JP3906830B2 - Natural circulation cooling device and heat exchange method using natural circulation cooling device - Google Patents

Natural circulation cooling device and heat exchange method using natural circulation cooling device Download PDF

Info

Publication number
JP3906830B2
JP3906830B2 JP2003324347A JP2003324347A JP3906830B2 JP 3906830 B2 JP3906830 B2 JP 3906830B2 JP 2003324347 A JP2003324347 A JP 2003324347A JP 2003324347 A JP2003324347 A JP 2003324347A JP 3906830 B2 JP3906830 B2 JP 3906830B2
Authority
JP
Japan
Prior art keywords
heat exchanger
refrigerant
heat
side heat
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003324347A
Other languages
Japanese (ja)
Other versions
JP2005090852A (en
Inventor
多佳志 岡崎
啓司 野浪
俊成 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2003324347A priority Critical patent/JP3906830B2/en
Publication of JP2005090852A publication Critical patent/JP2005090852A/en
Application granted granted Critical
Publication of JP3906830B2 publication Critical patent/JP3906830B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B23/00Machines, plants or systems, with a single mode of operation not covered by groups F25B1/00 - F25B21/00, e.g. using selective radiation effect
    • F25B23/006Machines, plants or systems, with a single mode of operation not covered by groups F25B1/00 - F25B21/00, e.g. using selective radiation effect boiling cooling systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide

Landscapes

  • Other Air-Conditioning Systems (AREA)

Description

本発明は、使用環境が臨界点付近になりうる冷媒を用い、冷媒の密度変化を利用して自然に冷媒を循環させ、冷熱又は温熱を輸送する熱輸送装置に関するものである。   The present invention relates to a heat transport device that uses a coolant whose use environment may be near a critical point, circulates the coolant naturally using a change in density of the coolant, and transports cold or warm heat.

近年、移動体通信の中継電子機器を納めた通信基地局に代表されるような電子機器の発熱を除去する分野が急速に広がっており、これらの場所では年間を通しての冷却運転が必要となる。このような用途では、冬季、夜間のように外気温度が低い場合には、換気によって冷房することも可能であるが、霧、雨、雪、塵埃の侵入を防ぐ装置が必要となり、しかも外気温度の変動によって室内温度も変動するため安定した冷却が行えない。この様な場合、室内温度と外気温度との温度差を利用し、室内から室外へ冷媒により熱を運ぶ自然循環を利用した熱輸送装置を用いることができる。この自然循環型の熱輸送装置は圧縮機を使用しないため、通常の蒸気圧縮式の冷却装置よりも年間消費電力を大幅に低減することができる。   In recent years, fields for removing heat generated by electronic devices such as communication base stations containing relay electronic devices for mobile communication are rapidly expanding, and cooling operation throughout the year is required in these places. In such applications, if the outside air temperature is low, such as in winter or at night, it is possible to cool it by ventilation, but a device that prevents intrusion of fog, rain, snow, and dust is required, and the outside air temperature As the room temperature also fluctuates due to fluctuations, stable cooling cannot be performed. In such a case, it is possible to use a heat transport device that uses a natural circulation in which heat is transferred from the room to the room by a refrigerant using the temperature difference between the room temperature and the outside air temperature. Since this natural circulation type heat transport device does not use a compressor, the annual power consumption can be greatly reduced as compared with a normal vapor compression type cooling device.

また、近年、地球環境保全の観点から自然冷媒を用いる傾向にあり、特に可燃性の低い二酸化炭素(CO2)を用いることが検討されている。この二酸化炭素は、臨界点である圧力7.3MPa、温度31℃以上になる環境下では、液体とも気体とも異なる超臨界状態となる。 In recent years, natural refrigerants tend to be used from the viewpoint of global environmental protection, and the use of carbon dioxide (CO 2 ), which is particularly low in flammability, has been studied. This carbon dioxide is in a supercritical state different from both liquid and gas in an environment where the critical point is a pressure of 7.3 MPa and the temperature is 31 ° C. or higher.

超臨界状態の二酸化炭素を冷媒として用いた従来の熱輸送装置がある。一般に水などの作動液を封入したヒートパイプでは作動液を循環させる場合に相変化のための潜熱分や作動液の粘性に対抗する大きなエネルギーが必要となる。超臨界状態の二酸化炭素は、密度や熱伝導度が液体と同じような物性値を示す一方、粘度が気体の物性値に近い値を有する。このため、ヒートパイプの内部空間に超臨界状態である二酸化炭素を封入すれば、水などの作動液を封入したヒートパイプに比べ、少ないエネルギーでヒートパイプ内を循環させることができる(例えば、特許文献1参照)。   There is a conventional heat transport device using carbon dioxide in a supercritical state as a refrigerant. In general, in a heat pipe enclosing a hydraulic fluid such as water, a large amount of energy is required to counter the latent heat for phase change and the viscosity of the hydraulic fluid when circulating the hydraulic fluid. Carbon dioxide in a supercritical state has physical properties similar to those of liquids in density and thermal conductivity, but has a viscosity close to that of gas. For this reason, if carbon dioxide, which is in a supercritical state, is enclosed in the internal space of the heat pipe, it can be circulated in the heat pipe with less energy than a heat pipe enclosing a hydraulic fluid such as water (for example, patents) Reference 1).

また、冷媒として二酸化炭素を用い、その封入量を運転時の性能と停止時の耐圧特性を考慮して決定しようとする熱輸送装置もあった(例えば、特許文献2参照)。一般に、二酸化炭素を封入したヒートパイプにおいて、停止状態で環境温度により冷媒温度が31℃を越えた場合、ヒートパイプ内の二酸化炭素が超臨界状態となり、内圧は封入量が多いほど高くなる。このとき、内圧が例えばヒートパイプの端部封止強度等によって決まる耐圧特性よりも高くなると、ヒートパイプは破裂等を起こしてしまう。このため、冷媒の封入量を、熱搬送媒体の性能が極大となると共に、停止状態で冷媒温度が31℃を越えた場合にも内圧がヒートパイプの耐圧以下となるように設定する。具体的には、銅製のパイプを環状に接続し、その肉厚を1.1mm、単位長さ当りの重さを274g/m、環境の最高温度を55℃にしたときに、熱搬送媒体の圧力が10MPaより低い圧力となるように、熱搬送媒体の封入量を300kg/m3以下にしている。 In addition, there has been a heat transport device that uses carbon dioxide as a refrigerant and attempts to determine the amount of the enclosed gas in consideration of the performance during operation and the pressure resistance characteristics when stopped (for example, see Patent Document 2). Generally, in a heat pipe in which carbon dioxide is sealed, when the refrigerant temperature exceeds 31 ° C. due to the environmental temperature in a stopped state, the carbon dioxide in the heat pipe becomes a supercritical state, and the internal pressure increases as the enclosed amount increases. At this time, if the internal pressure becomes higher than the pressure resistance characteristic determined by, for example, the end sealing strength of the heat pipe, the heat pipe will burst or the like. For this reason, the amount of refrigerant enclosed is set so that the performance of the heat transfer medium is maximized and the internal pressure is equal to or lower than the pressure resistance of the heat pipe even when the refrigerant temperature exceeds 31 ° C. in a stopped state. Specifically, when copper pipes are connected in an annular shape, the thickness is 1.1 mm, the weight per unit length is 274 g / m, and the maximum temperature of the environment is 55 ° C. The enclosed amount of the heat transfer medium is set to 300 kg / m 3 or less so that the pressure is lower than 10 MPa.

特開2001−91170号公報(第1頁〜第3頁、図1)JP 2001-91170 A (first to third pages, FIG. 1) 特開2001−91173号公報(第1頁〜第3頁、図1、図2)JP 2001-91173 A (page 1 to page 3, FIGS. 1 and 2)

解決しようとする問題点は、使用環境温度によって冷媒温度が臨界温度以上になると、冷媒は超臨界状態となり、相変化による潜熱がなくなって、冷媒温度が臨界温度より低いときよりも熱伝達率が低下することである。これに対して従来の熱輸送装置では熱交換器の熱交換性能を向上する具体的な構成が全く考慮されていなかった。例えば、直交流で使用されるプレートフィンチューブ型の熱交換器を用い、二酸化炭素を冷媒とし、受熱側を負荷側として所定空間を冷却する場合、冷媒温度が31℃よりも低い温度では気液共存状態(二相状態)となり、フロン系冷媒(例えば、R410AやR22などの冷媒)とほぼ同等の冷却性能を示すが、31℃以上の超臨界状態となる高温域では、潜熱が消失するためにフロン系冷媒に比べて冷却性能が大きく低下する。   The problem to be solved is that when the refrigerant temperature exceeds the critical temperature depending on the use environment temperature, the refrigerant enters a supercritical state, the latent heat due to phase change disappears, and the heat transfer coefficient is higher than when the refrigerant temperature is lower than the critical temperature. It is to decline. On the other hand, in the conventional heat transport device, a specific configuration for improving the heat exchange performance of the heat exchanger has not been considered at all. For example, when a plate fin tube type heat exchanger used in cross flow is used to cool a predetermined space with carbon dioxide as the refrigerant and the heat receiving side as the load side, the gas-liquid is at a temperature lower than 31 ° C. It becomes a coexistence state (two-phase state) and exhibits almost the same cooling performance as a chlorofluorocarbon refrigerant (for example, refrigerants such as R410A and R22), but latent heat disappears in a high temperature region where the temperature becomes 31 ° C. or higher In addition, the cooling performance is greatly reduced as compared with the fluorocarbon refrigerant.

本発明は上記のような従来の課題を解決するためになされたもので、冷媒が超臨界状態となる温度域を含む動作温度で熱輸送を行なう際、臨界点以下の低温域においても、超臨界状態を示す高温域においても、高い冷却性能が得られる熱輸送装置を提供することを目的とする。   The present invention has been made in order to solve the above-described conventional problems. When heat transport is performed at an operating temperature including a temperature range in which the refrigerant is in a supercritical state, the super An object of the present invention is to provide a heat transport device capable of obtaining a high cooling performance even in a high temperature region showing a critical state.

