JPH11325432A - Structure of flue - Google Patents

Structure of flue

Info

Publication number
JPH11325432A
JPH11325432A JP13193298A JP13193298A JPH11325432A JP H11325432 A JPH11325432 A JP H11325432A JP 13193298 A JP13193298 A JP 13193298A JP 13193298 A JP13193298 A JP 13193298A JP H11325432 A JPH11325432 A JP H11325432A
Authority
JP
Japan
Prior art keywords
exhaust gas
flue
gas flow
adjusting plate
distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13193298A
Other languages
Japanese (ja)
Other versions
JP3485798B2 (en
Inventor
Satoshi Kuroishi
智 黒石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP13193298A priority Critical patent/JP3485798B2/en
Publication of JPH11325432A publication Critical patent/JPH11325432A/en
Application granted granted Critical
Publication of JP3485798B2 publication Critical patent/JP3485798B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To uniformize flow speed distribution of a rising waste gas flow at an inlet of a rising flue section in a flue where there is disposed a heating pipe line in the rising flue section for heating a fluid. SOLUTION: There is provided upstream a heating pipe line 21 a waste gas flow adjusting plate 1 capable of altering and adjusting a position or an attitude so as for flow speed distribution of waste gas at a disposition position of a heating pipe line 21 to be purpose distribution. Herein, for an attitude adjusting mechanism of a waste gas flow adjusting plate 1 the waste gas flow adjusting plate 1 may be constructed rockably around a lateral axis core P, and the waste gas flow adjusting plate 1 may be divided into upper and lower portions of the lateral axis core P to permit the divided upper and lower adjusting plates to be adjustable in a relative angle.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】 本発明は、煙道の構造に関
し、廃棄物加熱処理炉からの排ガス流を導く煙道に、排
ガスを下方に向けて導く下降煙道部と、前記下降煙道部
からの排ガス流を上方に向けて偏向する煙道曲がり部
と、前記煙道曲がり部からの排ガスを上方に導く上昇煙
道部とを備え、前記上昇煙道部に流体を加熱する加熱管
路を配置してある煙道の構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a structure of a flue, and more particularly, to a flue for guiding exhaust gas downward to a flue for guiding an exhaust gas flow from a waste heat treatment furnace, and the descending flue. A heating duct for heating a fluid in the rising flue section, comprising a flue bend section for deflecting the exhaust gas flow from the upper section upward, and a rising flue section for guiding the exhaust gas from the flue bending section upward. Related to the structure of the stack.

【0002】[0002]

【従来の技術】従来、例えばゴミ焼却炉においては、図
12に示すように焼却炉の二次燃焼室出口煙道に廃熱ボ
イラを備える場合には、その廃熱ボイラの下流側の煙道
10を、前記廃熱ボイラの管路の間を通過した排ガスを
下方に向けて導く下降煙道部11と、前記下降煙道部1
1からの排ガス流Sを上方に向けて偏向する煙道曲り部
12と、前記煙道曲り部12からの排ガスを上方に導く
上昇煙道部13とで構成し、前記上昇煙道部13に、流
体を加熱する加熱管路として、前記廃熱ボイラからの蒸
気を過熱する過熱器管路21を配置してある煙道の構造
が一般に採用されている。
2. Description of the Related Art Conventionally, for example, in a waste incinerator, when a waste heat boiler is provided at a secondary combustion chamber outlet flue of the incinerator as shown in FIG. 10, a descending flue section 11 for guiding the exhaust gas passing between the pipes of the waste heat boiler downward, and the descending flue section 1
The flue gas flow S from the exhaust gas flow S is deflected upward, and the flue gas from the flue gas curved portion 12 is constituted by a rising flue portion 13 for guiding the flue gas upward. As a heating pipe for heating the fluid, a flue structure in which a superheater pipe 21 for heating steam from the waste heat boiler is generally employed.

【0003】[0003]

【発明が解決しようとする課題】図12は上記構成の煙
道10における排ガス流Sのシミュレータによる軌跡を
描いたものであり、矢印の長さが流速の高低を示してい
るが、煙道曲り部12における下降排ガス流の偏向に際
して、下降煙道部11と上昇煙道部13との隔壁14の
隔壁下端部14aで剥離する前記排ガス流Sが、下降流
の慣性によって、前記隔壁14に対向する壁15の側に
偏流するため、その上方に配置された過熱器管路21に
対して、前記隔壁14に近い領域では排ガスの流速が低
くなり、前記対向する壁15に近い位置での流速が高く
なる片寄った流れとなるために、前記過熱器管路21を
通過する上昇ガス流Suに片寄った流速分布を生じ、前
記隔壁14に近い領域では、前記上昇ガス流Suの流速
が低いために、前記過熱器管路21への飛灰等の粉塵の
沈積を招き、付着した前記粉塵の含有する水分に排ガス
中の塩素分を主とする腐食性ガス成分が吸収されて、前
記過熱器管路21の管外壁の腐食性の湿分による腐食を
招くという問題がある。また、前記対向する壁15の側
では前記上昇ガス流Suの流速が高くなるために、前記
過熱器管路21に対する熱伝達が過剰になり、その結
果、前記過熱器管路21の管壁温度が上昇して高温腐食
温度域に達するために、管外壁の高温腐食を招き易くな
るという問題もある。このために、前記上昇ガス流Su
の平均温度を前記高温腐食を防止できる程度に抑制する
必要が生ずる結果、過熱器出口の過熱蒸気の温度を高く
できないために、前記廃熱ボイラからの蒸気による発電
効率を高く維持できないという問題を有していた。従っ
て、前記過熱器管路21の管壁を保護するためには、前
記上昇ガス流Suの流速分布を調整することが重要な課
題となる。そこで、本発明の煙道の構造は、上記の問題
点を解決し、上昇煙道部に配置された加熱管路の管路に
沿う排ガスの流速分布を調節可能にする煙道の構造を提
供することを目的とする。
FIG. 12 shows the locus of the exhaust gas flow S in the flue 10 having the above-mentioned structure by a simulator. The length of the arrow indicates the level of the flow velocity. When the descending exhaust gas flow is deflected in the section 12, the exhaust gas flow S that separates at the partition lower end 14a of the partition 14 between the descending flue section 11 and the ascending flue section 13 faces the partition 14 due to the inertia of the descending flow. The flow velocity of the exhaust gas is lower in a region close to the partition wall 14 than in the superheater pipe 21 arranged above the wall 15, and the flow velocity in the position close to the opposing wall 15 is increased. Is generated, a flow distribution is deviated in the ascending gas flow Su passing through the superheater conduit 21, and in the region near the partition 14, the flow velocity of the ascending gas flow Su is low. Before This causes deposition of dust such as fly ash on the superheater line 21 and corrosive gas components mainly containing chlorine in the exhaust gas are absorbed by the moisture contained in the adhering dust, so that the superheater line 21 However, there is a problem in that corrosion of the outer wall of the tube is caused by corrosive moisture. On the side of the opposing wall 15, the flow velocity of the rising gas flow Su becomes high, so that heat transfer to the superheater pipe 21 becomes excessive, and as a result, the pipe wall temperature of the superheater pipe 21 is increased. As the temperature rises to reach the high-temperature corrosion temperature range, there is also a problem that high-temperature corrosion of the outer wall of the tube is easily caused. For this purpose, the rising gas flow Su
As a result, it is necessary to suppress the average temperature of the superheated steam to such an extent that the high-temperature corrosion can be prevented.As a result, the temperature of the superheated steam at the outlet of the superheater cannot be increased, and the power generation efficiency by the steam from the waste heat boiler cannot be maintained high. Had. Therefore, in order to protect the pipe wall of the superheater pipe line 21, it is important to adjust the flow velocity distribution of the rising gas flow Su. Therefore, the structure of the flue of the present invention solves the above-mentioned problems, and provides a structure of the flue that makes it possible to adjust the flow velocity distribution of the exhaust gas along the duct of the heating duct arranged in the rising flue. The purpose is to do.

【0004】[0004]

【課題を解決するための手段】〔特徴構成〕上記の目的
のための本発明の煙道の構造の第1特徴構成は、請求項
1に記載の如く、加熱管路の上流側に、前記加熱管路の
配置位置における排ガスの流速分布が目標分布となるよ
うに、位置又は姿勢を変更調節可能な排ガス流調整板を
設けてある点にある。
[Means for Solving the Problems] The first feature of the structure of the flue according to the present invention for the above purpose is as described in claim 1, wherein the structure is provided on the upstream side of the heating pipe. The present invention is characterized in that an exhaust gas flow adjusting plate whose position or attitude can be changed and adjusted is provided so that the exhaust gas flow velocity distribution at the arrangement position of the heating pipe line becomes the target distribution.

