenser 3 by suppressing the pressure loss as in the previous embodiments. This prevents the liquid level of the refrigerant from rising in the vessel 3. As the means, in the fifth embodiment,
A liquid reservoir 9 capable of storing a liquid refrigerant is arranged in the middle of the liquid return pipe 5. As shown in FIG. 14, the liquid reservoir 9 has a container shape capable of storing a predetermined amount of liquid refrigerant.
It is preferable to install as high as possible.

【0030】(第5実施例の効果)この第5実施例で
は、熱負荷の急増等により、沸騰冷却装置1の高圧側の
圧力損失が増加して、低圧側との圧力差が大きくなった
場合、低圧側である液戻し管5内の液面が上昇するよう
に作用する。しかるに、液戻し管5内で増加する液冷媒
は液溜め9によって蓄えられるため、凝縮器3内に冷媒
の液面が上昇する不具合がなく、凝縮器3全体を有効に
使用できる。また、液戻し管5内で増加する液面が液溜
め9に達すると、沸騰器2内の液面が急激に降下し、沸
騰器2内で発生する蒸気量が減少する。このように、液
戻し管5の上部に液溜め9を設けることによって、蒸気
流量の急激な増加を緩和する働きもある。
(Effect of Fifth Embodiment) In the fifth embodiment, the pressure loss on the high pressure side of the boiling cooling device 1 increases due to a sudden increase in heat load and the like, and the pressure difference from the low pressure side increases. In this case, the liquid level in the liquid return pipe 5 on the low pressure side acts to rise. However, since the liquid refrigerant that increases in the liquid return pipe 5 is stored in the liquid reservoir 9, there is no problem that the liquid level of the refrigerant rises in the condenser 3, and the entire condenser 3 can be used effectively. When the liquid level increasing in the liquid return pipe 5 reaches the liquid reservoir 9, the liquid level in the boiler 2 drops rapidly, and the amount of steam generated in the boiler 2 decreases. As described above, the provision of the liquid reservoir 9 above the liquid return pipe 5 also has a function of alleviating a sudden increase in the steam flow rate.

【0031】(第6実施例)図15は沸騰冷却装置1の
正面図である。この第6実施例は、上記の第5実施例と
同様、例え圧力損失が増加しても凝縮器3内に冷媒の液
面が上昇するのを防ぐものである。その手段として、こ
の第6実施例では、沸騰器2の上方の液戻し管5を蛇行
あるいは旋回させ、この蛇行部5a(あるいは旋回部)
に所定量の液冷媒を蓄える液溜めの機能を持たせたもの
である。これによって、上記第5実施例で示した効果を
得ることができる。
(Sixth Embodiment) FIG. 15 is a front view of the boiling cooling device 1. In the sixth embodiment, as in the fifth embodiment, even if the pressure loss increases, the liquid level of the refrigerant in the condenser 3 is prevented from rising. As means therefor, in the sixth embodiment, the liquid return pipe 5 above the boiler 2 is meandered or swirled, and the meandering part 5a (or swirling part) is used.
Has a function of a liquid reservoir for storing a predetermined amount of liquid refrigerant. Thus, the effect shown in the fifth embodiment can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】沸騰冷却装置の冷媒回路図である(第1実施
例)。
FIG. 1 is a refrigerant circuit diagram of a boiling cooling device (first embodiment).

【図2】沸騰冷却装置の冷媒回路図である(第1実施例
の変形例)。
FIG. 2 is a refrigerant circuit diagram of a boiling cooling device (a modification of the first embodiment).

【図3】沸騰冷却装置の冷媒回路図である(第2実施
例)。
FIG. 3 is a refrigerant circuit diagram of a boiling cooling device (second embodiment).

【図4】沸騰冷却装置の冷媒回路図である(第2実施例
の変形例)。
FIG. 4 is a refrigerant circuit diagram of a boiling cooling device (a modification of the second embodiment).

【図5】沸騰冷却装置の冷媒回路図である(第3実施
例)。
FIG. 5 is a refrigerant circuit diagram of a boiling cooling device (third embodiment).

【図6】液溜めの断面図である(第3実施例)。FIG. 6 is a sectional view of a liquid reservoir (third embodiment).

【図7】沸騰冷却装置の冷媒回路図である(第3実施例
の変形例、その一)。
FIG. 7 is a refrigerant circuit diagram of a boiling cooling device (a modified example of the third embodiment, one of them).