本発明の自然循環型冷却装置は、冷媒出口部が冷媒入口部より上方に設けられたプレートフィンチューブ熱交換器である受熱側熱交換器と、前記受熱側熱交換器よりも上方に配置し、冷媒出口部が冷媒入口部より下方に設けられたプレートフィンチューブ熱交換器である放熱側熱交換器と、前記受熱側熱交換器と前記放熱側熱交換器を環状に接続する配管と、前記配管内に封入され、所定の温度以上で超臨界状態となり、前記受熱側熱交換器及び前記放熱側熱交換器での温度変化による密度変化によって自然に前記配管内を循環する冷媒と、を備え、前記受熱側熱交換器と前記放熱側熱交換器の各々の列方向を略垂直に、段方向を略水平に配置して同一筐体内に内蔵するとともに、前記冷媒が超臨界状態となる温度域で前記受熱側熱交換器で熱交換を行う際、前記受熱側熱交換器内の冷媒と熱交換する被熱交換流体の流れ方向を前記受熱側熱交換器の列方向に沿って重力方向の上方から下方へとし、前記受熱側熱交換器における超臨界状態の冷媒が低温から高温に変化するのに対し、前記被熱交換流体を前記冷媒の高温側から低温側へ流して熱交換するようにしたことを特徴とするものである。 The natural circulation type cooling device of the present invention includes a heat receiving side heat exchanger that is a plate fin tube heat exchanger having a refrigerant outlet portion provided above the refrigerant inlet portion , and a position above the heat receiving side heat exchanger. A heat radiation side heat exchanger that is a plate fin tube heat exchanger provided below the refrigerant inlet portion with the refrigerant outlet portion , and a pipe that connects the heat receiving side heat exchanger and the heat radiation side heat exchanger in an annular shape, A refrigerant that is enclosed in the pipe, becomes a supercritical state at a predetermined temperature or more, and naturally circulates in the pipe due to a density change due to a temperature change in the heat receiving side heat exchanger and the heat radiating side heat exchanger, The heat-receiving-side heat exchanger and the heat-dissipating-side heat exchanger are arranged in substantially the same vertical direction in the row direction and in the horizontal direction in the horizontal direction, and the refrigerant is in a supercritical state. in the heat-receiving side heat exchanger in the temperature range When performing the replacement, and the downward flow direction of the heat exchange fluid exchanges heat with the refrigerant of the heat receiving side in the heat exchanger from above in the gravity direction along the column direction of the heat-receiving-side heat exchanger, the heat-receiving side The supercritical refrigerant in the heat exchanger changes from low temperature to high temperature, whereas the heat exchange fluid flows from the high temperature side to the low temperature side of the refrigerant to exchange heat. is there.

本発明の自然循環型冷却装置は、受熱側熱交換器における冷媒の流れ方向とこの冷媒と熱交換する被熱交換流体の流れ方向とを対向流としたため、冷媒と被熱交換流体との温度差を熱交換器内で平均化でき、環境温度による冷媒温度が超臨界温度以上の高温域になっても熱交換性能の向上を図ることで、全体として熱輸送性能が低下するのを防止できる。 In the natural circulation type cooling device of the present invention, the flow direction of the refrigerant in the heat-receiving-side heat exchanger and the flow direction of the heat exchange fluid that exchanges heat with the refrigerant are counterflows, and therefore the temperature of the refrigerant and the heat exchange fluid The difference can be averaged in the heat exchanger, and even if the refrigerant temperature due to the environmental temperature reaches a high temperature range above the supercritical temperature, the heat exchange performance can be improved to prevent the overall heat transport performance from being lowered. .

実施の形態1.
図1は本発明の実施の形態1に係る熱輸送装置を示す構成図である。図1に示すように、放熱側熱交換器1と受熱側熱交換器2及びそれらを環状に接続する配管3、4から構成され、内部には冷媒として自然冷媒である二酸化炭素が封入されている。放熱側熱交換器1は受熱側熱交換器2よりも上方に配置されている。以下、この熱輸送装置を例えば冷却装置に適用した場合について説明する。冷却装置では、放熱側熱交換器1を熱源側熱交換器とし、受熱側熱交換器2を負荷側熱交換器として、冷却対象空間に配設する。また、環状に接続するための配管は、熱源側熱交換器1から負荷側熱交換器2への冷媒が通る配管を液管3、負荷側熱交換器2から熱源側熱交換器1への冷媒が通る配管をガス配管4と称する。冷媒として封入されている二酸化炭素は、臨界点(臨界温度:約31℃、臨界圧力:7.3MPa)以上で超臨界状態となる。
Embodiment 1 FIG.
FIG. 1 is a configuration diagram showing a heat transport device according to Embodiment 1 of the present invention. As shown in FIG. 1, it is comprised from the heat radiation side heat exchanger 1, the heat receiving side heat exchanger 2, and the piping 3 and 4 which connects them cyclically | annularly, and the carbon dioxide which is a natural refrigerant | coolant is enclosed as a refrigerant | coolant inside. Yes. The heat radiation side heat exchanger 1 is arranged above the heat receiving side heat exchanger 2. Hereinafter, the case where this heat transport apparatus is applied to, for example, a cooling apparatus will be described. In the cooling device, the heat radiation side heat exchanger 1 is a heat source side heat exchanger, and the heat receiving side heat exchanger 2 is a load side heat exchanger, which is arranged in the space to be cooled. In addition, the pipe for annular connection is a pipe through which the refrigerant from the heat source side heat exchanger 1 to the load side heat exchanger 2 passes through the liquid pipe 3 and from the load side heat exchanger 2 to the heat source side heat exchanger 1. A pipe through which the refrigerant passes is referred to as a gas pipe 4. Carbon dioxide sealed as a refrigerant becomes a supercritical state at a critical point (critical temperature: about 31 ° C., critical pressure: 7.3 MPa) or higher.

図1に示す熱交換器1、2の内部では、圧力損失を低減するために冷媒が複数に分岐して流れるような冷媒流路が設けられており、微小高低差でも安定動作が可能である。即ち、熱源側熱交換器1の内部には、ガス配管4から分岐した複数の冷媒流路が設けられ、図1では例えば4本の流入管7及び流出管8が設けられている。また、負荷側熱交換器2も同様に、液配管3から分岐した複数の冷媒流路が設けられ、図1では例えば6本の流入管9及び流出管10が設けられている。   In the heat exchangers 1 and 2 shown in FIG. 1, a refrigerant flow path is provided in which the refrigerant branches and flows in order to reduce pressure loss, and stable operation is possible even with a minute height difference. . That is, a plurality of refrigerant flow paths branched from the gas pipe 4 are provided inside the heat source side heat exchanger 1, and for example, four inflow pipes 7 and outflow pipes 8 are provided in FIG. Similarly, the load-side heat exchanger 2 is provided with a plurality of refrigerant channels branched from the liquid pipe 3, and in FIG. 1, for example, six inflow pipes 9 and outflow pipes 10 are provided.

また、負荷側熱交換器2の冷媒入口部と液配管3との接続部、及び熱源側熱交換器1の冷媒入口部とガス配管4との接続部には、それぞれ逆流防止手段としてU字型トラップ配管5及び逆U字型トラップ配管6が設けられ、冷媒の逆流が防止される。
U字型トラップ配管5は、その最低位置が負荷側熱交換器2の最低位置に対して、例えば20mm以上低く構成される。また、逆U字型トラップ配管6は、その最高位置が熱源側熱交換器1の最高位置に対して、例えば20mm以上高く構成される。
Further, the connection portion between the refrigerant inlet portion of the load side heat exchanger 2 and the liquid pipe 3 and the connection portion between the refrigerant inlet portion of the heat source side heat exchanger 1 and the gas pipe 4 are respectively U-shaped as a backflow prevention means. A mold trap pipe 5 and an inverted U-shaped trap pipe 6 are provided to prevent the refrigerant from flowing backward.
The U-shaped trap pipe 5 is configured such that its lowest position is lower by, for example, 20 mm or more than the lowest position of the load-side heat exchanger 2. Further, the inverted U-shaped trap pipe 6 is configured such that its highest position is, for example, 20 mm or more higher than the highest position of the heat source side heat exchanger 1.

自然循環型の冷却装置では重力及び密度差を利用して冷媒を循環させるため、熱源側熱交換器1は負荷側熱交換器2よりも高所に設置する。熱源側熱交換器1下面と負荷側熱交換器2上面との高低差Hは、例えば数十cm以上になるように設置されている。   In the natural circulation type cooling device, the heat source side heat exchanger 1 is installed at a higher position than the load side heat exchanger 2 because the refrigerant is circulated using the difference in gravity and density. The height difference H between the lower surface of the heat source side heat exchanger 1 and the upper surface of the load side heat exchanger 2 is set to be several tens of cm or more, for example.

また、図1には図示しないが、熱源側熱交換器1には熱源側熱交換器用の送風機が、負荷側熱交換器2には負荷側熱交換器用の送風機が備えられており、熱源側熱交換器1の外表面へ室外空気が、負荷側熱交換器2の外表面へ室内空気が強制的に供給される。このとき、熱源側熱交換器1の外表面へ供給される室外空気の流れ方向は、室外空気入口部51から室外空気出口部52へ流れるように、図1では上から下へ向かう冷媒の流れと対向するように構成する。また、負荷側熱交換器2の外表面へ供給される室内空気の流れ方向も同様に、室内空気入口部53から室内空気出口部54へ流れるように、図1では下から上へ向かう冷媒の流れと対向するように構成する。   Although not shown in FIG. 1, the heat source side heat exchanger 1 is provided with a blower for the heat source side heat exchanger, and the load side heat exchanger 2 is provided with a blower for the load side heat exchanger. Outdoor air is forcibly supplied to the outer surface of the heat exchanger 1 and indoor air is forcibly supplied to the outer surface of the load-side heat exchanger 2. At this time, the flow direction of the outdoor air supplied to the outer surface of the heat source side heat exchanger 1 flows from the top to the bottom in FIG. 1 so that the outdoor air flows from the outdoor air inlet 51 to the outdoor air outlet 52. It is comprised so that it may oppose. Similarly, the flow direction of the indoor air supplied to the outer surface of the load-side heat exchanger 2 also flows from the indoor air inlet portion 53 to the indoor air outlet portion 54 in FIG. Configure to face the flow.

