JP2686341B2 - Steam pressure controller for circulating fluidized bed boiler - Google Patents

Steam pressure controller for circulating fluidized bed boiler

Info

Publication number
JP2686341B2
JP2686341B2 JP2106395A JP10639590A JP2686341B2 JP 2686341 B2 JP2686341 B2 JP 2686341B2 JP 2106395 A JP2106395 A JP 2106395A JP 10639590 A JP10639590 A JP 10639590A JP 2686341 B2 JP2686341 B2 JP 2686341B2
Authority
JP
Japan
Prior art keywords
steam pressure
furnace
steam
fluidized bed
circulating fluidized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2106395A
Other languages
Japanese (ja)
Other versions
JPH046304A (en
Inventor
隆治 広江
敏勝 藤原
友一 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2106395A priority Critical patent/JP2686341B2/en
Publication of JPH046304A publication Critical patent/JPH046304A/en
Application granted granted Critical
Publication of JP2686341B2 publication Critical patent/JP2686341B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B31/00Modifications of boiler construction, or of tube systems, dependent on installation of combustion apparatus; Arrangements of dispositions of combustion apparatus
    • F22B31/0007Modifications of boiler construction, or of tube systems, dependent on installation of combustion apparatus; Arrangements of dispositions of combustion apparatus with combustion in a fluidized bed
    • F22B31/0084Modifications of boiler construction, or of tube systems, dependent on installation of combustion apparatus; Arrangements of dispositions of combustion apparatus with combustion in a fluidized bed with recirculation of separated solids or with cooling of the bed particles outside the combustion bed

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Regulation And Control Of Combustion (AREA)
  • Fluidized-Bed Combustion And Resonant Combustion (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は,循環流動層ボイラの蒸気圧力制御装置に関
するものである。
The present invention relates to a steam pressure control device for a circulating fluidized bed boiler.