【0005】尚、請求項2に記載の如く、前記第1特徴
構成における排ガス流調整板の姿勢調整機構として、排
ガス流調整板を横軸芯周りに揺動自在に構成してあれば
よく(第2特徴構成)、請求項3に記載の如く、前記第
1又は第2特徴構成における排ガス流調整板を、相対角
度調節自在に上下に分割形成してあればさらによく(第
3特徴構成)、請求項4に記載の如く、前記第1〜第3
特徴構成の何れかにおける排ガス流調整板を、横軸芯方
向に複数に分割形成してあればなおよく(第4特徴構
成)、請求項5に記載の如く、前記第1〜第4特徴構成
の何れかにおける排ガス流調整板を複数設け、横軸芯を
異ならせて配置してあればさらによい(第5特徴構
成)。また、請求項6に記載の如く、前記第1〜第5特
徴構成の何れかにおける加熱管路の間に流入する排ガス
の流速分布を検出する流速計測手段を設けるとともに、
前記流速計測手段の検出結果に基づき、排ガス流調整板
の位置又は姿勢を変更調節する整流板制御機構を設けて
あればさらによい(第6特徴構成)。ここに、請求項7
に記載の如く、前記第6特徴構成における流速計測手段
を、加熱管路の管壁温度を検出する温度測定手段を前記
加熱管路に沿って複数配置して設け、前記温度測定手段
で検出された温度分布から前記排ガスの流速分布を検出
するように構成してあればなおよい(第7特徴構成)。
According to a second aspect of the present invention, as the attitude adjusting mechanism of the exhaust gas flow adjusting plate in the first characteristic configuration, it is sufficient if the exhaust gas flow adjusting plate is configured to be swingable about a horizontal axis. (2nd feature configuration), As described in claim 3, it is even better if the exhaust gas flow adjusting plate in the first or second feature configuration is formed so as to be vertically adjustable so that the relative angle can be adjusted (third feature configuration). The first to third aspects as described in claim 4.
It is more preferable that the exhaust gas flow adjusting plate in any one of the characteristic configurations is divided into a plurality of parts in the direction of the horizontal axis (fourth characteristic configuration), and the first to fourth characteristic configurations as described in claim 5. It is more preferable that a plurality of exhaust gas flow control plates in any one of the above is provided and arranged with different horizontal axis cores (fifth characteristic configuration). In addition, as described in claim 6, while providing a flow velocity measuring means for detecting a flow velocity distribution of exhaust gas flowing between the heating pipes in any of the first to fifth characteristic configurations,
It is further preferable that a rectifying plate control mechanism for changing and adjusting the position or the attitude of the exhaust gas flow adjusting plate based on the detection result of the flow velocity measuring means is provided (sixth characteristic configuration). Here, claim 7
As described in the above, the flow rate measuring means in the sixth characteristic configuration, a plurality of temperature measuring means for detecting the pipe wall temperature of the heating pipe is provided along the heating pipe, and detected by the temperature measuring means. It is more preferable that the flow rate distribution of the exhaust gas is detected from the temperature distribution obtained (seventh characteristic configuration).

【0006】〔各特徴構成の作用効果〕上記第1特徴構
成によれば、加熱管路の温度分布を所望の分布に調整す
ることができる。つまり、加熱管路の上流側に、位置又
は姿勢を変更調節可能な排ガス流調整板を設けてあるか
ら、下降煙道部からの排ガス流は前記排ガス流調整板に
より分散され、且つ整流されるから、前記排ガス流調整
板の位置或いは姿勢を変更調節することにより、前記加
熱管路の配置位置における排ガスの流速分布を目標分布
となるように調整できる。
[Function and effect of each characteristic configuration] According to the above-mentioned first characteristic configuration, the temperature distribution of the heating pipe can be adjusted to a desired distribution. That is, since the exhaust gas flow adjusting plate whose position or posture can be changed and adjusted is provided on the upstream side of the heating pipe, the exhaust gas flow from the descending flue section is dispersed and rectified by the exhaust gas flow adjusting plate. Therefore, by changing and adjusting the position or the attitude of the exhaust gas flow adjusting plate, the flow velocity distribution of the exhaust gas at the arrangement position of the heating pipe can be adjusted to be the target distribution.

【0007】上記第2特徴構成によれば、簡単な手段で
上記第1特徴構成における流速分布を調節できるように
なる。つまり、排ガス流調整板の姿勢調整機構として、
排ガス流調整板を横軸芯周りに揺動自在に構成すれば、
前記下降煙道からの排ガス流の整流方向及び分散の程度
を容易に調節できる。
According to the second aspect, the flow velocity distribution in the first aspect can be adjusted by simple means. In other words, as the posture adjustment mechanism of the exhaust gas flow adjustment plate,
If the exhaust gas flow adjustment plate is configured to be swingable around the horizontal axis,
The rectification direction and the degree of dispersion of the exhaust gas flow from the descending flue can be easily adjusted.

【0008】上記第3特徴構成によれば、上記第1又は
第2特徴構成における流速分布をさらに細かく調節でき
るようになる。つまり、排ガス流調整板を、相対角度調
節自在に上下に分割形成することによって、前記下降煙
道からの排ガス流の整流方向及び分散の程度を、上下に
個別に調節しながら容易に調節できる。しかも、上下に
分割形成した排ガス流調整板の間に間隙を設けておけ
ば、その隙間を抜けて背後に流出する排ガスの流れも加
わるので、前記流速分布の均一化が容易になる。
According to the third aspect, the flow velocity distribution in the first or second aspect can be more finely adjusted. In other words, by forming the exhaust gas flow adjusting plate into upper and lower portions so that the relative angle can be adjusted, the rectification direction and the degree of dispersion of the exhaust gas flow from the descending flue can be easily adjusted while individually adjusting the vertical direction. In addition, if a gap is provided between the vertically divided exhaust gas flow control plates, the flow of the exhaust gas passing through the gap and flowing to the back is added, so that the flow velocity distribution can be easily made uniform.

【0009】上記第4特徴構成によれば、上記第1〜第
3特徴構成についてさらに隔壁に沿う方向への流速分布
をも所望の分布に調整できるようになる。つまり、排ガ
ス流調整板を、横軸芯方向に複数に分割形成してあれ
ば、元々前記隔壁に沿う方向にも流速分布が生じている
ので、前記横軸芯方向に前記分割形成された排ガス流調
整板を個々に姿勢制御することにより、この分布を平坦
化することも可能である。
According to the fourth characteristic configuration, the flow velocity distribution in the direction along the partition can be adjusted to a desired distribution in the first to third characteristic configurations. In other words, if the exhaust gas flow adjusting plate is divided into a plurality of parts in the direction of the horizontal axis, the flow velocity distribution originally occurs in the direction along the partition walls. This distribution can be flattened by controlling the attitude of the flow adjusting plates individually.

【0010】上記第5特徴構成によれば、上記第1〜第
4特徴構成についてさらに上昇煙道部の流路全域に亘っ
て、上昇排ガス流の流速分布の均一化を図ることが可能
となる。つまり、排ガス流調整板を複数設け、横軸芯を
異ならせて配置することによって、排ガス流の偏向方向
に変化を与えることが可能である。通常、隔壁に対向す
る壁と、その両側の側壁に近い領域の流速が高くなりが
ちになるから、これを、前記隔壁に向けて、且つ中央部
に向けて偏流することで、前記対向する壁及び両側壁に
近い領域の排ガス流を分散させて、全領域的に排ガスの
密度を均一化することが可能になる。従って、流速分布
を平坦化できる。
According to the fifth aspect, it is possible to further uniform the flow velocity distribution of the ascending exhaust gas flow over the entire flow path of the ascending flue section in the first to fourth aspects. . That is, it is possible to change the deflection direction of the exhaust gas flow by providing a plurality of exhaust gas flow adjusting plates and disposing the horizontal axis cores differently. Normally, the flow rate in the wall opposed to the partition wall and in the region near the side walls on both sides tends to be high. Therefore, by flowing this toward the partition wall and toward the center, the opposed wall is In addition, it is possible to disperse the exhaust gas flow in a region near the both side walls to make the exhaust gas density uniform over the entire region. Therefore, the flow velocity distribution can be flattened.