図2は本実施の形態に係る熱源側熱交換器1を示す斜視図である。ここでは熱交換器として例えばプレートフィンチューブ熱交換器を示す。熱源側熱交換器1は、プレートフィン30と流入管7、流出管8などのチューブ(伝熱管)から構成されるプレートフィンチューブ熱交換器であり、列方向が略垂直に、段方向が略水平に配置されている。また、複数、例えば4本の流入管7が入口ヘッダー管11に接続され、さらに複数、例えば4本の流出管8が出口ヘッダー管12に接続される。入口ヘッダー管11を出口ヘッダー管12よりも上方になるように構成することで、流入管7と流出管8を両端とする複数の冷媒流路は、熱源側熱交換器1内を冷媒が重力方向に対して上方から下方に流れるように配置される。   FIG. 2 is a perspective view showing the heat source side heat exchanger 1 according to the present embodiment. Here, for example, a plate fin tube heat exchanger is shown as the heat exchanger. The heat source side heat exchanger 1 is a plate fin tube heat exchanger composed of plate fins 30 and tubes (heat transfer tubes) such as an inflow pipe 7 and an outflow pipe 8, and the row direction is substantially vertical and the step direction is substantially vertical. It is arranged horizontally. A plurality of, for example, four inflow pipes 7 are connected to the inlet header pipe 11, and a plurality of, for example, four outflow pipes 8 are connected to the outlet header pipe 12. By configuring the inlet header pipe 11 to be higher than the outlet header pipe 12, the plurality of refrigerant flow paths having both the inflow pipe 7 and the outflow pipe 8 at both ends have the refrigerant gravity in the heat source side heat exchanger 1. It arrange | positions so that it may flow from upper direction to the downward direction with respect to a direction.

また、入口ヘッダー管11の上方には、冷媒の逆流、特に熱源側熱交換器1内の液冷媒が管端部20に逆流するのを防止する逆流防止手段として、例えば逆U字型トラップ配管6が接続され、管端部20でガス配管4に接続される。一方、出口ヘッダー管12の下方には、冷媒流れ方向に下り勾配を備えた直管が接続され、管端部21で液配管3に接続される。なお、流入管7や流出管8などの伝熱管は例えば6mm〜13mm程度のものが、入口ヘッダー管11、出口ヘッダー管12、液配管3、ガス配管4は例えば7mm〜20mm程度のものが使用される。
また、負荷側熱交換器2も図2に示した熱源側熱交換器1と同様の構成であるが、負荷側熱交換器2の場合にはその内部を冷媒が重力方向に対して下方から上方に流れるように、上下方向を逆に配置すると共に、空気の流れ方向も逆にしたような構成である。即ち、流入管9の上流側には、冷媒の逆流、特に負荷側熱交換器2内のガス冷媒が液配管3に逆流するのを防止する逆流防止手段として、例えばU字型トラップ配管5が接続される。一方、流出管10の下流側は冷媒流れ方向に上り勾配を備えた直管が接続され、管端部でガス配管4に接続される。なお、流入管9や流出管10などの伝熱管は例えば6mm〜13mm程度のものが使用される。
Further, above the inlet header pipe 11, as a backflow prevention means for preventing the reverse flow of the refrigerant, particularly the liquid refrigerant in the heat source side heat exchanger 1 from flowing back to the pipe end portion 20, for example, a reverse U-shaped trap pipe 6 is connected and connected to the gas pipe 4 at the pipe end 20. On the other hand, a straight pipe having a downward gradient in the refrigerant flow direction is connected below the outlet header pipe 12 and connected to the liquid pipe 3 at the pipe end 21. In addition, heat transfer tubes such as the inflow tube 7 and the outflow tube 8 are about 6 mm to 13 mm, for example, and the inlet header tube 11, the outlet header tube 12, the liquid piping 3, and the gas piping 4 are about 7 mm to 20 mm, for example. Is done.
Also, the load side heat exchanger 2 has the same configuration as the heat source side heat exchanger 1 shown in FIG. 2, but in the case of the load side heat exchanger 2, the refrigerant passes through the inside from below in the direction of gravity. The arrangement is such that the vertical direction is reversed and the air flow direction is reversed so as to flow upward. That is, on the upstream side of the inflow pipe 9, for example, a U-shaped trap pipe 5 is provided as a backflow prevention means for preventing the reverse flow of the refrigerant, in particular, the backflow of the gas refrigerant in the load side heat exchanger 2 to the liquid pipe 3. Connected. On the other hand, the downstream side of the outflow pipe 10 is connected to a straight pipe having an upward gradient in the refrigerant flow direction, and connected to the gas pipe 4 at the pipe end. Note that heat transfer tubes such as the inflow tube 9 and the outflow tube 10 are, for example, about 6 mm to 13 mm.

上記のように構成された冷媒自然循環型の冷却装置について、運転動作を以下に説明する。
室内に発熱する電子機器が設置されている場合には、通常は室外温度は室内温度よりも低い温度を示す。そこで、電子機器からの発熱を室内空気よりも低い温度の室外空気を利用して冷却する場合について説明する。このような使用に際し、冷媒が超臨界状態となる温度域である31℃を含む動作温度で熱輸送を行なうことになる。
The operation of the refrigerant natural circulation type cooling apparatus configured as described above will be described below.
When an electronic device that generates heat is installed in a room, the outdoor temperature usually indicates a temperature lower than the room temperature. Therefore, a case where the heat generated from the electronic device is cooled using outdoor air having a temperature lower than that of the indoor air will be described. In such use, heat transport is performed at an operating temperature including 31 ° C., which is a temperature range in which the refrigerant is in a supercritical state.

環境温度により冷媒温度が31℃よりも低い低温域になると、二酸化炭素の動作はガス状態と液状態とで相変化しながら循環する。熱源側熱交換器1で室外空気と熱交換することで凝縮した液冷媒が複数の流出管8より流出し、液配管3を重力によって下降する。液配管3を下降した液冷媒は、U字型トラップ配管5を通って複数の流入管9に分岐され、負荷側熱交換器2に流入する。負荷側熱交換器2で室内空気と熱交換することで蒸発したガス冷媒は、流出管10より流出し、ガス配管4を上昇する。そして逆U字型トラップ配管6を通って複数の流入管7に分岐され、熱源側熱交換器1に戻ることで自然循環サイクルが形成される。熱源側熱交換器1で室外空気に放熱し、負荷側熱交換器2で室内空気から受熱することで室内を冷却している。   When the refrigerant temperature reaches a low temperature range lower than 31 ° C. due to the environmental temperature, the operation of carbon dioxide circulates while changing phase between a gas state and a liquid state. The liquid refrigerant condensed by exchanging heat with the outdoor air in the heat source side heat exchanger 1 flows out from the plurality of outflow pipes 8 and descends the liquid pipe 3 by gravity. The liquid refrigerant descending the liquid pipe 3 is branched into a plurality of inflow pipes 9 through the U-shaped trap pipe 5 and flows into the load side heat exchanger 2. The gas refrigerant evaporated by exchanging heat with the room air in the load side heat exchanger 2 flows out from the outflow pipe 10 and rises in the gas pipe 4. A natural circulation cycle is formed by branching to a plurality of inflow pipes 7 through the inverted U-shaped trap pipe 6 and returning to the heat source side heat exchanger 1. The heat source side heat exchanger 1 radiates heat to the outdoor air, and the load side heat exchanger 2 receives heat from the room air to cool the room.

ここで、冷媒が超臨界状態となる高温域では、凝縮や蒸発が生じないため、熱交換器1、2内では相変化は起こらず、温度変化のみである。即ち、超臨界状態の二酸化炭素は、熱源側熱交換器1で室外空気と熱交換することで温度が低下し、密度が高くなって重くなり液配管3を下降する。そして負荷側熱交換器2に流入し、室内空気と熱交換することで温度が上昇し、密度が低くなって軽くなりガス配管4を上昇する。そして、熱源側熱交換器1に戻ることで自然循環サイクルが形成される。やはり、31℃よりも低い低温域と同様、熱源側熱交換器1で放熱し、負荷側熱交換器2で室内空気から受熱することで室内を冷却している。
超臨界状態による熱輸送では、相変化による熱輸送よりも冷却性能が低下する可能性があるが、本実施の形態では熱交換器1、2内での冷媒の流れ方向及び被熱交換流体である室内空気の流れ方向を考慮し、熱交換性能の向上を図って冷却性能の低下を防止する。
Here, in the high temperature region where the refrigerant is in a supercritical state, condensation and evaporation do not occur, so that no phase change occurs in the heat exchangers 1 and 2 and only a temperature change occurs. That is, the carbon dioxide in the supercritical state undergoes heat exchange with the outdoor air in the heat source side heat exchanger 1, so that the temperature is lowered, the density is increased, and the liquid pipe 3 is lowered. And it flows in into the load side heat exchanger 2, and temperature rises by exchanging heat with room air, a density becomes low and becomes light, and the gas piping 4 goes up. And a natural circulation cycle is formed by returning to the heat source side heat exchanger 1. As in the low temperature region lower than 31 ° C., the heat source side heat exchanger 1 radiates heat and the load side heat exchanger 2 receives heat from room air to cool the room.
In the heat transport in the supercritical state, the cooling performance may be lower than in the heat transport due to the phase change, but in this embodiment, the flow direction of the refrigerant in the heat exchangers 1 and 2 and the heat exchange fluid Considering the flow direction of certain indoor air, the heat exchange performance is improved to prevent the cooling performance from being lowered.

