WO2019107421A1 - Fluidized bed furnace - Google Patents

Fluidized bed furnace Download PDF

Info

Publication number
WO2019107421A1
WO2019107421A1 PCT/JP2018/043805 JP2018043805W WO2019107421A1 WO 2019107421 A1 WO2019107421 A1 WO 2019107421A1 JP 2018043805 W JP2018043805 W JP 2018043805W WO 2019107421 A1 WO2019107421 A1 WO 2019107421A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
gas
fluidized bed
partition wall
flowable
Prior art date
Application number
PCT/JP2018/043805
Other languages
French (fr)
Japanese (ja)
Inventor
祐司 小川
五十嵐 実
前川 勇
敬哲 清水
貞行 武藤
元 清瀧
康二 福本
隆平 山田
利紀 村岡
熊田 憲彦
貴大 山口
Original Assignee
川崎重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎重工業株式会社 filed Critical 川崎重工業株式会社
Priority to CN201880076378.6A priority Critical patent/CN111630319B/en
Priority to BR112020010593-7A priority patent/BR112020010593A2/en
Publication of WO2019107421A1 publication Critical patent/WO2019107421A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C10/00Fluidised bed combustion apparatus
    • F23C10/18Details; Accessories
    • F23C10/20Inlets for fluidisation air, e.g. grids; Bottoms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/30Incineration of waste; Incinerator constructions; Details, accessories or control therefor having a fluidised bed