【図8】液溜めの断面図である(第3実施例の変形例、
その二)。
FIG. 8 is a sectional view of a liquid reservoir (a modification of the third embodiment,
Part 2).

【図9】沸騰器の概略正面図である(第4実施例)。FIG. 9 is a schematic front view of a boiler (fourth embodiment).

【図10】干渉手段の説明図である(第4実施例)。FIG. 10 is an explanatory view of an interference means (fourth embodiment).

【図11】干渉手段の説明図である(第4実施例の変形
例、その一)。
FIG. 11 is an explanatory view of an interference means (a modification of the fourth embodiment, one of them).

【図12】干渉手段の説明図である(第4実施例の変形
例、その二)。
FIG. 12 is an explanatory view of an interference unit (a second modification of the fourth embodiment).

【図13】沸騰冷却装置の冷媒回路図である(第5実施
例)。
FIG. 13 is a refrigerant circuit diagram of a boiling cooling device (fifth embodiment).

【図14】液溜めの断面図である(第5実施例)。FIG. 14 is a sectional view of a liquid reservoir (fifth embodiment).

【図15】沸騰冷却装置の正面図である(第6実施
例)。
FIG. 15 is a front view of a boiling cooling device (sixth embodiment).

【図16】凝縮器の断面図である(従来技術の説明)。FIG. 16 is a sectional view of a condenser (explanation of the prior art).

【符号の説明】[Explanation of symbols]

1 沸騰冷却装置 2 沸騰器 3 凝縮器 4 蒸気上昇管 4a 屈曲部 5 液戻し管 5a 蛇行部 8 バイパス管 9 液溜め 10 干渉手段 H 最高位置 DESCRIPTION OF SYMBOLS 1 Boiling cooling device 2 Boiler 3 Condenser 4 Steam riser pipe 4a Bent part 5 Liquid return pipe 5a Meandering part 8 Bypass pipe 9 Liquid reservoir 10 Interference means H Maximum position