負荷側熱交換器2や熱源側熱交換器1などの熱交換器における冷媒の流れ方向と、冷媒と熱交換する被熱交換流体である空気の流れ方向とを、対向流として構成する。ここで、「対向流」とは、熱交換器1、2内で冷媒の流れ方向と被熱交換流体の流れ方向とがほぼ180°逆である対向流、さらには熱交換器1、2内で局所的にみれば互いに直交していたりするが、全体的な冷媒の流れ方向と全体的な空気の流れ方向が対向流である構成(直交対向流)を含んでいる。例えば、図3(a)に示す流れは、冷媒の流れ(黒矢印)と空気の流れ(白抜き矢印)が全体的な流れとしてみた場合に対向流とすることができる。即ち、冷媒は左右に流れながら全体的に見れば上方から下方に流れており、空気は下方から上方に流れている。このような対向流を擬似対向流と称する。これに対して図3(b)に示す直交並行流は、冷媒の流れ(黒矢印)と空気の流れ(白抜き矢印)が全体的な流れとしてみた場合に並行している並行流とすることができる。これを擬似並行流と称する。図3では空気の流れ(白抜き矢印)を上下方向に垂直に示しているが、多少斜めに傾いた方向であっても、擬似対向流(図3(a))、擬似並行流(図3(b))とすることができる。   The flow direction of the refrigerant in the heat exchanger such as the load side heat exchanger 2 or the heat source side heat exchanger 1 and the flow direction of air that is a heat exchange fluid that exchanges heat with the refrigerant are configured as counterflows. Here, the “counterflow” is a counterflow in which the flow direction of the refrigerant and the flow direction of the heat exchange fluid in the heat exchangers 1 and 2 are approximately 180 ° opposite to each other. However, it includes a configuration in which the overall refrigerant flow direction and the overall air flow direction are counterflows (orthogonal counterflows). For example, the flow shown in FIG. 3A can be a counter flow when the refrigerant flow (black arrow) and the air flow (white arrow) are viewed as an overall flow. That is, the refrigerant flows from the upper side to the lower side when viewed as a whole while flowing left and right, and the air flows from the lower side to the upper side. Such a counter flow is referred to as a pseudo counter flow. On the other hand, the orthogonal parallel flow shown in FIG. 3B is a parallel flow that is parallel when the refrigerant flow (black arrow) and the air flow (white arrow) are viewed as an overall flow. Can do. This is called pseudo parallel flow. In FIG. 3, the air flow (the white arrow) is shown vertically in the vertical direction, but the pseudo counter flow (FIG. 3A) and the pseudo parallel flow (FIG. 3) even in a slightly inclined direction. (B)).

熱交換器1、2の伝熱管内の冷媒の流れと空気の流れ方向が、図3(a)に示したような擬似対向流と、図3(b)で示したような擬似並行流とで構成した冷媒自然循環の冷却装置を試作し、フロン系のHFC混合冷媒であるR410Aと二酸化炭素(CO2)をそれぞれ封入して性能比較を実施した結果を図4に示す。図4は、負荷側熱交換器2と熱源側熱交換器1との間の高低差を約0.3m、室内と室外の吸込空気の温度差を10degで一定、封入冷媒量を一定の条件で、室内温度を上昇させた場合の室内温度(℃)に対する冷却性能(W/K)の関係を示すグラフである。図4において、●はCO2の対向流での実験結果を示し、▲はCO2の並行流での実験結果を示し、○はR410Aの並行流での実験結果を示す。 The refrigerant flow and the air flow direction in the heat transfer tubes of the heat exchangers 1 and 2 are a pseudo counter flow as shown in FIG. 3 (a) and a pseudo parallel flow as shown in FIG. 3 (b). FIG. 4 shows a result of performance comparison of a refrigerant natural circulation cooling device constructed by the above-described method, in which R410A, which is a chlorofluorocarbon-based HFC mixed refrigerant, and carbon dioxide (CO 2 ) are enclosed. FIG. 4 shows a condition in which the height difference between the load side heat exchanger 2 and the heat source side heat exchanger 1 is about 0.3 m, the temperature difference between the intake air in the room and the outside is constant at 10 deg, and the amount of enclosed refrigerant is constant. FIG. 5 is a graph showing the relationship of the cooling performance (W / K) to the room temperature (° C.) when the room temperature is raised. In FIG. 4, ● represents the experimental results for counter flow of CO 2, ▲ shows the experimental results of the parallel flow of CO 2, ○ shows the results of experiments in a parallel flow of R410A.

図4に示した結果に基づいて、並行流のCO2とR410Aで比較すると、室内温度が30℃以下で低温の場合、CO2はR410Aより若干高い程度の冷却性能を示すが、例えば40℃以上に室内温度が高くなると、CO2はR410Aに比べて冷却性能が大きく低下する。これは、環境温度により冷媒温度が31℃以上になると、CO2は超臨界状態となり、気液の相変化、即ち蒸発(沸騰)や凝縮が生じないため、熱伝達率がR410Aに比べて低下するからであると考えられる。 Based on the results shown in FIG. 4, when CO 2 in parallel flow and R410A are compared, when the room temperature is 30 ° C. or lower and the temperature is low, CO 2 shows a slightly higher cooling performance than R410A. As described above, when the room temperature is increased, the cooling performance of CO 2 is greatly reduced as compared with R410A. This is because when the refrigerant temperature becomes 31 ° C. or higher due to the environmental temperature, CO 2 becomes a supercritical state, and gas-liquid phase change, that is, evaporation (boiling) or condensation does not occur, so the heat transfer coefficient is lower than R410A. It is thought that it is because it does.

さらに、空気と冷媒を並行流とした構成では、負荷側熱交換器2及び熱源側熱交換器1の出口側で空気と冷媒との温度差が小さくなり、熱交換効率が低下することに加え、熱交換性能が低下してしまう。図5は例えば負荷側熱交換器2内において、冷媒入口側から冷媒出口側までの空気31と冷媒33の温度変化を示す説明図である。室内空気と冷媒を並行流とした構成では、負荷側熱交換器2における冷媒が冷媒入口側から冷媒出口側へ向かって低温から高温に変化するのに対し、高温の室内空気も冷媒入口側から冷媒出口側へ流れることになる。従って冷媒入口側では大きな温度差が得られるため、ある程度の熱交換性能が得られるが、冷媒出口側に近づくにつれて図5に示すように温度差が小さくなり、熱交換性能は低下していく。熱源側熱交換器1についても同様である。   Furthermore, in the configuration in which the air and the refrigerant are in parallel flow, the temperature difference between the air and the refrigerant is reduced on the outlet side of the load side heat exchanger 2 and the heat source side heat exchanger 1, and the heat exchange efficiency is reduced. The heat exchange performance will be reduced. FIG. 5 is an explanatory diagram showing temperature changes of the air 31 and the refrigerant 33 from the refrigerant inlet side to the refrigerant outlet side in the load side heat exchanger 2, for example. In the configuration in which the indoor air and the refrigerant are in parallel flow, the refrigerant in the load-side heat exchanger 2 changes from the low temperature to the high temperature from the refrigerant inlet side to the refrigerant outlet side, whereas the high temperature indoor air also flows from the refrigerant inlet side. It will flow to the refrigerant outlet side. Accordingly, since a large temperature difference is obtained on the refrigerant inlet side, a certain degree of heat exchange performance can be obtained. However, as the temperature approaches the refrigerant outlet side, the temperature difference decreases as shown in FIG. 5, and the heat exchange performance decreases. The same applies to the heat source side heat exchanger 1.

これに対し、図4に示したCO2の対向流の実験結果では、R410Aに対する冷却性能の低下割合が小さく抑えられている。これは、空気の流れ方向と冷媒の流れ方向を対向流とした構成では、熱交換器1、2内の空気と冷媒との温度差を熱交換器全域に渡って平均的に大きくとることができるためである。
なお、対向流の構成でR410Aを封入した場合、熱交換器1、2内では相変化が生じており入口と出口の冷媒温度はほとんど変化しないため、図4の○で示した並行流の実験結果と同様の結果となる。
On the other hand, in the experimental result of the counterflow of CO 2 shown in FIG. 4, the rate of decrease in the cooling performance with respect to R410A is kept small. This is because, in a configuration in which the air flow direction and the refrigerant flow direction are opposite flows, the temperature difference between the air and the refrigerant in the heat exchangers 1 and 2 can be increased on an average over the entire heat exchanger. This is because it can.
In addition, when R410A is enclosed in a counterflow configuration, a phase change occurs in the heat exchangers 1 and 2 and the refrigerant temperature at the inlet and the outlet hardly changes. Therefore, the parallel flow experiment indicated by ○ in FIG. The result is similar to the result.

図6は、CO2が超臨界状態となる環境温度で、冷媒としてCO2とR410Aを封入した場合、熱交換器の冷媒の出入口における空気温度と冷媒温度の変化を比較して示す説明図である。図6(a)は負荷側熱交換器2内での温度変化を示し、図6(b)は熱源側熱交換器1内での温度変化を示す。この熱交換器1、2は共に対向流で構成し、室内の吸込空気の温度を50℃、室外の吸込空気の温度を40℃とした条件で、冷媒自然循環運転を行なった。図において、熱交換器の冷媒入口からの無次元距離を横軸とし、冷媒温度及び空気温度を縦軸とし、●はCO2の実験結果を、○はR410Aの実験結果を示す。温度計測位置は冷媒の入口付近、中央付近、出口付近の3箇所とした。また、実線矢印で空気の温度変化を示す。 FIG. 6 is an explanatory diagram showing a comparison between changes in the air temperature and the refrigerant temperature at the refrigerant inlet / outlet of the heat exchanger when CO 2 and R410A are enclosed as refrigerant at an environmental temperature at which CO 2 is in a supercritical state. is there. 6A shows the temperature change in the load-side heat exchanger 2, and FIG. 6B shows the temperature change in the heat source-side heat exchanger 1. FIG. The heat exchangers 1 and 2 are both configured in a counterflow, and the refrigerant natural circulation operation is performed under the condition that the temperature of the indoor intake air is 50 ° C. and the temperature of the outdoor intake air is 40 ° C. In the figure, the abscissa represents the dimensionless distance from the refrigerant inlet of the heat exchanger, the ordinate represents the refrigerant temperature and the air temperature, ● represents the CO 2 experimental result, and ◯ represents the R410A experimental result. There were three temperature measurement positions near the refrigerant inlet, near the center, and near the outlet. Moreover, the temperature change of air is shown with a solid line arrow.