Definitions

  • the present invention relates to the configuration of an internal circulation type fluidized bed furnace.
  • a fluidized bed furnace in which a fluidized bed is formed in which a fluidized medium filled in the lower part of the furnace is made to flow with a flowing gas blown from a furnace bottom.
  • the fluidized bed furnace has an internal circulation system and an external circulation system.
  • the fluidized bed is divided into a combustion chamber and a heat recovery chamber, and the fluid medium is circulated and flowed between these two chambers. , Combustion and heat recovery are performed in the fluidized bed.
  • An internal circulation type fluidized bed furnace of this kind is disclosed, for example, in Patent Document 1.
  • the fluidized bed is divided into three cells by the first partition and the second partition, and the flowable gas whose flow rate is adjusted independently below or under each cell is A supply air box or air diffuser is provided.
  • fuel combustion target
  • a heat transfer pipe is provided to perform heat recovery.
  • the first cell and the second cell are divided by the first partition so that the lower side communicates with each other, and the second cell and the third cell are divided by the second partition such that the upper side and the lower side communicate with each other.
  • the fluidizing medium moves from the lower part of the first cell to the third cell across the second partition via the second cell and circulates from the lower part of the third cell to the second cell and the first cell by the flowable gas .
  • a gas distribution plate is provided at the furnace bottom with a wind box at the bottom and a large number of nozzles are formed at the top of the wind box, and the gas in the wind box is a gas dispersion plate It is configured to blow out into the furnace bottom or into the fluidized bed via As described in Patent Document 1, instead of the air box, a configuration in which the fluidizing gas is supplied by a diffuser is also proposed, but a specific aspect is not shown.
  • the inventors of the present application are examining the supply of gas for fluidization using a diffusion tube in an internal circulation type fluidized bed furnace.
  • the nozzles can be appropriately dispersed and disposed on the furnace plane, so that the flowable gas is uniformly dispersed on the furnace plane.
  • it is difficult to distribute the air outlets in the furnace plane in the case of a straight-line aeration tube it is difficult to form a circulating flow of the fluid medium by supplying the gas for fluidization by means of the aeration tube. It is necessary to determine the layout of the aeration tube etc. in consideration of
  • a fluidized bed furnace is A fluid medium layer comprising a fluid medium, A flowable gas supply device for supplying a flowable gas for flowing the flowable medium from the bottom of the flowable medium bed; A plurality of parallel partition walls for dividing the fluidized medium layer into a first cell, a second cell, and a heat transfer pipe which are provided for the combustion of fuel to be subjected to heat recovery, the first cell being a first cell And a second partition wall for communicating the lower side with the second cell, and a height level of a lower end of the first partition wall is lower than that of the first partition wall, and the third cell and the second cell are upper side And a partition wall including a second partition wall communicating with the lower side,
  • the flow gas supply device is the bottom of each of the first to third cells, and is lower than the lower end of the partition wall, so that the partition wall does not overlap in plan view with the partition wall in plan view And a plurality of aeration tubes arranged in parallel with
  • the flowable gas blown out from the aeration pipe is well dispersed in each cell without blocking the flow of the flowable medium.
  • the flow medium in each cell is urged to flow according to the flow direction of the cell. Therefore, in the internal circulation type fluidized bed furnace, if the above-described features of the fluidized bed furnace are applied, the flow medium can be favorably circulated and moved by the supply of the flowable gas using the diffusion pipe.
  • the superficial velocity of the fluidizing gas of the second cell is larger than the superficial velocity of the fluidizing gas of the first cell, and the first gas The flowing gas may be blown out from the aeration tube such that the superficial velocity of the flow gas in the cell is higher than the superficial velocity of the flow gas in the third cell.
  • the fluid medium circulates from the first cell to the third cell through the second cell, and further, from the third cell to the first cell.
  • the aeration pipe may be provided so as to be insertable into and removable from the furnace body.
  • the aeration pipes may be connected by a header for each cell, and a flow gas supply pipe provided with a flow rate adjusting means may be connected to each header.
  • the superficial velocity of the fluidizing gas of the second cell is the fluid velocity of the first cell It arranges to each cell so that the superficial velocity of the flow gas of the first cell is larger than the superficial velocity of the flow gas and the superficial velocity of the flow gas of the third cell is larger.
  • the present invention in the internal circulation type fluidized bed furnace, it is possible to realize the supply of the flowable gas using the diffusion pipe.
  • FIG. 1 is a block diagram showing a schematic configuration of a combustion system including a fluidized bed furnace according to an embodiment of the present invention.
  • FIG. 2 is a view showing a schematic configuration of a fluidized bed furnace according to an embodiment of the present invention.
  • FIG. 3 is an enlarged view of the fluidized bed portion of the fluidized bed furnace.
  • FIG. 4 is a plan view of the furnace bottom showing the layout of the aeration tube.
  • combustion system 100 First, the configuration of a combustion system 100 including a fluidized bed furnace 1 according to an embodiment of the present invention will be described.
  • the combustion system 100 shown in FIG. 1 is a system that burns fuel (combustion target) such as coal, biomass, RDF, municipal waste, and industrial waste, and recovers its exhaust heat.
  • fuel combustion target
  • FIG. 1 is a system that burns fuel (combustion target) such as coal, biomass, RDF, municipal waste, and industrial waste, and recovers its exhaust heat.
  • the combustion system 100 comprises a fluidized bed furnace 1 for burning fuel.
  • the flue gas system 3 of the fluidized bed furnace 1 is provided with a heat exchange device 31, a cyclone dust collector 32, a bag filter 33, and an induction blower 34 which is an induction fan. Exhaust heat from the fluidized bed furnace 1 is recovered by the heat exchanger 31 and dust is separated by the cyclone type dust collector 32 and the bag filter 33, and a part thereof is discharged out of the system through a chimney not shown by the induction blower 34. Be done.
  • An exhaust gas recirculation system 4 is connected to the downstream side of the bag filter 33 of the combustion exhaust gas system 3.
  • a gas recirculation blower 40 is provided in the exhaust gas recirculation system 4, and a part of the combustion exhaust gas of the combustion exhaust gas system 3 is returned to the fluidized bed furnace 1 by the gas recirculation blower 40.
  • the flue gas returned to the fluidized bed furnace 1 by the flue gas recirculation system 4 is used as a fluidizing gas (primary combustion gas), a secondary combustion gas, and a tertiary combustion gas.
  • the fluidized bed furnace 1 shown in FIG. 2 is an operation control device for controlling the operation of the fluidized bed furnace 1 and a furnace main body 10 provided with a combustion chamber consisting of a fluidized bed portion 11 at the lower part of the furnace and a freeboard portion 12 above it. And a fluidized bed monitoring device 9.
  • a throttle portion 13 At the lower portion of the freeboard portion 12, there is a throttle portion 13 in which the gas passage cross-sectional area is narrowed as compared with the remaining portion of the combustion chamber.
  • the combustion gas flows upward from the bottom, and in the flue connected to the upper portion of the freeboard portion 12, a heat transfer pipe constituting the heat exchange device 31 is installed.
  • FIG. 3 is an enlarged view of the fluidized bed portion 11.
  • the fluidizing bed 11 is provided with a fluidizing medium bed 51 filled with a fluidizing medium such as silica sand, and a fluidizing gas supply apparatus for supplying fluidizing gas from the bottom to the fluidizing medium bed 51.
  • An internal circulating fluidized bed is formed by 52 and partition walls 41 and 42 which divide the fluidized medium layer 51 into three cells 61, 62 and 63.
  • the first partition wall 41 divides the lower portion of the furnace main body 10 including the fluidized bed portion 11 into a combustion area 53 and a heat recovery area 54.
  • the second partition wall 42 is provided close to the first partition wall 41 and in parallel with the first partition wall 41 in the heat recovery region 54.
  • the fluidized bed portion 11 is formed by the partition walls 41 and 42 between the first side wall 10 a of the furnace main body 10 and the first partition wall 41, the “combustion cell 61”, the first partition wall 41 and the second Three cells of “circulating cell 62” formed between partition wall 42 and “heat collecting cell 63” formed between second partition wall 42 and second side wall 10 b of furnace main body 10 It is divided.
  • the heat collection cell 63 is provided with a heat transfer pipe 64 such as a superheater pipe or an evaporator pipe. Heat recovery is performed by the heat medium passing through the heat transfer tube 64.
  • a combustion chamber extending linearly in the vertical direction is formed above the combustion area 53.
  • a ceiling wall 43 closing the upper portion of the heat recovery area 54 is provided above the heat recovery area 54.
  • the upper end of the first partition wall 41 is close to the ceiling wall 43, and an upper communication port serving as an unburned gas supply port 68 is formed between the upper end of the first partition wall 41 and the ceiling wall 43.
  • the lower end of the first partition wall 41 is higher than the lower end of the second partition wall 42, whereby a lower communication port 55 through which the fluid medium flows is formed in the lower portion of the first partition wall 41.
  • communication ports 56, 57 are formed, which communicate the circulation cell 62 with the heat collecting cell 63 and through which the fluid medium flows.
  • the flow gas supply device 52 supplies the flow gas whose flow rate is independently adjusted to each of the combustion cell 61, the circulation cell 62, and the heat collection cell 63.
  • the flow gas supply device 52 supplies the flow gas whose flow rate is independently adjusted to each of the combustion cell 61, the circulation cell 62, and the heat collection cell 63.
  • the air diffusion pipe 80 is connected by a header for each of the cells 61, 62, 63, and each header is a flow provided with flow rate adjusting means 81a, 82a, 83a such as a damper (or valve) and flowmeters 81b, 82b, 83b.
  • the gas supply pipes 81, 82, 83 are connected.
  • Air is supplied by the pushing blower 79.
  • an exhaust gas recirculation system 4 is connected to a flow gas supply pipe 83 connected to the air diffusion pipe 80 disposed at the bottom of the heat collection cell 63.
  • the operation control device 15 detects each flow gas based on detection values of temperature sensors (not shown) for detecting the temperatures of the combustion cells 61 and the heat collection cells 63 in the flow medium layer 51 and the flowmeters 81b, 82b, 83b, etc.
  • the flow rate adjusting means 81a, 82a, 83a are operated so as to adjust the flow rate of the flowing gas in the supply pipes 81, 82, 83. From the bottom of the combustion cell 61 and the circulation cell 62, air is blown out as a flow gas, and from the bottom of the heat collection cell 63, combustion exhaust gas is blown out as a flow gas.
  • the superficial velocity of the flowable gas of the combustion cell 61 is larger than the superficial velocity of the flowable gas of the heat collection cell 63, and the superficial velocity of the flowable gas of the circulation cell 62 is equal to that of the combustion cell 61.
  • the flow rate of the flowable gas is adjusted to be greater than the superficial velocity of the flowable gas and the superficial velocity of the flowable gas of the heat collection cell 63.
  • a fuel inlet 65 is opened immediately above the surface layer portion of the fluidized bed portion 11 at the time of operation and in the first side wall 10a.
  • the fuel inlet 65 is located on the upstream side of the flow of the combustion gas than the throttle portion 13.
  • Fuel is supplied to the fuel inlet 65 by a fuel supply device (not shown). The fuel introduced into the furnace from the fuel inlet 65 falls to the top of the combustion cell 61 of the fluidized bed portion 11.
  • an unburned gas supply port 68 is opened. From the unburned gas supply port 68, the air is blown out from the aeration pipe 80 disposed in the fluid medium layer 51 of the heat recovery area 54 into the fluid medium layer 51, and after passing through the fluid medium layer 51 The mixture is blown out as a secondary combustion gas.
  • a supply port for blowing out the secondary combustion gas may be provided.
  • a plurality of tertiary combustion gas supply ports 69 are opened in the furnace wall on the downstream side of the flow of the combustion gas than the unburned gas supply port 68.
  • the plurality of tertiary combustion gas supply ports 69 are provided to be dispersed at a plurality of height positions.
  • a temperature sensor 70 is provided on the furnace wall included in the diffusion area of the tertiary air blown out from the tertiary combustion gas supply port 69.
  • the air content of the tertiary combustion gas is adjusted by mixing the combustion exhaust gas with air.
  • flow control means 88, 89 such as dampers (or valves) are provided in the air supply path to the tertiary combustion gas supply port 69 and the combustion exhaust gas supply path.
  • the operation control device 15 maintains the flow rate of the tertiary combustion gas at the predetermined flow rate, and supplies the tertiary combustion gas to that point.
  • the flow rate adjusting means 88, 89 so that the air content of the tertiary combustion gas supplied to that point is increased. Adjust the opening of the.
  • the operation method of the fluidized bed furnace 1 of the said structure is demonstrated.
  • low air ratio combustion is performed in the fluidized bed portion 11. More specifically, while the total air ratio between the fluidized bed portion 11 and the freeboard portion 12 is set to a value larger than 1, the air ratio (ie, the primary air ratio) of the combustion cells 61 of the fluidized bed portion 11 and the freeboard Supply amounts of fluidizing air and secondary combustion gas to the combustion cell 61 so that the air ratio (secondary air ratio) around the fuel inlet 65 of the portion 12 is all less than 1; And / or its air content is adjusted.
  • the primary air ratio is lower than the secondary air ratio.
  • the primary air ratio may be 0.4 and the secondary air ratio may be 0.8.
  • the slow drying and thermal decomposition of the fuel generate combustible pyrolysis gas and pyrolysis residue.
  • Pyrolysis residue and fuel residue are at the bottom of the combustion cell 61, and are provided at the intermediate position between the first side wall 10a and the first partition wall 41 from the outlet 72 of the fluid medium and the incombustible material. It is discharged outside.
  • the pyrolysis gas generated in the fluidized bed portion 11 is burned with the secondary combustion gas, the unburned portion in the combustion gas is completely burned with the tertiary combustion gas, and the combustion exhaust gas is discharged to the combustion exhaust gas system 3 Ru.
  • FIG. 4 is a plan view of the furnace bottom showing the layout of the air diffusion tube 80.
  • At least one air diffusion pipe 80 is provided in each of the cells 61, 62, 63.
  • the aeration tube 80 is, for example, a circular tube in which a plurality of laterally directed air outlets are uniformly distributed in the extending direction.
  • the first partition wall 41 and the second partition wall 42 are disposed in parallel, and the in-plane direction of the partition walls 41 and 42 and the extension direction of the respective diffusers 80 are parallel.
  • the air diffusion tube 80 does not overlap with the partition walls 41 and 42 in a plan view. It is arrange
  • Each aeration tube 80 is disposed below the lower ends of the first partition wall 41 and the second partition wall 42.
  • the distance between the lower end of the second partition wall 42 having the lower height level of the lower end of the two partition walls 41 and 42 and the pipe center of the air diffusion pipe 80 is in the range of 200 mm to 300 mm.
  • Each aeration tube 80 is inserted in the furnace wall of the furnace main body 10 so as to be insertable and removable parallel to the extending direction of the aeration tube 80.
  • the air diffusion tubes 80 can be individually attached to and detached from the furnace body 10.
  • the aeration tube 80 is connected by a header for each of the cells 61, 62, 63, and the superficial velocity of the fluidizing gas in each of the cells 61, 62, 63 has a predetermined correlation that causes the fluidizing medium to circulate.
  • the flow rate of the flowable gas supplied to the air diffusion pipe 80 is adjusted for each of the cells 61, 62, 63.
  • predetermined correlation means that the flow velocity of the flow cells in each of the cells 61, 62, 63 is higher than the flow velocity of the flow medium.
  • the superficial velocity is larger than the superficial velocity of the flowable gas of the combustion cell 61, and the superficial velocity of the flowable gas of the combustion cell 61 is larger than the superficial velocity of the flowable gas of the heat collection cell 63 It means the relationship of the superficial velocity of the gas for fluidization of the cell.
  • the superficial velocity of the flow gas for each cell becomes a predetermined correlation that causes the flow medium to circulate.
  • the number of air diffusers 80 disposed in each cell 61, 62, 63 is determined.
  • the number of outlets may be different for each of the aeration tubes 80.
  • the fluidized medium bed 51 made of the fluidized medium and the flowing gas supply that supplies the flowing gas that causes the fluidized medium to flow from the bottom of the fluidized medium bed 51
  • a device 52 a combustion cell 61 (first cell) in which the fuel is combusted in the fluidized medium layer 51, a circulation cell 62 (second cell), and a heat collection cell in which heat transfer is performed are provided.
  • a plurality of parallel partition walls 41 and 42 which divide into 63 (third cells) are provided.
  • the partition walls 41 and 42 have lower height levels at the lower end than the first partition wall 41 and the first partition wall 41 that divide the combustion cell 61 and the circulation cell 62 so as to communicate with the lower side thereof; It includes a second partition wall 42 communicating the cell 63 with the circulation cell 62 on the upper side and the lower side.
  • the gas supply apparatus 52 for flow is a bottom view of each cell 61,62,63, and it is a plan view so that it may not overlap with the partition walls 41 and 42 in plan view below below the lower end of the partition walls 41 and 42.
  • a plurality of aeration tubes 80 disposed in parallel with the partition walls 41 and 42.
  • the fact that the partition walls 41 and 42 and the plurality of diffusers 80 are arranged in parallel means that the direction in which the surfaces of the partition walls 41 and 42 extend and the plurality of diffusers 80 in the plan view. It means that the stretching direction is parallel.
  • the flowable gas blown out from the aeration pipe 80 is well dispersed in each of the cells 61, 62, 63 without obstructing the flow of the flowable medium, and becomes a flowable medium in each cell, Flow is promoted according to the flow direction of the cell.
  • the fluidizing gas supply device 52 has the superficial velocity of the fluidizing gas in the circulation cell 62 greater than the superficial velocity of the fluidizing gas in the combustion cell 61, and The gas for flow is blown out from the diffuser tube 80 so that the velocity of the gas for flow becomes higher than the velocity of the gas for flow of the heat collecting cell 63.
  • the inventors of the present invention have said that the flow medium circulates and moves favorably from the combustion cell 61 to the heat collecting cell 63 through the circulation cell 62 and further from the heat collecting cell 63 to the combustion cell 61 by blowing out the gas for flow. Has been confirmed by. Therefore, if the feature of the fluidized bed furnace 1 according to the present embodiment is applied to the internal circulation type fluidized bed furnace, the fluidized bed in which the flowing medium circulates and moves favorably by the supply of the flowing gas using the diffusion pipe 80. Can be realized.
  • the separation distance between diffusion pipe 80 and heat transfer pipe 64 in heat collection cell 63 It can be shortened in comparison, which makes it possible to reduce the bed height of the fluidized medium bed 51. If the bed height of the flowing medium layer 51 can be reduced, the driving power of the blowers 40 and 79 for pumping the flowing gas to the aeration tube 80 can be reduced.
  • the air diffusion pipe 80 is provided so as to be insertable into and removable from the furnace main body 10.
  • the aeration tube 80 can be inserted into and removed from the furnace body 10, the aeration tube 80 having a high replacement frequency can be easily replaced as compared with other elements of the furnace due to thermal fatigue, friction, etc. .
  • the aeration pipe 80 is connected by a header for each of the cells 61, 62, 63, and the flow is provided with flow rate adjusting means 81a, 82a, 83a in each header.
  • the gas supply pipes 81, 82, 83 are connected.
  • the superficial velocity of the flow gas for the circulation cell 62 is that of the combustion cell 61.
  • the number of aeration tubes 80 disposed at 63 is determined.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Fluidized-Bed Combustion And Resonant Combustion (AREA)

Abstract

This fluidized bed furnace is provided with: a fluid medium layer; a fluidizing gas supply device which supplies fluidizing gas from the bottom portion of the fluid medium layer; and a plurality of parallel partition walls partitioning the fluid medium layer into three cells. The partition walls include a first partition wall which serves as a partition between a first cell and a second cell so as to allow communication between the cells on the lower side, and a second partition wall which has a lower-end height level lower than that of the first partition wall and which allows communication between a third cell and the second cell on the upper and lower sides. The fluidizing gas supply device has a plurality of air diffusion pipes which are provided, at the respective cell bottom portions of the first to third cells and below the lower ends of the partition walls, in parallel with the partition walls so as not to overlap the partition walls in a plan view.