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】発熱体を収納する筐体内を冷却する沸騰冷
却装置であって、 前記筐体内の内気から受熱して沸騰する液冷媒が封入さ
れた沸騰器と、 この沸騰器で発生した蒸気冷媒を前記筐体外の外気によ
って液化凝縮させる凝縮器と、 前記沸騰器で発生した蒸気を前記凝縮器へ導く蒸気上昇
管と、 前記凝縮器で液化凝縮した液冷媒を前記沸騰器へ戻す液
戻し管と、を備え、 前記蒸気上昇管は、前記沸騰器から最高位置に達するま
での間、90°を超えて屈曲することなく立ち上げられ
たことを特徴とする沸騰冷却装置。
1. A boiling cooling device for cooling an inside of a housing containing a heating element, comprising: a boiler filled with a liquid refrigerant which receives heat from inside air in the housing and boils; and a steam generated by the boiler. A condenser for liquefying and condensing the refrigerant by the outside air outside the housing; a vapor riser for guiding the vapor generated by the boiler to the condenser; and a liquid return for returning the liquid refrigerant liquefied and condensed by the condenser to the boiler. And a pipe, wherein the steam riser is started up without bending more than 90 ° from the boiler until reaching the highest position.
【請求項2】発熱体を収納する筐体内を冷却する沸騰冷
却装置であって、 前記筐体内の内気から受熱して沸騰する液冷媒が封入さ
れた沸騰器と、 この沸騰器で発生した蒸気冷媒を前記筐体外の外気によ
って液化凝縮させる凝縮器と、 前記沸騰器で発生した蒸気を前記凝縮器へ導く蒸気上昇
管と、 前記凝縮器で液化凝縮した液冷媒を前記沸騰器へ戻す液
戻し管と、 前記蒸気上昇管の途中に接続して設けられ、前記蒸気上
昇管内の液冷媒を前記沸騰器へ戻すバイパス管と、を備
えることを特徴とする沸騰冷却装置。
2. A boiling cooling device for cooling an inside of a housing accommodating a heating element, comprising: a boiler filled with a liquid refrigerant which receives heat from inside air in the housing and boils; and steam generated by the boiler. A condenser for liquefying and condensing the refrigerant by the outside air outside the housing; a vapor riser for guiding the vapor generated by the boiler to the condenser; and a liquid return for returning the liquid refrigerant liquefied and condensed by the condenser to the boiler. A boiling cooling device, comprising: a pipe; and a bypass pipe provided in the middle of the vapor riser pipe and returning a liquid refrigerant in the vapor riser pipe to the boiler.
【請求項3】請求項2の沸騰冷却装置において、 前記蒸気上昇管または前記バイパス管には、液冷媒を蓄
える液溜めが配置されたことを特徴とする沸騰冷却装
置。
3. The boiling cooling device according to claim 2, wherein a liquid reservoir for storing a liquid refrigerant is disposed in the vapor riser pipe or the bypass pipe.
【請求項4】請求項2または請求項3の沸騰冷却装置に
おいて、 前記沸騰器あるいは前記液戻し管に接続される前記バイ
パス管は、前記蒸気上昇管より細く設けられたことを特
徴とする沸騰冷却装置。
4. The boiling cooling device according to claim 2, wherein the bypass pipe connected to the boiler or the liquid return pipe is provided to be thinner than the vapor riser pipe. Cooling system.
【請求項5】発熱体を収納する筐体内を冷却する沸騰冷
却装置であって、 前記筐体内の内気から受熱して沸騰する液冷媒が封入さ
れた沸騰器と、 この沸騰器で発生した蒸気冷媒を前記筐体外の外気によ
って液化凝縮させる凝縮器と、 前記沸騰器で発生した蒸気を前記凝縮器へ導く蒸気上昇
管と、 前記凝縮器で液化凝縮した液冷媒を前記沸騰器へ戻す液
戻し管と、 前記沸騰器の蒸気流出口付近に設けられ、液冷媒の通過
を阻止する干渉手段と、を備えることを特徴とする沸騰
冷却装置。
5. A boiling cooling device for cooling an inside of a housing accommodating a heating element, comprising: a boiler filled with a liquid refrigerant which receives heat from inside air in the housing and boils; and a steam generated by the boiler. A condenser for liquefying and condensing the refrigerant by the outside air outside the housing; a vapor riser for guiding the vapor generated by the boiler to the condenser; and a liquid return for returning the liquid refrigerant liquefied and condensed by the condenser to the boiler. A boiling cooling device comprising: a pipe; and an interference unit provided near a vapor outlet of the boiler and configured to prevent passage of a liquid refrigerant.
【請求項6】発熱体を収納する筐体内を冷却する沸騰冷
却装置であって、 前記筐体内の内気から受熱して沸騰する液冷媒が封入さ
れた沸騰器と、 この沸騰器で発生した蒸気冷媒を前記筐体外の外気によ
って液化凝縮させる凝縮器と、 前記沸騰器で発生した蒸気を前記凝縮器へ導く蒸気上昇
管と、 前記凝縮器で液化凝縮した液冷媒を前記沸騰器へ戻す液
戻し管と、 この液戻し管の途中に設けられ、所定量の液冷媒を蓄え
可能な液溜めと、を備えることを特徴とする沸騰冷却装
置。
6. A boiling cooling device for cooling an inside of a housing containing a heating element, comprising: a boiler filled with a liquid refrigerant which receives heat from inside air in the housing and boils; and a steam generated by the boiler. A condenser for liquefying and condensing the refrigerant by the outside air outside the housing; a vapor riser for guiding the vapor generated by the boiler to the condenser; and a liquid return for returning the liquid refrigerant liquefied and condensed by the condenser to the boiler. A boiling cooling device comprising: a pipe; and a liquid reservoir provided in the middle of the liquid return pipe and capable of storing a predetermined amount of liquid refrigerant.
【請求項7】発熱体を収納する筐体内を冷却する沸騰冷
却装置であって、 前記筐体内の内気から受熱して沸騰する液冷媒が封入さ
れた沸騰器と、 この沸騰器で発生した蒸気冷媒を前記筐体外の外気によ
って液化凝縮させる凝縮器と、 前記沸騰器で発生した蒸気を前記凝縮器へ導く蒸気上昇
管と、 前記凝縮器で液化凝縮した液冷媒を前記沸騰器へ戻すと
ともに、蛇行あるいは旋回して所定量の液冷媒を蓄え可
能な液戻し管と、を備えることを特徴とする沸騰冷却装
置。
7. A boiling cooling device for cooling an inside of a housing accommodating a heating element, comprising: a boiler filled with a liquid refrigerant which receives heat from inside air in the housing and boils; and a steam generated by the boiler. A condenser that liquefies and condenses the refrigerant with the outside air outside the housing, a vapor riser that guides the vapor generated by the boiler to the condenser, and returns the liquid refrigerant that has been liquefied and condensed by the condenser to the boiler, And a liquid return pipe capable of storing a predetermined amount of liquid refrigerant by meandering or turning.
JP13826698A 1998-05-20 1998-05-20 Evaporative cooling device Pending JPH11325766A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13826698A JPH11325766A (en) 1998-05-20 1998-05-20 Evaporative cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13826698A JPH11325766A (en) 1998-05-20 1998-05-20 Evaporative cooling device