冷媒がR410Aの場合、二相域が存在するため熱交換器1、2内で冷媒温度がほぼ一定で変化し、冷媒の入口側(空気の出口側)で空気との温度差が小さくなっている。これに対し、冷媒がCO2の場合、実験条件の環境温度ではCO2は超臨界状態となるため熱交換器1、2内で相変化が起こらず、熱交換器1、2内の出口側と入口側とでは5〜6deg程度の温度変化(△T)が生じ、熱交換器全域に渡って空気と冷媒とで平均的に大きな温度差が得られている。 When the refrigerant is R410A, since the two-phase region exists, the refrigerant temperature changes almost constant in the heat exchangers 1 and 2, and the temperature difference from the air becomes small on the refrigerant inlet side (air outlet side). Yes. On the other hand, when the refrigerant is CO 2 , CO 2 is in a supercritical state at the environmental temperature of the experimental condition, so that no phase change occurs in the heat exchangers 1 and 2, and the outlet side in the heat exchangers 1 and 2 On the inlet side and on the inlet side, a temperature change (ΔT) of about 5 to 6 deg occurs, and an average large temperature difference is obtained between the air and the refrigerant over the entire heat exchanger.

本実施の形態では、このような温度変化を考慮し、図1及び図2で示したように、熱源側熱交換器1及び負荷側熱交換器2において空気と冷媒の流れ方向を対向流とする構成したので、超臨界状態で熱交換性能の向上を図り、冷却性能の低下を防止できた。熱源側熱交換器1及び負荷側熱交換器2において空気と冷媒の流れ方向を対向流とした場合、熱交換器1、2内での冷媒温度と空気温度の変化を図7に示す。図7において、31は室内空気温度、32は室外空気温度、33は負荷側熱交換器2内の冷媒温度、34は熱源側熱交換器1内の冷媒温度である。
このように空気と冷媒の流れを対向流とすることで、超臨界状態の冷媒が低温から高温に変化するのに対し、被熱交換流体である空気は冷媒の高温側から低温側へ流れて熱交換する。このため、熱源側熱交換器1内で室外空気と冷媒との温度差ΔTc、及び負荷側熱交換器2内で室内空気と冷媒との温度差ΔTeを平均的に大きくとることができる。熱交換器全体にわたって温度差を平均的に大きくとることは、熱交換性能の向上につながり、冷却能力を増加することができる。
In the present embodiment, in consideration of such a temperature change, as shown in FIGS. 1 and 2, in the heat source side heat exchanger 1 and the load side heat exchanger 2, the flow direction of the air and the refrigerant is changed to the counter flow. As a result, the heat exchange performance was improved in the supercritical state, and the cooling performance was prevented from being lowered. FIG. 7 shows changes in the refrigerant temperature and the air temperature in the heat exchangers 1 and 2 when the air and refrigerant flow directions are opposed in the heat source side heat exchanger 1 and the load side heat exchanger 2. In FIG. 7, 31 is the indoor air temperature, 32 is the outdoor air temperature, 33 is the refrigerant temperature in the load-side heat exchanger 2, and 34 is the refrigerant temperature in the heat source-side heat exchanger 1.
In this way, by making the flow of air and refrigerant countercurrent, the refrigerant in the supercritical state changes from low temperature to high temperature, whereas air as the heat exchange fluid flows from the high temperature side to the low temperature side of the refrigerant. Exchange heat. For this reason, the temperature difference ΔTc between the outdoor air and the refrigerant in the heat source side heat exchanger 1 and the temperature difference ΔTe between the indoor air and the refrigerant in the load side heat exchanger 2 can be increased on average. Taking an average large temperature difference over the entire heat exchanger leads to an improvement in heat exchange performance and can increase the cooling capacity.

熱源側熱交換器1及び負荷側熱交換器2、特に負荷側熱交換器2で温度変化が生じるのは、冷媒として使用環境温度で超臨界状態になる流体を用いる冷媒自然循環型の熱輸送装置に特有の現象である。圧縮機を用いる蒸気圧縮式空気調和機では負荷側熱交換器2で蒸発潜熱を利用するので、熱源側熱交換器1内のみでしか温度変化が生じない。従って、冷媒と空気の流れを対向流とした場合の冷却性能の向上効果は、蒸気圧縮式空気調和機に比べて冷媒自然循環型の熱輸送装置で大きくなる。
冷却性能を向上することで、装置の小型化を図ることもできる。
The temperature change occurs in the heat source side heat exchanger 1 and the load side heat exchanger 2, particularly the load side heat exchanger 2, because the refrigerant is in a natural circulation type heat transport using a fluid that becomes a supercritical state at the use environment temperature. This phenomenon is unique to the device. In a vapor compression type air conditioner using a compressor, the load side heat exchanger 2 uses latent heat of vaporization, so that a temperature change occurs only in the heat source side heat exchanger 1. Therefore, the effect of improving the cooling performance when the refrigerant and air flows are opposed to each other is greater in the refrigerant natural circulation type heat transport device than in the vapor compression type air conditioner.
By improving the cooling performance, the apparatus can be reduced in size.

図1に示した冷却装置において、熱源側熱交換器1及び負荷側熱交換器2共に冷媒と空気の流れ方向を対向流としたが、少なくとも負荷側熱交換器2で対向流にすることで、ある程度の冷却能力を増加できる効果を奏する。   In the cooling device shown in FIG. 1, both the heat source side heat exchanger 1 and the load side heat exchanger 2 have a counterflow in the flow direction of the refrigerant and air. It has the effect of increasing the cooling capacity to some extent.

さらに、熱源側熱交換器1内の冷媒が重力方向に対して上方から下方へ流れるように冷媒流路を構成したため、冷媒として二酸化炭素を用いた場合、臨界点以下の環境下では、熱源側熱交換器1内で凝縮した液冷媒が重力によってスムーズに下方向に流下し、熱源側熱交換器1内での冷媒の逆流を防止することができる。また、臨界点以上でも冷媒の温度が低下することで密度が増加するので、重力によってスムーズに下方向に流下する構成となり、熱源側熱交換器1内での冷媒の逆流を防止することができる。   Furthermore, since the refrigerant flow path is configured so that the refrigerant in the heat source side heat exchanger 1 flows from the upper side to the lower side with respect to the direction of gravity, when carbon dioxide is used as the refrigerant, in the environment below the critical point, the heat source side The liquid refrigerant condensed in the heat exchanger 1 flows smoothly downward due to gravity, and the reverse flow of the refrigerant in the heat source side heat exchanger 1 can be prevented. Further, since the density increases as the temperature of the refrigerant decreases even at a critical point or higher, it is configured to smoothly flow downward due to gravity, and the reverse flow of the refrigerant in the heat source side heat exchanger 1 can be prevented. .

また、負荷側熱交換器2内の冷媒が重力方向に対して下方から上方へ流れるように冷媒流路を構成したため、冷媒として二酸化炭素を用いた場合、臨界点以下の環境下では、負荷側熱交換器2内で蒸発したガス冷媒がスムーズに上方向に流動し、負荷側熱交換器2内での冷媒の逆流を防止することができる。また、臨界点以上でも冷媒の温度が上昇することで密度が低下するので、スムーズに上方向に流動する構成となり、負荷側熱交換器2内での冷媒の逆流を防止することができる。   In addition, since the refrigerant flow path is configured so that the refrigerant in the load-side heat exchanger 2 flows from below to above in the direction of gravity, when carbon dioxide is used as the refrigerant, The gas refrigerant evaporated in the heat exchanger 2 can smoothly flow upward, and the reverse flow of the refrigerant in the load side heat exchanger 2 can be prevented. Further, since the density decreases as the temperature of the refrigerant rises even above the critical point, the refrigerant flows smoothly upward, and the reverse flow of the refrigerant in the load-side heat exchanger 2 can be prevented.

上記では、負荷側熱交換器2及び熱源側熱交換器1として、例えばプレートフィンチューブ型熱交換器を用いた例を示したが、図8(a)に示すように水やブラインなどの液体と冷媒との熱交換を行うプレート熱交換器や、図8(b)に示すように二重管式熱交換器を用いることもできる。これらの場合には、冷媒と被熱交換流体とをほぼ完全な対向流となるように構成することができる。
また、負荷側熱交換器2内で冷媒と熱交換する流体は、室内空気に限るものではなく、水やブラインなどの液体であってもよい。冷媒と液体の熱交換においても流れ方向を対向流になるように構成することで、熱交換性能を向上することができる。
もちろん、熱源側熱交換器1と負荷側熱交換器2とが同じタイプの熱交換器である必要はない。
In the above, an example in which a plate fin tube type heat exchanger, for example, is used as the load side heat exchanger 2 and the heat source side heat exchanger 1 is shown. However, as shown in FIG. It is also possible to use a plate heat exchanger that exchanges heat with the refrigerant, or a double-pipe heat exchanger as shown in FIG. In these cases, the refrigerant and the heat exchange fluid can be configured to have a substantially complete counter flow.
Further, the fluid that exchanges heat with the refrigerant in the load-side heat exchanger 2 is not limited to room air, and may be a liquid such as water or brine. In the heat exchange between the refrigerant and the liquid, the heat exchange performance can be improved by configuring the flow direction to be an opposite flow.
Of course, the heat source side heat exchanger 1 and the load side heat exchanger 2 do not have to be the same type of heat exchanger.