(従来の技術) 従来の循環流動層ボイラの蒸気圧力制御装置を第4図
により説明すると,(1)が火炉,(2)が一次空気供
給管,(3)が二次空気供給管,(4)がサイクロン,
(5)が蒸発器,(6)がドラム,(7)が過熱器,
(8)が蒸気供給管,(9)が蒸気圧力計,(10)が蒸
気圧力制御装置,(11)が燃料流量要求信号,(12)が
燃料供給装置,(13)か燃料供給管,(14)がダンパ,
(15)が空気供給ファン,(16)が微分器,(17)が係
数器,(18)が定数器,(19)が加算器,(21)が差分
器,(22)が定数器,(23)がPID調節器,(24)がダ
ンパ開度要求信号で,空気供給フアン(15)→一次空気
供給管(2)→火炉(1)の底部内へ供給する一次空気
と,空気供給フアン(15)→二次空気供給管(3)→火
炉(1)の底部内へ供給する二次空気とにより,火炉
(1)底部内の燃料,灰,石灰石等の固体粒子を吹上げ
る。上記一次空気と上記二次空気との流量比率は,ダン
パ(14)の開度を変えることにより,行われる。そして
同ダンパ(14)の開度は,試運転時,設計通りの燃焼特
性が得られるように調整され,その位置に固定されて,
通常の運転中には,開度の調節は行われない。上記一次
空気と上記二次空気とにより吹上げられた固定粒子は,
火炉(1)内を浮遊して,火炉(1)の上部では,均一
で,希薄な固体粒子と気体との混合流体になる。従って
火炉(1)内の比較的広い領域で均一に燃焼し,そのた
め,火炉(1)内の温度が均一になるとともに,燃焼効
率が向上する。上記吹上げられた固体粒子の殆どは,燃
焼ガスとともに火炉(1)外へ飛散するが,火炉(1)
出口には,サイクロン(4)があり,固体粒子は同サイ
クロン(4)により捕集されて,再び火炉(1)に戻
る。この火炉(1)内には,蒸発器85)があり,上記燃
焼による発熱を吸収して,蒸気を生成する。この蒸気
は,ドラム(6)により気水分離され,分離された蒸気
は,過熱器(7)へ送られて,ここで過熱蒸気になり,
その後,蒸気供給管(8)を経てタービン(図示せず)
へ送られる。この蒸気供給管(8)には,蒸気圧力計
(9)があり,この蒸気圧力計(9)で得られた蒸気圧
力検出信号が蒸気圧力制御装置(10)へ送られる。この
蒸気圧力制御装置(10)は,蒸気圧力を目標値に維持す
るためのものであり,定数器(22)が蒸気圧力目標値を
差分器(21)へ出力する。この差分器(21)は,蒸気圧
力の蒸気圧力目標値に対する偏差をPID調節器(23)へ
出力する。このPID調節器(23)は,差分器(21)から
の蒸気圧力偏差に比例−積分−微分演算を行って,その
結果得られた燃焼流量要求信号(11)を燃料供給装置
(12)へ出力する。この燃料供給装置(12)は,上記燃
焼流量要求信号(11)に基づいて燃料を燃料供給管(1
3)を経て火炉(1)へ供給するようになっている。
(Prior Art) A steam pressure control device for a conventional circulating fluidized bed boiler will be described with reference to FIG. 4. (1) is a furnace, (2) is a primary air supply pipe, (3) is a secondary air supply pipe, ( 4) is a cyclone,
(5) is an evaporator, (6) is a drum, (7) is a superheater,
(8) is a steam supply pipe, (9) is a steam pressure gauge, (10) is a steam pressure control device, (11) is a fuel flow rate request signal, (12) is a fuel supply device, (13) or a fuel supply pipe, (14) is a damper,
(15) is an air supply fan, (16) is a differentiator, (17) is a coefficient device, (18) is a constant device, (19) is an adder, (21) is a difference device, (22) is a constant device, (23) is a PID controller, (24) is a damper opening request signal, and air supply fan (15) → primary air supply pipe (2) → primary air supplied to the bottom of the furnace (1) and air supply The solid particles such as fuel, ash, and limestone in the bottom of the furnace (1) are blown up by the fan (15) → secondary air supply pipe (3) → secondary air supplied into the bottom of the furnace (1). The flow rate ratio between the primary air and the secondary air is controlled by changing the opening of the damper (14). Then, the opening of the damper (14) is adjusted so as to obtain the combustion characteristics as designed during the test run, and fixed at that position.
The opening is not adjusted during normal operation. The fixed particles blown up by the primary air and the secondary air are
It floats in the furnace (1), and becomes a mixed fluid of uniform and dilute solid particles and gas in the upper part of the furnace (1). Therefore, it burns uniformly in a relatively wide area in the furnace (1), so that the temperature in the furnace (1) becomes uniform and the combustion efficiency improves. Most of the solid particles blown up scatter with the combustion gas to the outside of the furnace (1), but the furnace (1)
At the outlet, there is a cyclone (4), solid particles are collected by the cyclone (4) and return to the furnace (1) again. Inside the furnace (1), there is an evaporator 85), which absorbs the heat generated by the combustion and produces steam. This steam is separated into steam and water by the drum (6), and the separated steam is sent to the superheater (7) where it becomes superheated steam,
After that, through the steam supply pipe (8), a turbine (not shown)
Sent to The steam supply pipe (8) has a steam pressure gauge (9), and the steam pressure detection signal obtained by the steam pressure gauge (9) is sent to the steam pressure control device (10). The steam pressure control device (10) is for maintaining the steam pressure at a target value, and the constant device (22) outputs the steam pressure target value to the difference device (21). This differencer (21) outputs the deviation of the steam pressure from the steam pressure target value to the PID controller (23). The PID controller (23) performs a proportional-integral-derivative operation on the steam pressure deviation from the difference device (21), and outputs the resulting combustion flow rate request signal (11) to the fuel supply device (12). Output. The fuel supply device (12) supplies fuel to the fuel supply pipe (1) based on the combustion flow rate request signal (11).
It is designed to be supplied to the furnace (1) via 3).

(発明が解決しようとする課題) 前記第4図に示す従来の循環流動層ボイラの蒸気圧力
制御装置では,燃料流量が変化してから,蒸気圧力が変
化するまでの時間遅れが大きいにもかかわらず,蒸気圧
力を燃料流量の調節のみに依存して制御しており,蒸気
圧力の偏差を小さく押さえることができなくて,蒸気圧
力の整定時間を長くするという問題があった。
(Problems to be Solved by the Invention) In the steam pressure control device for a conventional circulating fluidized bed boiler shown in FIG. 4, there is a large time delay from the change in fuel flow rate to the change in steam pressure. However, since the steam pressure is controlled only by adjusting the fuel flow rate, the deviation of the steam pressure cannot be kept small, and there is a problem that the steam pressure settling time is lengthened.