Description

流動床炉Fluidized bed furnace
 本発明は、内部循環式の流動床炉の構成に関する。 The present invention relates to the configuration of an internal circulation type fluidized bed furnace.
 従来から、炉内下部に充填された流動媒体を炉底から吹き出す流動用ガスで流動させてなる流動床が形成された、流動床炉が知られている。流動床炉には内部循環方式と外部循環方式とがあり、そのうち内部循環方式では、流動床を燃焼室と熱回収室とに仕切って、これら2室の間で流動媒体を循環流動させることにより、流動床内で燃焼と熱回収とが行われる。この種の内部循環式の流動床炉が、例えば、特許文献1で開示されている。 BACKGROUND Conventionally, a fluidized bed furnace is known in which a fluidized bed is formed in which a fluidized medium filled in the lower part of the furnace is made to flow with a flowing gas blown from a furnace bottom. The fluidized bed furnace has an internal circulation system and an external circulation system. In the internal circulation system, the fluidized bed is divided into a combustion chamber and a heat recovery chamber, and the fluid medium is circulated and flowed between these two chambers. , Combustion and heat recovery are performed in the fluidized bed. An internal circulation type fluidized bed furnace of this kind is disclosed, for example, in Patent Document 1.
 特許文献1に記載の流動床炉では、流動床が第1仕切と第2仕切とで3つのセルに区分され、それぞれのセルの下側又は下部に独立して流量を調整した流動用ガスを供給する風箱又は散気管が設けられている。第1セルでは燃料(燃焼対象物)が供給されて燃料の燃焼が行われ、第3セルでは伝熱管が設けられて熱回収が行われる。第1セルと第2セルは下側が連通するように第1仕切で区分され、第2セルと第3セルは上側と下側とが連通するように第2仕切で区分されている。流動媒体は、流動用ガスによって、第1セルの下部から第2セルを介して第2仕切を超えて第3セルに移動し、第3セルの下部から第2セル及び第1セルに循環する。 In the fluidized bed furnace described in Patent Document 1, the fluidized bed is divided into three cells by the first partition and the second partition, and the flowable gas whose flow rate is adjusted independently below or under each cell is A supply air box or air diffuser is provided. In the first cell, fuel (combustion target) is supplied to burn the fuel, and in the third cell, a heat transfer pipe is provided to perform heat recovery. The first cell and the second cell are divided by the first partition so that the lower side communicates with each other, and the second cell and the third cell are divided by the second partition such that the upper side and the lower side communicate with each other. The fluidizing medium moves from the lower part of the first cell to the third cell across the second partition via the second cell and circulates from the lower part of the third cell to the second cell and the first cell by the flowable gas .
特開2001-241626号公報JP 2001-241626 A
 一般に、内部循環式の流動床炉では、炉底に風箱が設けられ、風箱の上部に多数のノズルが形成されたガス分散板が設けられており、風箱内のガスがガス分散板を介して炉底か流動床内へ吹き出すように構成されている。特許文献1に記載されているように、風箱に代えて、散気管で流動化ガスを供給する構成とすることも提案されているが、具体的な態様は示されていない。 Generally, in an internal circulation type fluidized bed furnace, a gas distribution plate is provided at the furnace bottom with a wind box at the bottom and a large number of nozzles are formed at the top of the wind box, and the gas in the wind box is a gas dispersion plate It is configured to blow out into the furnace bottom or into the fluidized bed via As described in Patent Document 1, instead of the air box, a configuration in which the fluidizing gas is supplied by a diffuser is also proposed, but a specific aspect is not shown.
 本願の発明者らは、内部循環式の流動床炉において、散気管を用いた流動用ガスの供給を検討している。ガス分散板ではノズルを炉平面に適切に分散して配置することができるため、流動用ガスが炉平面に均一に分散される。しかし、直線状に延びる散気管では、空気の吹出口を炉平面に分散して配置することは難しいため、散気管による流動用ガス供給によって流動媒体を循環流動を成立させるためには仕切壁との関係も考慮して、散気管のレイアウト等を決定する必要がある。 The inventors of the present application are examining the supply of gas for fluidization using a diffusion tube in an internal circulation type fluidized bed furnace. In the gas dispersion plate, the nozzles can be appropriately dispersed and disposed on the furnace plane, so that the flowable gas is uniformly dispersed on the furnace plane. However, since it is difficult to distribute the air outlets in the furnace plane in the case of a straight-line aeration tube, it is difficult to form a circulating flow of the fluid medium by supplying the gas for fluidization by means of the aeration tube. It is necessary to determine the layout of the aeration tube etc. in consideration of
 そこで、本発明の一態様に係る流動床炉は、
流動媒体からなる流動媒体層と、
前記流動媒体を流動させる流動用ガスを前記流動媒体層の底部から供給する流動用ガス供給装置と、
前記流動媒体層を燃料の燃焼が行われる第1セル、第2セル、及び、伝熱管が設けられて熱回収が行われる第3セルに仕切る複数の平行な仕切壁であって、第1セルと第2セルとをその下側で連通するように仕切る第1仕切壁、及び、前記第1仕切壁よりも下端の高さレベルが低く、前記第3セルと前記第2セルとをその上側及び下側で連通する第2仕切壁を含む仕切壁とを備え、
前記流動用ガス供給装置は、前記第1~3セルの各セルの底部であって前記仕切壁の下端よりも下方に、前記仕切壁と平面視で重複しないように、平面視において前記仕切壁と平行に配置された複数の散気管を有することを特徴としている。
Therefore, a fluidized bed furnace according to one aspect of the present invention is
A fluid medium layer comprising a fluid medium,
A flowable gas supply device for supplying a flowable gas for flowing the flowable medium from the bottom of the flowable medium bed;
A plurality of parallel partition walls for dividing the fluidized medium layer into a first cell, a second cell, and a heat transfer pipe which are provided for the combustion of fuel to be subjected to heat recovery, the first cell being a first cell And a second partition wall for communicating the lower side with the second cell, and a height level of a lower end of the first partition wall is lower than that of the first partition wall, and the third cell and the second cell are upper side And a partition wall including a second partition wall communicating with the lower side,
The flow gas supply device is the bottom of each of the first to third cells, and is lower than the lower end of the partition wall, so that the partition wall does not overlap in plan view with the partition wall in plan view And a plurality of aeration tubes arranged in parallel with
 上記の流動床炉によれば、散気管から吹き出した流動用ガスは、各セルにおいて流動媒体の流動を阻害することなく良好に分散する。その結果、各セルにおける流動媒体に、そのセルの流動方向に応じた流動が促される。よって、内部循環式の流動床炉において、上記の流動床炉の特徴を適用すれば、散気管を用いた流動用ガスの供給によって、流動媒体を良好に循環移動させることができる。 According to the above-described fluidized bed furnace, the flowable gas blown out from the aeration pipe is well dispersed in each cell without blocking the flow of the flowable medium. As a result, the flow medium in each cell is urged to flow according to the flow direction of the cell. Therefore, in the internal circulation type fluidized bed furnace, if the above-described features of the fluidized bed furnace are applied, the flow medium can be favorably circulated and moved by the supply of the flowable gas using the diffusion pipe.
 上記の流動床炉において、流動用ガス供給装置が、前記第2セルの前記流動用ガスの空塔速度が前記第1セルの前記流動用ガスの空塔速度よりも大きく、且つ、前記第1セルの前記流動用ガスの空塔速度が前記第3セルの前記流動用ガスの空塔速度よりも大きくなるように、前記散気管から前記流動用ガスを吹き出すように構成されていてよい。 In the fluidized bed furnace described above, in the fluidizing gas supply apparatus, the superficial velocity of the fluidizing gas of the second cell is larger than the superficial velocity of the fluidizing gas of the first cell, and the first gas The flowing gas may be blown out from the aeration tube such that the superficial velocity of the flow gas in the cell is higher than the superficial velocity of the flow gas in the third cell.
 これにより、流動媒体が、第1セルから第2セルを通じて第3セルへ、更に、第3セルから第1セルへ循環移動する。 Thereby, the fluid medium circulates from the first cell to the third cell through the second cell, and further, from the third cell to the first cell.
 上記の流動床炉において、前記散気管が、炉本体に対し挿脱可能に設けられていてよい。 In the above fluidized bed furnace, the aeration pipe may be provided so as to be insertable into and removable from the furnace body.
 これにより、熱疲労や摩擦などにより炉の他の要素と比較して交換頻度の高い散気管を容易に交換することができる。 As a result, due to thermal fatigue, friction, etc., it is possible to easily replace the aeration tube having a high replacement frequency as compared with other elements of the furnace.
 上記の流動床炉において、前記散気管は、セルごとにヘッダで連結されており、各ヘッダに、流量調整手段が設けられた流動用ガス供給配管が接続されていてよい。 In the fluidized bed furnace described above, the aeration pipes may be connected by a header for each cell, and a flow gas supply pipe provided with a flow rate adjusting means may be connected to each header.
 これにより、散気管に供給される流動用ガスの流量をセルごとに調整することが容易となる。 This makes it easy to adjust the flow rate of the flowable gas supplied to the air diffusion pipe for each cell.
 上記の流動床炉において、前記散気管の各々に所定の標準流量の前記流動用ガスが供給されるときに、前記第2セルの前記流動用ガスの空塔速度が前記第1セルの前記流動用ガスの空塔速度よりも大きく、且つ、前記第1セルの前記流動用ガスの空塔速度が前記第3セルの前記流動用ガスの空塔速度よりも大きくなるように、各セルに配置される前記散気管の本数が定められていてよい。 In the fluidized bed furnace described above, when the fluidizing gas of a predetermined standard flow rate is supplied to each of the aeration tubes, the superficial velocity of the fluidizing gas of the second cell is the fluid velocity of the first cell It arranges to each cell so that the superficial velocity of the flow gas of the first cell is larger than the superficial velocity of the flow gas and the superficial velocity of the flow gas of the third cell is larger The number of the aeration tubes to be carried out may be determined.
 これにより、例え、各散気管に供給される流動用ガスの流量を均一としても、第1~3セルの流動用ガスの空塔速度が流動媒体に循環流動を生じさせる所定の相関関係となるので、各セルへ供給する流動用ガスの流量の調整が容易となる。 Thereby, even if the flow rate of the flowable gas supplied to each aeration tube is uniform, the superficial velocity of the flowable gas in the first to third cells has a predetermined correlation that causes the flow medium to circulate. Therefore, it becomes easy to adjust the flow rate of the fluidizing gas supplied to each cell.
 本発明によれば、内部循環式の流動床炉において、散気管を用いた流動用ガスの供給を実現することができる。 According to the present invention, in the internal circulation type fluidized bed furnace, it is possible to realize the supply of the flowable gas using the diffusion pipe.
図1は、本発明の一実施形態に係る流動床炉を含む燃焼システムの概略構成を示すブロック図である。FIG. 1 is a block diagram showing a schematic configuration of a combustion system including a fluidized bed furnace according to an embodiment of the present invention. 図2は、本発明の一実施形態に係る流動床炉の概略構成を示す図である。FIG. 2 is a view showing a schematic configuration of a fluidized bed furnace according to an embodiment of the present invention. 図3は、流動床炉の流動床部の拡大図である。FIG. 3 is an enlarged view of the fluidized bed portion of the fluidized bed furnace. 図4は、散気管のレイアウトを示す炉底部の平面図である。FIG. 4 is a plan view of the furnace bottom showing the layout of the aeration tube.
〔燃焼システム100の構成〕
 まず、本発明の一実施形態に係る流動床炉1を含む燃焼システム100の構成について説明する。図1に示す燃焼システム100は、石炭、バイオマス、RDF、都市ごみ、産業廃棄物などの燃料(燃焼対象物)を燃焼して、その排熱を回収するシステムである。