また、負荷側熱交換器2及び熱源側熱交換器1の冷媒流路は、分岐した複数の冷媒流路を有するため、圧力損失が小さく微小高低差でも安定動作可能な冷媒自然循環型の冷却装置を提供することができる。本実施の形態では負荷側熱交換器2及び熱源側熱交換器1の両方の冷媒流路を、分岐した複数の冷媒流路で構成したが、少なくともどちらか一方の冷媒流路を複数の冷媒流路に分岐して構成すれば、ある程度効果を奏することができる。
なお、複数の冷媒流路の数は上記実施の形態に限るものではない。
In addition, since the refrigerant flow paths of the load side heat exchanger 2 and the heat source side heat exchanger 1 have a plurality of branched refrigerant flow paths, the refrigerant is a natural circulation type cooling that has a small pressure loss and can be stably operated even with a minute height difference. An apparatus can be provided. In the present embodiment, both the refrigerant flow paths of the load-side heat exchanger 2 and the heat source-side heat exchanger 1 are configured by a plurality of branched refrigerant flow paths, but at least one of the refrigerant flow paths is a plurality of refrigerant flow paths. If it is configured to be branched into the flow path, it can be effective to some extent.
Note that the number of the plurality of refrigerant channels is not limited to the above embodiment.

また、負荷側熱交換器2の冷媒入口部と液配管3との接続部、及び熱源側熱交換器1の冷媒入口部とガス配管4との接続部に冷媒の逆流を防止する逆流防止手段としてU字型トラップ配管5及び逆U字型トラップ配管6を設けたため、自然循環している冷媒の逆流を防止することができる。
なお、U字型トラップ配管5及び逆U字型トラップ配管6は、冷媒の逆流を防止できればよく、上記の大きさに限るものではない。負荷側熱交換器2内のガス冷媒が液配管3に流入するのを防止するには、冷媒がガス化する可能性のある部分よりも上流側に、ガス冷媒が液配管3に逆流するのを阻止するような流路や部材を設ければよい。同様に熱源側熱交換器1内の液冷媒がガス配管4に流入するのを防止するには、冷媒が液化する可能性のある部分よりも上流側に、液冷媒がガス配管4に逆流するのを阻止するような流路や部材を設ければよい。例えばトラップ配管5、6は、最低作動圧力差の非常に小さな逆止弁などを用いることもできる。
また、必ず両方の逆流防止手段5、6が必要ではなく、どちらか一方に設けたり、または逆流が起こらないような構成の場合には設けなくてもよい。例えば図1に示すように、冷媒の流れを熱源側熱交換器1では上方から下方へ、負荷側熱交換器2では下方から上方へというように構成すれば、冷媒の逆流をある程度防ぐことができる。
In addition, backflow prevention means for preventing backflow of the refrigerant at the connection portion between the refrigerant inlet portion of the load side heat exchanger 2 and the liquid pipe 3 and the connection portion between the refrigerant inlet portion of the heat source side heat exchanger 1 and the gas pipe 4. Since the U-shaped trap pipe 5 and the reverse U-shaped trap pipe 6 are provided, it is possible to prevent the backflow of the naturally circulating refrigerant.
Note that the U-shaped trap pipe 5 and the reverse U-shaped trap pipe 6 are not limited to the above-described sizes, as long as they can prevent the refrigerant from flowing backward. In order to prevent the gas refrigerant in the load side heat exchanger 2 from flowing into the liquid pipe 3, the gas refrigerant flows back into the liquid pipe 3 upstream of the portion where the refrigerant may be gasified. What is necessary is just to provide the flow path and member which prevent this. Similarly, in order to prevent the liquid refrigerant in the heat source side heat exchanger 1 from flowing into the gas pipe 4, the liquid refrigerant flows back to the gas pipe 4 upstream of the portion where the refrigerant may be liquefied. What is necessary is just to provide the flow path and member which prevent this. For example, the trap pipes 5 and 6 can use check valves having a very small minimum operating pressure difference.
In addition, both of the backflow prevention means 5 and 6 are not necessarily required, and may not be provided in one of them or in a configuration in which backflow does not occur. For example, as shown in FIG. 1, if the flow of the refrigerant is configured from the upper side to the lower side in the heat source side heat exchanger 1 and from the lower side to the upper side in the load side heat exchanger 2, the reverse flow of the refrigerant can be prevented to some extent. it can.

以下、実際に通信基地局などへ設置される熱輸送装置として、コンパクトな構成の冷媒自然循環型冷却装置について説明する。図9は、本実施の形態に係る冷媒自然循環型冷却装置を示す構成図である。この冷却装置は、通信基地局などの筐体壁40に取り付けられ、負荷側熱交換器2及び熱源側熱交換器1が同一筐体内に内蔵される一体構造の冷却装置である。図において、41は室外送風機、42は室内送風機、43は室内外の仕切板、44は室外空気吸込口、45は室外空気吹出口、46は室内空気吸込口、47は室内空気吹出口を示す。熱交換器1、2、配管3、4内には冷媒として二酸化炭素が封入されている。図1と同様の構成については同一符号を付し、詳細な説明を省略する。   Hereinafter, a refrigerant natural circulation type cooling device having a compact configuration will be described as a heat transport device actually installed in a communication base station or the like. FIG. 9 is a configuration diagram showing the refrigerant natural circulation type cooling device according to the present embodiment. This cooling device is an integrated cooling device that is attached to a housing wall 40 such as a communication base station and in which the load side heat exchanger 2 and the heat source side heat exchanger 1 are built in the same housing. In the figure, 41 is an outdoor fan, 42 is an indoor fan, 43 is an indoor / outdoor partition plate, 44 is an outdoor air inlet, 45 is an outdoor air outlet, 46 is an indoor air inlet, and 47 is an indoor air outlet. . Carbon dioxide is sealed in the heat exchangers 1 and 2 and the pipes 3 and 4 as a refrigerant. The same components as those in FIG. 1 are denoted by the same reference numerals, and detailed description thereof is omitted.

以下、図9に示した二酸化炭素を冷媒とする冷媒自然循環型冷却装置について、使用環境での冷媒温度が臨界点以下の場合、即ち環境温度での冷媒温度が31℃よりも低い低温域での動作を説明する。熱源側熱交換器1内において冷媒は、室外送風機41によって室外空気吸込口44から吸込まれた室外空気へ放熱し、自らは凝縮して液化する。このとき、冷媒から凝縮潜熱を受けて温度の上昇した室外空気は室外空気吹出口45から外気へ吹出される。一方、熱源側熱交換器1で液化した冷媒は、液配管3を下降して負荷側熱交換器2に流入する。負荷側熱交換器2内において冷媒は、室内送風機42によって室内空気吸込口46から吸込まれた室内空気から受熱し、自らは蒸発して気化する。このとき、冷媒に蒸発潜熱を奪われ温度の低下した室内空気は室内空気吹出口47から室内へ吹出され、室内を冷却する。一方、負荷側熱交換器2で気化した冷媒は、ガス配管4を上昇し熱源側熱交換器1に再び戻ることで冷媒自然循環のサイクルが形成される。   Hereinafter, in the refrigerant natural circulation type cooling apparatus using carbon dioxide as the refrigerant shown in FIG. 9, when the refrigerant temperature in the usage environment is lower than the critical point, that is, in the low temperature range where the refrigerant temperature at the environmental temperature is lower than 31 ° C. The operation of will be described. In the heat source side heat exchanger 1, the refrigerant dissipates heat to the outdoor air sucked from the outdoor air suction port 44 by the outdoor blower 41, and condenses and liquefies itself. At this time, outdoor air whose temperature has increased due to condensation latent heat from the refrigerant is blown out from the outdoor air outlet 45 to the outside air. On the other hand, the refrigerant liquefied in the heat source side heat exchanger 1 descends the liquid pipe 3 and flows into the load side heat exchanger 2. In the load-side heat exchanger 2, the refrigerant receives heat from the indoor air sucked from the indoor air suction port 46 by the indoor blower 42 and evaporates itself. At this time, the room air whose temperature has been lowered due to the latent heat of vaporization being removed by the refrigerant is blown into the room from the room air outlet 47 to cool the room. On the other hand, the refrigerant vaporized in the load-side heat exchanger 2 moves up the gas pipe 4 and returns to the heat source-side heat exchanger 1 to form a refrigerant natural circulation cycle.

また、使用環境での冷媒温度が臨界点以上、即ち環境温度での冷媒温度が31℃以上の場合の動作は次の様である。
熱源側熱交換器1で冷媒は凝縮せずに低温の室外空気と熱交換して温度が下降する。また、負荷側熱交換器2では冷媒は蒸発せずに高温の室内空気と熱交換して温度が上昇する。冷媒は温度変化に応じて密度が変化し、やはり熱源側熱交換器1と、これよりも低い位置に設けられている負荷側熱交換器2間を循環して、冷媒自然循環のサイクルが形成される。冷媒が相変化する場合と同様、室内空気吸入口46から取り込まれた室内空気は、負荷側熱交換器2内で冷媒と熱交換して冷却され、室内空気吹出口47から室内へ吹き出されることで、室内の冷却が行なわれる。
The operation when the refrigerant temperature in the use environment is higher than the critical point, that is, the refrigerant temperature at the environmental temperature is 31 ° C. or higher is as follows.
In the heat source side heat exchanger 1, the refrigerant does not condense and exchanges heat with low-temperature outdoor air, and the temperature drops. Moreover, in the load side heat exchanger 2, the refrigerant does not evaporate and heat is exchanged with hot indoor air, and the temperature rises. The density of the refrigerant changes according to the temperature change, and the refrigerant circulates between the heat source side heat exchanger 1 and the load side heat exchanger 2 provided at a lower position to form a refrigerant natural circulation cycle. Is done. As in the case of the phase change of the refrigerant, the indoor air taken in from the indoor air inlet 46 is cooled by exchanging heat with the refrigerant in the load-side heat exchanger 2 and blown out from the indoor air outlet 47 into the room. Thus, the room is cooled.