【0011】上記第6特徴構成によれば、上記第1〜第
5特徴構成についてさらに加熱管路に沿う流速分布を所
望の分布に容易に調整できるようになる。つまり、前記
加熱管路の間に流入する排ガスの流速分布を検出する流
速計測手段を設けることで流速分布を検出でき、前記流
速計測手段の検出結果に基づき、排ガス流調整板の位置
又は姿勢を変更調節する整流板制御機構を設けてあるか
ら、前記流速分布を所望の分布に近付けるように前記排
ガス流調整板の位置と姿勢も両者又は何れかを制御して
前記流速分布を細かく調整できるようになる。
[0011] According to the sixth aspect, the flow velocity distribution along the heating pipe can be easily adjusted to a desired distribution in the first to fifth aspects. That is, the flow velocity distribution can be detected by providing the flow velocity measuring means for detecting the flow velocity distribution of the exhaust gas flowing between the heating pipes, and the position or the posture of the exhaust gas flow adjusting plate is determined based on the detection result of the flow velocity measuring means. Since the rectifying plate control mechanism for changing and adjusting is provided, the position and / or posture of the exhaust gas flow adjusting plate are controlled either or both so that the flow velocity distribution approaches a desired distribution, so that the flow velocity distribution can be finely adjusted. become.

【0012】上記第7特徴構成によれば、上記第6特徴
構成における流速分布を所望の分布に調整しながら、加
熱管路の管壁の温度分布を所望の分布に調整できる。つ
まり、加熱管路の管壁温度を検出する温度測定手段を前
記加熱管路に沿って複数配置して設けることにより、前
記加熱管路の管壁の温度分布を検出でき、前記温度測定
手段で検出された温度分布から前記排ガスの流速分布を
検出するように流速計測手段を構成してあるから、前記
流速分布を所望の分布に調整でき、前記管壁の温度分布
を確実に調整できる。しかも前記温度分布は前記排ガス
の流速分布に対応するから、前記流速分布をも検出でき
るのである。
According to the seventh aspect, the temperature distribution on the tube wall of the heating conduit can be adjusted to a desired distribution while adjusting the flow velocity distribution in the sixth aspect to a desired distribution. That is, by disposing a plurality of temperature measuring means for detecting the pipe wall temperature of the heating pipe along the heating pipe, the temperature distribution of the pipe wall of the heating pipe can be detected, and the temperature measuring means can detect the temperature distribution of the pipe wall of the heating pipe. Since the flow velocity measuring means is configured to detect the flow velocity distribution of the exhaust gas from the detected temperature distribution, the flow velocity distribution can be adjusted to a desired distribution, and the temperature distribution of the pipe wall can be surely adjusted. Moreover, since the temperature distribution corresponds to the flow velocity distribution of the exhaust gas, the flow velocity distribution can also be detected.

【0013】その結果、上昇煙道部に配置された加熱管
路の管路に沿う排ガスの流速分布が調節可能になるか
ら、前記加熱管路を加熱する排ガスの温度を所定の温度
にに維持しながら、上記加熱管路の管外壁の腐食を防止
できるようになる。
As a result, the flow velocity distribution of the exhaust gas along the heating conduit arranged in the rising flue can be adjusted, so that the temperature of the exhaust gas for heating the heating conduit is maintained at a predetermined temperature. Meanwhile, corrosion of the outer wall of the heating pipe can be prevented.

【0014】[0014]

【発明の実施の形態】上記本発明の煙道の構造の実施の
形態の一例について、以下に図面を参照しながら説明す
る。図1は本発明による排ガス流調整板を配置したゴミ
焼却炉を示し、図2はその煙道の、煙道曲り部前後の模
式図であり、図3は、前記排ガス流調整板を一例として
特定の位置及び姿勢にした状態での、下降煙道部と上昇
煙道部の隔壁に直交する鉛直面に沿う煙道曲り部とその
上方の縦断面に排ガス流の流線を併記した図であり、図
4は排ガス流調整板の動作説明図である。尚、前記従来
の技術において説明した要素と同じ要素並びに同等の機
能を有する要素に関しては、先の図12に付したと同一
の符号を付し、詳細の説明の一部は省略する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One example of an embodiment of the above-described flue structure of the present invention will be described below with reference to the drawings. FIG. 1 shows a refuse incinerator in which an exhaust gas flow control plate according to the present invention is arranged, FIG. 2 is a schematic view of the flue before and after a flue bend, and FIG. 3 shows the exhaust gas flow control plate as an example. In a state where a specific position and posture are set, a flue curve is drawn along a flue curve section along a vertical plane perpendicular to the partition wall of the descending flue section and ascending flue section, and a streamline of the exhaust gas flow along the vertical section above it. FIG. 4 is an operation explanatory view of the exhaust gas flow adjusting plate. Note that the same elements as those described in the related art and elements having the same functions are denoted by the same reference numerals as in FIG. 12, and a part of the detailed description is omitted.

【0015】ゴミ焼却炉の火炉からの排ガスを二次燃焼
させて、その熱により蒸気を発生させる廃熱ボイラ20
出口からの煙道10は、鉛直方向下方に向けて排ガス流
Sを案内する長方形状平断面の下降煙道部11を、上方
に向けて排ガスを案内する同じく長方形状平断面の上昇
煙道部13に接続する煙道曲り部12を備えており、前
記煙道曲り部12は、隔壁14に対向する両側の壁から
下方に延長した壁面を下窄まりに形成してある(前記隔
壁14の両側の側壁16の下方は、そのまま延出されて
いる)。前記下降煙道部11と前記上昇煙道部13との
間の隔壁14は、水管壁に形成してあり、その下端の隔
壁下端部14aには、廃熱ボイラ20のボイラ下部ヘッ
ダ20aが両側の煙道の間に設けられている。このた
め、前記隔壁下端部14aは膨らんだ断面形状を示すよ
うになっている。そして、前記上昇煙道部13の下端部
付近に前記廃熱ボイラ20からの蒸気を過熱する過熱器
管路21が、流体を加熱する加熱管路として配置されて
いる。
A waste heat boiler 20 in which exhaust gas from a furnace of a garbage incinerator is subjected to secondary combustion to generate steam by the heat thereof
The flue 10 from the outlet has a descending flue section 11 having a rectangular flat cross section for guiding the exhaust gas flow S vertically downward, and a rising flue section having a rectangular flat cross section for guiding the exhaust gas upward. 13 is provided with a flue bend portion 12, and the flue bend portion 12 has a wall surface extending downward from both walls facing the partition wall 14 so as to form a constriction. The lower part of the side walls 16 on both sides is extended as it is. A partition wall 14 between the descending flue section 11 and the ascending flue section 13 is formed in a water pipe wall, and a boiler lower header 20a of the waste heat boiler 20 is provided at a partition lower end 14a at a lower end thereof. It is provided between the flue on both sides. For this reason, the lower end portion 14a of the partition wall has an expanded cross-sectional shape. A superheater pipe 21 for heating the steam from the waste heat boiler 20 is disposed near a lower end of the rising flue section 13 as a heating pipe for heating the fluid.

【0016】前記上昇煙道部13の下方の煙道曲り部1
2には、横軸の揺動軸芯P回りに揺動自在な排ガス流調
整板1が配置される。前記排ガス流調整板1は、整流面
部2を凹面状に形成してある。つまり、整流面部2を縦
断面く字状に屈曲形成して、前記下降煙道部11を下降
した排ガス流Sの最大流速部分Stを、その整流面部2
の屈曲部或いはそれから下の部位(下側整流面部4)で
受け止めるように配置され、前記整流面部2の屈曲部
は、前記隔壁14に沿う鉛直面Fから最も遠距離にある
最遠面部2aを形成するもので、前記最遠面部2aに沿
う揺動軸芯Pは、前記鉛直面Fに平行に、且つ水平に配
置される(図2参照)。
The flue bend 1 below the rising flue 13
An exhaust gas flow adjusting plate 1 that can swing around a swing axis P on the horizontal axis is disposed at 2. The exhaust gas flow adjusting plate 1 has a rectifying surface 2 formed in a concave shape. In other words, the straightening surface portion 2 is formed to be bent in the shape of a vertical section, and the maximum flow velocity portion St of the exhaust gas flow S descending down the descending flue portion 11 is defined by the straightening surface portion 2.
Of the rectifying surface portion 2 or the portion below the lower surface (lower rectifying surface portion 4), and the bent portion of the rectifying surface portion 2 forms the farthest surface portion 2 a furthest from the vertical plane F along the partition wall 14. The rocking axis P along the farthest surface 2a is arranged parallel to the vertical plane F and horizontally (see FIG. 2).