Publications (1)

Publication Number Publication Date
JPH11325766A true JPH11325766A (en) 1999-11-26

Family

ID=15217921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13826698A Pending JPH11325766A (en) 1998-05-20 1998-05-20 Evaporative cooling device

Country Status (1)

Country Link
JP (1) JPH11325766A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010133640A (en) * 2008-12-04 2010-06-17 Toyota Industries Corp Ebullient cooling device
JP2013113498A (en) * 2011-11-29 2013-06-10 Hitachi Appliances Inc Air conditioner
CN105009022A (en) * 2013-02-26 2015-10-28 日本电气株式会社 Electronic apparatus cooling system and electronic apparatus cooling system fabrication method
JP2016065681A (en) * 2014-09-25 2016-04-28 日本電気株式会社 Cooling device
JP2016164478A (en) * 2015-03-06 2016-09-08 株式会社東芝 Cooling device
WO2018070116A1 (en) * 2016-10-12 2018-04-19 株式会社デンソー Cooling device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010133640A (en) * 2008-12-04 2010-06-17 Toyota Industries Corp Ebullient cooling device
JP2013113498A (en) * 2011-11-29 2013-06-10 Hitachi Appliances Inc Air conditioner
CN105009022A (en) * 2013-02-26 2015-10-28 日本电气株式会社 Electronic apparatus cooling system and electronic apparatus cooling system fabrication method
JPWO2014132592A1 (en) * 2013-02-26 2017-02-02 日本電気株式会社 Electronic device cooling system and method of manufacturing electronic device cooling system
JP2016065681A (en) * 2014-09-25 2016-04-28 日本電気株式会社 Cooling device
JP2016164478A (en) * 2015-03-06 2016-09-08 株式会社東芝 Cooling device
US10845127B2 (en) 2015-03-06 2020-11-24 Kabushiki Kaisha Toshiba Cooling device
WO2018070116A1 (en) * 2016-10-12 2018-04-19 株式会社デンソー Cooling device
JPWO2018070116A1 (en) * 2016-10-12 2019-03-22 株式会社デンソー Cooling system

Similar Documents

Publication Publication Date Title
JP2859927B2 (en) Cooling device and temperature control device
JP4178719B2 (en) Boiling cooler
US6360814B1 (en) Cooling device boiling and condensing refrigerant
KR101917013B1 (en) Refrigerant distribution device and cooling apparatus
JP6137167B2 (en) Cooling device and cooling system
US20070273024A1 (en) Cooling System with a Bubble Pump
US20070163754A1 (en) Thermosiphon having improved efficiency
JP2019523384A (en) Active / passive cooling system
EP0647307A1 (en) Serpentine heat pipe and dehumidification application in air conditioning systems
US5435154A (en) High temperature regenerator of an absorption type hot and cold water generator and absorption type hot and cold water generator
JP2012241976A (en) Loop heat pipe
JP3445941B2 (en) Multi-stage evaporative absorption type absorption chiller / heater and large temperature difference air conditioning system equipped with the same
JP6806086B2 (en) Heat dissipation device, phase change cooling device using it, and heat dissipation method
JP2010010204A (en) Ebullient cooling device
JP2005268658A (en) Boiling cooler
JPH11325766A (en) Evaporative cooling device
JP2011142298A (en) Boiling cooler
JP3906830B2 (en) Natural circulation cooling device and heat exchange method using natural circulation cooling device
KR101116138B1 (en) Cooling system using separated heatpipes
JP5387523B2 (en) Cooling system
JP4930472B2 (en) Cooling system
JP5860728B2 (en) Electronic equipment cooling system
WO2013102974A1 (en) Cooling system
JP7168850B2 (en) Evaporator and cooling system
JPH11325767A (en) Evaporative cooling device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071009

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071106

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080311