図9に示した熱源側熱交換器1及び負荷側熱交換器2内では冷媒と空気の流れは対向流となっている。即ち、熱源側熱交換器1内では冷媒が重力方向に対して上方から下方へ、空気は下方から上方へと流れ、負荷側熱交換器2内では冷媒が重力方向に対して下方から上方へ、空気が上方から下方へと流れる。
このため、図7に示すように熱交換器1、2の全体に渡って冷媒と空気の温度差を平均的に大きくとることができ、冷媒が相変化による潜熱が期待できない超臨界状態においても、熱交換性能の向上を図ることで、冷却性能の低下を防止できる。
In the heat source side heat exchanger 1 and the load side heat exchanger 2 shown in FIG. 9, the refrigerant and air flows in opposite directions. That is, in the heat source side heat exchanger 1, the refrigerant flows from the upper side to the lower side with respect to the direction of gravity, and the air flows from the lower side to the upper side. In the load side heat exchanger 2, the refrigerant flows from the lower side to the upper side with respect to the direction of gravity. Air flows from top to bottom.
For this reason, as shown in FIG. 7, the temperature difference between the refrigerant and the air can be increased on the average over the entire heat exchangers 1 and 2, and the refrigerant can be in a supercritical state where latent heat due to phase change cannot be expected. By improving the heat exchange performance, it is possible to prevent a decrease in cooling performance.

このように、通信基地局などの筐体壁に取り付けられる一体構造の冷媒自然循環型冷却装置において、冷媒として二酸化炭素を用いると共に、負荷側熱交換器2及び熱源側熱交換器1における冷媒と空気の流れ方向を対向流になるように構成することにより、冷媒が超臨界状態となる場合にも熱交換性能の向上を図って、冷却性能を保持し、信頼性を向上できる。   In this way, in the integrated refrigerant natural circulation type cooling device attached to a housing wall such as a communication base station, carbon dioxide is used as the refrigerant, and the refrigerant in the load side heat exchanger 2 and the heat source side heat exchanger 1 By configuring the air flow direction to be a counter flow, the heat exchange performance can be improved even when the refrigerant is in a supercritical state, the cooling performance can be maintained, and the reliability can be improved.

なお、上記実施の形態では、自然循環型の熱輸送装置の受熱側熱交換器を負荷側として冷却装置として用いる場合について説明したが、放熱側熱交換器を負荷側とすれば加熱装置として用いることもできる。
また、超臨界状態を示す冷媒として二酸化炭素について説明したが、冷媒が超臨界状態となる温度域を含む動作温度で運転される場合に適用すれば、同様の効果を奏することができる。
In the above embodiment, the case where the heat receiving side heat exchanger of the natural circulation type heat transport device is used as a cooling device on the load side has been described. However, if the heat radiation side heat exchanger is on the load side, it is used as a heating device. You can also.
Further, although carbon dioxide has been described as a refrigerant exhibiting a supercritical state, the same effect can be achieved when applied to a case where the refrigerant is operated at an operating temperature including a temperature range where the refrigerant is in a supercritical state.

以上のように、負荷側熱交換器、熱源側熱交換器、及びそれらを接続するガス配管、液配管を環状に接続してなる冷媒自然循環型の冷却装置において、冷媒として二酸化炭素を用いると共に、負荷側熱交換器における冷媒と空気の流れ方向を対向流として使用したため、超臨界流体を用いた場合にも冷却性能の低下が小さい冷媒自然循環型の冷却装置を提供することができる。   As described above, in the refrigerant natural circulation type cooling device in which the load side heat exchanger, the heat source side heat exchanger, and the gas pipe and the liquid pipe connecting them are connected in an annular shape, carbon dioxide is used as the refrigerant. Since the flow direction of the refrigerant and air in the load-side heat exchanger is used as a counter flow, it is possible to provide a refrigerant natural circulation type cooling device in which a decrease in cooling performance is small even when a supercritical fluid is used.

また、負荷側熱交換器に加え、熱源側熱交換器における冷媒と空気の流れ方向も対向流として使用したため、超臨界流体を用いた場合にも冷却性能の低下が小さい冷媒自然循環型の冷却装置を提供することができる。   In addition to the load-side heat exchanger, the refrigerant and air flow directions in the heat-source-side heat exchanger are also used as counterflows, so that the refrigerant natural-circulation type cooling with little deterioration in cooling performance even when using a supercritical fluid An apparatus can be provided.

また、負荷側熱交換器及び熱源側熱交換器が複数の冷媒流路を有するため、圧力損失が小さく微小高低差でも安定動作可能な冷媒自然循環型の冷却装置を提供することができる。   Further, since the load side heat exchanger and the heat source side heat exchanger have a plurality of refrigerant flow paths, it is possible to provide a refrigerant natural circulation type cooling device that has a small pressure loss and can be stably operated even with a minute height difference.

また、負荷側熱交換器の入口部と液配管との接続部、及び熱源側熱交換器の入口部とガス配管との接続部に冷媒の逆流を防止するU字型トラップ配管及び逆U字型トラップ配管を設けたため、冷媒の逆流を防止することができる。 In addition, a U-shaped trap pipe and a reverse U-shape that prevent the refrigerant from flowing back to the connection part between the inlet part of the load side heat exchanger and the liquid pipe and the connection part between the inlet part of the heat source side heat exchanger and the gas pipe. Since the type trap pipe is provided, the reverse flow of the refrigerant can be prevented.

また、負荷側熱交換器及び熱源側熱交換器内の冷媒の流れが重力方向に対して上から下へとなるように冷媒流路を構成したため、冷媒の逆流を防止することができる。   In addition, since the refrigerant flow path is configured so that the flow of the refrigerant in the load side heat exchanger and the heat source side heat exchanger is from top to bottom with respect to the direction of gravity, back flow of the refrigerant can be prevented.

また、負荷側熱交換器又は熱源側熱交換器として、プレートフィンチューブ熱交換器、プレート熱交換器、二重管式熱交換器のうち少なくとも1つを用いたため、空気のような気体と冷媒との熱交換、あるいは水やブラインなどの液体と冷媒との熱交換のいずれにおいても対向流を構成することができ、冷却性能を向上することができる。   Moreover, since at least one of a plate fin tube heat exchanger, a plate heat exchanger, and a double tube heat exchanger is used as the load side heat exchanger or the heat source side heat exchanger, a gas such as air and a refrigerant are used. The counter flow can be formed either in the heat exchange with the liquid or in the heat exchange between the liquid such as water or brine and the refrigerant, and the cooling performance can be improved.

本発明の実施の形態1に係る熱輸送装置を示す構成図である。It is a block diagram which shows the heat transport apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る熱源側熱交換器を示す斜視図である。It is a perspective view which shows the heat source side heat exchanger which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る冷媒と被熱交換流体の流れを説明する説明図である。It is explanatory drawing explaining the flow of the refrigerant | coolant and heat exchange fluid which concern on Embodiment 1 of this invention. 本発明の実施の形態1に係る室内温度と冷却性能の関係を示すグラフである。It is a graph which shows the relationship between the room temperature and cooling performance which concern on Embodiment 1 of this invention. 本発明の実施の形態1に係る熱交換器内の冷媒と空気の温度変化を示す説明図である。It is explanatory drawing which shows the temperature change of the refrigerant | coolant in the heat exchanger which concerns on Embodiment 1 of this invention, and air. 本発明の実施の形態1に係る熱交換器内の冷媒と空気の温度変化を示す説明図である。It is explanatory drawing which shows the temperature change of the refrigerant | coolant in the heat exchanger which concerns on Embodiment 1 of this invention, and air. 本発明の実施の形態1に係る熱交換器内の冷媒温度と空気温度の変化を説明する説明図である。It is explanatory drawing explaining the change of the refrigerant | coolant temperature in the heat exchanger which concerns on Embodiment 1 of this invention, and air temperature. 本発明の実施の形態1に係る熱交換器の他の例を示す構成図である。It is a block diagram which shows the other example of the heat exchanger which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る冷媒自然循環型冷却装置を示す構成図である。It is a block diagram which shows the refrigerant | coolant natural circulation type cooling device which concerns on Embodiment 1 of this invention.

符号の説明Explanation of symbols

1 放熱側熱交換器
2 受熱側熱交換器
3 配管
4 配管
5、6 逆流防止手段
1 Heat Dissipation Side Heat Exchanger 2 Heat Reception Side Heat Exchanger 3 Piping 4 Piping 5, 6 Backflow prevention means

Claims (4)