本発明は前記の問題点に鑑み提案するものであり,そ
の目的とする処は,負荷変化時の蒸気圧力の変化幅を小
さくできて,蒸気圧力の整定時間を短縮できる循環流動
層ボイラの蒸気圧力制御装置を提供しようとする点にあ
る。
The present invention is proposed in view of the above problems, and an object of the present invention is to provide a steam for a circulating fluidized bed boiler, which can reduce the change width of the steam pressure when the load changes and can shorten the settling time of the steam pressure. The point is to provide a pressure control device.

(課題を解決するための手段) 上記の目的を達成するために,本発明は,循環流動層
ボイラの蒸気圧力を検出し,同蒸気圧力を予め定めた目
標圧力と比較して,その偏差を算出し,この偏差値に基
づいて火炉への燃料供給量を調節することにより,同蒸
気圧力を目標圧力に維持する循環流動層ボイラの蒸気圧
力制御装置において,前記火炉への燃料供給量調節系
と,循環流動層ボイラからの蒸気流量に基づいて同ボイ
ラの火炉底部に供給する一次空気及び二次空気の割合を
変える燃焼空気補正系とを具えている。
(Means for Solving the Problem) In order to achieve the above object, the present invention detects the steam pressure of a circulating fluidized bed boiler, compares the steam pressure with a predetermined target pressure, and determines the deviation. In the steam pressure control device of the circulating fluidized bed boiler that maintains the steam pressure at the target pressure by calculating and adjusting the fuel supply amount to the furnace based on this deviation value, the fuel supply amount adjustment system for the furnace And a combustion air correction system that changes the proportion of primary air and secondary air supplied to the furnace bottom of the boiler based on the flow rate of steam from the circulating fluidized bed boiler.

(作用) 本発明の循環流動層ボイラの蒸気圧力制御装置は前記
のように構成されており,循環流動層ボイラの蒸気圧力
を蒸気圧力計により検出して,この検出値を蒸気圧力制
御装置へ送り,ここでこの検出値と予め定めた目標圧力
とを比較して,その偏差を算出し,この偏差値に基づい
てボイラ火炉への燃料供給量を調節することにより,同
蒸気圧力を目標圧力に維持しているときに,循環流動層
ボイラからの蒸気流量を蒸気流量計により検出し,この
検出値を蒸気圧力制御装置へ送り,ここでボイラ火炉底
部へ送る一次空気及び二次空気の割合を算出し,この結
果に基づいて空気供給源からボイラ火炉底部への一次空
気及び二次空気の割合を変える。
(Operation) The steam pressure control device for the circulating fluidized bed boiler of the present invention is configured as described above, the steam pressure of the circulating fluidized bed boiler is detected by the steam pressure gauge, and this detected value is sent to the steam pressure control device. Then, the detected pressure is compared with a predetermined target pressure, the deviation is calculated, and the steam pressure is adjusted to the target pressure by adjusting the fuel supply amount to the boiler furnace based on this deviation. The steam flow rate from the circulating fluidized bed boiler is detected by the steam flow meter when the temperature is maintained at 1, and the detected value is sent to the steam pressure control device where the proportion of primary air and secondary air sent to the bottom of the boiler furnace. Based on this result, the ratio of primary air and secondary air from the air supply source to the bottom of the boiler furnace is changed.