[Composition of combustion system 100]
First, the configuration of a combustion system 100 including a fluidized bed furnace 1 according to an embodiment of the present invention will be described. The combustion system 100 shown in FIG. 1 is a system that burns fuel (combustion target) such as coal, biomass, RDF, municipal waste, and industrial waste, and recovers its exhaust heat.
 燃焼システム100は、燃料を燃焼する流動床炉1を備えている。流動床炉1の燃焼排ガス系統3には、熱交換装置31、サイクロン式集塵機32、バグフィルタ33、及び誘引ファンである誘引ブロワ34が設けられている。流動床炉1の燃焼排ガスは、熱交換装置31で排熱が回収され、サイクロン式集塵機32及びバグフィルタ33で塵が分離され、その一部が誘引ブロワ34によって図示されない煙突を通じて系外へ排出される。 The combustion system 100 comprises a fluidized bed furnace 1 for burning fuel. The flue gas system 3 of the fluidized bed furnace 1 is provided with a heat exchange device 31, a cyclone dust collector 32, a bag filter 33, and an induction blower 34 which is an induction fan. Exhaust heat from the fluidized bed furnace 1 is recovered by the heat exchanger 31 and dust is separated by the cyclone type dust collector 32 and the bag filter 33, and a part thereof is discharged out of the system through a chimney not shown by the induction blower 34. Be done.
 燃焼排ガス系統3のバグフィルタ33の下流側には排ガス再循環系統4が接続されている。排ガス再循環系統4には、ガス再循環ブロワ40が設けられており、このガス再循環ブロワ40によって燃焼排ガス系統3の燃焼排ガスの一部が、流動床炉1へ戻される。排ガス再循環系統4によって流動床炉1へ戻された燃焼排ガスは、流動用ガス(一次燃焼ガス)、二次燃焼用ガス、及び三次燃焼用ガスとして利用される。 An exhaust gas recirculation system 4 is connected to the downstream side of the bag filter 33 of the combustion exhaust gas system 3. A gas recirculation blower 40 is provided in the exhaust gas recirculation system 4, and a part of the combustion exhaust gas of the combustion exhaust gas system 3 is returned to the fluidized bed furnace 1 by the gas recirculation blower 40. The flue gas returned to the fluidized bed furnace 1 by the flue gas recirculation system 4 is used as a fluidizing gas (primary combustion gas), a secondary combustion gas, and a tertiary combustion gas.
〔流動床炉1の構成〕
 次に、本発明の一実施形態に係る流動床炉1の構成について説明する。図2に示す流動床炉1は、炉下部の流動床部11及びその上方のフリーボード部12からなる燃焼室が設けられた炉本体10と、流動床炉1の運転を制御する運転制御装置15と、流動床監視装置9とを備えている。フリーボード部12の下部には、燃焼室の余の部分と比較してガス通路断面積が絞られた絞り部13が存在する。フリーボード部12では、燃焼ガスが下から上に向かって流れ、フリーボード部12の上部に接続された煙道には、熱交換装置31を構成する伝熱管が設置されている。
[Configuration of fluidized bed furnace 1]
Next, the configuration of the fluidized bed furnace 1 according to an embodiment of the present invention will be described. The fluidized bed furnace 1 shown in FIG. 2 is an operation control device for controlling the operation of the fluidized bed furnace 1 and a furnace main body 10 provided with a combustion chamber consisting of a fluidized bed portion 11 at the lower part of the furnace and a freeboard portion 12 above it. And a fluidized bed monitoring device 9. At the lower portion of the freeboard portion 12, there is a throttle portion 13 in which the gas passage cross-sectional area is narrowed as compared with the remaining portion of the combustion chamber. In the freeboard portion 12, the combustion gas flows upward from the bottom, and in the flue connected to the upper portion of the freeboard portion 12, a heat transfer pipe constituting the heat exchange device 31 is installed.
 図3は、流動床部11の拡大図である。図2及び図3に示すように、流動床部11には珪砂などの流動媒体が充填された流動媒体層51と、流動媒体層51へその底部から流動用ガスを供給する流動用ガス供給装置52と、流動媒体層51を3つのセル61,62,63に仕切る仕切壁41,42とによって、内部循環流動床が形成されている。 FIG. 3 is an enlarged view of the fluidized bed portion 11. As shown in FIG. 2 and FIG. 3, the fluidizing bed 11 is provided with a fluidizing medium bed 51 filled with a fluidizing medium such as silica sand, and a fluidizing gas supply apparatus for supplying fluidizing gas from the bottom to the fluidizing medium bed 51. An internal circulating fluidized bed is formed by 52 and partition walls 41 and 42 which divide the fluidized medium layer 51 into three cells 61, 62 and 63.
 第1仕切壁41は、流動床部11を含む炉本体10の下部分を、燃焼領域53と熱回収領域54とに仕切っている。第2仕切壁42は、熱回収領域54において、第1仕切壁41に近接し、且つ、第1仕切壁41と平行に設けられている。これらの仕切壁41,42によって、流動床部11は、炉本体10の第1側壁10aと第1仕切壁41との間に形成された「燃焼セル61」、第1仕切壁41と第2仕切壁42との間に形成された「循環セル62」、及び、第2仕切壁42と炉本体10の第2側壁10bとの間に形成された「収熱セル63」の3つのセルに仕切られている。収熱セル63には、過熱器管又は蒸発器管などの伝熱管64が設けられている。この伝熱管64を通過する熱媒体により熱回収が行われる。 The first partition wall 41 divides the lower portion of the furnace main body 10 including the fluidized bed portion 11 into a combustion area 53 and a heat recovery area 54. The second partition wall 42 is provided close to the first partition wall 41 and in parallel with the first partition wall 41 in the heat recovery region 54. The fluidized bed portion 11 is formed by the partition walls 41 and 42 between the first side wall 10 a of the furnace main body 10 and the first partition wall 41, the “combustion cell 61”, the first partition wall 41 and the second Three cells of “circulating cell 62” formed between partition wall 42 and “heat collecting cell 63” formed between second partition wall 42 and second side wall 10 b of furnace main body 10 It is divided. The heat collection cell 63 is provided with a heat transfer pipe 64 such as a superheater pipe or an evaporator pipe. Heat recovery is performed by the heat medium passing through the heat transfer tube 64.
 燃焼領域53の上方には、鉛直方向に直線状に延びる燃焼室が形成されている。一方、熱回収領域54の上方には、熱回収領域54の上部を塞ぐ天井壁43が設けられている。第1仕切壁41の上端は天井壁43に近接しており、第1仕切壁41の上端と天井壁43との間に未燃ガス供給口68となる上部連通口が形成されている。第1仕切壁41の下端は第2仕切壁42の下端よりも高く、これにより、第1仕切壁41の下部に流動媒体が流通する下部連通口55が形成されている。また、第2仕切壁42の上部及び下部には、循環セル62と収熱セル63とを連通し、流動媒体が流通する連通口56,57が形成されている。 Above the combustion area 53, a combustion chamber extending linearly in the vertical direction is formed. On the other hand, above the heat recovery area 54, a ceiling wall 43 closing the upper portion of the heat recovery area 54 is provided. The upper end of the first partition wall 41 is close to the ceiling wall 43, and an upper communication port serving as an unburned gas supply port 68 is formed between the upper end of the first partition wall 41 and the ceiling wall 43. The lower end of the first partition wall 41 is higher than the lower end of the second partition wall 42, whereby a lower communication port 55 through which the fluid medium flows is formed in the lower portion of the first partition wall 41. Further, in the upper and lower portions of the second partition wall 42, communication ports 56, 57 are formed, which communicate the circulation cell 62 with the heat collecting cell 63 and through which the fluid medium flows.
 流動用ガス供給装置52は、燃焼セル61、循環セル62、及び収熱セル63の各々に独立して流量が調整された流動用ガスを供給する。燃焼セル61、循環セル62、及び収熱セル63の各セルの底部には、側方へ向けて開口した多数の吹出口を有する一又は複数の散気管80が設けられている。 The flow gas supply device 52 supplies the flow gas whose flow rate is independently adjusted to each of the combustion cell 61, the circulation cell 62, and the heat collection cell 63. At the bottom of each of the combustion cell 61, the circulation cell 62, and the heat collection cell 63, one or a plurality of air diffusers 80 having a large number of blowout ports opened to the side are provided.
 散気管80はセル61,62,63ごとにヘッダで連結されており、各ヘッダにはダンパ(又はバルブ)等の流量調整手段81a,82a,83a及び流量計81b,82b,83bを備えた流動用ガス供給配管81,82,83が接続されている。燃焼セル61の底部に配置される散気管80と接続される流動用ガス供給配管81、及び、循環セル62の底部に配置される散気管80と接続される流動用ガス供給配管82へは、押込ブロワ79によって空気が供給される。また、収熱セル63の底部に配置される散気管80と接続される流動用ガス供給配管83には排ガス再循環系統4が接続されている。 The air diffusion pipe 80 is connected by a header for each of the cells 61, 62, 63, and each header is a flow provided with flow rate adjusting means 81a, 82a, 83a such as a damper (or valve) and flowmeters 81b, 82b, 83b. The gas supply pipes 81, 82, 83 are connected. To the flow gas supply pipe 81 connected to the air diffusion pipe 80 disposed at the bottom of the combustion cell 61 and the flow gas supply pipe 82 connected to the air diffusion pipe 80 disposed at the bottom of the circulation cell 62, Air is supplied by the pushing blower 79. Further, an exhaust gas recirculation system 4 is connected to a flow gas supply pipe 83 connected to the air diffusion pipe 80 disposed at the bottom of the heat collection cell 63.
 運転制御装置15は、流動媒体層51において燃焼セル61及び収熱セル63の温度を検出する温度センサ(図示略)及び流量計81b,82b,83bなどの検出値に基づいて、各流動用ガス供給配管81,82,83の流動用ガスの流量を調整するように、流量調整手段81a,82a,83aを動作させる。燃焼セル61及び循環セル62の底部からは、流動用ガスとして空気が吹き出し、収熱セル63の底部からは、流動用ガスとして燃焼排ガスが吹き出す。 The operation control device 15 detects each flow gas based on detection values of temperature sensors (not shown) for detecting the temperatures of the combustion cells 61 and the heat collection cells 63 in the flow medium layer 51 and the flowmeters 81b, 82b, 83b, etc. The flow rate adjusting means 81a, 82a, 83a are operated so as to adjust the flow rate of the flowing gas in the supply pipes 81, 82, 83. From the bottom of the combustion cell 61 and the circulation cell 62, air is blown out as a flow gas, and from the bottom of the heat collection cell 63, combustion exhaust gas is blown out as a flow gas.
 ここで、燃焼セル61の流動用ガスの空塔速度は収熱セル63の流動用ガスの空塔速度よりも大きく、且つ、循環セル62の流動用ガスの空塔速度は、燃焼セル61の流動用ガスの空塔速度及び収熱セル63の流動用ガスの空塔速度よりも大きくなるように、流動用ガスの流量が調整される。これにより、燃焼セル61の流動媒体は第1仕切壁41の下部連通口55を通って循環セル62へ移動し、循環セル62の流動媒体は第2仕切壁42の上部連通口56を通って収熱セル63へ移動し、収熱セル63の流動媒体は第2仕切壁42の下部連通口57を通って燃焼セル61及び循環セル62へ循環するような、流動媒体の流れが生じる。 Here, the superficial velocity of the flowable gas of the combustion cell 61 is larger than the superficial velocity of the flowable gas of the heat collection cell 63, and the superficial velocity of the flowable gas of the circulation cell 62 is equal to that of the combustion cell 61. The flow rate of the flowable gas is adjusted to be greater than the superficial velocity of the flowable gas and the superficial velocity of the flowable gas of the heat collection cell 63. Thereby, the flow medium of the combustion cell 61 moves to the circulation cell 62 through the lower communication port 55 of the first partition wall 41, and the flow medium of the circulation cell 62 passes through the upper communication port 56 of the second partition wall 42. The flow of the fluid medium occurs such that the fluid medium of the heat collection cell 63 is circulated to the combustion cell 61 and the circulation cell 62 through the lower communication port 57 of the second partition wall 42 after moving to the heat collection cell 63.