冷媒出口部が冷媒入口部より上方に設けられたプレートフィンチューブ熱交換器である受熱側熱交換器と、
前記受熱側熱交換器よりも上方に配置し、冷媒出口部が冷媒入口部より下方に設けられたプレートフィンチューブ熱交換器である放熱側熱交換器と、
前記受熱側熱交換器と前記放熱側熱交換器を環状に接続する配管と、
前記配管内に封入され、所定の温度以上で超臨界状態となり、前記受熱側熱交換器及び前記放熱側熱交換器での温度変化による密度変化によって自然に前記配管内を循環する冷媒と、を備え、
前記受熱側熱交換器と前記放熱側熱交換器の各々の列方向を略垂直に、段方向を略水平に配置して同一筐体内に内蔵するとともに、
前記冷媒が超臨界状態となる温度域で前記受熱側熱交換器で熱交換を行う際、前記受熱側熱交換器内の冷媒と熱交換する被熱交換流体の流れ方向を前記受熱側熱交換器の列方向に沿って重力方向の上方から下方へとし、前記受熱側熱交換器における超臨界状態の冷媒が低温から高温に変化するのに対し、前記被熱交換流体を前記冷媒の高温側から低温側へ流して熱交換するようにしたことを特徴とする自然循環型冷却装置
A heat-receiving-side heat exchanger that is a plate fin tube heat exchanger with the refrigerant outlet portion provided above the refrigerant inlet portion ;
A heat dissipating side heat exchanger that is a plate fin tube heat exchanger disposed above the heat receiving side heat exchanger and having a refrigerant outlet portion provided below the refrigerant inlet portion ;
A pipe connecting the heat receiving side heat exchanger and the heat radiating side heat exchanger in an annular shape;
A refrigerant that is enclosed in the pipe, becomes a supercritical state at a predetermined temperature or more, and naturally circulates in the pipe due to a density change due to a temperature change in the heat receiving side heat exchanger and the heat radiating side heat exchanger; Prepared,
The row direction of each of the heat receiving side heat exchanger and the heat radiating side heat exchanger is arranged substantially vertically, and the step direction is arranged substantially horizontally and incorporated in the same housing,
When heat exchange is performed in the heat receiving side heat exchanger in a temperature range where the refrigerant is in a supercritical state, the flow direction of the heat exchange fluid that exchanges heat with the refrigerant in the heat receiving side heat exchanger is changed to the heat receiving side heat exchange. The supercritical refrigerant in the heat-receiving-side heat exchanger changes from low temperature to high temperature, while the heat exchange fluid is changed to the high temperature side of the refrigerant. The natural circulation type cooling device is characterized in that heat is exchanged by flowing from the low temperature side to the low temperature side.
前記受熱側熱交換器の冷媒入口部及び前記放熱側熱交換器の冷媒入口部の少なくともいずれか一方の冷媒入口部の上流側に、熱交換器の冷媒入口部からその上流側配管への冷媒の逆流を防止する逆流防止手段を設けたことを特徴とする請求項1に記載の自然循環型冷却装置Refrigerant from the refrigerant inlet portion of the heat exchanger to the upstream pipe at the upstream side of at least one of the refrigerant inlet portion of the heat receiving side heat exchanger and the refrigerant inlet portion of the heat radiating side heat exchanger The natural circulation type cooling device according to claim 1, further comprising a backflow prevention means for preventing backflow. 冷媒出口部が冷媒入口部より上方に設けられたプレートフィンチューブ熱交換器である受熱側熱交換器と、A heat-receiving-side heat exchanger that is a plate fin tube heat exchanger with the refrigerant outlet portion provided above the refrigerant inlet portion;
前記受熱側熱交換器よりも上方に配置し、冷媒出口部が冷媒入口部より下方に設けられたプレートフィンチューブ熱交換器である放熱側熱交換器と、  A heat dissipating side heat exchanger that is a plate fin tube heat exchanger disposed above the heat receiving side heat exchanger and having a refrigerant outlet portion provided below the refrigerant inlet portion;
前記受熱側熱交換器と前記放熱側熱交換器を環状に接続する配管と、  A pipe connecting the heat receiving side heat exchanger and the heat radiating side heat exchanger in an annular shape;
前記配管内に封入され、所定の温度以上で超臨界状態となり、前記受熱側熱交換器及び前記放熱側熱交換器での温度変化による密度変化によって自然に前記配管内を循環する冷媒と、  A refrigerant that is enclosed in the pipe, becomes a supercritical state at a predetermined temperature or higher, and circulates naturally in the pipe due to a density change due to a temperature change in the heat receiving side heat exchanger and the heat radiating side heat exchanger;
室内側と室外側を仕切る壁面に取り付けられ、あるいは、冷却対象空間に配設され、前記受熱側熱交換器及び前記放熱側熱交換器を各々の列方向を略垂直に、段方向を略水平に配置して内蔵する筐体と、It is attached to the wall surface that partitions the indoor side and the outdoor side, or is disposed in the space to be cooled, and the heat receiving side heat exchanger and the heat radiating side heat exchanger are arranged substantially vertically in the respective column directions and in the horizontal direction in the step direction. A housing that is arranged and built in,
前記筐体内部の空間を、前記受熱側熱交換器が設けられた空間と、前記放熱側熱交換器が設けられた空間とに仕切る仕切板と、A partition plate that partitions the space inside the housing into a space in which the heat receiving side heat exchanger is provided and a space in which the heat dissipation side heat exchanger is provided;
室内から吸い込まれた空気が前記受熱側熱交換器の列方向に沿って重力方向の下方から上方へと流れて室内へ吹き出されるように前記筐体に設けられた室内空気吸込口および室内空気吹出口と、The indoor air inlet and the indoor air provided in the casing so that the air sucked from the room flows from the lower side to the upper side in the direction of gravity along the row direction of the heat-receiving-side heat exchanger and is blown into the room. The air outlet,
室外から吸い込まれた空気が前記放熱側熱交換器内の列方向に沿って重力方向の上方から下方へ流れて室外へ吹き出されるように前記筐体に設けられた室外空気吸込口および室外空気吹出口と、Outdoor air suction port and outdoor air provided in the housing so that air sucked from the outside flows in the direction of gravity in the row direction in the heat radiation side heat exchanger from the upper side to the lower side and is blown out to the outside The air outlet,
を備えたことを特徴とする自然循環型冷却装置。A natural circulation type cooling device comprising:
受熱側熱交換器と、前記受熱側熱交換器よりも上方に配置した放熱側熱交換器と、前記受熱側熱交換器と前記放熱側熱交換器を環状に接続する配管と、前記配管内に封入され所定温度以上で超臨界状態となる冷媒と、前記受熱側熱交換器内の冷媒と熱交換する室内空気を送風する室内送風機と、を備えた自然循環型冷却装置を用いた熱交換方法であって、A heat receiving side heat exchanger, a heat radiating side heat exchanger disposed above the heat receiving side heat exchanger, a pipe connecting the heat receiving side heat exchanger and the heat radiating side heat exchanger in an annular shape, and the pipe Heat exchange using a natural circulation type cooling device comprising: a refrigerant that is sealed in a supercritical state at a predetermined temperature or higher; and an indoor fan that blows indoor air that exchanges heat with the refrigerant in the heat-receiving-side heat exchanger. A method,
前記冷媒が超臨界状態となる温度域において、前記室内送風機により前記受熱側熱交換器内の冷媒流れ方向と対向流となるように室内空気を送風するステップと、  In a temperature range where the refrigerant is in a supercritical state, blowing the indoor air by the indoor blower so as to be opposite to the refrigerant flow direction in the heat receiving side heat exchanger;
前記送風された室内空気と前記受熱側熱交換器内の冷媒とが熱交換し、冷媒の温度変化による密度変化によって前記受熱側熱交換器から前記放熱側熱交換器へと冷媒を循環するステップとを備えたことを特徴とする自然循環型冷却装置を用いた熱交換方法。  Heat exchange between the blown room air and the refrigerant in the heat-receiving-side heat exchanger, and circulating the refrigerant from the heat-receiving-side heat exchanger to the heat-radiating-side heat exchanger by density change due to temperature change of the refrigerant A heat exchange method using a natural circulation type cooling device.
JP2003324347A 2003-09-17 2003-09-17 Natural circulation cooling device and heat exchange method using natural circulation cooling device Expired - Lifetime JP3906830B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003324347A JP3906830B2 (en) 2003-09-17 2003-09-17 Natural circulation cooling device and heat exchange method using natural circulation cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003324347A JP3906830B2 (en) 2003-09-17 2003-09-17 Natural circulation cooling device and heat exchange method using natural circulation cooling device

Publications (2)

Publication Number Publication Date
JP2005090852A JP2005090852A (en) 2005-04-07
JP3906830B2 true JP3906830B2 (en) 2007-04-18

Family

ID=34455125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003324347A Expired - Lifetime JP3906830B2 (en) 2003-09-17 2003-09-17 Natural circulation cooling device and heat exchange method using natural circulation cooling device

Country Status (1)

Country Link
JP (1) JP3906830B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180029474A (en) * 2016-09-12 2018-03-21 박춘경 Non-motorized circulation siphon

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4358759B2 (en) * 2005-02-10 2009-11-04 三菱電機株式会社 Natural circulation cooling device control method and natural circulation cooling device
US20090229282A1 (en) * 2005-05-24 2009-09-17 Taras Michael F Parallel-flow evaporators with liquid trap for providing better flow distribution
JP5045056B2 (en) * 2005-11-04 2012-10-10 株式会社デンソー Cooling device and manufacturing method thereof
JP2008025973A (en) * 2006-07-25 2008-02-07 Gijutsu Kaihatsu Sogo Kenkyusho:Kk Heat exchange system
JP4899997B2 (en) * 2007-03-30 2012-03-21 日本電気株式会社 Thermal siphon boiling cooler
WO2010067434A1 (en) * 2008-12-11 2010-06-17 学校法人同志社 Heat collecting method and heat collecting device for solar heat
CN102803882A (en) * 2009-06-04 2012-11-28 松下电器产业株式会社 Drying device
WO2013179452A1 (en) * 2012-05-31 2013-12-05 株式会社アイテック Chemical reactor
WO2017051472A1 (en) * 2015-09-25 2017-03-30 三菱電機株式会社 Cooling device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180029474A (en) * 2016-09-12 2018-03-21 박춘경 Non-motorized circulation siphon

Also Published As

Publication number Publication date
JP2005090852A (en) 2005-04-07

Similar Documents

Publication Publication Date Title
KR100746795B1 (en) Cooling appartus
US6560968B2 (en) Thermoelectric cooler
JP4318567B2 (en) Cooling system
JP4033699B2 (en) Loop thermosyphon and Stirling refrigerator
JP6042026B2 (en) Refrigeration cycle equipment
JP6888102B2 (en) Heat exchanger unit and refrigeration cycle equipment
WO2018029784A1 (en) Heat exchanger and refrigeration cycle device provided with heat exchanger
JP3906830B2 (en) Natural circulation cooling device and heat exchange method using natural circulation cooling device
US20110067437A1 (en) Air Source Heat Exchange System and Method Utilizing Temperature Gradient and Water
JP4577188B2 (en) Cooling system
JP2011038734A (en) Evaporative cooling device
KR100709060B1 (en) Heat pump system with heat pipe type
JP6298992B2 (en) Air conditioner
JP4358759B2 (en) Natural circulation cooling device control method and natural circulation cooling device
TWI311187B (en)
JP3689761B2 (en) Cooling system
KR101461057B1 (en) Apparatus for cooling and heating with one circulating loop using thermoelectric element
JP2012229897A (en) Heat exchanger and air conditioner equipped with the heat exchanger
JP2009008334A (en) Heat transfer medium, and heat transfer device using the same
KR20040082686A (en) heat-exchange plate comprising heat pipe and air cooling type condenser thereby
CN219415279U (en) Novel refrigerating device
CN219014707U (en) Supercooling liquid storage device and fluorine pump air conditioner
CN116242052A (en) Novel refrigerating device
JP2005283022A (en) Evaporator, thermosiphon, and stirling cooler
WO2017138052A1 (en) Refrigeration cycle device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060425

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070108

R151 Written notification of patent or utility model registration

Ref document number: 3906830

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100126

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110126

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120126

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130126

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130126

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term