(実施例) 次に本発明の循環流動層ボイラの蒸気圧力制御装置を
第1図に示す一実施例より説明すると,(1)が火炉,
(2)が一次空気供給管,(3)が二次空気供給管,
(4)がサイクロン,(5)が蒸発器,(6)がドラ
ム,(7)が過熱器,(8)が蒸気供給管,(9)が蒸
気圧力計,(10)が蒸気圧力制御装置,(11)が燃料流
量要求信号,(12)が燃料供給装置,(13)か燃料供給
管,(14)がダンパ,(15)が空気供給フアン,(16)
が微分器,(17)が係数器,(18)が定数器,(19)が
加算器,(21)が差分器,(22)が定数器,(23)がPI
D調節器,(24)がダンパ開度要求信号で,以上の各部
分は従来の循環流動層ボイラの蒸気圧力制御装置と同一
である。次に本発明で最も特徴とする点を説明すると,
(20)が上記供給管(8)に設けた蒸気流量計,(16)
が同蒸気流量計(20)に接続した上記圧力制御装置(1
0)の微分器,(17)が同微分器(16)に接続した係数
器,(18)が同係数器(17)に接続した定数器,(19)
か同定数器(18)及び蒸気係数器(17)に接続した加算
器,(24)が同加算器(19)から上記ダンパ(14)へ出
力されるダンパ開度要求信号である。
(Example) Next, the steam pressure control device for a circulating fluidized bed boiler of the present invention will be described with reference to an example shown in FIG.
(2) is the primary air supply pipe, (3) is the secondary air supply pipe,
(4) Cyclone, (5) Evaporator, (6) Drum, (7) Superheater, (8) Steam Supply Pipe, (9) Steam Pressure Gauge, (10) Steam Pressure Controller , (11) is a fuel flow rate request signal, (12) is a fuel supply device, (13) is a fuel supply pipe, (14) is a damper, (15) is an air supply fan, (16)
Is a differentiator, (17) is a coefficient device, (18) is a constant device, (19) is an adder, (21) is a differentiator, (22) is a constant device, and (23) is a PI.
The D regulator, (24) is the damper opening request signal, and the above parts are the same as the steam pressure control device of the conventional circulating fluidized bed boiler. Next, the most characteristic point of the present invention will be described.
(20) is a steam flow meter provided in the supply pipe (8), (16)
Connected to the steam flow meter (20) of the above pressure control device (1
0) differentiator, (17) a coefficient unit connected to the differentiator (16), (18) a constant unit connected to the same coefficient unit (17), (19)
The adder connected to the identification number unit (18) and the steam coefficient unit (17), and (24) are damper opening request signals output from the adder (19) to the damper (14).