【0017】前記最遠面部2aの上方の整流面部2をな
す上側整流面部3と、前記最遠面部2aの下方の整流面
部2をなす下側整流面部4との間の面間角度は145〜
110°に形成してあり、前記上側整流面部3の上端部
の上端整流面部3aは、前記鉛直面Fに対する角度を3
5°以下の勾配となるように姿勢制御される。前記上側
整流面部3の最大勾配は、背面に飛灰等の粉塵等が堆積
しないように設定された角度であり、また、前記隔壁下
端部14aの前記上昇煙道部13側の下り勾配は、同様
の理由で角度設定されており、これに向けて偏流する排
ガス流Sを、極力これに沿わせるようにしてある。前記
下側整流面部4は、前記上側整流面部3の姿勢変更に伴
って傾斜が変化するが、同様の理由で最大勾配の角度が
設定される。さらに、この下側整流面部4の勾配の角度
は、前記下降煙道部11から降下する排ガス流Sの最大
流速部分Stを受け止めて、一部は下方に散流しなが
ら、上方の前記隔壁14に向けて偏向させるように設定
されたものでもある。尚、上記上端整流面部3aの実際
の勾配及びこれに伴って傾斜が変化する下端整流面部4
aの勾配は、前記排ガス流調整板1の配置される位置
や、煙道の形状によって異なり、夫々の状況に合わせて
調整される。
The interplanar angle between the upper rectifying surface portion 3 forming the rectifying surface portion 2 above the farthest surface portion 2a and the lower rectifying surface portion 4 forming the rectifying surface portion 2 below the farthest surface portion 2a is 145 to 145.
The upper rectifying surface portion 3a is formed at an angle of 3 ° with respect to the vertical plane F.
The posture is controlled so as to have a gradient of 5 ° or less. The maximum gradient of the upper rectifying surface portion 3 is an angle set so that dust such as fly ash does not accumulate on the back surface, and the downward gradient of the partition wall lower end portion 14a on the side of the upward flue portion 13 is: The angle is set for the same reason, and the exhaust gas flow S drifting toward the angle is made to follow as much as possible. The inclination of the lower rectifying surface portion 4 changes in accordance with the change in the attitude of the upper rectifying surface portion 3, but the angle of the maximum gradient is set for the same reason. Further, the angle of the gradient of the lower rectifying surface portion 4 receives the maximum flow rate portion St of the exhaust gas flow S descending from the descending flue portion 11 and partially scatters downward to the upper partition wall 14. It is also set to be deflected toward. Note that the actual gradient of the upper end rectifying surface portion 3a and the lower end rectifying surface portion 4 whose inclination changes accordingly.
The gradient of a differs depending on the position where the exhaust gas flow control plate 1 is arranged and the shape of the flue, and is adjusted according to each situation.

【0018】前記排ガス流調整板1は、前記揺動軸芯P
回りに揺動自在に構成されており、図2に示すように、
揺動軸5を前記隔壁14の両側の側壁16に枢支してあ
る。前記最遠面部2aは、この揺動軸芯Pに沿って形成
されている。このように形成されているから、145〜
110°の面間角度に形成された前記上側整流面部3と
前記下側整流面部4とは連動して姿勢を変更する。前記
面間角度は、前記下降煙道部11から降下する排ガス流
Sの最大流速部分Stの一部を下方に散流しながら、前
記上側整流面部3に沿って前記隔壁14に向けて偏向さ
せ、且つ、前記下側整流面部4に沿って下方に散流する
ように設定されたものでもある。この面間角度が適正に
設定され、前記上端整流面部3aの勾配と、前記下端整
流面部4aの勾配とが好適な勾配であれば、前記過熱器
管路21の配置された位置での上昇ガス流Suは、上向
きの均一な流速分布を示すようになる。
The exhaust gas flow adjusting plate 1 is provided with the swing shaft P
It is configured to be swingable around, as shown in FIG.
The swing shaft 5 is pivotally supported on the side walls 16 on both sides of the partition wall 14. The farthest surface portion 2a is formed along the pivot axis P. Because it is formed in this way, 145-
The upper rectifying surface portion 3 and the lower rectifying surface portion 4 formed at an inter-plane angle of 110 ° change their posture in conjunction with each other. The surface-to-surface angle is deflected toward the partition 14 along the upper rectifying surface portion 3 while scattering part of the maximum flow rate portion St of the exhaust gas flow S descending from the descending flue portion 11 downward, In addition, it is set so as to scatter downward along the lower rectifying surface portion 4. If the angle between the surfaces is appropriately set, and the gradient of the upper rectifying surface portion 3a and the gradient of the lower rectifying surface portion 4a are suitable gradients, the rising gas at the position where the superheater conduit 21 is disposed. The flow Su has an upward uniform flow velocity distribution.

【0019】また、前記排ガス流調整板1は、前記揺動
軸芯Pが、前記隔壁下端部14aよりも高くならないよ
うに、且つ、前記煙道曲り部12の形成する排塵ホッパ
の底部12a(排塵の際に開閉されるシールダンパによ
り封止されている。)と前記隔壁下端部14aとの間の
上下方向中央部に位置するように配置される。この位置
は、前記煙道曲り部12の周壁、つまり前記排塵ホッパ
の形状により異なる。さらに、前記上側整流面部3の上
下方向の幅は、前記隔壁下端部14aと前記底部12a
との間の上下方向の距離の4割以下であることが好まし
く、また、前記下側整流面部4の上下方向の幅も、前記
隔壁下端部14aと前記底部12aとの間の上下方向の
距離の4割以下であることが好ましい。
The exhaust gas flow adjusting plate 1 is arranged such that the pivot axis P is not higher than the lower end 14a of the partition wall, and the bottom 12a of the dust hopper formed by the bent portion 12 of the flue. (It is sealed by a seal damper that is opened and closed at the time of dust discharge.) It is arranged so as to be located at the center in the vertical direction between the partition lower end portion 14a. This position varies depending on the shape of the peripheral wall of the flue bending portion 12, that is, the shape of the dust hopper. Further, the width of the upper rectifying surface portion 3 in the up-down direction is equal to the lower end portion 14a of the partition wall and the bottom portion 12a.
The vertical width of the lower rectifying surface portion 4 is also preferably 40% or less of the vertical distance between the lower rectifying surface portion 4 and the vertical distance between the partition lower end portion 14a and the bottom portion 12a. Is preferably 40% or less.

【0020】前記排ガス流調整板1の姿勢、つまり、前
記上側整流面部3の前記鉛直面Fに対する角度を調整す
るために、前記揺動軸5を駆動する駆動機構を制御する
姿勢調整機構6を設ける(図3参照)。この姿勢調整機
構6は、例えば前記揺動軸5に取り付けたアームをシリ
ンダ機構で旋回駆動し、前記排ガス流調整板1の姿勢を
制御するようにしてもよい。もし前記整流面部2の排ガ
ス流Sを受けることにより生ずる揺動振動を許容しなが
ら姿勢を維持しようとするならば、前記シリンダ機構を
空気圧シリンダ機構とすればよい。また、前記揺動軸5
に歯車を取り付けて、サーボモータ機構で前記姿勢の調
整を行うようにしてもよい。
In order to adjust the attitude of the exhaust gas flow adjusting plate 1, that is, the angle of the upper rectifying surface portion 3 with respect to the vertical plane F, an attitude adjusting mechanism 6 for controlling a driving mechanism for driving the swing shaft 5 is provided. (See FIG. 3). The attitude adjusting mechanism 6 may control the attitude of the exhaust gas flow adjusting plate 1 by, for example, rotating an arm attached to the swing shaft 5 by a cylinder mechanism. If the posture is to be maintained while allowing the swing vibration caused by receiving the exhaust gas flow S on the rectifying surface portion 2, the cylinder mechanism may be a pneumatic cylinder mechanism. The swing shaft 5
Gears may be attached to the motor, and the posture may be adjusted by a servo motor mechanism.

