JPH11323868A - Arrangement structure of electrode in electrochemical antifouling method - Google Patents

Arrangement structure of electrode in electrochemical antifouling method

Info

Publication number
JPH11323868A
JPH11323868A JP13474798A JP13474798A JPH11323868A JP H11323868 A JPH11323868 A JP H11323868A JP 13474798 A JP13474798 A JP 13474798A JP 13474798 A JP13474798 A JP 13474798A JP H11323868 A JPH11323868 A JP H11323868A
Authority
JP
Japan
Prior art keywords
anode
cathode
conductive material
electrode
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13474798A
Other languages
Japanese (ja)
Inventor
Kiyomi Saito
清美 斎藤
Morihiko Kuwa
守彦 桑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nakabohtec Corrosion Protecting Co Ltd
Original Assignee
Nakabohtec Corrosion Protecting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nakabohtec Corrosion Protecting Co Ltd filed Critical Nakabohtec Corrosion Protecting Co Ltd
Priority to JP13474798A priority Critical patent/JPH11323868A/en
Publication of JPH11323868A publication Critical patent/JPH11323868A/en
Pending legal-status Critical Current

Links

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide the arrangement structure of an electrode in an electrochemical antifouling method, in which the current distribution of an anode surface is equalized and the adhesion of an underwater organism is inhibited or prevented effectively for a prolonged term. SOLUTION: A soluble metal or an insoluble conductive material is installed onto the wall surface of an underwater structure, and connected to the positive electrode of an external DC power and used as an anode 2, and the adhesion of an underwater organism onto the surface of the metal based on the active solution of the metal is inhibited or prevented in the soluble metal and the adhesion of the underwater organism onto the surface of the conductive material based on a bactericidal action by chlorine, hypochlorous ions or generated oxygen formed on the interface of the conductive material is suppressed or obviated in the insoluble conductive material by flowing a current. Latticed, reed screen-shaped, reticulate or spiral metallic conductors consisting of tie plates or linear elements are used as cathodes as the counter electrodes of the anodes 2 (cathode latticed steel wires 31), and arranged at approximately regular intervals from the surfaces of the anodes 2 through a plurality of insulating supporters 231, and the anodes 2 and the cathodes are compounded and unified at that time.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、水中構造物、特に
海中構造物の接水面(壁面)に付着し、生育して該構造
物の正常機能を阻害する海生生物(フジツボ類、イガイ
類、海藻類等)の付着を抑制あるいは防止する電気化学
的防汚法における電極の配置構造に関する。更に詳しく
は、可溶性金属あるいは導電塗料のような不溶性導電材
を陽極として海水中で直流電解することによって海生生
物の付着を抑制あるいは防止する電気化学的防汚方法に
おける電極の配置構造に関する。
The present invention relates to marine organisms (barnacles, mussels) which adhere to the water-contacting surfaces (wall surfaces) of underwater structures, particularly underwater structures, and which grow and inhibit the normal function of the structures. , Seaweeds, etc.) in an electrochemical antifouling method for suppressing or preventing the adhesion of the electrodes. More specifically, the present invention relates to an electrode disposition structure in an electrochemical antifouling method for suppressing or preventing the attachment of marine organisms by direct current electrolysis in seawater using a soluble metal or an insoluble conductive material such as a conductive paint as an anode.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】海中に
敷設される構造物は、海水による激しい腐食環境に晒さ
れている。その防食対策は長年に亘って研究開発が進め
られ、塗装、ライニング、各種の被覆あるいは電気防食
といった技術の進歩で今日ではほぼ満足できる状態に達
している。
BACKGROUND OF THE INVENTION Structures laid underwater are exposed to severe corrosive environments due to seawater. The anticorrosion measures have been researched and developed for many years, and are now almost satisfied with the progress of techniques such as painting, lining, various coatings, and cathodic protection.

【0003】一方、海水中に棲息するフジツボ類、イガ
イ類、ホヤ類、ヒドロ虫類あるいは海藻類といった海生
生物の付着による海中構造物の機能障害対策は、塩素の
投入、銅や錫等の毒性イオン生成防汚塗料、海水電解に
よる塩素、次亜塩素酸あるいは銅イオンの生成といった
毒性物質による海生生物の忌避や死滅が行われている。
しかし、これらの毒性イオンの生成は、過剰濃度になり
やすく、加えて環境汚染の原因になりかねない。無公害
海生生物駆除対策又は方法(以下、防汚対策又は防汚方
法という)の研究開発も進められている。シリコーンの
撥水性や表面張力を利用した防汚塗料や無害イオン生成
金属の陽極電解法等が既に実用化の段階になっているも
のもあるが、従来の防汚技術に比べてその寿命やコスト
等解決しなくてはならない課題を抱えている。
On the other hand, measures against dysfunction of marine structures caused by the attachment of marine organisms such as barnacles, mussels, sea squirts, hydroids and seaweeds that inhabit the seawater include the injection of chlorine, copper and tin, etc. Marine organisms have been repelled or killed by toxic substances such as toxic ion-producing antifouling paints and the generation of chlorine, hypochlorite or copper ions by seawater electrolysis.
However, the production of these toxic ions is likely to be in excessive concentration and, in addition, may cause environmental pollution. Research and development of non-polluting marine organism extermination measures or methods (hereinafter referred to as antifouling measures or antifouling methods) are also underway. Some antifouling paints utilizing the water repellency and surface tension of silicone and the anodic electrolysis method of harmless ion-generating metals are already in the stage of practical use, but their life and cost are lower than conventional antifouling technologies. There are issues that need to be solved.

【0004】本発明で採用する防汚手段は、電気化学を
利用した防汚方法である。すなわち、溶出イオンが無害
である金属(主として鉄鋼)を陽極電解して、陽極とし
ての該金属の表面に海生生物の着生を抑制あるいは防止
する方法である。この方法は、従来から行われている海
水電解による防汚方法の電気化学的手段の一つである
が、従来においては、海水を電気分解することによって
海生生物を死滅させる塩素や次亜塩素酸塩といった毒性
イオンを生成する。銅又は銅合金の陽極電解も毒性銅イ
オンを生成する。すなわち、これらの方法は、対象構造
物を囲む環境中に毒性イオンが海生生物が忌避する濃度
以上に維持されていることが必要であり、環境海水の
量、流速、水温あるいは海生生物の季節的活動生態等の
変動要因が多く必然的に過剰濃度になり、二次環境汚染
の要因になり易く、加えて有用海生生物をも死滅させる
ことにもなる。
The antifouling means employed in the present invention is an antifouling method utilizing electrochemistry. In other words, this is a method of anodic electrolysis of a metal (mainly steel) in which leached ions are harmless to suppress or prevent the formation of marine organisms on the surface of the metal as the anode. This method is one of the electrochemical means of the conventional antifouling method by seawater electrolysis, but conventionally, chlorine or hypochlorite, which kills marine organisms by electrolyzing seawater. This produces toxic ions such as acid salts. Anodic electrolysis of copper or copper alloys also produces toxic copper ions. In other words, these methods require that the concentration of toxic ions in the environment surrounding the target structure be maintained at a level higher than the concentration at which marine organisms repel, and the amount, flow velocity, water temperature, or Many factors, such as seasonal activity ecology, are inevitably excessive, resulting in secondary environmental pollution, which also kills useful marine organisms.

【0005】これに対して、本発明で採用する防汚手段
は、溶出イオンが無害である金属を陽極電解することに
よって陽極としての該金属表面に海生生物の付着を抑制
するものである。適用陽極電流密度は大きい程有効であ
るが、陽極の消耗量と消費電力が大きくなり経済的でな
い。連続電解で平均1A/m2 以下、好ましくは0.5
A/m2 前後の陽極電流密度に保持すると、実用上無視
できる防汚効果が得られる。この程度の陽極電解密度で
稼働すると5年以上の寿命で、経済的にも収支性のある
設計が可能である。
[0005] On the other hand, the antifouling means employed in the present invention suppresses the adhesion of marine organisms to the metal surface as an anode by anodic electrolysis of a metal having no harmful ions. The higher the applied anode current density is, the more effective it is, but it is not economical because the consumption of the anode and the power consumption increase. Average of 1 A / m 2 or less in continuous electrolysis, preferably 0.5 A / m 2 or less.
When the anode current density is maintained at around A / m 2 , a practically negligible antifouling effect can be obtained. When operated at such an anode electrolytic density, it is possible to design a product with a life of 5 years or more and economically profitable.

【0006】この防汚方法は、対象構造物の表面を陽極
金属(鉄鋼が主体)で被覆し、同環境内に別途陰極とな
る導体を設置し、外部直流電源に接続して通電する。該
陽極金属の全面を均一活性溶解させることが防汚効果良
否のポイントである。電流密度が一定である場合、該陽
極金属(電極板)の大きさ、通電用導電体の接点位置、
間隔及び対極となる陰極の大きさ、形状、極間距離とい
った幾何学的配置が均一溶解を大きく左右する。
In this antifouling method, the surface of a target structure is covered with an anode metal (mainly steel), a conductor serving as a cathode is separately installed in the same environment, and the object is connected to an external DC power supply and energized. The point of uniformly dissolving the entire surface of the anode metal is to determine whether the antifouling effect is good or not. When the current density is constant, the size of the anode metal (electrode plate), the contact position of the conducting conductor,
The geometrical arrangement such as the spacing and the size, shape, and interelectrode distance of the cathode serving as the counter electrode greatly affects uniform dissolution.

【0007】陽極金属から見た均一溶解は、該陽極金属
の材質や成分は大きな要素であるが、これは材料メーカ
に委ねられるものであり容易に変えることはできない。
容易に入手できるものでなくては、消耗材であるから経
済的見地から見合わない。例えば、鉄鋼材ではSS40
0、アルミニウム材では少量のMg、Siを含有した合
金番号5000番あるいは6000番台の合金、亜鉛で
は純度99.99重量%亜鉛あるいは少量のAlを含有
した流電陽極用材料等が使用される。陽極の形状は、対
象構造物を考慮すると加工し易い圧延加工板材が適して
いる。板材は大きい程、対象構造物への施工を考慮する
と取り付け、固定箇所を少なくできるから望ましいが、
取り扱い、運搬あるいは通電用導体の取り付け、固定方
法による電流分布等の点から陽極の大きさは、対象構造
物の形状、大きさあるいは設計寿命等によって適宜変動
させる必要があるが、一般には一枚当たり3’(約90
0mm)×6’(約1800mm)又は4’(約120
0mm)×8’(約2400mm)の入手が容易な市販
材を標準とするのが望ましい。板状陽極からの流出電流
は、陽極の全面から均一であることが防汚効果において
重要な要素である。しかし、流出電流は板状陽極の端縁
部に集中しやすく中央部に比して数倍以上も大きくなる
事例が報告されている。このことは板状陽極の端縁部に
所定の電流密度を合わせると、中央部は不十分な電流と
なって海生生物が付着しやすく、逆に中央部に電流密度
を合わせると端縁部の溶解が促進されて板状陽極の設計
寿命が短くなり、板状陽極の脱落の危険がある。板状陽
極の中央部から端縁部にかけて板状陽極の厚さを段階的
に厚くすることが考えられるが、消耗材である板状陽極
一枚内の板厚を変えることは容易なことではない。
[0007] Uniform dissolution as viewed from the anode metal is a major factor in the material and composition of the anode metal, but this is left to the material manufacturer and cannot be easily changed.
If they are not readily available, they are consumables and are not economically viable. For example, for steel, SS40
0, an aluminum material is an alloy number 5000 or 6000 series containing a small amount of Mg or Si, and zinc is a galvanic anode material containing 99.99% by weight of zinc or a small amount of Al. The shape of the anode is suitably a rolled plate material that is easy to process in consideration of the target structure. The larger the plate material is, it is desirable because it can be installed and the number of fixing points can be reduced considering the construction on the target structure,
The size of the anode needs to be appropriately changed depending on the shape and size of the target structure, the design life, etc. Per 3 '(about 90
0 mm) × 6 ′ (about 1800 mm) or 4 ′ (about 120 mm)
It is desirable to use a commercially available material that is easily available (0 mm) × 8 ′ (about 2400 mm) as a standard. It is an important factor in the antifouling effect that the outflow current from the plate-shaped anode is uniform from the entire surface of the anode. However, it has been reported that the outflow current tends to concentrate on the edge of the plate-like anode and is several times larger than that in the center. This means that if the current density is adjusted to the edge of the plate anode, the central part will have insufficient current and marine organisms will attach easily, and if the current density is adjusted to the central part, the edge will be reduced. Is promoted, the design life of the plate anode is shortened, and the plate anode may fall off. It is conceivable to gradually increase the thickness of the plate anode from the center to the edge of the plate anode, but it is not easy to change the plate thickness within one plate anode that is a consumable material. Absent.

【0008】海水と接する構造物の壁面に、海水中に棲
息する海生生物の付着を抑制させる電気化学的防汚方法
には、海水電解により陽極面で塩素又は次亜塩素酸を生
成して海生生物を死滅させる方法と陽極となる可溶性金
属あるいは不溶性導電材で対象構造物の表面を覆い、陽
極導電による活性溶解あるいは塩素を発生させないで酸
素のみを発生させて該陽極面に海生生物の着生を抑制さ
せる方法とがある。
[0008] An electrochemical antifouling method for suppressing the adhesion of marine organisms living in seawater to the wall surface of a structure in contact with seawater involves producing chlorine or hypochlorous acid on the anode surface by seawater electrolysis. A method for killing marine organisms and covering the surface of the target structure with a soluble metal or insoluble conductive material serving as an anode, and generating only oxygen without generating active dissolution or chlorine by anodic conduction, and forming a marine organism on the anode surface There is a method of suppressing the formation of corn.

【0009】海水中に塩素や銅イオンのような毒性イオ
ンを生成させる場合、規定の通電量に相当する塩素や銅
イオンの生成があれば、有用海生生物をも死滅させ、あ
るいは過剰濃度による二次環境汚染の恐れはあるものの
防汚の目的は達せられる。
In the case of producing toxic ions such as chlorine and copper ions in seawater, if chlorinated and copper ions corresponding to a specified amount of electricity are generated, useful marine organisms are also killed, or excessive concentrations may be caused. Although there is a risk of secondary environmental pollution, the purpose of antifouling is achieved.

【0010】陽極となる金属や導電体の表面への海生物
の付着抑制は、陽極の表面から均一に流出電流のあるこ
とが必要である。すなわち、陽極としての金属全面が所
定の電流密度内で作動していることが肝要である。電流
分布が不均一になると、部分的な溶解や酸素の発生に差
異を生じて種々のトラブルを起こし、溶解や酸素発生が
不十分な部分に海生生物が付着し、その部分を核にして
海生生物の付着が促進される。
In order to suppress the adhesion of marine organisms to the surface of a metal or a conductor serving as an anode, it is necessary that a current uniformly flows from the surface of the anode. That is, it is important that the entire surface of the metal as the anode operates within a predetermined current density. If the current distribution becomes uneven, partial dissolution and generation of oxygen will be different, causing various troubles, and marine organisms will adhere to parts where dissolution and oxygen generation are insufficient, and that part will be used as a nucleus. Promotes the attachment of marine organisms.

【0011】従って、本発明の目的は、陽極面の電流分
布の均一化を図り、水中生物の付着を長期に亘って有効
に抑制あるいは防止する電気化学的防汚法における電極
の配置構造を提供することにある。
Accordingly, an object of the present invention is to provide an electrode disposition structure in an electrochemical antifouling method for making the current distribution on the anode surface uniform and effectively suppressing or preventing the adhesion of aquatic organisms over a long period of time. Is to do.

【0012】[0012]

【課題を解決するための手段】本発明者らは、検討の結
果、電気化学的防汚法において、陽極と陰極の配置、特
に陰極形状及び配置構造が重要な一要素であることを知
見した。
As a result of the study, the present inventors have found that the arrangement of the anode and the cathode, particularly the shape and arrangement of the cathode, is an important factor in the electrochemical antifouling method. .

【0013】本発明は、上記知見に基づきなされたもの
で、水中構造物の壁面に可溶性金属あるいは不溶性導電
材を設置して、外部直流電源の正極に接続して陽極と
し、電流を流すことにより、該可溶性金属にあっては該
金属の活性溶解に基づく該金属の表面への水中生物の付
着を抑制あるいは防止し、該不溶性導電材にあっては該
導電材の界面で生成する塩素、次亜塩素酸イオンあるい
は発生酸素による殺菌作用に基づく該導電材表面への水
中生物の付着を抑制あるいは防止する電気化学的防汚法
における電極の配置構造において、上記陽極の対極であ
る陰極が帯板又は線材からなる格子状、簾状、網状ある
いは螺旋状の金属導体であり、複数の絶縁性支持具を介
して該陽極の表面からほぼ等間隔に配置し、該陽極と該
陰極とを複合一体化したことを特徴とする電気化学的防
汚法における電極の配置構造を提供するものである。
The present invention has been made on the basis of the above-mentioned findings. By installing a soluble metal or an insoluble conductive material on the wall surface of an underwater structure, connecting it to the positive electrode of an external DC power source to form an anode, and passing an electric current. In the case of the soluble metal, the adhesion of underwater organisms to the surface of the metal based on the active dissolution of the metal is suppressed or prevented, and in the case of the insoluble conductive material, chlorine generated at the interface of the conductive material, In an electrode disposition structure in an electrochemical antifouling method for suppressing or preventing the adhesion of aquatic organisms to the surface of the conductive material based on a bactericidal action by chlorite ions or generated oxygen, a cathode which is a counter electrode of the above-mentioned anode is a strip plate. Or a metal conductor in the form of a grid, wire, mesh or spiral made of a wire, arranged at approximately equal intervals from the surface of the anode via a plurality of insulating supports, and combining the anode with the cathode Conversion There is provided an arrangement structure of an electrode in an electrochemical antifouling method characterized by the.

【0014】[0014]

【発明の実施の形態】以下、本発明を詳細に説明する。
陽極電解による陽極面に海生生物の付着を抑制あるいは
防止する方法において、重要な要素は、所定の陽極電流
密度を負荷した場合、陽極の全面から均一に電流が流出
することである。陽極の材質、大きさ、極間距離あるい
は回路の抵抗等といった要因が影響する。しかし、使用
する陽極が定まると流出電流の均一分布は、陰極の寸
度、極間距離、回路抵抗等の物理的幾何学的配置に影響
される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail.
An important factor in the method for suppressing or preventing the attachment of marine organisms to the anode surface by anodic electrolysis is that when a predetermined anode current density is applied, current flows uniformly from the entire surface of the anode. Factors such as the material and size of the anode, the distance between the electrodes, the resistance of the circuit, and the like influence. However, once the anode to be used is determined, the uniform distribution of the outflow current is affected by physical dimensions such as the dimensions of the cathode, the distance between the electrodes, and the circuit resistance.

【0015】防汚対象となる構造物は、形状や大きさが
様々であり、この構造物の壁面に陽極を取り付けるに当
たって、陽極の種類、大きさ、形状、電気導通あるいは
取り付け手段等を考慮して陽極を構造物の壁面に配置
し、取り付けられる。
The structure to be stain-proofed has various shapes and sizes. In mounting the anode on the wall of the structure, the type, size, shape, electric conduction or mounting means of the anode are taken into consideration. The anode is placed on the wall of the structure and attached.

【0016】対極となる陰極については、電解反応の電
流の受皿であって防汚目的には直接関係しないことか
ら、対象構造物を囲む環境内にある金属体(例えば、鉄
筋コンクリート構造物にあっては補強用鉄筋、鉄鋼構造
物にあっては該構造物や付属導電性構造物等)あるいは
該環境内に別途導電体を設置して陰極としている。すな
わち、電流分布を考慮して配置するというよりは手近な
導体を陰極にしているのが普通である。
Since the cathode serving as the counter electrode is a sink for the current of the electrolytic reaction and is not directly related to the purpose of antifouling, a metal body in the environment surrounding the target structure (for example, a reinforced concrete structure). Is a reinforcing steel bar, a steel structure in the case of such a structure, an attached conductive structure, or the like, or a separate conductor is provided in the environment to serve as a cathode. In other words, it is usual that a nearby conductor is used as the cathode rather than being arranged in consideration of the current distribution.

【0017】本発明者らは、海水に接する構造物の表面
に海生生物による付着汚損を防止するため、該構造物の
界面に鉄鋼板を張り巡らせ、該鉄鋼板を陽極として陽極
活性溶解することによって、該鉄鋼板表面に海生生物の
着生を抑制できることを見出し、電気防汚方法として実
用開発を進めている(国際公開番号WO93/0225
4)。実用開発の過程で、陽極としての該鉄鋼板の均一
溶解性を図ることが実用化のポイントであることを知得
し、鉄鋼板の縁部が中央部に比して数倍も溶解すること
を見出し、端縁部の板厚が中央部より段階的に厚くした
鉄鋼板を用いることを提案した(特開平7−30083
3号公報、特開平8−302643号公報)。
The inventors of the present invention spread an iron steel sheet around the interface of the structure in order to prevent marine organisms from adhering and fouling the surface of the structure in contact with seawater, and perform anodic active dissolution using the steel sheet as an anode. Thus, it has been found that the formation of marine organisms can be suppressed on the surface of the steel sheet, and the practical development of an electrical antifouling method is being promoted (International Publication No.
4). In the process of practical development, we learned that achieving uniform dissolution of the steel sheet as the anode was the point of practical application, and that the edges of the steel sheet were several times more soluble than the center. And proposed to use an iron steel sheet whose edge portion is gradually thicker than the center portion (Japanese Patent Laid-Open No. 7-30083).
No. 3, JP-A-8-302643).

【0018】しかし、この改善は、鉄鋼板(電極)の製
造や構造物への取り付け、固定に難点があり、実用上の
足枷になっている。幾つかの構造物に対して容易で、均
一溶解が可能な電極の改善を試みた過程で、ほぼ満足の
いく均一溶解は陰極の配置構造が一つの要素であること
が判った。
[0018] However, this improvement has a problem in production of a steel plate (electrode) and attachment and fixation to a structure, which is a practical shackle. In the course of an attempt to improve an electrode that can be easily and uniformly melted for some structures, it was found that the cathode disposition structure was one factor for almost satisfactory uniform melting.

【0019】すなわち、後述する試験例に示されるよう
に、陰極が陽極と対向し、極間距離が陽極面のどの部分
からもほぼ等間隔に配置すると共に、陽極の表面中心部
から端縁部に向かって陰極の面積密度が小さくなるよう
に、すなわち、回路抵抗が大きくなるように配置し、陽
極と陰極とを近接させて複合一体化させると陽極の均一
溶解が図れることが判った。
That is, as shown in a test example described later, the cathode is opposed to the anode, the distance between the electrodes is arranged at substantially equal intervals from any part of the anode surface, and the anode is positioned from the center to the edge of the anode surface. It was found that the anode could be uniformly dissolved by disposing the cathode so as to decrease the area density, that is, increasing the circuit resistance, and bringing the anode and the cathode into close proximity and integrally integrating them.

【0020】陰極は、流入電流であるため、腐食、溶解
の心配はなく導電体であれば材質に限定はなく、強度と
加工性のある導電材であればよい。鉄鋼材、銅合金材あ
るいはチタン合金材等が考えられる。形状は、板材でも
よいが、陽極との面積比が1:1に近いと、適用陽極電
流密度を考慮すると、陰極電流密度は1A/m2 以下と
なり、海水電解反応に基づく電解生成物が形成されて、
陰極面に海生生物が付着し易くなる。定常の陽極電流密
度1A/m2 以下で、陰極表面に電解生成物の形成ある
いは海生生物の付着を抑制させるには、好ましくは陽極
の面積に対して1/10以下の陰極面積で、極間距離が
ほぼ等間隔で、且つ近接させる必要性から陰極は断面積
が小さくて細長い材料から加工したものが適する。例え
ば、帯板(ストリップ)又は線材(細棒)から製作する
のが好ましい。陰極形状は格子状、簾状、網状あるいは
螺旋状にする。対象によっては陽極面に対して中央部の
陰極の網等の間隔を密にし端縁部に向かって陰極の網等
の間隔を粗に(広く)なるように配置する。このように
配置すれば、電流の流れは回路の抵抗に左右されるの
で、電極の中央部と端縁部との電流分布のバランスが保
たれる。すなわち、陽極の全面からほぼ均一に電流が流
出する。陰極は陽極に比して面積が1/10以下である
ため、陰極電流密度が高く、電解生成物や海生生物の付
着は抑制される。
Since the cathode is an inflow current, there is no concern about corrosion and dissolution, so long as it is a conductor, the material is not limited, and a conductive material having strength and workability may be used. A steel material, a copper alloy material, a titanium alloy material, or the like can be considered. Although the shape may be a plate material, when the area ratio with the anode is close to 1: 1, the cathode current density becomes 1 A / m 2 or less in consideration of the applied anode current density, and an electrolytic product based on the seawater electrolysis reaction is formed. Being
Marine organisms easily attach to the cathode surface. At a steady anode current density of 1 A / m 2 or less, in order to suppress the formation of electrolytic products or the attachment of marine organisms to the cathode surface, the cathode area is preferably 1/10 or less of the anode area. Since it is necessary to make the distances approximately equal and close to each other, it is appropriate that the cathode is made of a material having a small cross-sectional area and processed from an elongated material. For example, it is preferable to manufacture from a strip (strip) or a wire (thin bar). The shape of the cathode may be lattice, screen, mesh or spiral. Depending on the object, the distance between the cathode nets and the like at the center is made dense with respect to the anode surface, and the distance between the cathode nets and the like is made coarse (wide) toward the edge. With this arrangement, the current flow depends on the resistance of the circuit, so that the current distribution between the center and the edge of the electrode is balanced. That is, current flows out almost uniformly from the entire surface of the anode. Since the area of the cathode is 1/10 or less of that of the anode, the cathode current density is high, and the adhesion of electrolytic products and marine organisms is suppressed.

【0021】陽極と陰極の極間は、できる限り等間隔で
より近接させる必要がある。陽極は対象構造物の壁面に
絶縁材やクッション材を介して直接張り巡らせるので、
陰極は、陽極に近接、等間隔に配置させるために、陽極
と陰極を予め一体化構造(複合)にするのがよい。
The distance between the anode and the cathode must be as close as possible at equal intervals. Since the anode is laid directly on the wall of the target structure via insulating material or cushioning material,
It is preferable that the anode and the cathode have an integrated structure (composite) in advance in order to arrange the cathode close to and at equal intervals to the anode.

【0022】極間距離は、対象となる構造物の大小や設
置海域の環境条件等にも左右されるが、陰極となる帯板
や線材が波浪や潮流等外部の力によって陽極面と短絡し
ない範囲で近接させる必要がある。固定用絶縁支持具
は、対象構造物に応じて適正な長さに調節しておけば、
極間距離はほぼ一定に維持される。実用的には、極間距
離は50〜300mm、好ましくは100〜200mm
がよい。
The distance between the poles depends on the size of the target structure and the environmental conditions of the installation sea area. However, the strip or the wire serving as the cathode does not short-circuit with the anode due to external force such as waves or tides. It needs to be close in range. If the fixing insulation support is adjusted to the appropriate length according to the target structure,
The distance between the poles is kept almost constant. Practically, the distance between the poles is 50 to 300 mm, preferably 100 to 200 mm
Is good.

【0023】上述の説明は、可溶性の鉄鋼板からなる陽
極を用いた陰極の配置方法について詳述したが、陽極が
海水電解で次亜塩素酸、塩素あるいは酸素を発生させる
導電性塗料や貴金属触媒被覆の不溶性電極からなる陽極
にあっても、本発明の電極配置、特に陰極配置構造は極
めて効果的であり、塩素、次亜塩素酸あるいは酸素の均
一発生を図ることができる。
The above description has described in detail the method of arranging a cathode using an anode made of a soluble iron steel sheet. However, the anode is a conductive paint or a noble metal catalyst which generates hypochlorous acid, chlorine or oxygen by seawater electrolysis. Even in the case of an anode comprising a coated insoluble electrode, the electrode arrangement of the present invention, particularly the cathode arrangement structure, is extremely effective, and uniform generation of chlorine, hypochlorous acid or oxygen can be achieved.

【0024】[0024]

【実施例】以下、実施例等に基づいて本発明を具体的に
説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be specifically described below based on embodiments and the like.

【0025】〔試験例〕 (陰極形状、配置の違いにより陽極の溶解状況の差異を
示す実験室試験)コンクリート製ボックスカルバート型
取水路1の1/10の模型を製作し、底面を除く側壁及
び天井に鉄鋼板を張り外部直流電源の正極に接続し、陰
極金属(SUS304)の大きさ、形状及び取り付け位
置による鉄鋼板(陽極)の消耗状況を調査した。
[Test Example] (Laboratory test showing difference in dissolution state of anode due to difference in shape and arrangement of cathode) A 1/10 model of concrete box culvert type intake channel 1 was manufactured, A steel plate was attached to the ceiling, connected to the positive electrode of an external DC power supply, and the state of consumption of the steel plate (anode) according to the size, shape, and mounting position of the cathode metal (SUS304) was investigated.

【0026】図1は陰極3の配置例を示す断面図であ
り、陽極としての鉄鋼板は板状である。同図において、
1はボックスカルバート取水路、2:陽極(鉄鋼板)、
3は陰極、4は絶縁材、5は絶縁フランジ、6は吊り下
げ金具、7は絶縁碍子をそれぞれ示す。
FIG. 1 is a cross-sectional view showing an example of the arrangement of the cathode 3, and the iron steel plate as the anode has a plate shape. In the figure,
1 is a box culvert intake channel, 2: an anode (steel plate),
Reference numeral 3 denotes a cathode, 4 denotes an insulating material, 5 denotes an insulating flange, 6 denotes a hanging bracket, and 7 denotes an insulator.

【0027】図1(a)〜(d)において、陰極3の配
置は、同図(a)では板状電極を底面に、同図(b)及
び(d)では丸棒又は板を側壁に、同図(c)では吊り
下げ金具6で固定した丸棒をボックスカルバート取水路
1断面の中央にそれぞれ配置した例を図示した。いずれ
も平均陽極電流密度5A/m2 (通常の10倍以上)で
約3ヵ月通電した場合の陽極2の消耗分布を調べた。
1 (a) to 1 (d), the arrangement of the cathode 3 is such that the plate-like electrode is located on the bottom surface in FIG. 1 (a), and the round bar or plate is located on the side wall in FIGS. 1 (b) and 1 (d). FIG. 3 (c) shows an example in which a round bar fixed by the hanging bracket 6 is arranged at the center of the section of the box culvert intake channel 1 respectively. In each case, the consumption distribution of the anode 2 was examined when the current was passed for about three months at an average anode current density of 5 A / m 2 (10 times or more of the normal).

【0028】図2に、図1の各種の陰極設置による陽極
(鉄鋼板)の約3ヵ月通電した場合の陽極の消耗分布の
断面図をそれぞれ示す。同図において、横線で囲まれた
部分は消耗度合いを示し、長いほど消耗度が大きいこと
を示す。図2に示されるように、陰極の位置によって消
耗分布が異なる。いずれも陰極に近接する部分の消耗が
大きく、特に底面や側面に設置した場合(図2(a)、
(b)及び(d))、消耗の偏りが顕著である。陰極を
取水路の断面中央に設置した場合には(図2(c))、
陽極はほぼ均一に消耗している。
FIG. 2 is a cross-sectional view showing the distribution of consumption of the anode (iron steel plate) when the cathode (iron steel plate) is energized for about three months by installing the various cathodes shown in FIG. In the figure, the part surrounded by a horizontal line indicates the degree of wear, and the longer the part, the greater the degree of wear. As shown in FIG. 2, the consumption distribution differs depending on the position of the cathode. In each case, the portion near the cathode is greatly consumed, especially when the device is installed on the bottom surface or side surface (FIG. 2A).
(B) and (d)), the unevenness of consumption is remarkable. When the cathode is installed in the center of the cross section of the water channel (FIG. 2 (c)),
The anode is almost uniformly consumed.

【0029】〔実施例及び比較例〕試験例の結果を確認
するため、実用取水路スクリーン室に陰極配置方式の装
置を設置し、取水路スクリーン室の壁面に取り付けた陽
極(鉄鋼板)の溶解状況を調査した。
[Examples and Comparative Examples] In order to confirm the results of the test examples, an apparatus of a cathode arrangement type was installed in the practical intake channel screen room, and the anode (iron steel plate) attached to the wall surface of the intake channel screen room was melted. The situation was investigated.

【0030】代表的な電極配置の斜視図を図3〜4にそ
れぞれ示す。また、図3〜4における陽極(鉄鋼板)の
溶解分布を図5〜6にそれぞれ示す。図3〜4におい
て、8は直流電源装置、9は配線、11はスクリーン
室、23は複合電極、231は絶縁支持架台、31は陰
極格子状鋼線をそれぞれ示す。
FIGS. 3 and 4 show perspective views of typical electrode arrangements. In addition, FIGS. 5 and 6 show the dissolution distribution of the anode (iron steel plate) in FIGS. 3 and 4, reference numeral 8 denotes a DC power supply, 9 denotes wiring, 11 denotes a screen room, 23 denotes a composite electrode, 231 denotes an insulating support frame, and 31 denotes a cathode grid steel wire.

【0031】図3は、試験例で適正な陽極消耗分布を示
したスクリーン室の空間中央に150mmφのSUSパ
イプを陰極3として設置し、スクリーン室両側壁面に台
形の陽極(鉄鋼板)2を取り付けた斜視図を示す(比較
例)。
FIG. 3 shows that a SUS pipe of 150 mmφ is installed as a cathode 3 in the center of the space of the screen room showing an appropriate anode consumption distribution in the test example, and a trapezoidal anode (iron steel plate) 2 is attached to both side walls of the screen room. FIG. 3 shows a perspective view (Comparative Example).

【0032】図4は本発明に係る複合電極を取り付けた
斜視図である(実施例)。図3と異なる点は、スクリー
ン室11の中央にある円柱形の陰極3がなく、代わりに
陽極2と陰極3の極間距離が一定になるように陽極2の
表面に絶縁支持架台231を介して4.2mmφの鋼線
(陰極)を格子状31に張り巡らせた、陽極と陰極が一
体化した複合電極23となっている。
FIG. 4 is a perspective view of the composite electrode according to the present invention (embodiment). 3 is different from FIG. 3 in that the cylindrical cathode 3 in the center of the screen chamber 11 is not provided. Instead, the surface of the anode 2 is interposed via an insulating support 231 so that the distance between the anode 2 and the cathode 3 is constant. Thus, a composite electrode 23 in which an anode and a cathode are integrated, in which a 4.2 mmφ steel wire (cathode) is stretched in a grid 31.

【0033】春先に図3〜4に示される電極を設置し、
秋半ば前の約7ヵ月余り陽極電流密度0.5A/m2
連続通電を行った。通電7ヵ月後、陽極(鉄鋼板)表面
の付着物や溶解生成物(赤錆類)を除去して超音波膜厚
計で板厚を測定して陽極2の消耗分布を調べた。
In the early spring, the electrodes shown in FIGS.
Approximately seven months before the mid-autumn period, continuous energization was performed at an anode current density of 0.5 A / m 2 . After seven months of energization, deposits and dissolved products (red rusts) on the surface of the anode (iron steel plate) were removed, and the thickness of the plate was measured with an ultrasonic film thickness meter to examine the consumption distribution of the anode 2.

【0034】図5〜6は、図3〜4の陽極(鉄鋼板)の
溶解状況を消耗分布で図示したものであり、図5(a)
及び図6(a)は、海水の流れに対して、右壁に取り付
けた陽極(鉄鋼板)の消耗分布を示し、図5(b)及び
図6(b)は、海水の流れに対して、左壁に取り付けた
陽極(鉄鋼板)の消耗分布を示す。いずれもスクリーン
室11の両側壁に各々2.3mmtの鉄鋼板(〔上底3
60cm+下底480cm〕×高さ540cm)を陽極
2として使用した結果である。0.5A/m2の平均陽
極電流密度で約7ヵ月の通電であるから、理論的には
0.35〜0.4mmの消耗である。
FIGS. 5 and 6 show the dissolution state of the anode (steel plate) in FIGS.
6A shows the consumption distribution of the anode (steel plate) attached to the right wall with respect to the flow of seawater, and FIGS. 5B and 6B show the distribution with respect to the flow of seawater. And the consumption distribution of the anode (steel plate) attached to the left wall. In each case, a 2.3 mmt steel plate ([upper bottom 3
60 cm + lower bottom 480 cm] × height 540 cm). Since current is supplied for about 7 months at an average anode current density of 0.5 A / m 2 , the consumption is theoretically 0.35 to 0.4 mm.

【0035】図5は、図1の陽極(鉄鋼板)2をより均
一に溶解させるための陰極配置テストに基づいたスクリ
ーン室11の中央に円柱形の陰極3を設置した場合の陽
極(鉄鋼板)2の溶解消耗分布であるが、従来の陰極設
置に比して均一溶解を示すものの実ラインでは、円柱陰
極3近傍の陽極(鉄鋼板)2面の消耗が優先しているこ
とを示している。
FIG. 5 shows an anode (steel plate) in which a cylindrical cathode 3 is installed at the center of the screen chamber 11 based on a cathode arrangement test for dissolving the anode (steel plate) 2 of FIG. 1 more uniformly. 2) The dissolution and consumption distribution of 2 shows that although the uniform dissolution is exhibited as compared with the conventional cathode installation, in the actual line, the consumption of the anode (iron steel plate) 2 surface near the cylindrical cathode 3 is prioritized. I have.

【0036】図6は、複合電極23を用いたものであ
り、陽極(鉄鋼板)2全面がほぼ均一に消耗しており、
陽極(鉄鋼板)2と陰極格子状鋼線31を一定間隔で複
合一体化した電極配置が優れた溶解状況を示すことが明
確になった。
FIG. 6 shows the case where the composite electrode 23 is used, and the entire surface of the anode (steel plate) 2 is almost uniformly consumed.
It became clear that the electrode arrangement in which the anode (iron steel plate) 2 and the cathode grid steel wire 31 were combined and integrated at regular intervals showed an excellent melting state.

【0037】[0037]

【発明の効果】以上説明したように、本発明の電気化学
的防汚法における電極の配置構造によって、陽極面の電
流分布の均一化を図り、水中生物の付着を長期に亘って
有効に抑制あるいは防止することができる。また、この
ような電極の配置構造によって電極の工場生産が可能で
あり、現場施工作業が容易になり作業工数も低減するこ
とができる。
As described above, by the arrangement of the electrodes in the electrochemical antifouling method of the present invention, the current distribution on the anode surface is made uniform and the adhesion of aquatic organisms is effectively suppressed for a long time. Alternatively, it can be prevented. In addition, such an electrode arrangement structure makes it possible to produce electrodes in a factory, thereby facilitating on-site construction work and reducing man-hours.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、コンクリート製ボックスカルバートの
模型への各種の陰極を設置した断面図である。
FIG. 1 is a cross-sectional view in which various cathodes are installed on a model of a concrete box culvert.

【図2】図2は、図1の各種の陰極設置による陽極(鉄
鋼板)の消耗分布を示す断面図である。
FIG. 2 is a cross-sectional view showing the distribution of consumption of an anode (iron steel plate) by installing various kinds of cathodes in FIG.

【図3】図3は、取水路スクリーン室の中心に円柱形陰
極を設置した斜視図である。
FIG. 3 is a perspective view in which a cylindrical cathode is installed at the center of an intake screen room;

【図4】図4は、本発明に係る取水路スクリーン室に複
合電極を設置した斜視図である。
FIG. 4 is a perspective view in which a composite electrode is installed in the intake channel screen chamber according to the present invention.

【図5】図5は、図3で通電後の陽極(鉄鋼板)の溶解
消耗分布を示す図である。
FIG. 5 is a view showing a dissolution and consumption distribution of an anode (iron steel plate) after energization in FIG. 3;

【図6】図6は、図4で通電後の陽極(鉄鋼板)の溶解
消耗分布を示す図である。
FIG. 6 is a diagram showing the dissolution and consumption distribution of the anode (steel plate) after the current supply in FIG.

【符号の説明】[Explanation of symbols]

1:ボックスカルバート取水路、2:陽極(鉄鋼板)、
3:陰極、4:絶縁材、5:絶縁フランジ、6:吊り下
げ金具、7:絶縁碍子、8:直流電源装置、9:配線、
11:スクリーン室、23:複合電極、231:絶縁支
持架台、31:陰極格子状鋼線。
1: Box culvert intake channel, 2: Anode (steel plate),
3: cathode, 4: insulating material, 5: insulating flange, 6: hanging bracket, 7: insulator, 8: DC power supply, 9: wiring,
11: Screen room, 23: Composite electrode, 231: Insulating support frame, 31: Cathode grid steel wire.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 水中構造物の壁面に可溶性金属あるいは
不溶性導電材を設置して、外部直流電源の正極に接続し
て陽極とし、電流を流すことにより、該可溶性金属にあ
っては該金属の活性溶解に基づく該金属の表面への水中
生物の付着を抑制あるいは防止し、該不溶性導電材にあ
っては該導電材の界面で生成する塩素、次亜塩素酸イオ
ンあるいは発生酸素による殺菌作用に基づく該導電材表
面への水中生物の付着を抑制あるいは防止する電気化学
的防汚法における電極の配置構造において、 上記陽極の対極である陰極が帯板又は線材からなる格子
状、簾状、網状あるいは螺旋状の金属導体であり、複数
の絶縁性支持具を介して該陽極の表面からほぼ等間隔に
配置し、該陽極と該陰極とを複合一体化したことを特徴
とする電気化学的防汚法における電極の配置構造。
1. A soluble metal or an insoluble conductive material is provided on the wall of an underwater structure, connected to a positive electrode of an external DC power source to form an anode, and an electric current is applied. Inhibition or prevention of underwater organisms from adhering to the surface of the metal due to active dissolution, and in the case of the insoluble conductive material, it is effective for disinfection by chlorine, hypochlorite ion or generated oxygen generated at the interface of the conductive material. In the electrode disposition structure in the electrochemical antifouling method for suppressing or preventing the adhesion of aquatic organisms to the surface of the conductive material based on the above, the cathode as a counter electrode of the above-mentioned anode is a grid-like, cord-like, net-like made of a strip or wire Alternatively, it is a helical metal conductor, and is disposed at substantially equal intervals from the surface of the anode via a plurality of insulating supports, and the anode and the cathode are combined into a single body. To dirty law Arrangement of that electrode.
【請求項2】 上記陰極の上記陽極に対する全面積比が
1/10以下であると共に、該陰極の面積密度が該陽極
の表面中心部から端縁部に向かって小さくなるように配
置した請求項1に記載の電気化学的防汚法における電極
の配置構造。
2. The cathode is arranged so that the total area ratio of the cathode to the anode is 1/10 or less, and the area density of the cathode decreases from the center of the surface of the anode toward the edge. 2. An electrode arrangement structure in the electrochemical antifouling method according to 1.
JP13474798A 1998-05-18 1998-05-18 Arrangement structure of electrode in electrochemical antifouling method Pending JPH11323868A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13474798A JPH11323868A (en) 1998-05-18 1998-05-18 Arrangement structure of electrode in electrochemical antifouling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13474798A JPH11323868A (en) 1998-05-18 1998-05-18 Arrangement structure of electrode in electrochemical antifouling method

Publications (1)

Publication Number Publication Date
JPH11323868A true JPH11323868A (en) 1999-11-26

Family

ID=15135644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13474798A Pending JPH11323868A (en) 1998-05-18 1998-05-18 Arrangement structure of electrode in electrochemical antifouling method

Country Status (1)

Country Link
JP (1) JPH11323868A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100741841B1 (en) 2004-09-15 2007-07-24 가부시끼가이샤 도시바 Marine organism adhesion preventing device and complex plate for preventing marine organism adhesion and method for mounting thereof
JP2012036614A (en) * 2010-08-05 2012-02-23 Ihi Corp Organism adhesion prevention method and organism adhesion prevention device
JP2017095892A (en) * 2015-11-19 2017-06-01 株式会社ナカボーテック Antifouling device for seawater utilization structure, antifouling device for seawater pump, and seawater pollution prevention method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100741841B1 (en) 2004-09-15 2007-07-24 가부시끼가이샤 도시바 Marine organism adhesion preventing device and complex plate for preventing marine organism adhesion and method for mounting thereof
US7303659B2 (en) 2004-09-15 2007-12-04 Kabushiki Kaisha Toshiba System for preventing adhesion of marine organisms
CN100355987C (en) * 2004-09-15 2007-12-19 株式会社东芝 Apparatus for preventing adhesion of marine organism, composite plate for preventing adhesion of marine organism and method for installing the apparatus
JP2012036614A (en) * 2010-08-05 2012-02-23 Ihi Corp Organism adhesion prevention method and organism adhesion prevention device
JP2017095892A (en) * 2015-11-19 2017-06-01 株式会社ナカボーテック Antifouling device for seawater utilization structure, antifouling device for seawater pump, and seawater pollution prevention method

Similar Documents

Publication Publication Date Title
KR100741841B1 (en) Marine organism adhesion preventing device and complex plate for preventing marine organism adhesion and method for mounting thereof
US5344531A (en) Prevention method of aquatic attaching fouling organisms and its apparatus
JP2982021B2 (en) Method for suppressing the growth of microorganisms on the surface of a structure immersed in a liquid
JP2007267699A (en) Structure for forming coral reef
JPH11323868A (en) Arrangement structure of electrode in electrochemical antifouling method
JP6609007B2 (en) Seawater pump antifouling device and seawater antifouling method
CN1090893A (en) The activated cathode and the manufacture method thereof that are used for chlor-alkali electrolytic cells
CN106222692B (en) Anti-fouler and its implementation based on platform piling bar ring type electrolysis anti-soil electrode
JP4789043B2 (en) Seawater electrolyzer
JP3137771B2 (en) Corrosion protection method for concrete structures by thermal spray coating.
JP5402177B2 (en) The galvanic anode body and the galvanic anode method
JP3090187B2 (en) Room temperature zinc sprayed coating for antifouling and antifouling management method of the sprayed coating
JPH05123079A (en) Underwater fence
JP2017095892A (en) Antifouling device for seawater utilization structure, antifouling device for seawater pump, and seawater pollution prevention method
JP2019163505A (en) Corrosion prevention electrodeposition film formation method of in-water metal structure
JPH0423406Y2 (en)
JP2007132112A (en) Marine organism adhesion preventing device, composite plate thereof, and device setting method
JPH11303041A (en) Pollution preventing method for structure in contact with sea water
JPH0752167Y2 (en) Replaceable energizing antifouling cover for offshore structures
JPH06256976A (en) Galvanic corrosion preventive device for intake channel fitting
JPH11140841A (en) Antifouling zinc electrode device
JP3906110B2 (en) Electrolysis equipment
JPS5848365Y2 (en) electrolytic cell
JP2004027500A (en) Contamination prevention apparatus
JP2001064788A (en) Corrosion-protective method of metal surface in contact with flowing water of water film