次に前記第1図に示す循環流動層ボイラの蒸気圧力制
御装置の作用を具体的に説明する。空気供給フアン(1
5)→一次空気供給管(2)→火炉(1)の底部内へ供
給する一次空気と,空気供給フアン(15)→二次空気供
給管(3)→火炉(1)の底部内へ供給する二次空気と
により,火炉(1)底部内の燃料,灰,石灰石等の固体
粒子を吹上げる。上記一次空気と上記二次空気との流量
比率は,ダンパ(14)の開度を変えることにより,行わ
れる。そして同ダンパ(14)の開度は,試運転時,設計
通りの燃焼特性が得られるように調整され,その位置に
固定されて,通常の運転中には,開度の調節は行われな
い。上記一次空気と上記二次空気とにより吹上げられた
固定粒子は,火炉(1)内を浮遊して,火炉(1)の上
部では,均一で,希薄な固体粒子と気体との混合流体に
なる。従って火炉(1)内の比較的広い領域で均一に燃
焼し,そのため,火炉(1)内の温度が均一になるとと
もに,燃焼効率が向上する。上記吹上げられた固体粒子
の殆どは,燃焼ガスとともに火炉(1)外へ飛散する
が,火炉(1)出口には,サイクロン(4)があり,固
体粒子は同サイクロン(4)により捕集されて,再び火
炉(1)に戻る。この火炉(1)内には,蒸発器(5)
があり,上記燃焼による発熱を吸収して,蒸気を生成す
る。この蒸気は,ドラム(6)により気水分離され,分
離された蒸気は,過熱器(7)へ送られて,ここで過熱
蒸気になり,その後,蒸気供給管(8)を経てタービン
(図示せず)へ送られる。この蒸気供給管(8)には,
蒸気圧力計(9)があり,この蒸気圧力計(9)で得ら
れた蒸気圧力検出信号が蒸気圧力制御装置(10)へ送ら
れる。この蒸気圧力制御装置(10)は,蒸気圧力を目標
値に維持するためのものであり,定数器(22)が蒸気圧
力目標値を差分器(21)へ出力する。この差分器(21)
は,蒸気圧力の蒸気圧力目標値に対する偏差をPID調節
器(23)へ出力する。このPID調節器(23)は,差分器
(21)からの蒸気圧力偏差に比例−積分−微分演算を行
って,その結果得られた燃焼流量要求信号(11)を燃料
供給装置(12)へ出力する。この燃料供給装置(12)
は,上記燃焼流量要求信号(11)に基づいて燃料を燃料
供給管(13)を経て火炉(1)へ供給する。上記火炉
(1)内の高さ方向の固体粒子の濃度分布は,概ね第2
図のようになっている。即ち,火炉(1)の下部では,
固体粒子の濃度が高く,火炉(1)の上部では,固体粒
子の濃度が希薄である。火炉(1)の下部と上部とで固
体粒子の濃度に大きな差があるのは,主として空気流量
による。火炉(1)の下部では,一次空気供給管(2)
からの一次空気のみが流れるのは対して火炉(1)の上
部では,一次空気に加えて二次空気供給管(3)からの
二次空気も流れる。空気流量が大きい程,固体粒子を吹
き飛ばす能力が増大するため,固体粒子の濃度が希薄に
なる。従って空気流量の大きな火炉(1)の上部では,
固体粒子が希薄になる。一方,空気流量の小さな火炉
(1)の下部では,固体粒子の濃度が高くなる。この性
質を利用して,供給する空気の総量を一定に維持したま
まであっても,一次空気と二次空気との比率を変えるこ
とにより,火炉(1)内の固体粒子の濃度分布を変える
ことができる。例えば最初,火炉(1)の固体粒子の濃
度分布が第2図の実線のようになっているとする。この
ような固体粒子の濃度分布をもつ火炉(1)の一次空気
と二次空気との比率を変えて,一次空気の比率を増やす
と,火炉(1)の下部の固体粒子の濃度は減少し,逆に
火炉(1)の上部の固体粒子の濃度は増加して,第2図
の破線のような濃度分布になる。固体粒子の濃度は,蒸
発器(5)の表面熱伝達率に影響する。第3図に固体粒
子の濃度と蒸発器(5)の表面熱伝達率との関係を示
す。同第3図により,固体粒子の濃度が増すにつれて,
蒸発器(5)の表面熱伝達率も増加することが判る。熱
伝達係数が固体粒子濃度に依存することから,蒸発器
(5)の伝熱量は,固体粒子の濃度に依存する。蒸発器
(5)は,火炉(1)の上部に位置している。火炉
(1)の上部の固体粒子濃度は,一次空気と二次空気と
の比率を変えることにより,燃焼に必要な空気流量を維
持したままで,変化させることができる。つまり蒸発器
(5)の伝熱量は,一次空気と二次空気との比率を変え
ることにより,調節することができる。ところで主蒸気
圧力は,蒸発器(5)の伝熱量に支配されるということ
が経験的に知られている。蒸発器(5)の伝熱量は,一
次空気と二次空気との比率を変えることにより,調節で
きるので,蒸発器(5)の伝熱量に支配される蒸気圧力
も一次空気と二次空気との比率を変えることにらり,調
節することができる。
Next, the operation of the steam pressure control device for the circulating fluidized bed boiler shown in FIG. 1 will be specifically described. Air supply fan (1
5)-> Primary air supply pipe (2)-> Primary air supplied into the bottom of the furnace (1) and air supply fan (15)-> Secondary air supply pipe (3)-> Supply into the bottom of the furnace (1) Solid particles such as fuel, ash, and limestone in the bottom of the furnace (1) are blown up by the secondary air. The flow rate ratio between the primary air and the secondary air is controlled by changing the opening of the damper (14). The opening of the damper (14) is adjusted so that the combustion characteristics as designed can be obtained during the test run, and is fixed at that position, and the opening is not adjusted during normal operation. The fixed particles blown up by the primary air and the secondary air float in the furnace (1) and become a uniform and dilute solid particle-gas mixture fluid in the upper part of the furnace (1). Become. Therefore, it burns uniformly in a relatively wide area in the furnace (1), so that the temperature in the furnace (1) becomes uniform and the combustion efficiency improves. Most of the solid particles blown up scatter with the combustion gas to the outside of the furnace (1), but there is a cyclone (4) at the exit of the furnace (1), and solid particles are collected by the cyclone (4). Then, the furnace (1) is returned to again. Inside this furnace (1), an evaporator (5)
Therefore, the heat generated by the above combustion is absorbed to generate steam. This steam is separated into steam and water by a drum (6), and the separated steam is sent to a superheater (7) where it becomes superheated steam, and then passes through a steam supply pipe (8) to a turbine (Fig. (Not shown). In this steam supply pipe (8),
There is a steam pressure gauge (9), and the steam pressure detection signal obtained by this steam pressure gauge (9) is sent to the steam pressure control device (10). The steam pressure control device (10) is for maintaining the steam pressure at a target value, and the constant device (22) outputs the steam pressure target value to the difference device (21). This difference device (21)
Outputs the deviation of the steam pressure to the steam pressure target value to the PID controller (23). The PID controller (23) performs a proportional-integral-derivative operation on the steam pressure deviation from the difference device (21), and outputs the resulting combustion flow rate request signal (11) to the fuel supply device (12). Output. This fuel supply system (12)
Supplies fuel to the furnace (1) through the fuel supply pipe (13) based on the combustion flow rate request signal (11). The concentration distribution of solid particles in the height direction in the furnace (1) is approximately the second
It looks like the figure. That is, in the lower part of the furnace (1),
The concentration of solid particles is high, and the concentration of solid particles is low in the upper part of the furnace (1). The large difference in the concentration of solid particles between the lower part and the upper part of the furnace (1) is mainly due to the air flow rate. In the lower part of the furnace (1), the primary air supply pipe (2)
In contrast to the flow of only the primary air from the secondary air in the upper part of the furnace (1), in addition to the primary air, the secondary air from the secondary air supply pipe (3) also flows. The larger the air flow rate, the greater the ability to blow off solid particles, so the concentration of solid particles becomes leaner. Therefore, in the upper part of the furnace (1) with a large air flow,
Solid particles become thin. On the other hand, in the lower part of the furnace (1) where the air flow rate is small, the concentration of solid particles becomes high. By using this property, the concentration distribution of solid particles in the furnace (1) can be changed by changing the ratio of primary air and secondary air even if the total amount of air supplied is kept constant. be able to. For example, assume that the solid particle concentration distribution of the furnace (1) is as shown by the solid line in FIG. When the ratio of primary air to secondary air in the furnace (1) having such a concentration distribution of solid particles is changed to increase the ratio of primary air, the concentration of solid particles in the lower part of the furnace (1) decreases. On the contrary, the concentration of solid particles in the upper part of the furnace (1) increases, and the concentration distribution is as shown by the broken line in FIG. The concentration of solid particles affects the surface heat transfer coefficient of the evaporator (5). FIG. 3 shows the relationship between the concentration of solid particles and the surface heat transfer coefficient of the evaporator (5). According to FIG. 3, as the concentration of solid particles increases,
It can be seen that the surface heat transfer coefficient of the evaporator (5) also increases. Since the heat transfer coefficient depends on the solid particle concentration, the heat transfer amount of the evaporator (5) depends on the solid particle concentration. The evaporator (5) is located above the furnace (1). The solid particle concentration in the upper part of the furnace (1) can be changed by changing the ratio of primary air to secondary air while maintaining the air flow rate required for combustion. That is, the heat transfer amount of the evaporator (5) can be adjusted by changing the ratio of the primary air and the secondary air. By the way, it is empirically known that the main steam pressure is governed by the heat transfer amount of the evaporator (5). The heat transfer amount of the evaporator (5) can be adjusted by changing the ratio of the primary air and the secondary air. It can be adjusted by changing the ratio of.