【0021】前記姿勢調整機構6による前記排ガス流調
整板1の姿勢制御のために、前記過熱器管路21に沿っ
て、複数の熱電対からなる温度計測手段8を設ける(図
1参照)。前記姿勢調整機構6は、前記温度計測手段8
の検出する温度分布に基づいて、その温度分布を平坦化
させるようにフィードバック制御により前記揺動軸5を
駆動する。前記温度計測手段8からの計測結果は前記過
熱器管路21の管外壁の温度分布をもたらし、この温度
分布が前記上昇ガス流Suの流速分布を代表するので、
前記温度計測手段8を流速計測手段7として用いること
ができる。つまり、前記温度計測手段8の計測した温度
により求める過熱器管路21の管外壁温度の分布が均一
になれば、前記上昇ガス流Suの流速分布が均一になっ
ていると判断できるのである。尚、前記過熱器管路21
で例示した加熱管路に温度勾配を与えたい場合には、前
記姿勢調整機構6にその温度勾配を各測定点に対して基
準温度として与えて、前記温度測定手段8の測定結果を
それぞれ基準温度に一致させるように前記排ガス流調整
板1の姿勢を制御する。
For controlling the attitude of the exhaust gas flow adjusting plate 1 by the attitude adjusting mechanism 6, a temperature measuring means 8 comprising a plurality of thermocouples is provided along the superheater pipe 21 (see FIG. 1). The attitude adjusting mechanism 6 is provided with the temperature measuring means 8.
Based on the detected temperature distribution, the swing shaft 5 is driven by feedback control so as to flatten the temperature distribution. The measurement result from the temperature measuring means 8 results in a temperature distribution on the outer wall of the superheater line 21, and this temperature distribution is representative of the flow velocity distribution of the rising gas flow Su.
The temperature measuring means 8 can be used as the flow velocity measuring means 7. That is, if the distribution of the outer wall temperature of the superheater pipe 21 obtained from the temperature measured by the temperature measuring means 8 becomes uniform, it can be determined that the flow velocity distribution of the rising gas flow Su is uniform. The superheater pipe 21
When it is desired to apply a temperature gradient to the heating pipeline exemplified in the above, the temperature gradient is given to the attitude adjusting mechanism 6 as a reference temperature for each measurement point, and the measurement results of the temperature measurement means 8 are respectively set to the reference temperature. The attitude of the exhaust gas flow adjusting plate 1 is controlled so as to match the above.

【0022】次に、本発明の他の実施の形態について説
明する。 〈1〉上記実施の形態に於いては、煙道曲り部12に、
横軸の揺動軸芯P回りに揺動自在な縦断面く字状に屈曲
形成した排ガス流調整板1を配置した例を示したが、前
記排ガス流調整板1の整流面部2は、曲面で形成されて
いてもよく、上記実施の形態においては、上端整流面部
3aの鉛直面Fとの間に成す角が上側整流面部3の前記
鉛直面Fとの間に成す角に、下端整流面部4aの前記鉛
直面Fとの間に成す角が下側整流面部4の前記鉛直面F
との間に成す角に、それぞれ一致するのに対して、下降
煙道部11を下降した排ガス流Sの最大流速部分St
を、前記上端整流面部3a或いは前記下端整流面部4a
とは異なる勾配の整流面で受けるようになり、上昇煙道
部13に流入する上昇ガス流Suの流速分布の制御が容
易になる。
Next, another embodiment of the present invention will be described. <1> In the above embodiment, the flue bend 12
An example is shown in which the exhaust gas flow adjusting plate 1 which is bent and formed in a vertical cross-sectionally L-shape so as to be swingable around the horizontal axis P of swinging is provided. The rectifying surface portion 2 of the exhaust gas flow adjusting plate 1 has a curved surface. In the above embodiment, the angle formed between the upper end rectifying surface portion 3a and the vertical plane F is set to the angle formed between the upper rectifying surface portion 3 and the vertical surface F, and the lower end rectifying surface portion is formed. The angle between the vertical plane F and the vertical plane F of the lower rectifying surface 4
And the maximum flow velocity portion St of the exhaust gas flow S that has descended the descending flue section 11 while corresponding to the angle formed between
To the upper end rectifying surface portion 3a or the lower end rectifying surface portion 4a.
Therefore, the flow rate distribution of the ascending gas flow Su flowing into the ascending flue section 13 can be easily controlled.

【0023】〈2〉上記実施の形態に於いては、一体に
形成された排ガス流調整板1が、揺動軸芯P回りに揺動
自在に構成されており、揺動軸5を前記隔壁14の両側
の側壁16に枢支してある例を示したが、例えば図5に
示すように、前記排ガス流調整板1は揺動することな
く、その位置だけを変更調節自在に構成してあってもよ
い。このような構成によれば、前記排ガス流調整板1を
任意の位置に移動することができるから、上昇煙道部1
3における上昇ガス流Suの流速分布を所望の分布に調
整できる。
<2> In the above embodiment, the exhaust gas flow control plate 1 integrally formed is configured to be swingable around the swing axis P, and the swing shaft 5 is connected to the partition wall. An example in which the exhaust gas flow regulating plate 1 is pivotally supported on the side walls 16 on both sides of the exhaust gas 14 is shown in FIG. 5, for example. There may be. According to such a configuration, the exhaust gas flow control plate 1 can be moved to an arbitrary position.
3, the flow velocity distribution of the rising gas flow Su can be adjusted to a desired distribution.

【0024】〈3〉上記実施の形態に於いては、一体に
形成された排ガス流調整板1が、揺動軸芯P回りに揺動
自在に構成されており、揺動軸5を前記隔壁14の両側
の側壁16に枢支してある例を示したが、例えば図6に
示すように、前記排ガス流調整板1を、前記揺動軸5の
上下を相対揺動可能に形成して、上部調整板1aと、下
部調整板1bとに分割形成してあってもよい。このよう
に構成すれば、前記上端整流面部3aに沿って偏流した
排ガス流の隔壁14への接近角度と、前記下端整流面部
4aに沿って散流した排ガス流の量及び散流の程度を個
々に調節できるようになり、上昇煙道部13における上
昇ガス流Suの流速分布を調整しやすくなる。
<3> In the above embodiment, the exhaust gas flow control plate 1 integrally formed is configured to be swingable about the swing axis P, and the swing shaft 5 is connected to the partition wall. In the example shown in FIG. 6, the exhaust gas flow adjusting plate 1 is formed so as to be able to relatively swing up and down the swing shaft 5, as shown in FIG. 6. , An upper adjustment plate 1a and a lower adjustment plate 1b. According to this structure, the approach angle of the exhaust gas flow deflected along the upper end rectifying surface portion 3a to the partition wall 14, the amount of the exhaust gas flow scattered along the lower rectifying surface portion 4a, and the degree of the dispersion are individually determined. , And the flow velocity distribution of the rising gas flow Su in the rising flue section 13 can be easily adjusted.

【0025】〈4〉また、上記〈3〉の構成に対して、
例えば図7に示すように、前記上部調整板1aと、前記
下部調整板1bとを、異なる揺動軸5、つまり第1揺動
軸5a、第2揺動軸5bで別々に枢支するようにしても
よく、前記上部調整板1aと、前記下部調整板1bとの
間に間隙を設けるようにすれば、その隙間を吹き抜ける
排ガス流によって、前記排ガス流調整板1の背後でのガ
ス流の散流を容易にし、前記上昇ガス流Suの流速分布
がさらに調整しやすくなる。
<4> Further, with respect to the configuration of the above <3>,
For example, as shown in FIG. 7, the upper adjustment plate 1a and the lower adjustment plate 1b are separately pivotally supported by different swing shafts 5, that is, a first swing shaft 5a and a second swing shaft 5b. If a gap is provided between the upper adjustment plate 1a and the lower adjustment plate 1b, the gas flow behind the exhaust gas flow adjustment plate 1 is reduced by the exhaust gas flowing through the gap. Spreading is facilitated, and the flow velocity distribution of the rising gas flow Su is further easily adjusted.