 フリーボード部12において、運転時における流動床部11の表層部の直ぐ上方であって、第1側壁10aには、燃料投入口65が開口している。燃料投入口65は、絞り部13よりも燃焼ガスの流れの上流側に位置する。この燃料投入口65へ、図示されない燃料供給装置によって燃料が供給される。燃料投入口65から炉内へ投入された燃料は、流動床部11の燃焼セル61の上部に落下する。 In the freeboard portion 12, a fuel inlet 65 is opened immediately above the surface layer portion of the fluidized bed portion 11 at the time of operation and in the first side wall 10a. The fuel inlet 65 is located on the upstream side of the flow of the combustion gas than the throttle portion 13. Fuel is supplied to the fuel inlet 65 by a fuel supply device (not shown). The fuel introduced into the furnace from the fuel inlet 65 falls to the top of the combustion cell 61 of the fluidized bed portion 11.
 フリーボード部12において、燃料投入口65よりも燃焼ガスの流れの下流側であって絞り部13のあたりの炉壁には、未燃ガス供給口68が開口している。未燃ガス供給口68からは、熱回収領域54の流動媒体層51に配置された散気管80から流動媒体層51内へ吹き出されて、流動媒体層51を通過したあとの空気及び燃焼排ガスの混合気が、二次燃焼用ガスとして吹き出す。但し、未燃ガス供給口68の他に、二次燃焼用ガスを吹き出す供給口が設けられてもよい。 In the furnace wall on the downstream side of the flow of combustion gas with respect to the fuel inlet 65 and in the furnace wall around the throttle portion 13 in the freeboard portion 12, an unburned gas supply port 68 is opened. From the unburned gas supply port 68, the air is blown out from the aeration pipe 80 disposed in the fluid medium layer 51 of the heat recovery area 54 into the fluid medium layer 51, and after passing through the fluid medium layer 51 The mixture is blown out as a secondary combustion gas. However, in addition to the unburned gas supply port 68, a supply port for blowing out the secondary combustion gas may be provided.
 フリーボード部12において、未燃ガス供給口68よりも燃焼ガスの流れの下流側の炉壁には複数の三次燃焼用ガス供給口69が開口している。複数の三次燃焼用ガス供給口69は、複数の高さ位置に分散して設けられている。また、それらの三次燃焼用ガス供給口69から吹き出した三次空気の拡散領域に含まれる炉壁には、温度センサ70が設けられている。 In the freeboard portion 12, a plurality of tertiary combustion gas supply ports 69 are opened in the furnace wall on the downstream side of the flow of the combustion gas than the unburned gas supply port 68. The plurality of tertiary combustion gas supply ports 69 are provided to be dispersed at a plurality of height positions. Further, a temperature sensor 70 is provided on the furnace wall included in the diffusion area of the tertiary air blown out from the tertiary combustion gas supply port 69.
 三次燃焼用ガスの空気含有量は、空気に燃焼排ガスを混合させることにより調整される。そのために、三次燃焼用ガス供給口69への空気の供給路と燃焼排ガスの供給路とには、ダンパ(又はバルブ)等の流量調整手段88,89が設けられている。運転制御装置15は、或る箇所の温度センサ70で検出された温度が所定の範囲を超える場合は、三次燃焼用ガスの流量を所定流量に維持しながら、その箇所へ供給される三次燃焼用ガスの空気含有量が減るように、また、検出された温度が所定の範囲を下回る場合は、その箇所へ供給される三次燃焼用ガスの空気含有量が増えるように、流量調整手段88,89の開度を調整する。 The air content of the tertiary combustion gas is adjusted by mixing the combustion exhaust gas with air. For that purpose, flow control means 88, 89 such as dampers (or valves) are provided in the air supply path to the tertiary combustion gas supply port 69 and the combustion exhaust gas supply path. When the temperature detected by the temperature sensor 70 at a certain point exceeds a predetermined range, the operation control device 15 maintains the flow rate of the tertiary combustion gas at the predetermined flow rate, and supplies the tertiary combustion gas to that point. In order to reduce the air content of the gas, and when the detected temperature is lower than the predetermined range, the flow rate adjusting means 88, 89 so that the air content of the tertiary combustion gas supplied to that point is increased. Adjust the opening of the.
〔流動床炉1の運転方法〕
 ここで、上記構成の流動床炉1の運転方法について説明する。流動床炉1では、流動床部11において低空気比燃焼が行われる。より詳細には、流動床部11とフリーボード部12との総空気比を1よりも大きい値としながら、流動床部11の燃焼セル61の空気比(即ち、一次空気比)、及びフリーボード部12の燃料投入口65の周囲の空気比(二次空気比)がいずれも1未満の低空気比となるように、燃焼セル61への流動化空気及び二次燃焼用ガスの供給量、及び/又は、その空気含有量が調整される。望ましくは、一次空気比は、二次空気比よりも低い。例えば、流動床部11とフリーボード部12との総空気比を1.2とする場合に、一次空気比を0.4とし、二次空気比を0.8としてよい。
[Operation method of fluidized bed furnace 1]
Here, the operation method of the fluidized bed furnace 1 of the said structure is demonstrated. In the fluidized bed furnace 1, low air ratio combustion is performed in the fluidized bed portion 11. More specifically, while the total air ratio between the fluidized bed portion 11 and the freeboard portion 12 is set to a value larger than 1, the air ratio (ie, the primary air ratio) of the combustion cells 61 of the fluidized bed portion 11 and the freeboard Supply amounts of fluidizing air and secondary combustion gas to the combustion cell 61 so that the air ratio (secondary air ratio) around the fuel inlet 65 of the portion 12 is all less than 1; And / or its air content is adjusted. Preferably, the primary air ratio is lower than the secondary air ratio. For example, when the total air ratio of the fluidized bed portion 11 and the freeboard portion 12 is 1.2, the primary air ratio may be 0.4 and the secondary air ratio may be 0.8.
 酸素濃度の低い還元雰囲気の流動床部11では、燃料の緩慢な乾燥と熱分解によって、可燃性熱分解ガスと熱分解残渣が生じる。熱分解残渣や燃料の燃え残りは、燃焼セル61の底部であって、第1側壁10aと第1仕切壁41との間の中間位置に設けられた流動媒体及び不燃物の抜出口72から炉外へ排出される。流動床部11で生じた熱分解ガスは二次燃焼用ガスで燃焼し、その燃焼ガス中の未燃分は、三次燃焼用ガスで完全燃焼し、その燃焼排ガスが燃焼排ガス系統3へ排出される。 In the fluidized bed portion 11 with a low oxygen concentration reducing atmosphere, the slow drying and thermal decomposition of the fuel generate combustible pyrolysis gas and pyrolysis residue. Pyrolysis residue and fuel residue are at the bottom of the combustion cell 61, and are provided at the intermediate position between the first side wall 10a and the first partition wall 41 from the outlet 72 of the fluid medium and the incombustible material. It is discharged outside. The pyrolysis gas generated in the fluidized bed portion 11 is burned with the secondary combustion gas, the unburned portion in the combustion gas is completely burned with the tertiary combustion gas, and the combustion exhaust gas is discharged to the combustion exhaust gas system 3 Ru.
〔流動用ガス供給装置52〕
 ここで、流動用ガス供給装置52の構成について詳細に説明する。図4は、散気管80のレイアウトを示す炉底部の平面図である。
[Flowing gas supply device 52]
Here, the configuration of the fluidizing gas supply device 52 will be described in detail. FIG. 4 is a plan view of the furnace bottom showing the layout of the air diffusion tube 80.
 図4に示すように、流動床部11において、各セル61,62,63には少なくとも1本の散気管80が設けられている。散気管80は、例えば、円管に、側方へ向いた多数の吹出口が延伸方向に亘って均一に分散して形成されたものである。 As shown in FIG. 4, in the fluidized bed portion 11, at least one air diffusion pipe 80 is provided in each of the cells 61, 62, 63. The aeration tube 80 is, for example, a circular tube in which a plurality of laterally directed air outlets are uniformly distributed in the extending direction.
 第1仕切壁41及び第2仕切壁42は平行に配置されており、仕切壁41,42の面内方向と各散気管80の延伸方向とは平行である。散気管80は、仕切壁41,42と平面視において重複しないように、第1側壁10aと第1仕切壁41との間、第1仕切壁41と第2仕切壁42との間、第2仕切壁42と第2側壁10bとの間にそれぞれ配置されている。 The first partition wall 41 and the second partition wall 42 are disposed in parallel, and the in-plane direction of the partition walls 41 and 42 and the extension direction of the respective diffusers 80 are parallel. Between the first side wall 10 a and the first partition wall 41, between the first partition wall 41 and the second partition wall 42, the air diffusion tube 80 does not overlap with the partition walls 41 and 42 in a plan view. It is arrange | positioned between the partition wall 42 and the 2nd side wall 10b, respectively.
 各散気管80は、第1仕切壁41及び第2仕切壁42の下端よりも下方に配置されている。2つの仕切壁41,42のうち下端の高さレベルが低い第2仕切壁42の下端と散気管80の管中心との距離は、200mm以上300mm以下の範囲である。このように下端の高さレベルが低い方の仕切壁42と散気管80の管中心との距離とが上記の範囲内にあれば、流動媒体が良好にセルを跨って移動することが発明者らによって確認されている。 Each aeration tube 80 is disposed below the lower ends of the first partition wall 41 and the second partition wall 42. The distance between the lower end of the second partition wall 42 having the lower height level of the lower end of the two partition walls 41 and 42 and the pipe center of the air diffusion pipe 80 is in the range of 200 mm to 300 mm. Thus, if the distance between the lower partition wall 42 having a lower height level and the center of the aeration tube 80 is within the above range, the fluid medium moves across the cell well. Have been confirmed by
 各散気管80は、炉本体10の炉壁に対し、散気管80の延伸方向と平行に挿脱可能に挿入されている。メンテナンス時には、各散気管80を個別に炉本体10から着脱することができる。 Each aeration tube 80 is inserted in the furnace wall of the furnace main body 10 so as to be insertable and removable parallel to the extending direction of the aeration tube 80. At the time of maintenance, the air diffusion tubes 80 can be individually attached to and detached from the furnace body 10.
 散気管80は、セル61,62,63ごとにヘッダで連結されており、各セル61,62,63の流動用ガスの空塔速度が流動媒体に循環流動を生じさせる所定の相関関係となるように、セル61,62,63ごとに散気管80へ供給される流動用ガスの流量が調整されている。ここで、「所定の相関関係」とは、各セル61,62,63の流動用ガスの空塔速度が流動媒体の流動化速度よりも大きいことを前提として、循環セル62の流動用ガスの空塔速度が燃焼セル61の流動用ガスの空塔速度よりも大きく、且つ、燃焼セル61の流動用ガスの空塔速度が収熱セル63の流動用ガスの空塔速度よりも大きい、各セルの流動用ガスの空塔速度の関係を意味する。 The aeration tube 80 is connected by a header for each of the cells 61, 62, 63, and the superficial velocity of the fluidizing gas in each of the cells 61, 62, 63 has a predetermined correlation that causes the fluidizing medium to circulate. As described above, the flow rate of the flowable gas supplied to the air diffusion pipe 80 is adjusted for each of the cells 61, 62, 63. Here, “predetermined correlation” means that the flow velocity of the flow cells in each of the cells 61, 62, 63 is higher than the flow velocity of the flow medium. The superficial velocity is larger than the superficial velocity of the flowable gas of the combustion cell 61, and the superficial velocity of the flowable gas of the combustion cell 61 is larger than the superficial velocity of the flowable gas of the heat collection cell 63 It means the relationship of the superficial velocity of the gas for fluidization of the cell.
 また、全ての散気管80に所定の標準流量の流動用ガスが供給されたときに、各セルの流動用ガスの空塔速度が流動媒体に循環流動を生じさせる所定の相関関係となるように、各セル61,62,63に配置される散気管80の本数が定められている。ここで、散気管80ごとに吹出口の数が異なっていてもよい。 In addition, when all the gas diffusion tubes 80 are supplied with the flow gas for a predetermined standard flow rate, the superficial velocity of the flow gas for each cell becomes a predetermined correlation that causes the flow medium to circulate. The number of air diffusers 80 disposed in each cell 61, 62, 63 is determined. Here, the number of outlets may be different for each of the aeration tubes 80.
 以上に説明したように、本実施形態に係る流動床炉1は、流動媒体からなる流動媒体層51と、流動媒体を流動させる流動用ガスを流動媒体層51の底部から供給する流動用ガス供給装置52と、流動媒体層51を燃料の燃焼が行われる燃焼セル61(第1セル)、循環セル62(第2セル)、及び、伝熱管64が設けられて熱回収が行われる収熱セル63(第3セル)に仕切る複数の平行な仕切壁41,42とを備えている。仕切壁41,42は、燃焼セル61と循環セル62とをその下側で連通するように仕切る第1仕切壁41、及び、第1仕切壁41よりも下端の高さレベルが低く、収熱セル63と循環セル62とをその上側及び下側で連通する第2仕切壁42を含んでいる。そして、流動用ガス供給装置52は、各セル61,62,63の底部であって仕切壁41,42の下端よりも下方に、仕切壁41,42と平面視で重複しないように、平面視において仕切壁41,42と平行に配置された複数の散気管80を有することを特徴としている。なお、平面視において、仕切壁41,42と複数の散気管80とが平行に配置されているとは、平面視において、仕切壁41,42の面の延びる方向と、複数の散気管80の延伸方向とが、平行であることを意味する。 As described above, in the fluidized bed furnace 1 according to the present embodiment, the fluidized medium bed 51 made of the fluidized medium and the flowing gas supply that supplies the flowing gas that causes the fluidized medium to flow from the bottom of the fluidized medium bed 51 A device 52, a combustion cell 61 (first cell) in which the fuel is combusted in the fluidized medium layer 51, a circulation cell 62 (second cell), and a heat collection cell in which heat transfer is performed are provided. A plurality of parallel partition walls 41 and 42 which divide into 63 (third cells) are provided. The partition walls 41 and 42 have lower height levels at the lower end than the first partition wall 41 and the first partition wall 41 that divide the combustion cell 61 and the circulation cell 62 so as to communicate with the lower side thereof; It includes a second partition wall 42 communicating the cell 63 with the circulation cell 62 on the upper side and the lower side. And the gas supply apparatus 52 for flow is a bottom view of each cell 61,62,63, and it is a plan view so that it may not overlap with the partition walls 41 and 42 in plan view below below the lower end of the partition walls 41 and 42. , And a plurality of aeration tubes 80 disposed in parallel with the partition walls 41 and 42. In the plan view, the fact that the partition walls 41 and 42 and the plurality of diffusers 80 are arranged in parallel means that the direction in which the surfaces of the partition walls 41 and 42 extend and the plurality of diffusers 80 in the plan view. It means that the stretching direction is parallel.
 上記構成の流動床炉1では、散気管80から吹き出した流動用ガスは、各セル61,62,63において流動媒体の流動を阻害することなく良好に分散して、各セルにおける流動媒体に、そのセルの流動方向に応じた流動が促される。 In the fluidized bed furnace 1 configured as described above, the flowable gas blown out from the aeration pipe 80 is well dispersed in each of the cells 61, 62, 63 without obstructing the flow of the flowable medium, and becomes a flowable medium in each cell, Flow is promoted according to the flow direction of the cell.
 そして、上記流動床炉1において、流動用ガス供給装置52は、循環セル62の流動用ガスの空塔速度が燃焼セル61の流動用ガスの空塔速度よりも大きく、且つ、燃焼セル61の流動用ガスの空塔速度が収熱セル63の流動用ガスの空塔速度よりも大きくなるように、散気管80から流動用ガスが吹き出す。 In the fluidized bed furnace 1, the fluidizing gas supply device 52 has the superficial velocity of the fluidizing gas in the circulation cell 62 greater than the superficial velocity of the fluidizing gas in the combustion cell 61, and The gas for flow is blown out from the diffuser tube 80 so that the velocity of the gas for flow becomes higher than the velocity of the gas for flow of the heat collecting cell 63.
 上記のように流動用ガスが吹き出すことによって、流動媒体が燃焼セル61から循環セル62を通じて収熱セル63へ、更に、収熱セル63から燃焼セル61へ良好に循環移動することが発明者らによって確認されている。よって、内部循環式の流動床炉において、本実施形態に係る流動床炉1の特徴を適用すれば、散気管80を用いた流動用ガスの供給によって、流動媒体が良好に循環移動する流動床を実現することができる。 As described above, the inventors of the present invention have said that the flow medium circulates and moves favorably from the combustion cell 61 to the heat collecting cell 63 through the circulation cell 62 and further from the heat collecting cell 63 to the combustion cell 61 by blowing out the gas for flow. Has been confirmed by. Therefore, if the feature of the fluidized bed furnace 1 according to the present embodiment is applied to the internal circulation type fluidized bed furnace, the fluidized bed in which the flowing medium circulates and moves favorably by the supply of the flowing gas using the diffusion pipe 80. Can be realized.
 そして、上記のように内部循環式の流動床炉1において散気管80を用いた流動用ガスの供給が実現すれば、収熱セル63において散気管80と伝熱管64との離間距離を従来と比較して短縮することができ、これにより流動媒体層51の層高を低減することが可能となる。流動媒体層51の層高を低減できれば、散気管80へ流動用ガスを圧送するブロワ40,79の駆動動力を低減することができる。なお、従来のガス分散板と風箱を用いる場合には、伝熱管64のメンテナンスのために、ガス分散板と伝熱管64との間に作業空間を確保する必要があったが、本実施形態に係る流動床炉1では、伝熱管64と散気管80との間に作業空間を設けなくても、散気管80同士の間隙から伝熱管64に対して作業を行ったり、散気管80を炉本体10から取り外して伝熱管64に対して作業を行うことが可能である。 And if supply of the gas for fluidization using diffusion pipe 80 is realized in fluidized bed furnace 1 of internal circulation type as mentioned above, the separation distance between diffusion pipe 80 and heat transfer pipe 64 in heat collection cell 63 It can be shortened in comparison, which makes it possible to reduce the bed height of the fluidized medium bed 51. If the bed height of the flowing medium layer 51 can be reduced, the driving power of the blowers 40 and 79 for pumping the flowing gas to the aeration tube 80 can be reduced. In addition, when using the conventional gas distribution board and a wind box, in order to maintain the heat transfer tube 64, it was necessary to secure a working space between the gas distribution plate and the heat transfer pipe 64, but this embodiment In the fluidized bed furnace 1 according to the present invention, even if a working space is not provided between the heat transfer pipe 64 and the aeration pipe 80, work is performed on the heat transmission pipe 64 from the gap between the aeration pipes 80. It is possible to remove the heat transfer pipe 64 from the main body 10 and perform work on the heat transfer pipe 64.
 また、本実施形態に係る流動床炉1では、散気管80が、炉本体10に対し挿脱可能に設けられている。 Further, in the fluidized bed furnace 1 according to the present embodiment, the air diffusion pipe 80 is provided so as to be insertable into and removable from the furnace main body 10.
 このように、散気管80が炉本体10に対し挿脱可能であるので、熱疲労や摩擦などにより炉の他の要素と比較して交換頻度の高い散気管80を容易に交換することができる。 As described above, since the aeration tube 80 can be inserted into and removed from the furnace body 10, the aeration tube 80 having a high replacement frequency can be easily replaced as compared with other elements of the furnace due to thermal fatigue, friction, etc. .
 また、本実施形態に係る流動床炉1では、散気管80は、セル61,62,63ごとにヘッダで連結されており、各ヘッダに、流量調整手段81a,82a,83aが設けられた流動用ガス供給配管81,82,83が接続されている。 Further, in the fluidized bed furnace 1 according to the present embodiment, the aeration pipe 80 is connected by a header for each of the cells 61, 62, 63, and the flow is provided with flow rate adjusting means 81a, 82a, 83a in each header. The gas supply pipes 81, 82, 83 are connected.
 これにより、散気管80に供給される流動用ガスの流量をセル61,62,63ごとに調整することが容易となる。 This makes it easy to adjust the flow rate of the fluidizing gas supplied to the air diffusion pipe 80 for each of the cells 61, 62, 63.
 また、本実施形態に係る流動床炉1では、散気管80の各々に所定の標準流量の流動用ガスが供給されるときに、循環セル62の流動用ガスの空塔速度が燃焼セル61の流動用ガスの空塔速度よりも大きく、且つ、燃焼セル61の流動用ガスの空塔速度が収熱セル63の流動用ガスの空塔速度よりも大きくなるように、各セル61,62,63に配置される散気管80の本数が定められている。 Further, in the fluidized bed furnace 1 according to the present embodiment, when the flow gas for flow having a predetermined standard flow rate is supplied to each of the aeration pipes 80, the superficial velocity of the flow gas for the circulation cell 62 is that of the combustion cell 61. Each cell 61, 62, and so that the superficial velocity of the fluidizing gas of the combustion cell 61 is larger than the superficial velocity of the fluidizing gas and greater than the superficial velocity of the fluidizing gas of the heat collecting cell 63. The number of aeration tubes 80 disposed at 63 is determined.
 これにより、例え、各散気管80に供給される流動用ガスの流量を均一としても、各セル61,62,63の流動用ガスの空塔速度が流動媒体に循環流動を生じさせる所定の相関関係となるので、運転中の各セル61,62,63へ供給する流動用ガスの流量の調整が容易となる。 Thereby, even if the flow rate of the flowable gas supplied to each aeration tube 80 is made uniform, for example, the predetermined velocity of the flowable gas in each cell 61, 62, 63 causes the flow medium to circulate. Because of the relationship, it becomes easy to adjust the flow rate of the fluidizing gas supplied to each of the cells 61, 62, 63 in operation.
 以上に本発明の好適な実施の形態を説明したが、本発明の精神を逸脱しない範囲で、上記実施形態の具体的な構造及び/又は機能の詳細を変更したものも本発明に含まれ得る。 Although the preferred embodiments of the present invention have been described above, modifications of the specific structure and / or function details of the above embodiments may be included in the present invention without departing from the spirit of the present invention. .
1   :流動床炉
3   :燃焼排ガス系統
4   :排ガス再循環系統
10  :炉本体
10a :第1側壁
10b :第2側壁
11  :流動床部
12  :フリーボード部
13  :絞り部
15  :運転制御装置
31  :熱交換装置
32  :サイクロン式集塵機
33  :バグフィルタ
34  :誘引ブロワ
40  :ガス再循環ブロワ
41  :第1仕切壁
42  :第2仕切壁
43  :天井壁
51  :流動層
52  :流動用ガス供給装置
53  :燃焼領域
54  :熱回収領域
55,56,57  :連通口
61  :燃焼セル(第1セル)
62  :循環セル(第2セル)
63  :収熱セル(第3セル)
64  :伝熱管
65  :燃料投入口
68  :未燃ガス供給口
69  :三次燃焼用ガス供給口
70  :温度センサ
72  :抜出口
79  :押込ブロワ
80  :散気管
81,82,83  :流動用ガス供給配管
81a,82a,83a :流量調整手段
81b,82b,83b :流量計
88,89  :流量調整手段
9 流動床監視装置
91  :圧力センサ
92  :演算部
93  :監視部
100 :燃焼システム
1: fluidized bed furnace 3: combustion exhaust gas system 4: exhaust gas recirculation system 10: furnace main body 10 a: first side wall 10 b: second side wall 11: fluidized bed 12: free board 13: throttle 15: operation control device 31 : Heat exchange device 32: Cyclone type dust collector 33: Bag filter 34: Induction blower 40: Gas recirculation blower 41: First partition wall 42: Second partition wall 43: Ceiling wall 51: Fluid bed 52: Flowing gas supply device 53: combustion area 54: heat recovery area 55, 56, 57: communication port 61: combustion cell (first cell)
62: Circulating cell (second cell)
63: Heat collection cell (third cell)
64: heat transfer pipe 65: fuel inlet 68: unburned gas supply port 69: third combustion gas supply port 70: temperature sensor 72: outlet port 79: push-in blower 80: air diffuser 81, 82, 83: gas supply for flow Piping 81a, 82a, 83a: Flow adjustment means 81b, 82b, 83b: Flow meter 88, 89: Flow adjustment means 9 Fluid bed monitoring device 91: Pressure sensor 92: Calculation unit 93: Monitoring unit 100: Combustion system

Claims (5)

  1.  流動媒体からなる流動媒体層と、
     前記流動媒体を流動させる流動用ガスを前記流動媒体層の底部から供給する流動用ガス供給装置と、
     前記流動媒体層を燃料の燃焼が行われる第1セル、第2セル、及び、伝熱管が設けられて熱回収が行われる第3セルに仕切る複数の平行な仕切壁であって、第1セルと第2セルとをその下側で連通するように仕切る第1仕切壁、及び、前記第1仕切壁よりも下端の高さレベルが低く、前記第3セルと前記第2セルとをその上側及び下側で連通する第2仕切壁を含む仕切壁とを備え、
     前記流動用ガス供給装置は、前記第1~3セルの各セルの底部であって前記仕切壁の下端よりも下方に、前記仕切壁と平面視で重複しないように、平面視において前記仕切壁と平行に配置された複数の散気管を有する、
    流動床炉。
    A fluid medium layer comprising a fluid medium,
    A flowable gas supply device for supplying a flowable gas for flowing the flowable medium from the bottom of the flowable medium bed;
    A plurality of parallel partition walls for dividing the fluidized medium layer into a first cell, a second cell, and a heat transfer pipe which are provided for the combustion of fuel to be subjected to heat recovery, the first cell being a first cell And a second partition wall for communicating the lower side with the second cell, and a height level of a lower end of the first partition wall is lower than that of the first partition wall, and the third cell and the second cell are upper side And a partition wall including a second partition wall communicating with the lower side,
    The flow gas supply device is the bottom of each of the first to third cells, and is lower than the lower end of the partition wall, so that the partition wall does not overlap in plan view with the partition wall in plan view With multiple aeration tubes arranged parallel to the
    Fluidized bed furnace.
  2.  前記流動用ガス供給装置は、前記第2セルの前記流動用ガスの空塔速度が前記第1セルの前記流動用ガスの空塔速度よりも大きく、且つ、前記第1セルの前記流動用ガスの空塔速度が前記第3セルの前記流動用ガスの空塔速度よりも大きくなるように、前記散気管から前記流動用ガスを吹き出す、
    請求項1に記載の流動床炉。
    In the gas supply apparatus for flow, the superficial velocity of the flowable gas of the second cell is larger than the superficial velocity of the flowable gas of the first cell, and the flowable gas of the first cell Blowing the flowable gas from the aeration tube such that the superficial velocity of the third cell is greater than the superficial velocity of the flowable gas of the third cell;
    A fluidized bed furnace according to claim 1.
  3.  前記散気管が、炉本体に対し挿脱可能に設けられている、
    請求項1又は2に記載の流動床炉。
    The aeration tube is provided so as to be insertable into and removable from the furnace body.
    A fluidized bed furnace according to claim 1 or 2.
  4.  前記散気管は、セルごとにヘッダで連結されており、各ヘッダに、流量調整手段が設けられた流動用ガス供給配管が接続されている、
    請求項1~3のいずれか一項に記載の流動床炉。
    The aeration pipes are connected by a header for each cell, and a flow gas supply pipe provided with flow rate adjusting means is connected to each header.
    A fluidized bed furnace according to any one of the preceding claims.
  5.  前記散気管の各々に所定の標準流量の前記流動用ガスが供給されるときに、前記第2セルの前記流動用ガスの空塔速度が前記第1セルの前記流動用ガスの空塔速度よりも大きく、且つ、前記第1セルの前記流動用ガスの空塔速度が前記第3セルの前記流動用ガスの空塔速度よりも大きくなるように、各セルに配置される前記散気管の本数が定められている、
    請求項1~4のいずれか一項に記載の流動床炉。
    When the fluidizing gas of a predetermined standard flow rate is supplied to each of the diffusers, the superficial velocity of the fluidizing gas of the second cell is higher than the superficial velocity of the fluidizing gas of the first cell And the number of the diffusers disposed in each cell such that the superficial velocity of the fluidizing gas of the first cell is greater than the superficial velocity of the fluidizing gas of the third cell Is defined,
    A fluidized bed furnace according to any one of the preceding claims.
PCT/JP2018/043805 2017-11-29 2018-11-28 Fluidized bed furnace WO2019107421A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880076378.6A CN111630319B (en) 2017-11-29 2018-11-28 Fluidized bed furnace
BR112020010593-7A BR112020010593A2 (en) 2017-11-29 2018-11-28 FLUIDIZED BED OVEN

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-229176 2017-11-29
JP2017229176A JP7010676B2 (en) 2017-11-29 2017-11-29 Fluidized bed furnace

Publications (1)

Publication Number Publication Date
WO2019107421A1 true WO2019107421A1 (en) 2019-06-06

Family

ID=66664054

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/043805 WO2019107421A1 (en) 2017-11-29 2018-11-28 Fluidized bed furnace

Country Status (4)

Country Link
JP (1) JP7010676B2 (en)
CN (1) CN111630319B (en)
BR (1) BR112020010593A2 (en)
WO (1) WO2019107421A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3957909A1 (en) * 2020-08-20 2022-02-23 Steinmüller Engineering GmbH Asymmetric fluidized-bed furnace for combustion of materials

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52141079A (en) * 1976-05-19 1977-11-25 Kurashiki Boseki Kk Fluidizing apparatus for fluidized bed incinerator
JPH07301411A (en) * 1992-11-13 1995-11-14 Foster Wheeler Energy Corp Fluidized bed reactor and combustion method
JPH08338616A (en) * 1995-06-14 1996-12-24 Masakatsu Hiraoka Waste burning apparatus
JPH101677A (en) * 1996-06-17 1998-01-06 Mitsubishi Heavy Ind Ltd Fluid bed type dry distillation furnace
JPH102543A (en) * 1996-06-11 1998-01-06 Ebara Corp Fluidized bed gasifying combustion furnace
JPH11325429A (en) * 1998-05-20 1999-11-26 Kawasaki Heavy Ind Ltd Method and apparatus for partitioning fluidized bed layer
JP2000304224A (en) * 1999-04-16 2000-11-02 Kawasaki Heavy Ind Ltd Method and apparatus for recovering heat from fluidized bed
JP2001241626A (en) * 2000-03-02 2001-09-07 Kawasaki Heavy Ind Ltd Method and device for controlling fluidized bed
JP2001296001A (en) * 2000-04-12 2001-10-26 Kawasaki Heavy Ind Ltd Method and device for partitioning fluidized bed
JP2003074820A (en) * 2001-09-05 2003-03-12 Kawasaki Heavy Ind Ltd Method for recovering heat from chlorine containing combustible substance
JP2003172502A (en) * 2001-12-03 2003-06-20 Chubu Electric Power Co Inc Combustible gas generator
JP2004093058A (en) * 2002-09-03 2004-03-25 Kawasaki Heavy Ind Ltd Fluidized bed incinerator
JP2004278992A (en) * 2003-03-18 2004-10-07 Babcock Hitachi Kk Fluidized bed incinerator and its operating method
JP2006078069A (en) * 2004-09-08 2006-03-23 Mitsui Eng & Shipbuild Co Ltd High-temperature corrosion reducing apparatus for circulating fluidized bed boiler
JP2013167419A (en) * 2012-02-16 2013-08-29 Mitsubishi Heavy Ind Ltd Fluidized-bed drying device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101139532B (en) * 2006-09-08 2010-12-29 中国科学院过程工程研究所 Solid fuel decoupling fluidized bed gasification method and device
CN100439797C (en) * 2007-01-23 2008-12-03 南京师范大学 Horizontal firing method for zonal fluid bed of fluid bed boiler, and zonal fluid bed in horizontal circulate
JP5713592B2 (en) * 2009-08-27 2015-05-07 三菱重工環境・化学エンジニアリング株式会社 Pyrolysis deposit removal method and pyrolysis gasification system
CN102766713A (en) * 2012-08-15 2012-11-07 陈维汉 Air heating furnace with nozzles in pre-burning chamber for reflowing preheating burning by opposed jetting and mixing
CN206531690U (en) * 2017-03-08 2017-09-29 王瑛 A kind of indoor environment monitoring device

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52141079A (en) * 1976-05-19 1977-11-25 Kurashiki Boseki Kk Fluidizing apparatus for fluidized bed incinerator
JPH07301411A (en) * 1992-11-13 1995-11-14 Foster Wheeler Energy Corp Fluidized bed reactor and combustion method
JPH08338616A (en) * 1995-06-14 1996-12-24 Masakatsu Hiraoka Waste burning apparatus
JPH102543A (en) * 1996-06-11 1998-01-06 Ebara Corp Fluidized bed gasifying combustion furnace
JPH101677A (en) * 1996-06-17 1998-01-06 Mitsubishi Heavy Ind Ltd Fluid bed type dry distillation furnace
JPH11325429A (en) * 1998-05-20 1999-11-26 Kawasaki Heavy Ind Ltd Method and apparatus for partitioning fluidized bed layer
JP2000304224A (en) * 1999-04-16 2000-11-02 Kawasaki Heavy Ind Ltd Method and apparatus for recovering heat from fluidized bed
JP2001241626A (en) * 2000-03-02 2001-09-07 Kawasaki Heavy Ind Ltd Method and device for controlling fluidized bed
JP2001296001A (en) * 2000-04-12 2001-10-26 Kawasaki Heavy Ind Ltd Method and device for partitioning fluidized bed
JP2003074820A (en) * 2001-09-05 2003-03-12 Kawasaki Heavy Ind Ltd Method for recovering heat from chlorine containing combustible substance
JP2003172502A (en) * 2001-12-03 2003-06-20 Chubu Electric Power Co Inc Combustible gas generator
JP2004093058A (en) * 2002-09-03 2004-03-25 Kawasaki Heavy Ind Ltd Fluidized bed incinerator
JP2004278992A (en) * 2003-03-18 2004-10-07 Babcock Hitachi Kk Fluidized bed incinerator and its operating method
JP2006078069A (en) * 2004-09-08 2006-03-23 Mitsui Eng & Shipbuild Co Ltd High-temperature corrosion reducing apparatus for circulating fluidized bed boiler
JP2013167419A (en) * 2012-02-16 2013-08-29 Mitsubishi Heavy Ind Ltd Fluidized-bed drying device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3957909A1 (en) * 2020-08-20 2022-02-23 Steinmüller Engineering GmbH Asymmetric fluidized-bed furnace for combustion of materials

Also Published As

Publication number Publication date
BR112020010593A2 (en) 2021-01-12
CN111630319B (en) 2022-09-09
JP2019100574A (en) 2019-06-24
JP7010676B2 (en) 2022-01-26
CN111630319A (en) 2020-09-04

Similar Documents

Publication Publication Date Title
RU2459659C1 (en) Boiler with circulating fluid bed
CN105783025A (en) Method for monitoring distribution of pulverized coal in low-NOx tangential coal-fired boiler
AU2010248093A1 (en) Regenerative heat exchanger and method of reducing gas leakage therein
CN103339442B (en) Method to enhance operation of circulating mass reactor and reactor to carry out such method
JP5013808B2 (en) Combustion control device for stoker-type incinerator
CN111602004B (en) Fluidized bed monitoring method and apparatus
KR101882361B1 (en) ACTIVE CONTROLLED SUPER ULTRA LOW NOx WATER TUBE BOILER USING FGR AND OXYGEN CONCENTRATION CONTROL
WO2019107421A1 (en) Fluidized bed furnace
JP7103781B2 (en) Fluidized bed furnace
JP6935482B2 (en) Pyrolysis equipment and pyrolysis method
JP2732028B2 (en) Fluidized bed reactor
KR100490107B1 (en) Seal pot for recirculating solid particle in circulating fluidized bed boiler
JP2003262317A (en) Control device for quantity of combustion air supply to combustible gas combustion chamber
CN103629813A (en) Coal hot air furnace
WO2022003748A1 (en) Fluidized bed treatment furnace
CN110440281B (en) A equally divide formula secondary bellows for W flame boiler
JPH1061929A (en) Control method for supplying secondary combustion air in combustion device
JP2024033256A (en) Combustion facility comprising supply part for low specific gravity combustion body
JP2687830B2 (en) Exhaust heat recovery method in heating furnace using regenerative burner
PL234502B1 (en) Method for introducing primary fluidizing gas together with the fluidized bed to the boiler furnace
JP2024033257A (en) Combustion facility comprising additional air supply device
RU2291347C2 (en) Heat exchanger
JPH06265135A (en) Air supply tube for fluidized-bed boiler
JPH08189618A (en) Combustion air preheating method and apparatus for garbage incinerator
JP2020034213A (en) Wet biomass incineration system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18884063

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112020010593

Country of ref document: BR

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: 112020010593

Country of ref document: BR

Free format text: APRESENTAR, EM ATE 60 (SESSENTA) DIAS, PROCURACAO REGULAR, UMA VEZ QUE A PROCURACAO APRESENTADA NA PETICAO NO 870200091447 DE 22/07/2020 NAO CONTEMPLA PODERES PARA RECEBER CITACOES JUDICIAIS CONFORME DETERMINADO NO ARTIGO 217 DA LEI NO 9279 DE 14 DE MAIO DE 1996 (LPI).

122 Ep: pct application non-entry in european phase

Ref document number: 18884063

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 112020010593

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20200527