JPH11323467A - Hydrogen storage alloy and its production - Google Patents

Hydrogen storage alloy and its production

Info

Publication number
JPH11323467A
JPH11323467A JP10133888A JP13388898A JPH11323467A JP H11323467 A JPH11323467 A JP H11323467A JP 10133888 A JP10133888 A JP 10133888A JP 13388898 A JP13388898 A JP 13388898A JP H11323467 A JPH11323467 A JP H11323467A
Authority
JP
Japan
Prior art keywords
hydrogen storage
storage alloy
alloy
type
crystal structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10133888A
Other languages
Japanese (ja)
Inventor
Yoshiki Sakaguchi
善樹 坂口
Kiyotaka Yasuda
清隆 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP10133888A priority Critical patent/JPH11323467A/en
Publication of JPH11323467A publication Critical patent/JPH11323467A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an alloy having good initial characteristics and improved characteristics of the discharging rate of a battery (rate characteristics), particularly in the low temp. high rate characteristics without deteriorating the characteristics of the service life (cycle characteristics) by composing the compsn. of an AB5 type alloy of the specified nonstoichiometric one (B site-rich) and allowing it to have a crystal structure of a CaCu5 type having a specified compsn. SOLUTION: This AB5 type hydrogen storage alloy having a crystal structure of a CaCu5 type expressed by the formula of MmNia Mnb Alc Cod Cue Vf is obtd. by heating and melting a hydrogen storage alloy raw material, subjecting it to casting and thereafter executing heat treatment in an inert gas atmosphere, and the heat treatment is executed under the heat treating conditions of 1000 to 1100 deg.C×1 to 6 hr. In the formula, Mm denotes misch metal, 3.95<=a<=4.3, 0.3<=b<=0.6, 0.15<=c<=0.5, 0<=d<=0.8, 0<=e<=0.3, 0.005<=f<=0.03 and 4.9<=a+b+d+d+e+f<=5.4 are satisfied, and (a) to (f) denote the molar number based on Mm 1 mol in either case.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、水素吸蔵合金及び
その製造方法に関し、詳しくは寿命特性(サイクル特
性)を劣化させることなく、初期特性が極めて良好で、
かつ電池の放電率特性(レート特性)、特に−40〜0
℃の低温ハイレート特性(1−10C)を向上させた水
素吸蔵合金及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrogen storage alloy and a method for producing the same, and more particularly, to a hydrogen storage alloy having very good initial characteristics without deteriorating life characteristics (cycle characteristics).
And the discharge rate characteristics (rate characteristics) of the battery, particularly -40 to 0
The present invention relates to a hydrogen storage alloy with improved low-temperature high-rate characteristics at 1 ° C. (1-10C) and a method for producing the same.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】近年、
ニッケル−カドミウム蓄電池に代わる高容量アルカリ蓄
電池として、水素吸蔵合金を負極に用いたニッケル−水
素蓄電池が注目されている。この水素吸蔵合金は、現在
では希土類系の混合物であるMm(ミッシュメタル)と
Ni、Al、Mn、Coとの5元素の水素吸蔵合金が汎
用されている。
2. Description of the Related Art In recent years,
As a high-capacity alkaline storage battery that replaces a nickel-cadmium storage battery, a nickel-hydrogen storage battery using a hydrogen storage alloy for a negative electrode has attracted attention. At present, as the hydrogen storage alloy, a five-element hydrogen storage alloy of Mm (mish metal), which is a rare earth-based mixture, and Ni, Al, Mn, and Co is widely used.

【0003】このMm−Ni−Mn−Al−Co合金
は、La系のそれに比べて比較的安価な材料で負極を構
成でき、サイクル寿命が長く、過充電時の発生ガスによ
る内圧上昇が少ない密閉形ニッケル水素蓄電池を得るこ
とができることから、電極材料として広く用いられてい
る。
[0003] This Mm-Ni-Mn-Al-Co alloy can form a negative electrode with a relatively inexpensive material as compared with a La-based alloy, has a long cycle life, and has a small internal pressure rise due to gas generated during overcharge. Since a nickel-metal hydride storage battery can be obtained, it is widely used as an electrode material.

【0004】現在用いられているMm−Ni−Mn−A
l−Co合金は、合金の微粉化を抑制してサイクル寿命
を長くしているが、一般的にこの微粉化抑制のためには
10重量%程度のCo(ミッシュメタル1モルに対する
比で0.6〜1.0)を必要とすることが知られてい
る。また、優れた水素吸蔵特性及び耐食性を得るために
も一定量のCoの含有は必要とされている。
[0004] Currently used Mm-Ni-Mn-A
The l-Co alloy suppresses the pulverization of the alloy and prolongs the cycle life. In general, however, in order to suppress the pulverization, about 10% by weight of Co (0.1% relative to 1 mol of misch metal) is used. 6 to 1.0). Further, in order to obtain excellent hydrogen storage characteristics and corrosion resistance, a certain amount of Co is required.

【0005】しかしながら、Coの含有率が高いとそれ
だけ原料コストが高くなり、原料コストの面から問題視
されている。特に、電気自動車用電源(EV:Electric
vihicle)等の大型電池への適用やニッケル−水素蓄電
池のさらなる市場の増大に対しては、原料コストは、電
極負極材料の選定において大きな割合を占め、このこと
が問題となっていた。
However, the higher the Co content, the higher the raw material cost, and this is regarded as a problem from the viewpoint of raw material cost. In particular, power supplies for electric vehicles (EV: Electric
For the application to large batteries such as vihicles) and the further increase in the market for nickel-hydrogen storage batteries, the raw material cost accounts for a large proportion in the selection of the electrode negative electrode material, which has been a problem.

【0006】このような問題を解決するために、特開平
9−213319号公報には、Mm−Ni−Mn−Al
−Co系合金の組成を変化させ、これにさらに少量の1
元素を加えることが提案されている。同公報に記載の水
素吸蔵合金粉末を負極に用いることによって、Coが少
量にもかかわらず、合金の微粉化による負極の劣化を一
定限度抑制し、電池のサイクル寿命が長くすることがで
きる。
[0006] To solve such a problem, Japanese Patent Application Laid-Open No. 9-213319 discloses Mm-Ni-Mn-Al.
-The composition of the Co-based alloy was changed, and
It has been proposed to add elements. By using the hydrogen storage alloy powder described in the publication for the negative electrode, it is possible to suppress the deterioration of the negative electrode due to the pulverization of the alloy to a certain extent and to prolong the cycle life of the battery even though the amount of Co is small.

【0007】しかるに、同公報に開示の水素吸蔵合金を
用いた場合には、安定した良好な初期特性が得られない
という問題がある。また、微粉化特性及び水素吸蔵特性
も必ずしも満足し得るものではない。
However, when the hydrogen storage alloy disclosed in the above publication is used, there is a problem that stable and good initial characteristics cannot be obtained. Further, the pulverization characteristics and the hydrogen storage characteristics are not always satisfactory.

【0008】また、AB5 型水素吸蔵合金は、上記のよ
うにEV等の大型電源において用いられるが、0℃以下
での特性(初期特性、放電率特性)が充分ではなく、E
V等の大型電源への適用において一部問題となってい
る。
Further, as described above, the AB 5 type hydrogen storage alloy is used in a large power source such as an EV, but its characteristics (initial characteristics, discharge rate characteristics) at 0 ° C. or less are not sufficient,
There is a problem in application to a large power supply such as V.

【0009】従って、本発明の目的は、寿命特性(サイ
クル特性)を劣化させることなく、初期特性が極めて良
好で、かつ電池の放電率特性(レート特性)、特に−4
0〜0℃の低温ハイレート特性(1−10C)を向上さ
せた水素吸蔵合金及びその製造方法を提供することにあ
る。
Accordingly, it is an object of the present invention to provide a battery having very good initial characteristics without deteriorating the life characteristics (cycle characteristics) and the discharge rate characteristics (rate characteristics) of the battery, especially -4.
An object of the present invention is to provide a hydrogen storage alloy having improved low-temperature high-rate characteristics (1-10C) at 0 to 0 ° C and a method for producing the same.

【0010】[0010]

【課題を解決するための手段】本発明者等は種々の研究
を重ねた結果、AB5 型合金組成を特定の非化学量論組
成(Bサイトリッチ)とし、かつバナジウムを一定量含
有する水素吸蔵合金によって、上記目的を達成し得るこ
とを知見した。また、このような水素吸蔵合金は、上記
特定の組成において、熱処理条件が一定にある場合に好
適に得られることを見い出した。
The present inventors have SUMMARY OF THE INVENTION The result of various studies, the specific non-stoichiometry of the AB 5 type alloy composition (B site rich), and hydrogen contained a certain amount of vanadium It has been found that the above object can be achieved by the occlusion alloy. In addition, it has been found that such a hydrogen storage alloy can be suitably obtained when the heat treatment conditions are constant in the above specific composition.

【0011】本発明は、上記知見に基づきなされたもの
で、一般式 MmNia Mnb Alc Cod Cue f (式中、Mmはミッシュメタル、3.95≦a≦4.
3、0.3≦b≦0.6、0.15≦c≦0.5、0≦
d≦0.8、0≦e≦0.3、0.005≦f≦0.0
3、4.9≦a+b+c+d+e+f≦5.4、但し、
a〜fはいずれもMm1モルに対するモル数)で表され
るCaCu5 型の結晶構造を有することを特徴とするA
5 型水素吸蔵合金を提供するものである。
[0011] The present invention has been made based on the above findings, the general formula MmNi a Mn b Al c Co d Cu e V f ( wherein, Mm is the mischmetal, 3.95 ≦ a ≦ 4.
3, 0.3 ≦ b ≦ 0.6, 0.15 ≦ c ≦ 0.5, 0 ≦
d ≦ 0.8, 0 ≦ e ≦ 0.3, 0.005 ≦ f ≦ 0.0
3, 4.9 ≦ a + b + c + d + e + f ≦ 5.4, provided that
a to f each have a CaCu 5 type crystal structure represented by the following formula:
There is provided a B 5 type hydrogen storage alloy.

【0012】また、本発明は、本発明の水素吸蔵合金の
好ましい製造方法として、水素吸蔵合金原料を加熱溶解
し、これを鋳造した後、不活性ガス雰囲気中で熱処理
し、下記一般式で表されるCaCu5 型の結晶構造を有
するAB5 型水素吸蔵合金を製造する方法であって、該
熱処理条件が1000〜1100℃、1〜6時間である
ことを特徴とする水素吸蔵合金の製造方法を提供するも
のである。 一般式 MmNia Mnb Alc Cod Cue f (式中、Mmはミッシュメタル、3.95≦a≦4.
3、0.3≦b≦0.6、0.15≦c≦0.5、0≦
d≦0.8、0≦e≦0.3、0.005≦f≦0.0
3、4.9≦a+b+c+d+e+f≦5.4、但し、
a〜fはいずれもMm1モルに対するモル数)
The present invention also provides, as a preferred method for producing the hydrogen storage alloy of the present invention, a method of heating and melting a hydrogen storage alloy material, casting it, and then heat treating it in an inert gas atmosphere. A method for producing an AB 5 type hydrogen storage alloy having a CaCu 5 type crystal structure, wherein the heat treatment conditions are 1000 to 1100 ° C. for 1 to 6 hours. Is provided. Formula MmNi a Mn b Al c Co d Cu e V f ( wherein, Mm is the mischmetal, 3.95 ≦ a ≦ 4.
3, 0.3 ≦ b ≦ 0.6, 0.15 ≦ c ≦ 0.5, 0 ≦
d ≦ 0.8, 0 ≦ e ≦ 0.3, 0.005 ≦ f ≦ 0.0
3, 4.9 ≦ a + b + c + d + e + f ≦ 5.4, provided that
a to f are moles per mole of Mm)

【0013】さらに、本発明の水素吸蔵合金の好ましい
製造方法として、水素吸蔵合金原料を加熱溶解し、これ
を10K3 /sec以上の超急冷速度で超急冷凝固した
後、不活性ガス雰囲気中で熱処理し、下記一般式で表さ
れるCaCu5 型の結晶構造を有するAB5 型水素吸蔵
合金を製造する方法であって、該熱処理条件が600〜
1000℃、10分〜6時間であることを特徴とする水
素吸蔵合金の製造方法を提供するものである。 一般式 MmNia Mnb Alc Cod Cue f (式中、Mmはミッシュメタル、3.95≦a≦4.
3、0.3≦b≦0.6、0.15≦c≦0.5、0≦
d≦0.8、0≦e≦0.3、0.005≦f≦0.0
3、4.9≦a+b+c+d+e+f≦5.4、但し、
a〜fはいずれもMm1モルに対するモル数)
Further, as a preferred method for producing the hydrogen storage alloy of the present invention, the hydrogen storage alloy raw material is heated and melted, and this is rapidly quenched and solidified at a super quenching speed of 10 K 3 / sec or more. heat treatment, a method of manufacturing a AB 5 type hydrogen storage alloy having a CaCu 5 type crystal structure represented by the following general formula, the heat treatment conditions are 600
An object of the present invention is to provide a method for producing a hydrogen storage alloy, which is performed at 1000 ° C. for 10 minutes to 6 hours. Formula MmNi a Mn b Al c Co d Cu e V f ( wherein, Mm is the mischmetal, 3.95 ≦ a ≦ 4.
3, 0.3 ≦ b ≦ 0.6, 0.15 ≦ c ≦ 0.5, 0 ≦
d ≦ 0.8, 0 ≦ e ≦ 0.3, 0.005 ≦ f ≦ 0.0
3, 4.9 ≦ a + b + c + d + e + f ≦ 5.4, provided that
a to f are moles per mole of Mm)

【0014】[0014]

【発明の実施の形態】本発明の水素吸蔵合金は、一般式 MmNia Mnb Alc Cod Cue f (式中、Mmはミッシュメタル、3.95≦a≦4.
3、0.3≦b≦0.6、0.15≦c≦0.5、0≦
d≦0.8、0≦e≦0.3、0.005≦f≦0.0
3、4.9≦a+b+c+d+e+f≦5.4、但し、
a〜fはいずれもMm1モルに対するモル数)で表され
るCaCu5 型の結晶構造を有するAB5 型水素吸蔵合
金である。
Hydrogen storage alloy of the embodiment of the present invention have the general formula MmNi a Mn b Al c Co d Cu e V f ( wherein, Mm is the mischmetal, 3.95 ≦ a ≦ 4.
3, 0.3 ≦ b ≦ 0.6, 0.15 ≦ c ≦ 0.5, 0 ≦
d ≦ 0.8, 0 ≦ e ≦ 0.3, 0.005 ≦ f ≦ 0.0
3, 4.9 ≦ a + b + c + d + e + f ≦ 5.4, provided that
a to f are AB 5 type hydrogen storage alloys having a CaCu 5 type crystal structure represented by the following formula:

【0015】ここで、MmはLa、Ce、Pr、Nd、
Sm等の希土類系の混合物であるミッシュメタルであ
る。このミッシュメタル中に含まれるランタンの含有率
は、水素吸蔵合金中に14〜27重量%である。また、
この水素吸蔵合金は、CaCu 5 型の結晶構造を有する
AB5 型水素吸蔵合金で、AB4.95.4 のBサイトリ
ッチの非化学量論組成である。
Here, Mm is La, Ce, Pr, Nd,
Misch metal which is a mixture of rare earths such as Sm
You. Lanthanum content in this misch metal
Is 14 to 27% by weight in the hydrogen storage alloy. Also,
This hydrogen storage alloy is CaCu FiveHas a type crystal structure
ABFiveType hydrogen storage alloy, AB4.9~5.4B site
The non-stoichiometric composition of the switch.

【0016】この水素吸蔵合金において、Nia Mnb
Alc Cod Cue f の組成割合(Mm1モルに対す
るモル数)は、下記の関係を有するものである。すなわ
ち、Niの割合は3.9≦a≦4.3であり、Mnの割
合は0.3≦b≦0.6であり、Alの割合は0.15
≦c≦0.5であり、Coの割合は0≦d≦0.8であ
り、Cuの割合は0≦e≦0.3であり、Vは0.00
5≦f≦0.03であり、かつa+b+c+d+e+f
が4.9〜5.4の範囲にある。
In this hydrogen storage alloy, Ni a Mn b
Al c Co d Cu e V (number of moles Mm1 mol) composition ratio of f are those having the following relationship. That is, the ratio of Ni is 3.9 ≦ a ≦ 4.3, the ratio of Mn is 0.3 ≦ b ≦ 0.6, and the ratio of Al is 0.15.
≦ c ≦ 0.5, the proportion of Co is 0 ≦ d ≦ 0.8, the proportion of Cu is 0 ≦ e ≦ 0.3, and V is 0.00
5 ≦ f ≦ 0.03, and a + b + c + d + e + f
Is in the range of 4.9 to 5.4.

【0017】上記のように、Niの割合aは3.9〜
4.3、好ましくは4.0〜4.2であり、aが3.9
未満では水素吸蔵量が損なわれ、4.3を超えると微粉
化や寿命特性劣化が認められ、またプラトー圧が上昇す
る。
As described above, the proportion a of Ni is 3.9 to 3.9.
4.3, preferably 4.0 to 4.2, and a is 3.9
If it is less than 4.3, the hydrogen storage capacity is impaired, and if it exceeds 4.3, pulverization and deterioration of life characteristics are recognized, and the plateau pressure increases.

【0018】Mnの割合bは0.3〜0.6、好ましく
は0.35〜0.4であり、bが0.3未満ではプラト
ー圧力が高くなり、かつ水素吸蔵量が損なわれ、0.6
を超えると合金の腐食が激しくなり、合金の早期劣化が
認められる。
The ratio b of Mn is from 0.3 to 0.6, preferably from 0.35 to 0.4. If b is less than 0.3, the plateau pressure increases and the hydrogen storage capacity is impaired. .6
If it exceeds 300, corrosion of the alloy becomes severe and early deterioration of the alloy is recognized.

【0019】Alの割合cは0.15〜0.5であり、
cが0.15未満では水素吸蔵合金放出圧力であるプラ
トー圧力が高くなり、充放電のエネルギー効率が悪くな
り、0.5を超えると水素吸蔵量が少なくなる。
The proportion c of Al is 0.15 to 0.5,
If c is less than 0.15, the plateau pressure, which is the pressure at which the hydrogen storage alloy is released, increases, and the energy efficiency of charging and discharging deteriorates. If c exceeds 0.5, the hydrogen storage amount decreases.

【0020】Coの割合dは0〜0.8、好ましくは
0.4〜0.75であり、dが0.8を超えるとCoの
割合が多くなり、コストの低減が図れない。
The proportion d of Co is 0 to 0.8, preferably 0.4 to 0.75. If d exceeds 0.8, the proportion of Co increases and cost reduction cannot be achieved.

【0021】Cuの割合eは0〜0.3、好ましくは0
〜0.2であり、eが0.3を超えると水素吸蔵特性が
損なわれ、またCuが析出する場合が生じる。
The proportion e of Cu is 0 to 0.3, preferably 0.
When e exceeds 0.3, the hydrogen storage properties are impaired and Cu may precipitate.

【0022】Vの割合fは0.005〜0.03(重量
基準では0.05〜0.4重量%)であり、バナジウム
を加えることによって、プーラトー圧を低め、電池の放
電率(レート特性)特性、特に低温での放電率特性を向
上させることができる。fが0.005未満ではプーラ
トー圧が低下せず、0.03を超えるとアルミニウムの
溶出が増大し、また微粉化特性が損なわれ、さらにバナ
ジウムは高価であるため経済性に劣る。
The ratio f of V is 0.005 to 0.03 (0.05 to 0.4% by weight on the basis of weight). By adding vanadium, the Pura-To pressure is reduced and the discharge rate (rate characteristic) of the battery is reduced. ) Characteristics, particularly discharge rate characteristics at low temperatures, can be improved. If f is less than 0.005, the pulley pressure does not decrease, and if it exceeds 0.03, the elution of aluminum increases, the pulverization characteristics are impaired, and vanadium is expensive, so that the economic efficiency is poor.

【0023】a+b+c+d+e+f(以下、場合によ
ってxと総称する)は4.9〜5.4であり、xが4.
9未満では電池寿命や微粉化特性が損なわれ、5.4を
超えた場合には、水素吸蔵特性が損なわれる。
A + b + c + d + e + f (hereinafter sometimes collectively referred to as x) is 4.9 to 5.4, and x is 4.
If it is less than 9, the battery life and pulverization characteristics are impaired, and if it exceeds 5.4, the hydrogen storage characteristics are impaired.

【0024】次に、本発明の水素吸蔵合金の製造方法に
ついて説明する。先ず、上記で示したような合金組成と
なるように、水素吸蔵合金原料を秤量、混合し、例えば
誘導加熱による高周波加熱溶解炉を用いて、上記水素吸
蔵合金原料を溶解して金属溶湯となす。これを鋳型、例
えば水冷型の鋳型に流し込んで水素吸蔵合金を1350
〜1550℃で鋳造して水素吸蔵合金を製造する。
Next, a method for producing the hydrogen storage alloy of the present invention will be described. First, the hydrogen storage alloy material is weighed and mixed so as to have the alloy composition as described above, and the hydrogen storage alloy material is melted to form a molten metal by using, for example, a high-frequency heating melting furnace by induction heating. . This is poured into a mold, for example, a water-cooled mold, and the hydrogen-absorbing alloy is poured into 1350.
Cast at 151550 ° C. to produce a hydrogen storage alloy.

【0025】次に、得られた水素吸蔵合金を不活性ガス
雰囲気中、例えばアルゴンガス中で熱処理する。熱処理
条件は1000〜1100℃、1〜6時間である。この
ような熱処理を行うのは、鋳造された合金の組織には通
常Mn主体の微細な粒界偏析が認められるが、これを加
熱することによって均質化するためである。
Next, the obtained hydrogen storage alloy is heat-treated in an inert gas atmosphere, for example, an argon gas. The heat treatment conditions are 1000 to 1100 ° C. for 1 to 6 hours. Such heat treatment is performed because the structure of the cast alloy usually has fine grain boundary segregation mainly composed of Mn, but is homogenized by heating.

【0026】また、本発明の水素吸蔵合金の他の製造方
法としては、上記で示したような合金組成となるよう
に、水素吸蔵合金原料を秤量、混合して得られた金属溶
湯を、103 K/sec以上、好ましくは103 〜10
5 K/sec程度の急冷冷却速度で超急冷凝固させる超
急冷凝固法、具体的にはメルトスピン法、アトマイズ
法、リキッドダイナミックコンパクション法等によって
水素吸蔵合金を製造する。
Further, as another method for producing the hydrogen storage alloy of the present invention, a molten metal obtained by weighing and mixing the hydrogen storage alloy raw materials so as to have the alloy composition as described above is used. 3 K / sec or more, preferably 10 3 to 10
A hydrogen storage alloy is produced by an ultra-quenched solidification method of ultra-quench solidification at a rapid cooling rate of about 5 K / sec, specifically, a melt spin method, an atomizing method, a liquid dynamic compaction method, or the like.

【0027】次に、得られた水素吸蔵合金を上記と同様
に不活性ガス雰囲気中、例えばアルゴンガス中で熱処理
する。熱処理条件は600〜1000℃、10分〜6時
間である。
Next, the obtained hydrogen storage alloy is heat-treated in an inert gas atmosphere, for example, in an argon gas in the same manner as described above. The heat treatment is performed at 600 to 1000 ° C. for 10 minutes to 6 hours.

【0028】このようにして、良好な初期特性を有し、
また電池の放電率特性、特に低温での放電率特性に優れ
た水素吸蔵合金が得られる。
[0028] Thus, it has good initial characteristics,
In addition, a hydrogen storage alloy having excellent discharge rate characteristics of a battery, particularly, low-temperature discharge rate characteristics can be obtained.

【0029】この水素吸蔵合金は、粗粉砕、微粉砕後、
アルカリ蓄電池の負極として好適に用いられる。かかる
アルカリ蓄電池は、初期特性が良好で、合金の微粉化に
よる負極の劣化が抑制され、サイクル寿命が長いものと
なる。
This hydrogen storage alloy is subjected to coarse pulverization and fine pulverization.
It is suitably used as a negative electrode of an alkaline storage battery. Such an alkaline storage battery has good initial characteristics, suppresses deterioration of the negative electrode due to pulverization of the alloy, and has a long cycle life.

【0030】[0030]

【実施例】以下、本発明を実施例等に基づき具体的に説
明する。なお、表1中の%は重量基準である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be specifically described below based on embodiments and the like. The percentages in Table 1 are based on weight.

【0031】[実施例1]Mm、Ni、Mn、Al、C
o、Cu及びVを合金組成でMmNi4.04Mn0. 35Al
0.3 Co0.4 Cu0.1 0.01(x=5.20)になるよ
うに、各水素吸蔵合金原料を秤量、混合し、その混合物
をルツボに入れて高周波溶解炉に固定し、10-4〜10
-5Torrまで真空状態にした後、アルゴンガス雰囲気
中で加熱溶解した後、水冷式銅鋳型に流し込み、143
0℃で鋳造を行い、合金を得た。更に、この合金をアル
ゴンガス雰囲気中で、1060℃、3時間熱処理を行
い、水素吸蔵合金を得た。
Example 1 Mm, Ni, Mn, Al, C
o, Cu and V with alloy composition MmNi 4.04 Mn 0. 35 Al
0.3 Co 0.4 Cu to become 0.1 V 0.01 (x = 5.20) , the respective hydrogen absorbing alloy materials weighed and mixed, and fixed to a high-frequency melting furnace and put the mixture in a crucible, 10 -4 to 10
-5 Torr and then melted by heating in an argon gas atmosphere, then poured into a water-cooled copper mold,
Casting was performed at 0 ° C. to obtain an alloy. Further, this alloy was heat-treated at 1060 ° C. for 3 hours in an argon gas atmosphere to obtain a hydrogen storage alloy.

【0032】[比較例1]合金組成がMmNi3.95Mn
0.45Al0.3 Co0.4 Cu0.1 (x=5.20)となる
ように各水素吸蔵合金原料を用いた以外は、実施例1と
同様にして水素吸蔵合金を得た。
[Comparative Example 1] The alloy composition was MmNi 3.95 Mn.
A hydrogen storage alloy was obtained in the same manner as in Example 1, except that each hydrogen storage alloy raw material was used so as to obtain 0.45 Al 0.3 Co 0.4 Cu 0.1 (x = 5.20).

【0033】[実施例2〜14]合金組成が表1となる
ように各水素吸蔵合金原料を用いた以外は、実施例1と
同様にして水素吸蔵合金を得た。
Examples 2 to 14 Hydrogen storage alloys were obtained in the same manner as in Example 1 except that each hydrogen storage alloy raw material was used so that the alloy composition was as shown in Table 1.

【0034】[実施例15]Mm、Ni、Mn、Al、
Co、Cu及びVを合金組成でMmNi3.95Mn0. 45
0.3 Co0.4 Cu0.1 0.01(x=5.21)になる
ように、各水素吸蔵合金原料を秤量、混合し、その混合
物をルツボに入れて高周波溶解炉に固定し、10-3To
rrまで真空状態にした後、アルゴンガス雰囲気中で加
熱溶解した後、103 〜105 K/sec程度の冷却速
度でメルトスピン法により超急冷凝固させ合金を得た。
更に、この合金をアルゴンガス雰囲気中で800℃、1
時間熱処理を行い、水素吸蔵合金を得た。
Example 15 Mm, Ni, Mn, Al,
Co, Cu and V with alloy composition MmNi 3.95 Mn 0. 45 A
l 0.3 Co 0.4 Cu 0.1 V 0.01 (x = 5.21) Each hydrogen storage alloy raw material is weighed and mixed, and the mixture is put in a crucible and fixed in a high-frequency melting furnace, and 10 -3 To
After vacuuming to rr, the mixture was heated and melted in an argon gas atmosphere, and then ultra-rapidly solidified by a melt spin method at a cooling rate of about 10 3 to 10 5 K / sec to obtain an alloy.
Further, the alloy was heated at 800 ° C. for 1 hour in an argon gas atmosphere.
Heat treatment was performed for a time to obtain a hydrogen storage alloy.

【0035】[実施例16及び比較例2]合金組成が表
1となるように各水素吸蔵合金原料を用いた以外は、実
施例1と同様にして水素吸蔵合金を得た。
Example 16 and Comparative Example 2 A hydrogen storage alloy was obtained in the same manner as in Example 1 except that each hydrogen storage alloy raw material was used so that the alloy composition was as shown in Table 1.

【0036】[特性評価]実施例1〜16及び比較例1
〜2で得られた水素吸蔵合金について、下記に示す方法
によって微粉化残存率及びアルミニウム溶出量を測定し
た。その結果を表2に示す。
[Characteristic evaluation] Examples 1 to 16 and Comparative Example 1
With respect to the hydrogen storage alloys obtained in Nos. 1 to 2, the micronization residual ratio and the aluminum elution amount were measured by the following methods. Table 2 shows the results.

【0037】<微粉化残存率>PCT装置で、30ba
rの水素ガスを粒度22〜53ミクロンに調整した水素
吸蔵合金に導入し、その後脱蔵排気する処理を10回繰
り返した後、サイクル試験前の平均粒度に対するサイク
ル試験後の平均粒度の比で計算した。
<Residual rate of pulverization>
The process of introducing hydrogen gas of r into a hydrogen storage alloy adjusted to a particle size of 22 to 53 microns and then evacuating and evacuating 10 times is repeated, and then calculated by the ratio of the average particle size after the cycle test to the average particle size before the cycle test. did.

【0038】<アルミニウム溶出量>アルミニウム溶出
試験を行い、試験片を30重量%KOH水溶液(75
℃)中に48時間放置し、ICP分析を行った。
<Aluminum Dissolution Amount> An aluminum dissolution test was performed, and the test piece was treated with a 30% by weight aqueous KOH solution (75%).
C.) for 48 hours to perform ICP analysis.

【0039】[0039]

【表1】 [Table 1]

【0040】[0040]

【表2】 [Table 2]

【0041】表2に示されるように、実施例1〜16
は、比較例1〜2よりも微粉化残存率に優れており、比
較例1〜2とアルミニウム溶出量はほぼ同等又はそれ以
下であった。
As shown in Table 2, Examples 1 to 16
Was superior to Comparative Examples 1 and 2 in the degree of residual pulverization, and the aluminum elution amount was almost equal to or less than Comparative Examples 1 and 2.

【0042】[実験例1]実施例1〜15及び比較例1
で得られた水素吸蔵合金を粉砕して水素吸蔵合金粉末と
し、この水素吸蔵合金粉末を用いて公知の方法で負極を
作製し、さらにニッケル水素蓄電池を作製した。このよ
うにして得られた蓄電池のサイクル数と容量の関係を図
1〜5に示す。
Experimental Example 1 Examples 1 to 15 and Comparative Example 1
The hydrogen storage alloy obtained in the above was pulverized to obtain a hydrogen storage alloy powder, a negative electrode was prepared by a known method using the hydrogen storage alloy powder, and a nickel metal hydride battery was further prepared. The relationship between the number of cycles and the capacity of the storage battery thus obtained is shown in FIGS.

【0043】[実験例2]実施例16及び比較例2で得
られた水素吸蔵合金を粉砕して水素吸蔵合金粉末とし、
この水素吸蔵合金粉末を用いて公知の方法で負極を作製
し、さらにニッケル水素蓄電池を作製した。このように
して得られた蓄電池のサイクル数と容量の関係を図6に
示す。
EXPERIMENTAL EXAMPLE 2 The hydrogen storage alloy obtained in Example 16 and Comparative Example 2 was pulverized into a hydrogen storage alloy powder,
Using this hydrogen storage alloy powder, a negative electrode was produced by a known method, and a nickel-metal hydride storage battery was produced. FIG. 6 shows the relationship between the number of cycles and the capacity of the storage battery obtained in this manner.

【0044】図1〜5の結果から明らかなように、実施
例1〜15は、比較例1に比較して各サイクル数に対す
る容量が高い。また、図6の結果から明らかなように、
実施例16は、比較例2に比較して各サイクル数に対す
る容量が高い。
As is clear from the results shown in FIGS. 1 to 5, Examples 1 to 15 have a higher capacity for each cycle number than Comparative Example 1. Also, as is clear from the results of FIG.
Example 16 has a higher capacity for each cycle number than Comparative Example 2.

【0045】[実験例3]実施例1〜15及び比較例1
で得られた水素吸蔵合金を用い、実験例1と同様にして
負極を作製し、さらに蓄電池を作製した。このようにし
て得られた蓄電池の0℃、0.2C充電及び0℃、1C
放電における放電容量と放電電圧の関係を図7〜11に
示す。
Experimental Example 3 Examples 1 to 15 and Comparative Example 1
Using the hydrogen storage alloy obtained in the above, a negative electrode was produced in the same manner as in Experimental Example 1, and a storage battery was produced. The storage battery thus obtained was charged at 0 ° C. and 0.2 C and at 0 ° C. and 1 C
7 to 11 show the relationship between the discharge capacity and the discharge voltage in discharging.

【0046】[実験例4]実施例16及び比較例2で得
られた水素吸蔵合金を用い、実験例1と同様にして負極
を作製し、さらに蓄電池を作製した。このようにして得
られた蓄電池の0℃、0.2C充電及び0℃、1C放電
における放電容量と放電電圧の関係を図12に示す。
Experimental Example 4 Using the hydrogen storage alloys obtained in Example 16 and Comparative Example 2, a negative electrode was produced in the same manner as in Experimental Example 1, and a storage battery was produced. FIG. 12 shows the relationship between the discharge capacity and the discharge voltage at 0 ° C., 0.2 C charge and 0 ° C., 1 C discharge of the storage battery thus obtained.

【0047】図7〜11の結果から、実施例1〜15は
比較例1に比較して低温での放電特性に優れている。ま
た、図12の結果から明らかなように、実施例16は比
較例2に比較して低温での放電特性に優れている。
7 to 11, Examples 1 to 15 are superior to Comparative Example 1 in discharge characteristics at a low temperature. In addition, as is clear from the results of FIG. 12, Example 16 is superior to Comparative Example 2 in discharge characteristics at a low temperature.

【0048】[0048]

【発明の効果】以上説明したように、本発明の水素吸蔵
合金は、寿命特性(サイクル特性)を劣化させることな
く、初期特性が極めて良好で、かつ電池の放電率特性
(レート特性)、特に−40〜0℃の低温ハイレート特
性(1−10C)を向上させることができる。また、本
発明の製造方法によって、上記水素吸蔵合金が安定し
て、かつ効率よく得られる。
As described above, the hydrogen storage alloy of the present invention has excellent initial characteristics without deteriorating the life characteristics (cycle characteristics), and has excellent discharge rate characteristics (rate characteristics) of the battery. The low-temperature high-rate characteristics (1-10C) of -40 to 0 ° C can be improved. In addition, the production method of the present invention enables the hydrogen storage alloy to be obtained stably and efficiently.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1〜4及び比較例1で得られた蓄電池の
サイクル数と容量の関係を示すグラフ。
FIG. 1 is a graph showing the relationship between the number of cycles and the capacity of the storage batteries obtained in Examples 1 to 4 and Comparative Example 1.

【図2】実施例5〜8及び比較例1で得られた蓄電池の
サイクル数と容量の関係を示すグラフ。
FIG. 2 is a graph showing the relationship between the number of cycles and the capacity of the storage batteries obtained in Examples 5 to 8 and Comparative Example 1.

【図3】実施例9〜10及び比較例1で得られた蓄電池
のサイクル数と容量の関係を示すグラフ。
FIG. 3 is a graph showing the relationship between the number of cycles and the capacity of the storage batteries obtained in Examples 9 to 10 and Comparative Example 1.

【図4】実施例11〜13及び比較例1で得られた蓄電
池のサイクル数と容量の関係を示すグラフ。
FIG. 4 is a graph showing the relationship between the number of cycles and the capacity of the storage batteries obtained in Examples 11 to 13 and Comparative Example 1.

【図5】実施例14〜15及び比較例1で得られた蓄電
池のサイクル数と容量の関係を示すグラフ。
FIG. 5 is a graph showing the relationship between the number of cycles and the capacity of the storage batteries obtained in Examples 14 to 15 and Comparative Example 1.

【図6】実施例16及び比較例2で得られた蓄電池のサ
イクル数と容量の関係を示すグラフ。
FIG. 6 is a graph showing the relationship between the number of cycles and the capacity of the storage batteries obtained in Example 16 and Comparative Example 2.

【図7】実施例1〜4及び比較例1で得られた蓄電池の
放電容量と放電電圧の関係を示すグラフ。
FIG. 7 is a graph showing the relationship between the discharge capacity and the discharge voltage of the storage batteries obtained in Examples 1 to 4 and Comparative Example 1.

【図8】実施例5〜8及び比較例1で得られた蓄電池の
放電容量と放電電圧の関係を示すグラフ。
FIG. 8 is a graph showing the relationship between the discharge capacity and the discharge voltage of the storage batteries obtained in Examples 5 to 8 and Comparative Example 1.

【図9】実施例9〜10及び比較例1で得られた蓄電池
の放電容量と放電電圧の関係を示すグラフ。
FIG. 9 is a graph showing the relationship between the discharge capacity and the discharge voltage of the storage batteries obtained in Examples 9 to 10 and Comparative Example 1.

【図10】実施例11〜13及び比較例1で得られた蓄
電池の放電容量と放電電圧の関係を示すグラフ。
FIG. 10 is a graph showing the relationship between the discharge capacity and the discharge voltage of the storage batteries obtained in Examples 11 to 13 and Comparative Example 1.

【図11】実施例14〜15及び比較例1で得られた蓄
電池の放電容量と放電電圧の関係を示すグラフ。
FIG. 11 is a graph showing the relationship between the discharge capacity and the discharge voltage of the storage batteries obtained in Examples 14 to 15 and Comparative Example 1.

【図12】実施例16及び比較例2で得られた蓄電池の
放電容量と放電電圧の関係を示すグラフ。
FIG. 12 is a graph showing the relationship between the discharge capacity and the discharge voltage of the storage batteries obtained in Example 16 and Comparative Example 2.

フロントページの続き (51)Int.Cl.6 識別記号 FI // C22F 1/00 641 C22F 1/00 641A 661 661C 691 691B 691C Continued on the front page (51) Int.Cl. 6 Identification symbol FI // C22F 1/00 641 C22F 1/00 641A 661 661C 691 691B 691C

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 一般式 MmNia Mnb Alc Cod Cue f (式中、Mmはミッシュメタル、3.95≦a≦4.
3、0.3≦b≦0.6、0.15≦c≦0.5、0≦
d≦0.8、0≦e≦0.3、0.005≦f≦0.0
3、4.9≦a+b+c+d+e+f≦5.4、但し、
a〜fはいずれもMm1モルに対するモル数)で表され
るCaCu5 型の結晶構造を有することを特徴とするA
5 型水素吸蔵合金。
1. A general formula MmNi a Mn b Al c Co d Cu e V f ( wherein, Mm is the mischmetal, 3.95 ≦ a ≦ 4.
3, 0.3 ≦ b ≦ 0.6, 0.15 ≦ c ≦ 0.5, 0 ≦
d ≦ 0.8, 0 ≦ e ≦ 0.3, 0.005 ≦ f ≦ 0.0
3, 4.9 ≦ a + b + c + d + e + f ≦ 5.4, provided that
a to f each have a CaCu 5 type crystal structure represented by the following formula:
B 5 type hydrogen storage alloy.
【請求項2】 水素吸蔵合金原料を加熱溶解し、これを
鋳造した後、不活性ガス雰囲気中で熱処理し、下記一般
式で表されるCaCu5 型の結晶構造を有するAB5
水素吸蔵合金を製造する方法であって、該熱処理条件が
1000〜1100℃、1〜6時間であることを特徴と
する水素吸蔵合金の製造方法。 一般式 MmNia Mnb Alc Cod Cue f (式中、Mmはミッシュメタル、3.95≦a≦4.
3、0.3≦b≦0.6、0.15≦c≦0.5、0≦
d≦0.8、0≦e≦0.3、0.005≦f≦0.0
3、4.9≦a+b+c+d+e+f≦5.4、但し、
a〜fはいずれもMm1モルに対するモル数)
2. An AB 5 type hydrogen storage alloy having a CaCu 5 type crystal structure represented by the following general formula, wherein a hydrogen storage alloy material is heated and melted, cast, and heat-treated in an inert gas atmosphere. , Wherein the heat treatment conditions are 1000 to 1100 ° C for 1 to 6 hours. Formula MmNi a Mn b Al c Co d Cu e V f ( wherein, Mm is the mischmetal, 3.95 ≦ a ≦ 4.
3, 0.3 ≦ b ≦ 0.6, 0.15 ≦ c ≦ 0.5, 0 ≦
d ≦ 0.8, 0 ≦ e ≦ 0.3, 0.005 ≦ f ≦ 0.0
3, 4.9 ≦ a + b + c + d + e + f ≦ 5.4, provided that
a to f are moles per mole of Mm)
【請求項3】 水素吸蔵合金原料を加熱溶解し、これを
10K3 /sec以上の超急冷速度で超急冷凝固した
後、不活性ガス雰囲気中で熱処理し、下記一般式で表さ
れるCaCu5 型の結晶構造を有するAB5 型水素吸蔵
合金を製造する方法であって、該熱処理条件が600〜
1000℃、10分〜6時間であることを特徴とする水
素吸蔵合金の製造方法。 一般式 MmNia Mnb Alc Cod Cue f (式中、Mmはミッシュメタル、3.95≦a≦4.
3、0.3≦b≦0.6、0.15≦c≦0.5、0≦
d≦0.8、0≦e≦0.3、0.005≦f≦0.0
3、4.9≦a+b+c+d+e+f≦5.4、但し、
a〜fはいずれもMm1モルに対するモル数)
3. A hydrogen storage alloy material is heated and melted, solidified by rapid quenching at a rapid quenching speed of 10 K 3 / sec or more, and then heat-treated in an inert gas atmosphere to obtain CaCu 5 represented by the following general formula. a method of manufacturing a AB 5 type hydrogen storage alloy having a crystal structure of the mold, the heat treatment conditions are 600
A method for producing a hydrogen storage alloy, which is performed at 1000 ° C. for 10 minutes to 6 hours. Formula MmNi a Mn b Al c Co d Cu e V f ( wherein, Mm is the mischmetal, 3.95 ≦ a ≦ 4.
3, 0.3 ≦ b ≦ 0.6, 0.15 ≦ c ≦ 0.5, 0 ≦
d ≦ 0.8, 0 ≦ e ≦ 0.3, 0.005 ≦ f ≦ 0.0
3, 4.9 ≦ a + b + c + d + e + f ≦ 5.4, provided that
a to f are moles per mole of Mm)
【請求項4】 上記超急冷凝固がメルトスピン法又はア
トマイズ法によってなされる請求項3に記載の水素吸蔵
合金の製造方法。
4. The method for producing a hydrogen storage alloy according to claim 3, wherein the ultra-quick solidification is performed by a melt spin method or an atomizing method.
JP10133888A 1998-05-15 1998-05-15 Hydrogen storage alloy and its production Pending JPH11323467A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10133888A JPH11323467A (en) 1998-05-15 1998-05-15 Hydrogen storage alloy and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10133888A JPH11323467A (en) 1998-05-15 1998-05-15 Hydrogen storage alloy and its production

Publications (1)

Publication Number Publication Date
JPH11323467A true JPH11323467A (en) 1999-11-26

Family

ID=15115453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10133888A Pending JPH11323467A (en) 1998-05-15 1998-05-15 Hydrogen storage alloy and its production

Country Status (1)

Country Link
JP (1) JPH11323467A (en)

Similar Documents

Publication Publication Date Title
US11094932B2 (en) Hydrogen storage alloy
JP3828922B2 (en) Low Co hydrogen storage alloy
US6773667B2 (en) Hydrogen-occluding alloy and process for producing the same
JP2001040442A (en) Hydrogen storage alloy
JP3493516B2 (en) Hydrogen storage alloy and method for producing the same
JP5001809B2 (en) Hydrogen storage alloy
US6083327A (en) Hydrogen occluding alloy
JP3944237B2 (en) Low Co hydrogen storage alloy
JP3114677B2 (en) Hydrogen storage alloy and method for producing the same
JP2000144278A (en) Hydrogen occlusion alloy and its production
JP3930638B2 (en) Hydrogen storage alloy and method for producing the same
JP2001294958A (en) Hydrogen storage alloy for nickel-hydrogen secondary battery and its producing method
JPH11323468A (en) Hydrogen storage alloy and its production
JPH11323467A (en) Hydrogen storage alloy and its production
JP4441936B2 (en) Hydrogen storage electrode
JP4091704B2 (en) Hydrogen storage alloy and method for producing the same
JP2004218017A (en) Hydrogen storage alloy
JPH11269501A (en) Manufacture of hydrogen occlusion alloy powder, and hydrogen occlusion alloy electrode
JP2000038630A (en) Hydrogen storage alloy and its production
WO2001069700A1 (en) Hydrogen absorbing alloy and negative electrode for nickel-metal hydride secondary cell
JP2001181763A (en) Hydrogen storage alloy
JP4573421B2 (en) Hydrogen storage alloy
JP2000144277A (en) Hydrogen occlusion alloy and its production
JP2000160265A (en) Hydrogen storage alloy and its manufacture
JP2000192177A (en) Hydrogen storage alloy and nickel-hydrogen secondary battery