【0026】〈5〉上記〈4〉に示した例において、第
1揺動軸5a、第2揺動軸5bを、排ガス流Sに対して
前後して配置してあってもよく、このように配置すれ
ば、例えば前記第1揺動軸5aを前記第2揺動軸5bの
上流側に配置して(図8参照)、最大流速部Stを下部
調整板1bの整流面部2(下側整流面部4)で受けるよ
うにすれば、前記下側整流面部4で散流し、上方に偏流
した排ガス流Sを上部調整板1aの整流面部2(上側整
流面部3)に沿って隔壁14に向けて導くことが可能
で、この際、前記上部調整板1aと前記下部調整板1b
との間隙から背後に抜けるガス流によってもも散流でき
るから、上昇ガス流Suの流速分布がさらに調節しやす
くなる。
<5> In the example shown in <4>, the first swing shaft 5a and the second swing shaft 5b may be arranged before and after the exhaust gas flow S. In this case, for example, the first oscillating shaft 5a is arranged on the upstream side of the second oscillating shaft 5b (see FIG. 8), and the maximum flow velocity portion St is adjusted to the rectifying surface portion 2 (lower side) of the lower adjustment plate 1b. If the flow is received by the rectifying surface portion 4), the exhaust gas flow S scattered on the lower rectifying surface portion 4 and deflected upward is directed toward the partition wall 14 along the rectifying surface portion 2 (upper rectifying surface portion 3) of the upper adjustment plate 1a. In this case, the upper adjustment plate 1a and the lower adjustment plate 1b
Can also be scattered by the gas flow passing behind from the gap between the rising gas flow Su and the flow velocity distribution of the rising gas flow Su can be further easily adjusted.

【0027】〈6〉上記実施の形態に於いては、一体に
形成された排ガス流調整板1が、揺動軸芯P回りに揺動
自在に構成されており、揺動軸5を前記隔壁14の両側
の側壁16に枢支してある例を示したが、例えば図9に
示すように、前記排ガス調整板1を、前記揺動軸芯Pに
沿って分割形成してあってもよい。さらに、分割形成し
た夫々の排ガス調整板1を、個々に揺動姿勢制御するよ
うにしてあればなおよく、前記揺動軸芯P方向に生ずる
上昇ガス流Suの流速分布をより細かく調整することが
可能になる。
<6> In the above embodiment, the exhaust gas flow control plate 1 integrally formed is configured to be swingable about the swing axis P, and the swing shaft 5 is connected to the partition wall. Although an example in which the exhaust gas adjusting plate 1 is pivotally supported on the side walls 16 on both sides of the 14 is shown, for example, the exhaust gas adjusting plate 1 may be divided along the swing axis P as shown in FIG. . Furthermore, it is more preferable that each of the divided exhaust gas adjusting plates 1 is individually controlled in a swinging posture, and the flow velocity distribution of the rising gas flow Su generated in the direction of the swinging axis P is more finely adjusted. Becomes possible.

【0028】〈7〉上記実施の形態に於いては、一体に
形成された排ガス流調整板1が、揺動軸芯P回りに揺動
自在に構成されており、揺動軸5を前記隔壁14の両側
の側壁16に枢支してある例を示したが、前記排ガス調
整板1を複数設けてあってもよく、個々に姿勢制御すれ
ば、さらに上昇ガス流Suの流速分布を細かく調整する
ことが可能になる。前記排ガス流調整板1を、両側の側
壁16の間に亘って一体に設けてあれば、異なる位置で
排ガス流Sを捕捉して、偏流乃至散流することが可能に
なる。
<7> In the above embodiment, the exhaust gas flow control plate 1 integrally formed is configured to be swingable around the swing axis P, and the swing shaft 5 is connected to the partition wall. Although an example is shown in which the exhaust gas adjusting plates 1 are pivotally supported on both side walls 16 of both sides, a plurality of the exhaust gas adjusting plates 1 may be provided. If the attitude is individually controlled, the flow velocity distribution of the rising gas flow Su is further finely adjusted. It becomes possible to do. If the exhaust gas flow control plate 1 is provided integrally between the side walls 16 on both sides, it becomes possible to capture the exhaust gas flow S at different positions and to make the flow drift or diffuse.

【0029】〈8〉上記〈7〉において、前記排ガス流
調整板1を、前記両側壁16の間で分割形成してあって
もよく、その揺動軸芯Pの方向を異ならせてあれば、前
記上昇煙道部13の平断面上での流速分布を調整できる
ようになる。例えば、前記排ガス流調整板1を、前記両
側壁16の間で3分割し、中央部の排ガス流調整板1の
揺動軸芯Pは隔壁14に平行に配置し、前記両側壁16
側の排ガス流調整板1の揺動軸芯Pを、受けた排ガス流
Sを内側に偏向させるように前記中央部の排ガス流調整
板1の揺動軸芯Pに対して水平面内で角度を持たせて配
置してあってもよく、両者共に内側に向かうように配置
することによって、前記両側壁16側に片寄る排ガス
を、中央部に向けて偏流乃至散流することが可能にな
る。
<8> In the above item <7>, the exhaust gas flow adjusting plate 1 may be formed so as to be divided between the side walls 16, provided that the directions of the pivot axes P are different. Thus, the flow velocity distribution on the plane section of the ascending flue section 13 can be adjusted. For example, the exhaust gas flow control plate 1 is divided into three portions between the both side walls 16, and the swing axis P of the central exhaust gas flow control plate 1 is arranged in parallel with the partition wall 14,
The angle of the oscillating axis P of the exhaust gas flow adjusting plate 1 on the side with respect to the oscillating axis P of the exhaust gas flow adjusting plate 1 at the center is deflected inward so as to deflect the received exhaust gas flow S inward. By arranging them so as to face inward, it becomes possible for the exhaust gas leaning toward the both side walls 16 to drift or diffuse toward the center.

【0030】〈9〉上記実施の形態に於いては、火炉出
口からの排ガス流路に廃熱ボイラ20を設けてあるゴミ
焼却炉の煙道曲り部12に排ガス流調整板1を設けてあ
る例を示したが、本発明を適用するゴミ焼却炉は、廃熱
ボイラを備えないものであってもよく、例えば図11に
示すように、下降煙道部11を空気冷却室に構成し、排
ガス中に空気を吹き込んで、排ガス温度を所定温度にま
で降下させるものであってもよい。つまり、上昇煙道部
13において上排ガス流Suの偏流は、上記従来の技術
において説明したと同様に生じ、前記上排ガス流Suの
流速分布に起因して、例えば空気予熱器の加熱管路21
の温度むらによる腐食を防止するには前記排ガス調整板
1を設ける効果は充分にある。
<9> In the above-described embodiment, the exhaust gas flow control plate 1 is provided in the flue bend 12 of the refuse incinerator in which the waste heat boiler 20 is provided in the exhaust gas channel from the furnace outlet. Although an example is shown, the refuse incinerator to which the present invention is applied may not be provided with a waste heat boiler. For example, as shown in FIG. Air may be blown into the exhaust gas to lower the exhaust gas temperature to a predetermined temperature. In other words, the drift of the upper exhaust gas flow Su in the upward flue section 13 occurs in the same manner as described in the above-described conventional technique, and due to the flow velocity distribution of the upper exhaust gas flow Su, for example, the heating pipe 21 of the air preheater.
In order to prevent corrosion due to temperature unevenness, the effect of providing the exhaust gas adjusting plate 1 is sufficient.

【0031】[0031]

【実施例】(実施例1)上記実施の形態において説明し
た排ガス調整板1の構成における過熱器管路21付近の
上昇排ガス流Suの流速及び前記過熱器管路21におけ
る排ガス温度の分布をシミュレータを用いて推定した結
果を図10(イ)及び(ロ)に示す。同図(イ)は、上
記従来の技術に説明した煙道10に4面下窄まりに形成
した煙道曲り部12を儲けて、前記排ガス調整板1を設
けていない比較例1で、同図(ロ)は、下降煙道部11
と上昇煙道部13との隔壁14の両側の側壁16を上方
からそのまま下方に延出して形成した煙道曲り部12
に、上記実施の形態に説明した排ガス調整板1を、上側
整流面部3の前記隔壁14に沿う鉛直面Fに対して35
゜の角度で下方に向けて傾斜させて配置した実施例であ
る。両者共に、煙道10を前記隔壁14を、中央部で直
交する鉛直面に沿って切断した断面図であり、廃熱ボイ
ラ20を配置してある煙道からの排ガスに同伴する飛灰
等の粉塵の4個の代表粒子が、下降煙道部11を降下
し、前記煙道曲り部12を経て上昇煙道部13を上昇す
る飛跡を、推定計算結果に基づいて描いたものである。
前記粉塵は平均粒径30μmのものとして設定した。
EXAMPLES (Example 1) Simulating the flow rate of the rising exhaust gas flow Su near the superheater pipe 21 and the distribution of the exhaust gas temperature in the superheater pipe 21 in the configuration of the exhaust gas adjusting plate 1 described in the above embodiment. The results of estimation using are shown in FIGS. FIG. 3A shows a comparative example 1 in which the flue 10 described in the above-mentioned prior art is provided with a flue bend 12 formed in a four-sided constriction and the exhaust gas adjusting plate 1 is not provided. Figure (b) shows the descending flue 11
Bent section 12 formed by extending the side walls 16 on both sides of the partition wall 14 between the upper and lower flue section 13 from above as it is.
In addition, the exhaust gas control plate 1 described in the above-described embodiment is attached to the vertical surface F along the partition 14 of the upper rectifying surface 3 by 35%.
This is an embodiment in which it is arranged to be inclined downward at an angle of ゜. In both cases, the flue 10 is a sectional view in which the partition wall 14 is cut along a vertical plane perpendicular to the center of the flue 10, and fly ash and the like accompanying the exhaust gas from the flue in which the waste heat boiler 20 is disposed. Four representative particles of dust descend on the descending flue section 11 and rise on the ascending flue section 13 via the flue curve section 12 based on the estimated calculation results.
The dust was set as having an average particle size of 30 μm.