(発明の効果) 本発明の循環流動層ボイラの蒸気圧力制御装置は前記
のように循環流動層ボイラの蒸気圧力を蒸気圧力計によ
り検出して,この検出値を蒸気圧力制御装置へ送り,こ
こでこの検出値と予め定めた目標圧力とを比較して,そ
の偏差を算出し,この偏差値に基づいてボイラ火炉への
燃料供給量を調節することにより,同蒸気圧力を目標圧
力に維持しているときに,循環流動層ボイラからの蒸気
流量を蒸気流量計により検出し,この検出値を蒸気圧力
制御装置へ送り,ここでボイラ火炉底部へ送る一次空気
及び二次空気の割合を算出し,この結果に基づいて空気
供給源からボイラ火炉底部への一次空気及び二次空気の
割合を変えるので,蒸気圧力制御装置の性能を向上で
き,負荷変化時の蒸気圧力の変化幅を小さくできて,蒸
気圧力の整定時間を短縮できる効果がある。
(Effect of the invention) The steam pressure control apparatus for a circulating fluidized bed boiler of the present invention detects the steam pressure of the circulating fluidized bed boiler by the steam pressure gauge as described above, and sends the detected value to the steam pressure control apparatus. Then, this detected value is compared with a predetermined target pressure, the deviation is calculated, and the steam supply pressure is maintained at the target pressure by adjusting the fuel supply amount to the boiler furnace based on this deviation value. During this period, the flow rate of steam from the circulating fluidized bed boiler is detected by a steam flow meter, and the detected value is sent to a steam pressure control device, where the proportion of primary air and secondary air sent to the bottom of the boiler furnace is calculated. , The ratio of primary air and secondary air from the air supply source to the bottom of the boiler furnace is changed based on this result, so the performance of the steam pressure control device can be improved and the change range of the steam pressure when the load changes can be reduced. , Steam pressure This has the effect of shortening the settling time.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明に係わる循環流動層ボイラの蒸気圧力制
御装置の一実施例を示す系統図,第2図及び第3図はそ
の作用説明図,第4図は従来の循環流動層ボイラの蒸気
圧力制御装置を示す系統図である。 (1)……循環流動層ボイラの火炉,(2)……一次空
気供給管,(3)……二次空気供給管,(4)……サイ
クロン,(5)……蒸発器,(6)……ドラム,(7)
……過熱器,(8)……蒸気供給管,(9)(10)
((21)(22)(23))(12)……燃料供給量調節系,
(20)(10)((16)(17)(18)(19))(14)……
燃焼空気補正系,(9)……蒸気圧力計,(10)……蒸
気圧力制御装置,(12)……燃料供給装置,(13)……
燃料供給管,(14)……ダンパ,(20)……蒸気流量
計。
FIG. 1 is a system diagram showing an embodiment of a steam pressure control apparatus for a circulating fluidized bed boiler according to the present invention, FIGS. 2 and 3 are explanatory diagrams of its operation, and FIG. 4 is a conventional circulating fluidized bed boiler. It is a system diagram which shows a steam pressure control apparatus. (1) …… Circulating fluidized bed boiler furnace, (2) …… Primary air supply pipe, (3) …… Secondary air supply pipe, (4) …… Cyclone, (5) …… Evaporator, (6 ) …… Drums, (7)
…… Superheater, (8) …… Steam supply pipe, (9) (10)
((21) (22) (23)) (12) …… Fuel supply control system,
(20) (10) ((16) (17) (18) (19)) (14) ……
Combustion air correction system, (9) …… Steam pressure gauge, (10) …… Steam pressure control device, (12) …… Fuel supply device, (13) ……
Fuel supply pipe, (14) …… Damper, (20) …… Steam flow meter.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】循環流動層ボイラの蒸気圧力を検出し,同
蒸気圧力を予め定めた目標圧力と比較して,その偏差を
算出し,この偏差値に基づいて火炉への燃料供給量を調
節することにより,同蒸気圧力を目標圧力に維持する循
環流動層ボイラの蒸気圧力制御装置において,前記火炉
への燃料供給量調節系と,循環流動層ボイラからの蒸気
流量に基づいて同ボイラの火炉底部に供給する一次空気
及び二次空気の割合を変える燃焼空気補正系とを具えて
いることを特徴とした循環流動層ボイラの蒸気圧力制御
装置。
1. A steam pressure of a circulating fluidized bed boiler is detected, the steam pressure is compared with a predetermined target pressure, a deviation thereof is calculated, and a fuel supply amount to a furnace is adjusted based on the deviation value. In the steam pressure control device of the circulating fluidized bed boiler for maintaining the steam pressure at the target pressure, the fuel supply amount control system for the furnace and the furnace of the boiler are used based on the steam flow rate from the circulating fluidized bed boiler. A steam pressure control device for a circulating fluidized bed boiler, comprising: a combustion air correction system that changes the ratio of primary air and secondary air supplied to the bottom.
JP2106395A 1990-04-24 1990-04-24 Steam pressure controller for circulating fluidized bed boiler Expired - Lifetime JP2686341B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2106395A JP2686341B2 (en) 1990-04-24 1990-04-24 Steam pressure controller for circulating fluidized bed boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2106395A JP2686341B2 (en) 1990-04-24 1990-04-24 Steam pressure controller for circulating fluidized bed boiler

Publications (2)

Publication Number Publication Date
JPH046304A JPH046304A (en) 1992-01-10
JP2686341B2 true JP2686341B2 (en) 1997-12-08

Family

ID=14432504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2106395A Expired - Lifetime JP2686341B2 (en) 1990-04-24 1990-04-24 Steam pressure controller for circulating fluidized bed boiler

Country Status (1)

Country Link
JP (1) JP2686341B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5822991A (en) * 1997-02-14 1998-10-20 Combustion Engineering, Inc. Circulating fluidized bed steam generator (CFB) with a superheater and a reheater
JP5925587B2 (en) * 2012-05-14 2016-05-25 住友重機械工業株式会社 Operation diagnosis method and operation diagnosis device for circulating fluidized bed boiler
JP5819251B2 (en) * 2012-05-14 2015-11-18 住友重機械工業株式会社 Operation control system for circulating fluidized bed boiler.
CN104676574B (en) * 2014-12-31 2017-01-04 清华大学 Supercritical CFB Boiler main steam pressure control method based on the energy balance
CN105485716B (en) * 2015-12-25 2017-10-13 中冶南方工程技术有限公司 blast furnace gas combustion control method
CN115282762B (en) * 2022-08-17 2024-01-23 广东家美陶瓷有限公司 Semi-dry desulfurization system and control method thereof

Also Published As

Publication number Publication date
JPH046304A (en) 1992-01-10

Similar Documents

Publication Publication Date Title
AU614533B2 (en) Combustion control apparatus for fluidized bed boilers
US20180180282A1 (en) Control method for the operation of a combustion boiler
US4335683A (en) Fluidized bed heat exchanger with control to respond to changes in demand
US4316420A (en) Furnace heat absorption control
JP2686341B2 (en) Steam pressure controller for circulating fluidized bed boiler
US4237825A (en) Furnace heat absorption control
JP4254004B2 (en) Sand circulation amount estimation method and apparatus in external circulation fluidized bed boiler, and control method and apparatus based on estimation
KR20240058138A (en) Method for determining local temperature anomalies in a fluidized bed of a reactor, a method for calibrating a numerical model of a fluidized bed of a reactor, a method for estimating the risk of bed sintering in a fluidized bed reactor, a method for controlling a fluidized bed reactor, and a reactor
SU1236259A1 (en) Method of automatic controlling of combustion process in furnace with fluidized bed
JP2901085B2 (en) Boiler control device
JPS6246123A (en) Sox concentration control method in high speed fluidized bed boiler
JP2686343B2 (en) Circulating fluidized bed combustor control method
JPS59138705A (en) Controller for temperature of supplied water
JPH04251102A (en) Control method of once-through boiler
SU1716266A1 (en) Device for automatic control of primary-secondary air ratio of steam-generator
JPS6213901A (en) Method of controlling main steam pressure of high-speed fluidized bed boiler
JPS6341708A (en) Fluidized bed combustion method
SU580402A1 (en) Device for automatic control of uniflow steam boiler
JPH04184002A (en) Method of boiler control
JPH0523926Y2 (en)
SU1710946A1 (en) Method of automatic combustion control in furnace with recirculating fluidized bed
JPH0942610A (en) Boiler device
JPH0625602B2 (en) Fluidized bed boiler control method
JPH04124506A (en) Controller of medium particle volume of circulating fluidized bed boiler
JPH04260703A (en) Enthalpy control system for once-through boiler

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080630

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090630

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees