JPH11319551A - Adsorbent of hydrocarbon and method for desorption of the hydrocarbon - Google Patents

Adsorbent of hydrocarbon and method for desorption of the hydrocarbon

Info

Publication number
JPH11319551A
JPH11319551A JP10135117A JP13511798A JPH11319551A JP H11319551 A JPH11319551 A JP H11319551A JP 10135117 A JP10135117 A JP 10135117A JP 13511798 A JP13511798 A JP 13511798A JP H11319551 A JPH11319551 A JP H11319551A
Authority
JP
Japan
Prior art keywords
adsorbent
hydrocarbon
hydrocarbons
zeolite
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10135117A
Other languages
Japanese (ja)
Inventor
Hiroshi Ogawa
宏 小川
Yukio Ito
雪夫 伊藤
Masao Nakano
雅雄 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP10135117A priority Critical patent/JPH11319551A/en
Publication of JPH11319551A publication Critical patent/JPH11319551A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an adsorbent which has high adsorptivity of hydrocarbon and has adsorption performance for adsorbing and holding hydrocarbon at such the temperature that an exhaust gas purification catalyst is actuated even when the adsorbent is used for purification of exhaust gas and also has sufficient heat resistance in its adsorption performance and further to provide a method for desorption of hydrocarbon contained in gas by using the adsorbent. SOLUTION: The adsorbent of hydrocarbon is obtained by containing P into zeolite of MFI structure in which SiO2 /Al2 O3 molar ratio is 20-50, and crystal diameter is 1-5 μm and heat-treating zeolite containing P at temperature of at least 800 deg.C. Further, hydrocarbon contained in gas is desorbed by bringing the adsorbent into contact with gas.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ガス中、特に排ガ
ス中に含まれる炭化水素を吸着除去する吸着剤及び炭化
水素の吸着除去方法に関するものであり、例えば自動車
等の内燃機関から排出される排ガス中の炭化水素の吸着
除去に適用することができる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an adsorbent for adsorbing and removing hydrocarbons contained in a gas, particularly an exhaust gas, and to a method for adsorbing and removing hydrocarbons. It can be applied to adsorption and removal of hydrocarbons in exhaust gas.

【0002】[0002]

【従来の技術】自動車などの内燃機関から排出される炭
化水素を含有する排ガスの浄化において、三元触媒を用
いて、排ガスと接触させる方法が実用化されている。上
記三元触媒の排ガス浄化能は300℃以上で発現するこ
とが知られており、エンジン始動時の排ガス温度が低い
場合、炭化水素は触媒浄化されずに、そのまま排出され
る。
2. Description of the Related Art In purifying exhaust gas containing hydrocarbons discharged from an internal combustion engine of an automobile or the like, a method of contacting the exhaust gas with a three-way catalyst has been put to practical use. It is known that the exhaust gas purifying ability of the three-way catalyst is developed at 300 ° C. or higher. When the exhaust gas temperature at the time of starting the engine is low, hydrocarbons are directly discharged without purifying the catalyst.

【0003】近年、環境問題が大きくクローズアップさ
れており、自動車等の内燃機関から排出される炭化水
素、一酸化炭素、窒素酸化物等の汚染物質の排出規制が
強化されつつある。このため、低温時の炭化水素の排出
抑制が望まれている。この課題に対して、ゼオライトか
ら構成される吸着剤、及びゼオライトで構成される吸着
剤を用いて排ガス中の炭化水素を吸着除去する方法が提
案されている。例えば、特開平6−170234号公報
ではCuとPdの少なくとも1種以上の金属でイオン交
換したZSM−5ゼオライトである吸着剤が提案されて
いる。この他にも、特開平9―253483号公報では
SiOH基(シラノール基)量が3×1020個/g以下
であるMFI型のゼオライト、特開平9−253484
号公報では六角柱状の結晶形態を有するMFI型ゼオラ
イトが提案されている。
[0003] In recent years, environmental issues have been greatly highlighted, and regulations on the emission of pollutants such as hydrocarbons, carbon monoxide, and nitrogen oxides emitted from internal combustion engines such as automobiles have been tightened. For this reason, suppression of hydrocarbon emission at low temperatures is desired. To solve this problem, an adsorbent composed of zeolite and a method of adsorbing and removing hydrocarbons in exhaust gas using an adsorbent composed of zeolite have been proposed. For example, JP-A-6-170234 proposes an adsorbent which is a ZSM-5 zeolite ion-exchanged with at least one metal of Cu and Pd. In addition, JP-A-9-253483 discloses an MFI-type zeolite in which the content of SiOH groups (silanol groups) is 3 × 10 20 / g or less.
In Japanese Patent Application Laid-Open Publication No. H11-264, an MFI-type zeolite having a hexagonal columnar crystal form is proposed.

【0004】また、特開平6−63394号公報では、
リンを含有するMFI構造の結晶性アルミノシリケート
を使用して調製された炭化水素類浄化用吸着剤が提案さ
れ、更には特開平9−173827号公報では、モレキ
ュラーシーブである炭化水素吸着体を、リン酸塩含有化
合物、スーパーアシッド等の酸部位を変性する物質に接
触させることを特徴とした吸着剤の製造方法において、
ZSM−5にリン酸を含有させた酸部位変性吸着剤が開
示されている。炭化水素の吸着能及び耐久性を高めるた
めに、特開平6−63394号公報においては、SiO
2/Al23モル比が30〜200のMFI構造のゼオ
ライト、特開平9−173827号公報においては、S
iO2/Al23モル比が50〜250のZSM−5で
吸着剤を構成している。
In Japanese Patent Application Laid-Open No. 6-63394,
An adsorbent for purifying hydrocarbons prepared using a crystalline aluminosilicate having an MFI structure containing phosphorus has been proposed. Further, Japanese Patent Application Laid-Open No. 9-173827 discloses a hydrocarbon adsorbent which is a molecular sieve, A method for producing an adsorbent, which comprises contacting a substance that modifies an acid site such as a phosphate-containing compound and a super acid,
An acid site-modified adsorbent in which phosphoric acid is contained in ZSM-5 is disclosed. In order to improve the adsorption capacity and durability of hydrocarbons, JP-A-6-63394 discloses SiO
A zeolite having an MFI structure having a 2 / Al 2 O 3 molar ratio of 30 to 200 is disclosed in JP-A-9-173827.
iO 2 / Al 2 O 3 molar ratio constitute the adsorbent ZSM-5 of 50 to 250.

【0005】これらの吸着剤を用いた炭化水素の吸着除
去方法は、いずれもが排ガス中に炭化水素を、エンジン
始動時の低温域で吸着剤に一旦吸着せしめておき、且つ
排ガス浄化温度が作動する温度まで吸着保持し、それ以
上の温度域で吸着剤から脱離した炭化水素を排ガス浄化
触媒で触媒浄化するものである。即ち、吸着剤による炭
化水素の吸着除去は、低温時の吸着特性と吸着保持力を
兼ね備えて、有効に機能する。
[0005] In any of these methods of adsorbing and removing hydrocarbons using an adsorbent, hydrocarbons are once adsorbed to the adsorbent in a low temperature range when the engine is started, and the exhaust gas purification temperature is activated. At a temperature above which the hydrocarbons desorbed from the adsorbent are purified by an exhaust gas purifying catalyst. That is, the adsorption and removal of hydrocarbons by the adsorbent functions effectively, having both adsorption characteristics at low temperatures and adsorption holding power.

【0006】[0006]

【発明が解決しようとする課題】炭化水素の除去技術の
向上が望まれる中で、従来提案されている吸着剤の吸着
特性は十分なものではなく、実用化には至っていない。
また、内燃機関の排ガス温度が高くは600℃以上にも
達するため、吸着剤が高い温度に晒された後でも、炭化
水素の吸着性能が低下しない、即ち耐熱性の高い吸着剤
である必要がある。
With the demand for improvement of the technology for removing hydrocarbons, the adsorption characteristics of the adsorbents proposed hitherto are not sufficient and have not been put to practical use.
Further, since the exhaust gas temperature of the internal combustion engine is as high as 600 ° C. or more, even if the adsorbent is exposed to a high temperature, the adsorption performance of hydrocarbons does not decrease, that is, the adsorbent needs to have high heat resistance. is there.

【0007】本発明の目的は、炭化水素吸着能が高く、
且つ排ガス浄化に用いた場合でも、排ガス浄化触媒が作
動する温度まで炭化水素を吸着保持する吸着性能を有
し、且つその吸着性能において十分な耐熱性を有する吸
着剤及びその吸着剤を用いてガス中に含有される炭化水
素を吸着除去する方法を提供するところにある。
An object of the present invention is to have a high hydrocarbon adsorbing ability,
And even when used for exhaust gas purification, it has an adsorption performance of adsorbing and holding hydrocarbons up to a temperature at which the exhaust gas purification catalyst operates, and an adsorbent having sufficient heat resistance in the adsorption performance and a gas using the adsorbent. It is an object of the present invention to provide a method for adsorbing and removing hydrocarbons contained therein.

【0008】[0008]

【課題を解決するための手段】本発明者らはこれらの状
況に鑑み、特に排ガス中の炭化水素の吸着特性を鋭意検
討した結果、これまでに提案された吸着剤に比べて、S
iO2/Al23モル比が20以上50未満であり、且
つ結晶径が1μm以上5μm以下であるMFI構造のゼ
オライトにPを含有させ、800℃以上の温度で熱処理
を施した吸着剤は、炭化水素の吸着特性が高く、且つ吸
着した炭化水素の保持力が強く、更には高温に晒された
後でも吸着特性の低下がなく、耐熱性に優れていること
を見出し本発明を完成するに至った。
Means for Solving the Problems In view of these circumstances, the present inventors have made intensive studies especially on the adsorption characteristics of hydrocarbons in exhaust gas.
An adsorbent obtained by adding P to an MFI-structured zeolite having an iO 2 / Al 2 O 3 molar ratio of 20 to less than 50 and a crystal diameter of 1 μm to 5 μm and performing a heat treatment at a temperature of 800 ° C. or more is: The present invention was found to have a high hydrocarbon adsorption property, a strong holding force for the adsorbed hydrocarbon, and no deterioration in the adsorption property even after being exposed to a high temperature, and excellent heat resistance, and completed the present invention. Reached.

【0009】即ち本発明は、SiO2/Al23モル比
が20以上50未満であり、且つ結晶径が1μm以上5
μm以下であるMFI構造のゼオライトにPを含有さ
せ、該P含有ゼオライトを800℃以上の温度で熱処理
させたことを特徴とする炭化水素の吸着剤である。また
本発明は、この吸着剤をガスと接触させることを特徴と
する、ガス中の炭化水素の吸着除去方法である。以下、
本発明を詳細に説明する。
That is, according to the present invention, the SiO 2 / Al 2 O 3 molar ratio is from 20 to less than 50, and the crystal diameter is from 1 μm to 5 μm.
An adsorbent for hydrocarbons, wherein P is contained in zeolite having an MFI structure of not more than μm and the P-containing zeolite is heat-treated at a temperature of 800 ° C. or more. The present invention is also a method for adsorbing and removing hydrocarbons in a gas, which comprises contacting the adsorbent with a gas. Less than,
The present invention will be described in detail.

【0010】本発明の吸着剤は、MFI構造のゼオライ
トで構成されることが必須である。一般にMFI構造の
ゼオライトとは、 xMn/2O・Al23・ySiO2・zH2O (但し、nは陽イオンMの原子価、xは0〜1.5の範
囲の数、yは20以上の数、zは0以上の数)の組成を
有している。その構造に関しては、例えば特公平2−4
4771号公報等に記載されており、表1の様なX線回
折パターンを有する構造として定義されている。
[0010] It is essential that the adsorbent of the present invention is composed of a zeolite having an MFI structure. And generally of MFI zeolite, xM n / 2 O · Al 2 O 3 · ySiO 2 · zH 2 O ( where, n is the valence of the cation M, x is a number in the range of 0 to 1.5, y Is a number of 20 or more, and z is a number of 0 or more). Regarding the structure, for example,
No. 4771, etc., and are defined as a structure having an X-ray diffraction pattern as shown in Table 1.

【0011】[0011]

【表1】 [Table 1]

【0012】本発明に係るゼオライトは既知の方法で製
造することができる。具体的には米国特許第37028
86号等の方法が例示される。そのゼオライトのSiO
2/Al23モル比は、20以上50未満である。Si
2/Al23モル比が20未満ではゼオライト自身の
耐熱性が低くなり、吸着剤が高温に晒される場合には、
吸着特性が低下する。SiO2/Al23モル比が50
以上の場合は、Pを含有させた効果が十分に発現しなく
なる可能性がある。
The zeolites according to the invention can be produced by known methods. Specifically, US Pat.
No. 86 and the like. The zeolite SiO
The 2 / Al 2 O 3 molar ratio is 20 or more and less than 50. Si
When the O 2 / Al 2 O 3 molar ratio is less than 20, the heat resistance of the zeolite itself is low, and when the adsorbent is exposed to high temperatures,
Adsorption characteristics decrease. SiO 2 / Al 2 O 3 molar ratio of 50
In the above case, the effect of containing P may not be sufficiently exhibited.

【0013】また、本発明に係るゼオライトの結晶径は
1μm以上5μm以下であることが必須である。特開平
9−173827号公報に記載されているようなP含有
による炭化水素の吸着量の増加は、結晶径が1μm未満
及び又は5μmより大きい場合でも認められるが、高温
に晒された後の吸着特性(耐久性)をより高めるために
は、ゼオライトの結晶径が1μm以上5μm以下の範囲
であることが必要である。一般に、結晶径はコールター
カウンター、マイクロトラック測定及び電子線顕微鏡観
察(SEM,TEM)等で求めることができる。本発明
で限定した粒子径はSEMで観察された平均一次粒子径
であり、一次粒子径とはゼオライト結晶の最小単位の結
晶径を意味する。
Further, it is essential that the zeolite according to the present invention has a crystal diameter of 1 μm or more and 5 μm or less. The increase in the amount of adsorption of hydrocarbons due to the inclusion of P as described in JP-A-9-173827 is observed even when the crystal diameter is smaller than 1 μm and / or larger than 5 μm. In order to further improve the characteristics (durability), it is necessary that the crystal diameter of zeolite be in the range of 1 μm to 5 μm. In general, the crystal diameter can be determined by a Coulter counter, microtrack measurement, observation with an electron beam microscope (SEM, TEM), or the like. The particle size defined in the present invention is an average primary particle size observed by SEM, and the primary particle size means a minimum unit crystal size of zeolite crystals.

【0014】本発明に係るゼオライトはアルカリ金属、
アルカリ土類金属、希土類金属等を含んでいても良い。
また、アンモニウム塩等で処理したNH4型、または鉱
酸等での酸処理もしくはNH4型の焼成処理でH型とし
たものを使用することもできる。好ましくはNH4型、
H型を用いることが望ましい。
The zeolite according to the present invention is an alkali metal,
It may contain an alkaline earth metal, a rare earth metal or the like.
It is also possible to use an NH 4 type treated with an ammonium salt or the like, or an H type obtained by an acid treatment with a mineral acid or the like or an NH 4 type baking treatment. Preferably NH 4 type,
It is desirable to use the H type.

【0015】本発明の炭化水素の吸着剤は、上記MFI
構造のゼオライトにPを含有させて製造される。Pの含
有に用いられる原料に特に制限はなく、オルトリン酸、
メタリン酸、ピロリン酸及びリン酸水素二アンモニウ
ム、有機リン酸アンモニウム等のリン酸塩化合物や亜リ
ン酸トリメチル等の亜リン酸化合物で良く、これらのリ
ン化合物を組み合わせて用いても良い。含有方法も特に
限定されるものでない。例えば水等の適当な溶媒にリン
化合物を溶解させた溶液を用いて含浸担持法、蒸発乾固
法により、ゼオライト上にPを含有させることができ
る。また、リン化合物を含むガスをゼオライトと接触さ
せる気相処理法により、ゼオライト上にPを含有させる
こともできる。
The hydrocarbon adsorbent of the present invention comprises the above-mentioned MFI
It is produced by incorporating P into a zeolite having a structure. There is no particular limitation on the raw materials used for the inclusion of P, and orthophosphoric acid,
Phosphate compounds such as metaphosphoric acid, pyrophosphoric acid, diammonium hydrogen phosphate, and organic ammonium phosphate, and phosphorous compounds such as trimethyl phosphite may be used, and these phosphorus compounds may be used in combination. The content method is not particularly limited. For example, P can be contained on zeolite by an impregnation-supporting method or an evaporation to dryness method using a solution in which a phosphorus compound is dissolved in a suitable solvent such as water. Further, P can be contained on zeolite by a gas phase treatment method in which a gas containing a phosphorus compound is brought into contact with zeolite.

【0016】これらの方法により製造した吸着剤に含ま
れるPの含有量は、特に限定されないが、炭化水素の吸
着性能を十分に発揮させるためには、ゼオライトに対し
て0.1〜20重量%の範囲で良い。更に好ましくは
0.1〜15重量%である。
The content of P contained in the adsorbent produced by these methods is not particularly limited, but in order to sufficiently exhibit the adsorption performance of hydrocarbons, the content of P is 0.1 to 20% by weight based on zeolite. Good in the range. More preferably, it is 0.1 to 15% by weight.

【0017】本発明の吸着剤は、上記方法によりPを含
有させたゼオライトを例えば焼成などの熱処理して製造
され、その熱処理温度は800℃以上である。炭化水素
の吸着性能をより高めるために、熱処理温度は好ましく
は850〜1200℃である。熱処理時間は特に限定さ
れず、0.5〜10時間の範囲でよく、好ましくは0.
5〜5時間である。熱処理時の雰囲気も特に限定され
ず、空気、窒素、ヘリウム等の不活性ガス及びそれらの
ガスが混合された雰囲気で処理することができる。ま
た、それらの雰囲気ガス中に水、炭化水素、窒素酸化
物、硫黄酸化物が含有されていても良い。より好ましく
は、水分を含んだ雰囲気が望ましい。熱処理は、本発明
のように比較的高温で行うほど炭化水素の吸着性能が向
上するため、優れた吸着剤となる。
The adsorbent of the present invention is produced by subjecting a zeolite containing P to a heat treatment such as calcination by the above method, and the heat treatment temperature is 800 ° C. or higher. The heat treatment temperature is preferably 850 to 1200 ° C. in order to further enhance the hydrocarbon adsorption performance. The heat treatment time is not particularly limited, and may be in the range of 0.5 to 10 hours, preferably 0.1 to 10 hours.
5 to 5 hours. The atmosphere at the time of the heat treatment is not particularly limited, and the treatment can be performed in an atmosphere in which an inert gas such as air, nitrogen, helium, or the like and a mixture of these gases is used. Further, water, hydrocarbons, nitrogen oxides, and sulfur oxides may be contained in the atmosphere gas. More preferably, an atmosphere containing moisture is desirable. As the heat treatment is performed at a relatively high temperature as in the present invention, the adsorption performance of hydrocarbons is improved, and thus the heat treatment becomes an excellent adsorbent.

【0018】以上のようにして、本発明の炭化水素の吸
着剤を製造することができる。
As described above, the hydrocarbon adsorbent of the present invention can be produced.

【0019】本発明の吸着剤は、シリカ、アルミナ及び
粘土鉱物等のバインダーと混合し成形して使用すること
もできる。粘土鉱物としては、カオリン、アタパルガイ
ト、モンモリロナイト、ベントナイト、アロフェン、セ
ピオライト等を挙げることができる。また、コージェラ
イト製あるいは金属製のハニカム状基材に本発明の吸着
剤をウォッシュコートして使用することもできる。
The adsorbent of the present invention can be used by mixing with a binder such as silica, alumina and clay mineral and molding. Examples of the clay mineral include kaolin, attapulgite, montmorillonite, bentonite, allophane, sepiolite and the like. Further, the adsorbent of the present invention can be wash-coated on a cordierite or metal honeycomb substrate and used.

【0020】上記方法で製造された吸着剤と炭化水素を
含むガスを接触させることにより、炭化水素の吸着除去
を行うことができる。このガスには特に限定はなく、炭
化水素を含んでいる気相に対して適用でき、例えば内燃
機関からの排ガスがあげられる。炭化水素以外にガス中
に一酸化炭素、二酸化炭素、水素、酸素、窒素、窒素酸
化物、硫黄酸化物、水が含まれている場合にも有効であ
る。
By bringing the adsorbent produced by the above method into contact with a gas containing hydrocarbons, the adsorption and removal of hydrocarbons can be performed. This gas is not particularly limited, and is applicable to a gas phase containing a hydrocarbon, such as an exhaust gas from an internal combustion engine. It is also effective when the gas contains carbon monoxide, carbon dioxide, hydrogen, oxygen, nitrogen, nitrogen oxides, sulfur oxides, and water in addition to hydrocarbons.

【0021】吸着剤に吸着される炭化水素の種類は、特
に限定されず、エチレン、プロピレン、デセン、1−ヘ
キサデセン等の不飽和炭化水素やメタン、エタン、プロ
パンn−デカンなどの不飽和炭化水素及びベンゼン、ト
ルエン等の芳香族炭化水素、2−メチルプロパン、イソ
プロピルベンゼン等の分岐状炭化水素が挙げられ、また
上記炭化水素の誘導体であるケトン、アルデヒド等の含
酸素化合物、アミンなどの含窒素化合物も吸着される。
即ち、本発明の吸着剤が対象としているガスは、これら
の炭化水素を少なくとも1種以上含んだものである。吸
着される炭化水素として好ましくは、炭素数で2〜5の
炭化水素である。
The type of hydrocarbon adsorbed on the adsorbent is not particularly limited, and may be an unsaturated hydrocarbon such as ethylene, propylene, decene or 1-hexadecene, or an unsaturated hydrocarbon such as methane, ethane or propane n-decane. And aromatic hydrocarbons such as benzene and toluene; branched hydrocarbons such as 2-methylpropane and isopropylbenzene; and oxygen-containing compounds such as ketones and aldehydes which are derivatives of the above hydrocarbons; and nitrogen-containing compounds such as amines. Compounds are also adsorbed.
That is, the gas targeted by the adsorbent of the present invention contains at least one or more of these hydrocarbons. The adsorbed hydrocarbon is preferably a hydrocarbon having 2 to 5 carbon atoms.

【0022】ガス中の炭化水素の濃度は特に限定されな
いが、メタン換算で0.001〜5体積%が好ましく、
より好ましくは0.005〜3体積%である。炭化水素
以外の各成分についても特に限定されないが、例えばC
Oが0〜1体積%、CO2が0〜10体積%、O2が0〜
20体積%、窒素酸化物が0〜1体積%、硫黄酸化物が
0〜0.05体積%、水が0〜15体積%の範囲でよ
い。
The concentration of the hydrocarbon in the gas is not particularly limited, but is preferably 0.001 to 5% by volume in terms of methane.
More preferably, the content is 0.005 to 3% by volume. The components other than hydrocarbons are not particularly limited.
O 0 to 1 vol%, CO 2 0-10 vol%, O 2 is 0
The range may be 20% by volume, 0 to 1% by volume of nitrogen oxide, 0 to 0.05% by volume of sulfur oxide, and 0 to 15% by volume of water.

【0023】炭化水素を吸着除去する際の空間速度、温
度は特に限定されないが、空間速度:100〜5000
00hr-1、温度:−30〜250℃であることが好ま
しい。
The space velocity and temperature at the time of adsorbing and removing the hydrocarbon are not particularly limited, but the space velocity is 100 to 5000.
It is preferable that the temperature is 00 hr -1 and the temperature is -30 to 250 ° C.

【0024】[0024]

【実施例】以下、本発明を実施例により更に詳細に説明
するが、これらの実施例に何ら限定されるものではな
い。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to Examples, but it should not be construed that the invention is limited thereto.

【0025】<実施例1>吸着剤1の調製 SiO2/Al23モル比=40、粒子径が4μmであ
るMFI構造のゼオライト:40gをNH4Cl:18
gを純水400gに溶解した塩化アンモニウム水溶液中
に添加し、60℃で20時間のイオン交換操作を行っ
た。このイオン交換操作を2回繰り返した後、固液分離
し、Clイオンが検出できなくなるまで純水で洗浄し、
110℃で20時間乾燥して、アンモニウム型MFI
(NH4−MFI−1)を得た。
Example 1 Preparation of adsorbent 1 MFI structure zeolite having a SiO 2 / Al 2 O 3 molar ratio = 40 and a particle diameter of 4 μm: NH 4 Cl: 18
g was added to an aqueous solution of ammonium chloride dissolved in 400 g of pure water, and an ion exchange operation was performed at 60 ° C. for 20 hours. After this ion exchange operation is repeated twice, solid-liquid separation is performed, and the resultant is washed with pure water until Cl ions cannot be detected.
After drying at 110 ° C. for 20 hours, ammonium-type MFI
(NH 4 -MFI-1) was obtained.

【0026】NH4−MFI−1:20g(無水換算)
をリン酸水素二アンモニウム:1gを純水100gに溶
解させた水溶液中に添加し、60℃減圧下で蒸発乾固し
た。その後、110℃で20時間乾燥し、水分を体積換
算で10%含有させた加湿空気中で850℃5時間熱処
理し、吸着剤1を得た。吸着剤1をICP発光分析より
分析したところ、無水の酸化物ベースで 0.48P25・Al23・40SiO2 の組成を有していた。
NH 4 -MFI-1: 20 g (anhydrous equivalent)
Was added to an aqueous solution obtained by dissolving 1 g of diammonium hydrogen phosphate in 100 g of pure water, and evaporated to dryness under reduced pressure at 60 ° C. Thereafter, the resultant was dried at 110 ° C. for 20 hours and heat-treated at 850 ° C. for 5 hours in humidified air containing 10% by volume of water to obtain adsorbent 1. The adsorbent 1 was analyzed from ICP emission spectrometry, it had a composition of 0.48P 2 O 5 · Al 2 O 3 · 40SiO 2 in oxide-based anhydrous.

【0027】<実施例2>吸着剤2の調製 リン酸水素二アンモニウム:1gをオルトリン酸:1g
に替えたこと以外は実施例1と同様な操作を行って、吸
着剤2を得た。吸着剤2をICP発光分析により分析し
たところ、無水の酸化物ベースで 0.47P25・Al23・40SiO2 の組成を有していた。
Example 2 Preparation of Adsorbent 2 Diammonium hydrogen phosphate: 1 g and orthophosphoric acid: 1 g
The adsorbent 2 was obtained by performing the same operation as in Example 1 except that the adsorbent 2 was changed. The adsorbent 2 was analyzed by ICP emission spectrometry, it had a composition of 0.47P 2 O 5 · Al 2 O 3 · 40SiO 2 in oxide-based anhydrous.

【0028】<実施例3>吸着剤3の調製 MFI構造のゼオライト上へのP含有に用いるリン酸水
素二アンモニウム:1gを2gに替えたこと以外は実施
例1と同様な操作を行って、吸着剤3を得た。吸着剤3
をICP発光分析より分析したところ、無水の酸化物ベ
ースで 0.95P25・Al23・40SiO2 の組成を有していた。
<Example 3> Preparation of adsorbent 3 The same operation as in Example 1 was carried out except that diammonium hydrogen phosphate used for containing P on zeolite having an MFI structure was changed to 1 g: 2 g. Adsorbent 3 was obtained. Adsorbent 3
Was analyzed from ICP emission spectrometry, it had a composition of 0.95P 2 O 5 · Al 2 O 3 · 40SiO 2 in oxide-based anhydrous.

【0029】<実施例4>吸着剤4の調製 SiO2/Al23モル比=30、粒子径が1.5μm
であるMFI構造のゼオライト:40gを用いたこと以
外は、実施例1と同様の操作を行って、吸着剤4を得
た。吸着剤4をICP発光分析より分析したところ、無
水の酸化物ベースで 0.37P25・Al23・30SiO の組成を有していた。
Example 4 Preparation of Adsorbent 4 A SiO 2 / Al 2 O 3 molar ratio = 30 and a particle diameter of 1.5 μm
Adsorbent 4 was obtained by performing the same operation as in Example 1, except that 40 g of the zeolite having the MFI structure was used. The adsorbent 4 was analyzed from ICP emission spectrometry, it had a composition of 0.37P 2 O 5 · Al 2 O 3 · 30SiO 2 in oxide-based anhydrous.

【0030】<比較例1>比較吸着剤1の調製 SiO/Al23モル比=26、粒子径が1μmのM
OR構造を有するゼオライトを用いて、実施例1と同様
な操作を行って、比較吸着剤1を得た。比較吸着剤1を
ICP発光分析より分析したところ、無水の酸化物ベー
スで 0.33P25・Al23・26SiO2 の組成を有していた。
Comparative Example 1 Preparation of Comparative Adsorbent 1 M having a SiO 2 / Al 2 O 3 molar ratio = 26 and a particle diameter of 1 μm
The same operation as in Example 1 was performed using a zeolite having an OR structure to obtain a comparative adsorbent 1. The comparative adsorbent 1 was analyzed from ICP emission spectrometry, it had a composition of 0.33P 2 O 5 · Al 2 O 3 · 26SiO 2 in oxide-based anhydrous.

【0031】<比較例2>比較吸着剤2の調製 SiO2/Al23モル比=27、粒子径が0.1μm
のBEA構造を有するゼオライトを用いて、実施例1と
同様な操作を行って、比較吸着剤2を得た。比較吸着剤
2をICP発光分析より分析したところ、無水の酸化物
ベースで 0.32P25・Al23・27SiO2 の組成を有していた。
Comparative Example 2 Preparation of Comparative Adsorbent 2 SiO 2 / Al 2 O 3 molar ratio = 27, particle size 0.1 μm
Comparative Adsorbent 2 was obtained by performing the same operation as in Example 1 by using the zeolite having the BEA structure described above. The comparative adsorbent 2 was analyzed from the ICP emission spectrometry, it had a composition of 0.32P 2 O 5 · Al 2 O 3 · 27SiO 2 in oxide-based anhydrous.

【0032】<比較例3>比較吸着剤3の調製 SiO2/Al23モル比=70、粒子径が1μmのM
FI構造のゼオライトを用いて、実施例1と同様な操作
を行って、比較吸着剤3を得た。比較吸着剤3をICP
発光分析より分析したところ、無水の酸化物ベースで 0.82P25・Al23・70SiO2 の組成を有していた。
Comparative Example 3 Preparation of Comparative Adsorbent 3 M 2 having a SiO 2 / Al 2 O 3 molar ratio = 70 and a particle diameter of 1 μm
The same operation as in Example 1 was performed using zeolite having the FI structure to obtain comparative adsorbent 3. ICP for comparative adsorbent 3
Analysis from emission analysis, had a composition of 0.82P 2 O 5 · Al 2 O 3 · 70SiO 2 in oxide-based anhydrous.

【0033】<比較例4>比較吸着剤4の調製 SiO2/Al23モル比=40、粒子径が0.05μ
mのMFI構造のゼオライトを用いて、実施例1と同様
な操作を行って、比較吸着剤4を得た。比較吸着剤4を
ICP発光分析より分析したところ、無水の酸化物ベー
スで 0.47P25・Al23・40SiO2 の組成を有していた。
Comparative Example 4 Preparation of Comparative Adsorbent 4 SiO 2 / Al 2 O 3 molar ratio = 40, particle size 0.05 μm
Comparative adsorbent 4 was obtained by performing the same operation as in Example 1 using zeolite having MFI structure of m. The comparative adsorbent 4 was analyzed from ICP emission spectrometry, it had a composition of 0.47P 2 O 5 · Al 2 O 3 · 40SiO 2 in oxide-based anhydrous.

【0034】<比較例5>比較吸着剤5の調製 850℃5時間の熱処理を750℃5時間にしたこと以
外は実施例1と同様な操作を行って、比較吸着剤5を得
た。
Comparative Example 5 Preparation of Comparative Adsorbent 5 A comparative adsorbent 5 was obtained in the same manner as in Example 1 except that the heat treatment at 850 ° C. for 5 hours was performed at 750 ° C. for 5 hours.

【0035】<炭化水素の吸着除去試験>実施例1〜4
及び比較例1〜5で得られた吸着剤1ccを石英ガラス
製の常圧固定床流通式反応管に充填し、炭化水素の吸着
実験に供した。前処理として、乾燥空気を2L/min
流通させながら、20℃/minの昇温速度で500℃
まで加熱し、500℃で1時間保持した。室温まで冷却
し、窒素ガスで完全に置換した後に、表2の組成のモデ
ル排ガスを室温下、ガス流速2L/minで吸着剤に1
時間接触させた。この時の空間速度(体積基準)は12
0000hr-1であった。モデル排ガス中の炭化水素の
吸着が飽和に達したのを確認し、再度窒素ガスを吸着剤
に導入し、気相に残存する炭化水素を完全に除去した。
続いて、窒素ガスを2L/minで流通させながら、吸
着剤を10℃/minで昇温しながら、吸着剤から脱離
する炭化水素を水素炎イオン化検出(FID)方式の炭
化水素濃度計で連続的に定量分析し、炭化水素の吸着特
性を評価した。表3に炭化水素の吸着特性(吸着量及び
脱離ピーク温度)を示す。
<Hydrocarbon Adsorption Removal Test> Examples 1-4
In addition, 1 cc of the adsorbent obtained in Comparative Examples 1 to 5 was filled in a quartz glass atmospheric pressure fixed bed flow-type reaction tube, and subjected to a hydrocarbon adsorption experiment. As pre-treatment, dry air is supplied at 2 L / min.
While flowing, 500 ° C at a heating rate of 20 ° C / min.
And held at 500 ° C. for 1 hour. After cooling to room temperature and completely replacing with nitrogen gas, a model exhaust gas having the composition shown in Table 2 was added to the adsorbent at room temperature at a gas flow rate of 2 L / min.
Contact for an hour. The space velocity (based on volume) at this time is 12
0000 hr −1 . After confirming that the adsorption of hydrocarbons in the model exhaust gas reached saturation, nitrogen gas was introduced again into the adsorbent to completely remove hydrocarbons remaining in the gas phase.
Subsequently, while flowing the nitrogen gas at 2 L / min and raising the temperature of the adsorbent at 10 ° C./min, hydrocarbons desorbed from the adsorbent are detected by a flame ionization detection (FID) hydrocarbon concentration meter. Continuous quantitative analysis was performed to evaluate the adsorption characteristics of hydrocarbons. Table 3 shows hydrocarbon adsorption characteristics (adsorption amount and desorption peak temperature).

【0036】[0036]

【表2】 [Table 2]

【0037】[0037]

【表3】 [Table 3]

【0038】表3からも明らかなように、本発明の吸着
剤は、炭化水素の吸着量が多く、更には炭化水素の脱離
が高温化していることから、炭化水素の吸着保持力が強
いものである。
As is clear from Table 3, the adsorbent of the present invention has a large amount of adsorbed hydrocarbons and a high desorption of hydrocarbons, and therefore has a strong ability to retain and adsorb hydrocarbons. Things.

【0039】[0039]

【発明の効果】本発明の吸着剤は、800℃以上という
比較的高温で熱処理されて得られたものなので、ガス中
の炭化水素を効率よく吸着除去できる。さらに吸着剤を
構成するゼオライトの結晶径が1μm以上5μm以下で
あるため、吸着剤が高温に晒された後でも炭化水素の吸
着性能が高い。従って、本発明の吸着剤を、炭化水素が
含有されたガスに接触させることにより、炭化水素を効
率よく除去できる。この性質を利用して、本発明の吸着
剤により、自動車等のエンジン始動時に排出される炭化
水素を効率よく吸着除去し、排ガス浄化触媒が作動する
温度まで吸着保持することができる。
Since the adsorbent of the present invention is obtained by heat treatment at a relatively high temperature of 800 ° C. or higher, it is possible to efficiently adsorb and remove hydrocarbons in a gas. Further, since the crystal diameter of the zeolite constituting the adsorbent is 1 μm or more and 5 μm or less, the adsorption performance of hydrocarbons is high even after the adsorbent is exposed to a high temperature. Accordingly, hydrocarbons can be efficiently removed by bringing the adsorbent of the present invention into contact with a gas containing hydrocarbons. Utilizing this property, the adsorbent of the present invention can efficiently adsorb and remove hydrocarbons discharged at the start of an engine of an automobile or the like, and can adsorb and hold the hydrocarbon to a temperature at which the exhaust gas purifying catalyst operates.

【0040】[0040]

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】SiO2/Al23モル比が20以上50
未満であり、且つ結晶径が1μm以上5μm以下である
MFI構造のゼオライトにPを含有させ、該P含有ゼオ
ライトを800℃以上の温度で熱処理させたことを特徴
とする炭化水素の吸着剤。
(1) The molar ratio of SiO 2 / Al 2 O 3 is 20 or more and 50 or more.
A hydrocarbon adsorbent, wherein P is contained in an MFI-structured zeolite having a crystal diameter of less than 1 μm and not more than 5 μm, and the P-containing zeolite is heat-treated at a temperature of 800 ° C. or more.
【請求項2】吸着除去される炭化水素が炭素数で2〜5
であることを特徴とする、請求項1に記載の炭化水素の
吸着剤。
2. The hydrocarbon to be adsorbed and removed has 2 to 5 carbon atoms.
The hydrocarbon adsorbent according to claim 1, characterized in that:
【請求項3】請求項1または2に記載の吸着剤をガスと
接触させることを特徴とする、ガス中の炭化水素の吸着
除去方法。
3. A method for adsorbing and removing hydrocarbons in a gas, comprising contacting the adsorbent according to claim 1 with a gas.
JP10135117A 1998-05-18 1998-05-18 Adsorbent of hydrocarbon and method for desorption of the hydrocarbon Pending JPH11319551A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10135117A JPH11319551A (en) 1998-05-18 1998-05-18 Adsorbent of hydrocarbon and method for desorption of the hydrocarbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10135117A JPH11319551A (en) 1998-05-18 1998-05-18 Adsorbent of hydrocarbon and method for desorption of the hydrocarbon

Publications (1)

Publication Number Publication Date
JPH11319551A true JPH11319551A (en) 1999-11-24

Family

ID=15144233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10135117A Pending JPH11319551A (en) 1998-05-18 1998-05-18 Adsorbent of hydrocarbon and method for desorption of the hydrocarbon

Country Status (1)

Country Link
JP (1) JPH11319551A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010158678A (en) * 2004-03-30 2010-07-22 Taiyo Nippon Sanso Corp Propane adsorbent, pretreatment refining apparatus, and pretreating method of raw material air

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010158678A (en) * 2004-03-30 2010-07-22 Taiyo Nippon Sanso Corp Propane adsorbent, pretreatment refining apparatus, and pretreating method of raw material air
US8366806B2 (en) 2004-03-30 2013-02-05 Taiyo Nippon Sanso Corporation Pre-purification unit of cryogenic air separation unit, hydrocarbon adsorbent, and method of pre-treating feed air

Similar Documents

Publication Publication Date Title
US8282908B2 (en) Zeolite beta and process for producing the same
KR101286006B1 (en) β-TYPE ZEOLITE FOR SCR CATALYST AND METHOD FOR CONVERTING NITROGEN OXIDE USING THE ZEOLITE
JP4382885B2 (en) Improvement of PSA method in hydrogen purification
US9656238B2 (en) Fe(II)-substituted beta-type zeolite, production method therefor and gas adsorbent including same, and nitric oxide and hydrocarbon removal method
JP3839565B2 (en) Synthesis method of high silica silicate molecular sieve
JP7127219B2 (en) COMPOSITION FOR EXHAUST GAS PURIFICATION AND METHOD FOR MANUFACTURING SAME
JP5124927B2 (en) Hydrocarbon adsorption / removal agent comprising β-type zeolite and hydrocarbon adsorption / removal method using the same
JP6926459B2 (en) Hydrocarbon adsorbent containing SZR-type zeolite and method for adsorbing hydrocarbon
JP4905027B2 (en) Hydrocarbon adsorbent comprising β-type zeolite
JP2018079428A (en) Hydrocarbon adsorbent, and method of adsorbing and removing hydrocarbon
JP5594121B2 (en) Novel metallosilicate and nitrogen oxide purification catalyst
US9409785B2 (en) Fe(II)-substituted MEL-type zeolite, production method therefor and gas adsorbent including same, and nitric oxide and hydrocarbon removal method
JPH11319551A (en) Adsorbent of hydrocarbon and method for desorption of the hydrocarbon
JP2008080195A (en) Hydrocarbon adsorbent composed of silica-enriched beta-type zeolite
JP2000126590A (en) Adsorbent and method for removal by adsorption
JP2001293368A (en) Hydrocarbon adsorbent and method for adsorbing and removing hydrocarbon
WO2022025185A1 (en) Hydrocarbon adsorption material, exhaust gas cleaning catalyst, and exhaust gas cleaning system
EP4129465A1 (en) Hydrocarbon adsorbent and hydrocarbon adsorption method
JP2011062664A (en) Adsorbent containing suz-4 zeolite for hydrocarbon in exhaust gas of automobile, and method for adsorption removal of hydrocarbon
JP3627414B2 (en) Adsorbent for removing methyl bromide and removal method using the same
JPH11319571A (en) Catalyst for purification of gas and method for purification of gas
JP2000153159A (en) Catalyst and process for purifying exhaust gas
JPH11319572A (en) Gas purifying catalyst and gas purifying process
JPH10165806A (en) Absorbent for removal of normal propyl bromide and removing method using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050428

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061017

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061212

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070116