【0032】同図(イ)、(ロ)を比較すれば明らかな
ように、実施例における粉塵の飛跡は、同図(ロ)に見
るように、煙道曲り部12における旋回に伴う遠心力の
ために旋回半径の外方に幾分片寄ってはいるものの、同
図(イ)に示した比較例に比してよく分散している。こ
のことは、排ガス流が前記上昇煙道部13の下方でよく
分散していることを示すものである。
As is clear from the comparison of FIGS. 2A and 2B, the trace of dust in the embodiment is, as shown in FIG. For this reason, although it is slightly offset to the outside of the turning radius, it is well dispersed as compared with the comparative example shown in FIG. This indicates that the exhaust gas flow is well dispersed below the rising flue section 13.

【0033】(実施例2)図3及び図12は、上記実施
例1と同様の手段を用いて、煙道10に配置してある廃
熱ボイラ20出口から下降煙道部11を降下し、前記煙
道曲り部12を経て上昇煙道部13を上昇する排ガスの
流れの推定計算結果に基づく流線に流速を同時に示すよ
うに描いたものである。図3は、上記と同様に、下降煙
道部11と上昇煙道部13との隔壁14の両側の側壁1
6を上方からそのまま下方に延出して形成した煙道曲り
部12に、上記実施例1に説明した排ガス調整板1を設
けた実施例で、図12も上記比較例1と同様に、上記従
来の技術に説明した煙道10に4面下窄まりに形成した
煙道曲り部12を設けて、前記排ガス調整板1を設けて
いない比較例2である。
(Embodiment 2) FIGS. 3 and 12 show that the descending flue section 11 is lowered from the outlet of a waste heat boiler 20 disposed in the flue 10 by using the same means as in the above-mentioned embodiment 1. The flow line is drawn so as to simultaneously show the flow velocity based on the calculation result of the estimated flow of the exhaust gas rising in the ascending flue section 13 via the flue curve section 12. FIG. 3 shows, similarly to the above, side walls 1 on both sides of a partition wall 14 of a descending flue section 11 and an ascending flue section 13.
In this embodiment, the flue gas adjusting plate 1 described in the first embodiment is provided on a flue bent portion 12 formed by directly extending the lower portion of the exhaust gas from above, and FIG. This is a comparative example 2 in which the flue 10 described in the above-mentioned technique is provided with a flue bend 12 formed in a four-sided constriction and the exhaust gas adjusting plate 1 is not provided.

【0034】両図を比較すれば明らかなように、実施例
2における上昇排ガス流Suの流速分布は、図3に示す
ように、過熱器管路21を配置してあるガス流路では、
入口でほぼ均一な流速分布となっており、出口では流れ
の向き、流速共に均一になっている。これに対して、比
較例2においては、図12に示すように、前記隔壁14
に対向する壁15側における上昇排ガス流Suの流速が
高くなっており、前記過熱器管路21を配置してあるガ
ス流路の出口においてもその分布をほぼ維持している。
上記比較から明らかなように、本発明による排ガス調整
板1を配置した効果は明瞭に表れている。
As is apparent from a comparison between the two figures, the flow velocity distribution of the rising exhaust gas flow Su in the second embodiment is such that the gas flow path in which the superheater pipe 21 is disposed as shown in FIG.
The inlet has a substantially uniform flow velocity distribution, and the outlet has a uniform flow direction and flow velocity at the outlet. On the other hand, in Comparative Example 2, as shown in FIG.
The flow rate of the rising exhaust gas flow Su on the side of the wall 15 opposed to the above is substantially maintained at the outlet of the gas flow path in which the superheater conduit 21 is disposed.
As is clear from the above comparison, the effect of disposing the exhaust gas control plate 1 according to the present invention is clearly shown.

【0035】[0035]

【発明の効果】以上説明したように、本発明によって、
上昇煙道部の入口における排ガスの流速を、隔壁からこ
れに対向する壁にわたって均一化するように調節するこ
とができ、その結果、例えば、廃熱ボイラを備えるゴミ
焼却炉においては、蒸気過熱管路の出口の過熱蒸気の温
度を所要の温度に維持しながら、且つ、管壁を腐食から
保護することができるようになった。
As described above, according to the present invention,
The flow rate of the exhaust gas at the inlet of the ascending flue can be adjusted so as to be uniform from the partition wall to the opposite wall, so that, for example, in a refuse incinerator equipped with a waste heat boiler, a steam superheater It has become possible to maintain the temperature of the superheated steam at the outlet of the road at a required temperature and to protect the pipe wall from corrosion.

【0036】尚、特許請求の範囲の項に図面との対照を
便利にするために符号を記すが、該記入により本発明は
添付図面の構成に限定されるものではない。
In the claims, reference numerals are provided for convenience of comparison with the drawings, but the present invention is not limited to the configuration shown in the attached drawings.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を適用したゴミ焼却炉の一例の説明図FIG. 1 is a diagram illustrating an example of a garbage incinerator to which the present invention is applied.

【図2】本発明の構成を説明する要部の断面説明図FIG. 2 is an explanatory cross-sectional view of a main part illustrating a configuration of the present invention.

【図3】本発明の効果を説明するシミュレータによる解
析結果を示す煙道模式断面図
FIG. 3 is a schematic sectional view of a flue showing an analysis result by a simulator for explaining the effect of the present invention.

【図4】排ガス流調整板の要部断面の動作説明図FIG. 4 is an operation explanatory view of a cross section of a main part of the exhaust gas flow control plate.

【図5】排ガス調整板の他の例を示す要部断面の動作説
明図
FIG. 5 is an operation explanatory view of a cross section of a main part showing another example of the exhaust gas adjusting plate.

【図6】排ガス調整板の他の例を示す要部断面の動作説
明図
FIG. 6 is an operation explanatory view of a cross section of a main part showing another example of the exhaust gas adjusting plate.

【図7】排ガス調整板の他の例を示す要部断面の動作説
明図
FIG. 7 is an operation explanatory view of a cross section of a main part showing another example of the exhaust gas adjusting plate.

【図8】排ガス調整板の他の例を示す要部断面の動作説
明図
FIG. 8 is an operation explanatory view of a cross section of a main part showing another example of the exhaust gas adjusting plate.

【図9】排ガス調整板の他の例を示す要部斜視図FIG. 9 is a perspective view of a main part showing another example of the exhaust gas control plate.

【図10】第1実施例を説明する粉塵の飛跡を示す煙道
の斜視透視図
FIG. 10 is a perspective perspective view of a flue showing a trace of dust illustrating the first embodiment.

【図11】本発明を適用したゴミ焼却炉の他の例の説明
FIG. 11 is an explanatory view of another example of a refuse incinerator to which the present invention is applied.

【図12】従来のゴミ焼却炉の煙道の排ガス流分布を示
す煙道模式断面図
FIG. 12 is a schematic sectional view showing a flue gas flow distribution of a flue of a conventional refuse incinerator.

【符号の説明】 1 排ガス流調整板 6 姿勢調整機構 7 流速計測手段 8 温度測定手段 10 煙道 11 下降煙道部 12 煙道曲がり部 13 上昇煙道部 21 加熱管路 P 揺動軸芯[Description of Signs] 1 Exhaust gas flow adjusting plate 6 Attitude adjusting mechanism 7 Flow velocity measuring means 8 Temperature measuring means 10 Flue duct 11 Downward flue section 12 Curved flue section 13 Upward flue section 21 Heating conduit P Oscillating axis

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 廃棄物加熱処理炉からの排ガス流を導く
煙道(10)に、排ガスを下方に向けて導く下降煙道部
(11)と、前記下降煙道部(11)からの排ガス流を
上方に向けて偏向する煙道曲がり部(12)と、前記煙
道曲がり部(12)からの排ガスを上方に導く上昇煙道
部(13)とを備え、 前記上昇煙道部(13)に流体を加熱する加熱管路(2
1)を配置してある煙道の構造であって、 前記加熱管路(21)の上流側に、前記加熱管路(2
1)の配置位置における排ガスの流速分布が目標分布と
なるように、位置又は姿勢を変更調節可能な排ガス流調
整板(1)を設けてある煙道の構造。
1. A descending flue section (11) for directing exhaust gas downward into a flue (10) for conducting an exhaust gas flow from a waste heat treatment furnace, and an exhaust gas from the descending flue section (11). A flue bending section (12) for deflecting the flow upward, and a rising flue section (13) for guiding exhaust gas from the flue bending section (12) upward, the rising flue section (13). ) To heat the fluid to the heating conduit (2
1) a flue structure in which the heating pipe (2) is provided upstream of the heating pipe (21);
A flue structure provided with an exhaust gas flow adjusting plate (1) whose position or attitude can be changed and adjusted so that the exhaust gas flow velocity distribution at the arrangement position of (1) becomes a target distribution.
【請求項2】 前記排ガス流調整板(1)の姿勢調整機
構(6)として、前記排ガス流調整板(1)を横軸芯
(P)周りに揺動自在に構成してある請求項1記載の煙
道の構造。
2. The exhaust gas flow adjusting plate (1) as a posture adjusting mechanism (6), wherein the exhaust gas flow adjusting plate (1) is configured to be swingable about a horizontal axis (P). The flue structure described.
【請求項3】 前記排ガス流調整板(1)を、相対角度
調節自在に上下に分割形成してある請求項1又は2に記
載の煙道の構造。
3. The flue structure according to claim 1, wherein the exhaust gas flow adjusting plate (1) is divided vertically into upper and lower portions so that the relative angle can be adjusted.
【請求項4】 前記排ガス流調整板(1)を、前記横軸
芯(P)方向に複数に分割形成してある請求項1〜3の
何れか1項に記載の煙道の構造。
4. The flue structure according to claim 1, wherein the exhaust gas flow adjusting plate (1) is divided into a plurality in the direction of the horizontal axis (P).
【請求項5】 前記排ガス流調整板(1)を複数設け、
前記横軸芯(P)を異ならせて配置してある請求項1〜
4の何れか1項に記載の煙道の構造。
5. A plurality of said exhaust gas flow control plates (1) are provided,
The said horizontal axis core (P) is arrange | positioned so that it may differ.
5. The structure of the flue according to any one of 4.
【請求項6】 前記加熱管路(21)の間に流入する排
ガスの流速分布を検出する流速計測手段(7)を設ける
とともに、 前記流速計測手段(7)の検出結果に基づ
き、前記排ガス流調整板(1)の位置又は姿勢を変更調
節する整流板制御機構を設けてある請求項1〜5の何れ
か1項に記載の煙道の構造。
6. A flow rate measuring means (7) for detecting a flow rate distribution of exhaust gas flowing between said heating pipe lines (21), and based on a detection result of said flow rate measuring means (7), The flue structure according to any one of claims 1 to 5, further comprising a current plate control mechanism for changing and adjusting the position or the posture of the adjustment plate (1).
【請求項7】 前記加熱管路(21)の管壁温度を検出
する温度測定手段(8)を前記加熱管路(21)に沿っ
て複数配置して設け、前記温度測定手段(8)で検出さ
れた温度分布から前記排ガスの流速分布を検出するよう
に、前記流速計測手段(7)を構成してある請求項6記
載の煙道の構造。
7. A plurality of temperature measuring means (8) for detecting a pipe wall temperature of the heating pipe (21) are provided along the heating pipe (21). The flue structure according to claim 6, wherein the flow velocity measuring means (7) is configured to detect a flow velocity distribution of the exhaust gas from the detected temperature distribution.
JP13193298A 1998-05-14 1998-05-14 Flue structure Expired - Fee Related JP3485798B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13193298A JP3485798B2 (en) 1998-05-14 1998-05-14 Flue structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13193298A JP3485798B2 (en) 1998-05-14 1998-05-14 Flue structure

Publications (2)

Publication Number Publication Date
JPH11325432A true JPH11325432A (en) 1999-11-26
JP3485798B2 JP3485798B2 (en) 2004-01-13

Family

ID=15069593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13193298A Expired - Fee Related JP3485798B2 (en) 1998-05-14 1998-05-14 Flue structure

Country Status (1)

Country Link
JP (1) JP3485798B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010255079A (en) * 2009-04-28 2010-11-11 Sharp Corp Exhaust duct and film forming apparatus
JP2012518772A (en) * 2009-02-23 2012-08-16 シエル・インターナシヨナル・リサーチ・マートスハツペイ・ベー・ヴエー Waste heat boiler
CN104791744A (en) * 2015-04-21 2015-07-22 张家港格林沙洲锅炉有限公司 Double-drum pipe bending type waste heat boiler
CN109630998A (en) * 2018-11-23 2019-04-16 东方电气集团东方锅炉股份有限公司 A kind of high parameter waste heat boiler suitable for refuse incineration grate furnace

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102393022A (en) * 2010-12-24 2012-03-28 上海锅炉厂有限公司 Temperature-adjusting baffle for boiler flue

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012518772A (en) * 2009-02-23 2012-08-16 シエル・インターナシヨナル・リサーチ・マートスハツペイ・ベー・ヴエー Waste heat boiler
JP2010255079A (en) * 2009-04-28 2010-11-11 Sharp Corp Exhaust duct and film forming apparatus
CN104791744A (en) * 2015-04-21 2015-07-22 张家港格林沙洲锅炉有限公司 Double-drum pipe bending type waste heat boiler
CN109630998A (en) * 2018-11-23 2019-04-16 东方电气集团东方锅炉股份有限公司 A kind of high parameter waste heat boiler suitable for refuse incineration grate furnace

Also Published As

Publication number Publication date
JP3485798B2 (en) 2004-01-13

Similar Documents

Publication Publication Date Title
JP4855518B2 (en) Pulverized coal fired boiler
CN101300453B (en) On-line adjustable coal flow distributing device
US4095534A (en) Damper with curved extension plates for wide range flow control
EP2667094A1 (en) Solid fuel burner and combustion device using same
JPH11325432A (en) Structure of flue
JP2023520259A (en) Thermal comfort ventilation and pollutant control method for air stability in finite space
WO2016163449A1 (en) Exhaust gas treatment device
JP2686341B2 (en) Steam pressure controller for circulating fluidized bed boiler
TW538216B (en) Splitter plate arrangement for a flue gas stack
Kuan et al. CFD simulation and experimental validation of diluted particulate turbulent flows in a 90∘ duct bend
WO2019107421A1 (en) Fluidized bed furnace
JPS62206316A (en) Device for adjusting temperature of flue gas
CN210135600U (en) Smoke circulation downstream ash blocking prevention air preheater
Dickey et al. A study of damper characteristics
KR20020041966A (en) Apparatus And Method For Maintaining Constant Velocity Of Cyclone Inlet Gas In A Circulating Fluidized Bed Combustor And Incinerators
JPS5862405A (en) Method of burning dust coal combustion furnace
CN210568561U (en) Control system for secondary air box of opposed firing boiler
JP2001324134A (en) Louver damper
CN110118345B (en) Flue gas diversion system and method and waste heat boiler
CN116358159A (en) Intelligent monitoring boiler based on Internet of things
JP3460000B2 (en) Blast tube for fluidized bed boiler
JP3983595B2 (en) Combustion device air flow straightening structure
Cresseri Soot precursors and soot dynamics in reactive systems
JP2716347B2 (en) Gas blending equipment
US6192810B1 (en) Laminar flow air register

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees