JPH11319040A - Sterilization of culture medium - Google Patents
Sterilization of culture mediumInfo
- Publication number
- JPH11319040A JPH11319040A JP10133235A JP13323598A JPH11319040A JP H11319040 A JPH11319040 A JP H11319040A JP 10133235 A JP10133235 A JP 10133235A JP 13323598 A JP13323598 A JP 13323598A JP H11319040 A JPH11319040 A JP H11319040A
- Authority
- JP
- Japan
- Prior art keywords
- medium
- sterilization
- electron beam
- container
- culture medium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Apparatus For Disinfection Or Sterilisation (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、培地の滅菌方法に
関するものであり、殊に電子線を照射することにより滅
菌処理を行う方法に関する。The present invention relates to a method for sterilizing a culture medium, and more particularly to a method for performing a sterilization treatment by irradiating an electron beam.
【0002】[0002]
【従来の技術及びその課題】従来、培地の滅菌方法とし
ては、エチレンオキサイドガス(以下「EOG」と称す
る)を使用した EOG 滅菌や、γ線滅菌等が周知であ
る。2. Description of the Related Art Conventionally, as methods for sterilizing a medium, EOG sterilization using ethylene oxide gas (hereinafter referred to as "EOG"), γ-ray sterilization, and the like are well known.
【0003】しかしながら、EOG 滅菌は容器を密封した
状態で滅菌することができないため、後に行う封緘作業
中に雑菌が混入する虞がある。また、滅菌用ガスは毒性
を有するためエアレーション等の後処理を行う必要があ
り、滅菌用ガスが培地容器中に僅かなりとも残留すれば
人体に悪影響を及ぼす虞もある。更に、処理時間は一般
に 10 数時間を要し、培地が経時的に固化する、変色す
る等の劣化を生じると共に、培地としての性能が低下す
る点に課題を有している。[0003] However, since EOG sterilization cannot sterilize the container in a sealed state, there is a possibility that various bacteria may be mixed in the sealing operation performed later. Further, since the sterilizing gas is toxic, it is necessary to perform post-treatment such as aeration, and even if the sterilizing gas remains in the medium container at all, there is a possibility that the sterilizing gas may adversely affect the human body. Furthermore, the treatment time generally requires several tens of hours, which causes problems such as solidification and discoloration of the medium over time and deterioration of the performance as a medium.
【0004】一方、γ線滅菌は容器自体の物性面に与え
る影響が大きく、容器自体に着色を招くほか、線源の管
理・維持が面倒である。また、EOG 滅菌と同様、滅菌に
要する時間が長く、例えば 25kGy のγ線を照射するた
めには 25 時間もの時間を必要とする場合がある。従っ
てランニングコストが高い等の課題を有している。On the other hand, γ-ray sterilization has a large effect on the physical properties of the container itself, causing coloring of the container itself, and troublesome management and maintenance of the radiation source. Also, similar to EOG sterilization, the time required for sterilization is long. For example, it may take as long as 25 hours to irradiate 25 kGy of γ-rays. Therefore, there are problems such as a high running cost.
【0005】本発明は従来技術における上記の課題を解
消するためになされたものであり、その目的は培地組成
に影響を与えることなく確実に培地を滅菌し、培地の経
時的変化及び経時的性能低下を防止乃至抑制すると共
に、低コストで実施し得る培地の滅菌方法を提供するこ
とにある。The present invention has been made to solve the above-mentioned problems in the prior art, and has as its object to surely sterilize a medium without affecting the composition of the medium, and to improve the time-dependent change and performance of the medium over time. It is an object of the present invention to provide a method for sterilizing a medium that can be performed at a low cost while preventing or suppressing the decrease.
【0006】[0006]
【課題を解決するための手段】本発明者等は鋭意検討の
結果、実質的照射線量として 3kGy - 40kGy の電子線を
培地に照射することにより上記の課題が解決されると共
に、上記の目的が達成される。Means for Solving the Problems As a result of intensive studies, the present inventors have solved the above-mentioned problems by irradiating a medium with an electron beam of 3 kGy-40 kGy as a substantial irradiation dose, and at the same time, the above-mentioned objects have been achieved. Achieved.
【0007】即ち、培地の滅菌処理に電子線を使用すれ
ば培地組成に影響を与えることなしに培地を確実に滅菌
し、培地の経時的な組成変化及びこれに伴う性能劣化を
防止でき、低コスト且つ短時間で滅菌処理を行うことが
できることを見出したのである。[0007] That is, if an electron beam is used for sterilizing the medium, the medium can be surely sterilized without affecting the composition of the medium, and the composition change of the medium over time and the performance deterioration accompanying the medium can be prevented. It has been found that sterilization can be performed at low cost and in a short time.
【0008】本発明における電子線の照射は電子線加速
装置を用いて行われる。電子線加速装置としては、高エ
ネルギーの電子線を発するものであれば特に限定され
ず、例えば住友重機機械工業株式会社製の「ダイナミト
ロン(標章)」が使用される。この電子線加速装置は、
0.5MeV〜5MeV 迄無段階に加速エネルギーを設定でき、
カートコンベアにより搬送されてくる被処理物に対して
上記エネルギーの電子線を照射するようになされている
ものである。The irradiation of the electron beam in the present invention is performed using an electron beam accelerator. The electron beam accelerator is not particularly limited as long as it emits high-energy electron beams. For example, "Dynamitron (mark)" manufactured by Sumitomo Heavy Industries, Ltd. is used. This electron beam accelerator
Acceleration energy can be set steplessly from 0.5MeV to 5MeV,
The object to be processed conveyed by the cart conveyor is irradiated with an electron beam having the above energy.
【0009】本発明に係る滅菌方法に使用される培地
は、一般的に使用される粉末培地又は顆粒培地のみなら
ず、液状培地又はゲル状培地を使用することもできる。
但し、粉末状態の寒天或いは寒天を含有する粉末培地に
ついて電子線滅菌を行うと、寒天の立体構造が変化し、
ゲル化しなくなるため本発明に使用する培地成分として
は適さない。寒天培地を電子線滅菌する場合は、寒天を
ゲル化した後に電子線滅菌をすれば、寒天の立体構造を
変化させることなく、他の培地と同様に滅菌処理を行う
ことができる。[0009] The medium used in the sterilization method according to the present invention may be not only a commonly used powder medium or granule medium but also a liquid medium or a gel medium.
However, when electron beam sterilization is performed on agar in a powder state or a powder medium containing agar, the three-dimensional structure of the agar changes,
It is not suitable as a medium component used in the present invention because it does not gel. When the agar medium is subjected to electron beam sterilization, if the agar is gelled and then subjected to electron beam sterilization, the sterilization treatment can be performed in the same manner as the other medium without changing the three-dimensional structure of the agar.
【0010】本発明に係る培地の滅菌方法に使用される
培地用容器としてはガラス製、合成樹脂製のものを使用
することができる。特に合成樹脂の素材としては格別の
限定はなく、例えば、ポリオレフィン樹脂、AS 樹脂、A
BS 樹脂、ポリスチレン、ポリエチレン、ポリプロピレ
ン、アクリル樹脂、ポリエチレンテレフタレート、ポリ
カーボネート、メチルペンテンポリマー、ポリスルホ
ン、ポリアミド、ポリアセタール、ポリエステル、塩化
ビニル樹脂で製造された容器を使用することができる。As the medium container used in the method for sterilizing a medium according to the present invention, a container made of glass or synthetic resin can be used. There is no particular limitation on the material of the synthetic resin, for example, polyolefin resin, AS resin, A
Containers made of BS resin, polystyrene, polyethylene, polypropylene, acrylic resin, polyethylene terephthalate, polycarbonate, methylpentene polymer, polysulfone, polyamide, polyacetal, polyester, and vinyl chloride resin can be used.
【0011】本発明に係る電子線滅菌法によれば、培地
を収容した容器を一度に多量に滅菌することができ、段
ボール箱等に収容した状態で滅菌することもできる。例
えば、前記のガラス製又は合成樹脂製の丸ボトル(本体
部の直径:18mm、高さ:100mm、壁厚:1.5mm)を、150
本収容することができる段ボール箱に収容し、更にこの
段ボール箱を 7 箱収容することができる包装容器内に
収納した状態でも滅菌処理を行うことができる。According to the electron beam sterilization method of the present invention, a container containing a culture medium can be sterilized in large quantities at a time, and can be sterilized while being stored in a cardboard box or the like. For example, the above glass or synthetic resin round bottle (body diameter: 18 mm, height: 100 mm, wall thickness: 1.5 mm)
Sterilization can be performed even in a state in which the cardboard boxes are housed in a cardboard box that can be accommodated, and the cardboard boxes are further housed in a packaging container that can house seven boxes.
【0012】これにより、培地を収容した容器を封緘
し、荷姿状態でも滅菌処理を行うことができるため、作
業を大幅に簡略化することができる。また、箱詰め作業
を完了した後に滅菌を行うことができるため、作業中に
雑菌が混入する等の心配が無く確実に滅菌を行うことが
可能となる。Thus, the container accommodating the culture medium can be sealed and the sterilization process can be performed even in the packed state, so that the operation can be greatly simplified. In addition, since sterilization can be performed after the packing operation is completed, sterilization can be surely performed without fear of contamination by germs during the operation.
【0013】合成樹脂製容器又はガラス製容器並びに培
地に存在する雑菌や微生物が少ない場合には実質的照射
線量で 3kGy 程度の照射線量でも滅菌することができる
が、確実に滅菌を行うには、実質的照射線量が 5kGy -
40kGy であることが望ましい。但し、実質的照射線量で
40kGy 以上の照射線量に設定すると培地成分が変性し
たり変色したりするばかりではなく、容器にも着色等を
生じることがあるため好ましくない。When there are few germs or microorganisms present in a synthetic resin container or a glass container or a medium, a substantial irradiation dose of about 3 kGy can be used for sterilization. Effective irradiation dose is 5kGy-
Desirably 40 kGy. However, with substantial irradiation dose
When the irradiation dose is set to 40 kGy or more, not only the medium components are denatured or discolored, but also the container may be colored, which is not preferable.
【0014】前記のように段ボール箱等に収容した状態
で電子線滅菌を行う場合は、滅菌対象物(容器並びに培
地)の表面に電子線が到達するまでに障害物(段ボール
箱等)が存在するため、実際に対象物の内面に到達する
照射線量(実質的照射線量)は電子線加速装置から発せ
られた照射線量よりも若干減少する。従って電子線を照
射する場合は、実質的照射線量を考慮して電子線の照射
線量を設定する必要がある。即ち、培地を収容している
容器を 5kGy で滅菌する場合は、収容されている容器の
受ける線量(実質的照射線量)が 5kGy 以上になるよう
に照射線量を設定する。従って、この場合の照射線量
は、10kGy〜40kGy までが望ましい。When the electron beam sterilization is performed in the state of being housed in a cardboard box or the like as described above, an obstacle (a cardboard box or the like) is present before the electron beam reaches the surface of the object (container and culture medium) to be sterilized. Therefore, the irradiation dose (substantial irradiation dose) actually reaching the inner surface of the target object is slightly smaller than the irradiation dose emitted from the electron beam accelerator. Therefore, when irradiating an electron beam, it is necessary to set the irradiation dose of the electron beam in consideration of the substantial irradiation dose. That is, when sterilizing the container containing the culture medium at 5 kGy, set the irradiation dose so that the dose received by the container (substantial irradiation dose) becomes 5 kGy or more. Therefore, the irradiation dose in this case is preferably from 10 kGy to 40 kGy.
【0015】しかしながら、この実質的照射線量は実際
に測定することは不可能であるため、本発明における
「実質的照射線量」とは、滅菌対象物表面に照射された
照射線量(表面照射線量)を線量計により測定し、その
値を便宜上実質的照射線量と推定して適用している。但
し、これは荷姿状態で電子線滅菌処理を行う場合であ
り、容器に直接照射する場合は、表面照射線量は実質的
照射線量とほぼ同じ線量であると考えることができる。However, since the substantial irradiation dose cannot be actually measured, the “substantial irradiation dose” in the present invention refers to the irradiation dose applied to the surface of the object to be sterilized (surface irradiation dose). Is measured by a dosimeter, and the value is estimated and applied as a substantial irradiation dose for convenience. However, this is a case where the electron beam sterilization is performed in the package state, and when directly irradiating the container, the surface irradiation dose can be considered to be substantially the same as the substantial irradiation dose.
【0016】本発明に係る培地の滅菌方法によれば、培
地の滅菌は僅か数秒で行うことができる。従って、滅菌
処理に数時間を要する EOG 滅菌並びにγ線滅菌と異な
り、培地や容器の変質を極力抑えることができる。According to the method for sterilizing a medium according to the present invention, the medium can be sterilized in only a few seconds. Therefore, unlike EOG sterilization and γ-ray sterilization, which require several hours for sterilization, deterioration of the culture medium and container can be minimized.
【0017】また、培地を収容した容器を封緘し、荷姿
状態で滅菌処理をする場合、カートコンベアを使用すれ
ば連続的な滅菌処理を行うこともでき、その場合におい
ても実質的に 2〜3 秒の電子線照射で滅菌処理をするこ
とができる。When a container containing a medium is sealed and sterilized in a packaged state, continuous sterilization can be performed by using a cart conveyor. Sterilization can be performed by electron beam irradiation for 3 seconds.
【0018】[0018]
【実施例】次に、比較試験例及び実施例により本発明を
更に詳細に説明する。Now, the present invention will be described in further detail with reference to Comparative Test Examples and Examples.
【0019】比較試験例1 (培地の保存安定性の検討) (1) 本発明方法により滅菌した培地と、従来技術による
EOG 滅菌及びγ線滅菌により滅菌した培地の保存安定
性を比較・検討するため、以下の方法で滅菌を行った。
尚、本比較試験例においては、培地としてペプトン (5.
0g)、塩化ナトリウム (5.0g)、リン酸二水素カリウム
(1.0g)、ラウリル硫酸ナトリウム (0.1g)、ピルビン酸
ナトリウム (1.0g)、硝酸カリウム (1.0g)、イソプロピ
ル-β-D-チオガラクトピラノシド (IPTG、0.1g)、5-ブ
ロモ-4-クロロ-3-インドリル-β-D-ガラクトピラノシ
ド (X-GAL、0.1g)、4-メチルウンベリフェリル-β-D-
グルクロニド (MUG、0.1g) からなる水質検査用培地
(粉末)を使用した場合について述べる。Comparative Test Example 1 (Study on Storage Stability of Medium) (1) A medium sterilized by the method of the present invention and a conventional medium
To compare and examine the storage stability of the medium sterilized by EOG sterilization and γ-ray sterilization, sterilization was performed by the following method.
In this comparative test example, peptone (5.
0g), sodium chloride (5.0g), potassium dihydrogen phosphate
(1.0 g), sodium lauryl sulfate (0.1 g), sodium pyruvate (1.0 g), potassium nitrate (1.0 g), isopropyl-β-D-thiogalactopyranoside (IPTG, 0.1 g), 5-bromo-4 -Chloro-3-indolyl-β-D-galactopyranoside (X-GAL, 0.1 g), 4-methylumbelliferyl-β-D-
The case where a water quality test medium (powder) composed of glucuronide (MUG, 0.1 g) is used is described.
【0020】電子線による培地の滅菌 水質検査用培地をガラス製丸ボトル(本体部の直径 16m
m、高さ 100mm、壁厚1.5mm。以下同じ)に入れ、該培地
含有容器を電子線加速装置(「ダイナミトロン」標章)
を用い、電子線の照射条件を電圧 4.8MeV、電流 5mA、
予定照射線量5kGy に設定し、且つカートコンベアの速
度をビーム下 6.44m/min.に設定し、該丸ボトルを横に
寝かせた状態で上部から電子線を照射した。照射後、線
量計により容器の表面照射線量を測定したところ、ガラ
ス容器上部は 6.6kGy、ガラス容器中部は 7.4kGy、ガラ
ス容器下部は 8.7kGy であった。Sterilization of Medium by Electron Beam A medium for water quality test is placed in a glass round bottle (body diameter 16 m).
m, height 100mm, wall thickness 1.5mm. The same shall apply hereinafter), and the medium-containing container is charged with an electron beam accelerator (“Dynamitron” mark)
Using 4.8 MeV voltage, 5 mA current,
The planned irradiation dose was set to 5 kGy, the speed of the cart conveyor was set to 6.44 m / min. Under the beam, and the round bottle was laid on its side to irradiate an electron beam from above. After irradiation, the surface irradiation dose of the container was measured with a dosimeter, and it was 6.6 kGy in the upper part of the glass container, 7.4 kGy in the middle part of the glass container, and 8.7 kGy in the lower part of the glass container.
【0021】 EOG による培地の滅菌 電子線滅菌培地と同様に水質検査用培地をガラス製丸ボ
トルに入れ、EOG 20%及び炭酸ガス 80% の混合ガスを
0.4kg/cm2 の圧力条件下で、温度 50℃で 5 時間処理し
た後、へパフィルターを通した空気でチェンバー内の残
存ガスを 9 回置換した。Sterilization of Medium by EOG A medium for water quality test is put in a glass round bottle in the same manner as the electron beam sterilization medium, and a mixed gas of 20% of EOG and 80% of carbon dioxide is added.
After treating at a temperature of 50 ° C. for 5 hours under a pressure condition of 0.4 kg / cm 2, the gas remaining in the chamber was replaced nine times with air passed through a hepar filter.
【0022】γ線による培地の滅菌 電子線滅菌培地と同様に水質検査用培地をガラス製丸ボ
トルに入れ、60Co 線源昇降装置により 6 時間γ線を照
射し、6kGy 相当のγ線滅菌処理を行った。Sterilization of culture medium by γ-ray As in the case of the electron-beam sterilization medium, a culture medium for water quality inspection is placed in a glass round bottle, and irradiated with γ-rays by a 60 Co source raising / lowering device for 6 hours, thereby performing γ-ray sterilization treatment equivalent to 6 kGy. Was done.
【0023】(2) 上記の滅菌方法により処理した電子線
滅菌培地、EOG 滅菌培地、γ線滅菌培地を使用して下記
の要領で外観試験、吸光度試験、pH 試験、培養試験を
行った。尚、対照として滅菌処理を行わない培地(無滅
菌培地)についても同様に試験を行った。(2) Using an electron beam sterilized medium, an EOG sterilized medium, and a γ-ray sterilized medium treated by the above sterilization method, an appearance test, an absorbance test, a pH test, and a culture test were performed as follows. As a control, a test was similarly performed on a medium that was not sterilized (unsterilized medium).
【0024】外観試験 上記の滅菌方法により得た培地を 4℃、10℃、30℃及び
40℃の異なる温度条件下で保存し、培地の色、形状等
の変化を 12ヶ月に亘り経時的に観察した。尚、4℃、10
℃の条件下で保存する培地は各 5 本用意し 12ヶ月間経
過時まで観察した。一方、30℃及び 40℃で保存する培
地は各 6 本用意し 6ヶ月間経過時まで観察した。Appearance test The medium obtained by the above sterilization method was subjected to 4 ° C., 10 ° C., 30 ° C.
The medium was stored under different temperature conditions of 40 ° C., and changes in the color, shape, etc. of the medium were observed over time for 12 months. In addition, 4 ℃, 10
Five culture media were prepared under the condition of ℃ and observed until 12 months. On the other hand, six media were prepared at 30 ° C. and 40 ° C., respectively, and observed until 6 months had elapsed.
【0025】その結果を表1に示す。滅菌後の培地は、
滅菌処理によって若干茶色に着色されていたが、電子線
滅菌培地はγ線滅菌培地及び無滅菌培地と同様、滅菌後
も粉末状態を維持していたのに対し、EOG 滅菌培地は培
地が固化することが確認された。また、電子線滅菌培地
とγ線滅菌培地は 4℃ と 40℃の保存条件下では 3ヶ月
を経過した時点から培地が固化し始めることが判明し
た。The results are shown in Table 1. The medium after sterilization is
Although it was slightly browned by the sterilization treatment, the electron beam sterilization medium maintained a powdered state after sterilization, like the γ-ray sterilization medium and the non-sterilization medium, whereas the EOG sterilization medium solidified. It was confirmed that. In addition, it was found that under the storage conditions of 4 ° C and 40 ° C, the mediums of the electron beam sterilization medium and the γ-ray sterilization medium began to solidify after 3 months.
【0026】以上の結果から、培地に電子線を照射して
滅菌すれば、EOG 滅菌よりも高品質で培地を保存するこ
とができ、また、γ線滅菌と同等の保存安定性が得られ
ることが明らかとなった。From the above results, if the medium is irradiated with an electron beam and sterilized, the medium can be stored with higher quality than EOG sterilization, and the storage stability equivalent to that of γ-ray sterilization can be obtained. Became clear.
【0027】[0027]
【表1】 [Table 1]
【0028】吸光度試験 前記外観試験に供試した培地を滅菌水 (10ml) で溶解
後、光電光度計(ANA-7S、東京光電社製)を用い、波長
420nm で吸光度を測定した。その結果を表 2に示す。
吸光度は無滅菌培地が最も低く、次いで電子線滅菌培
地、γ線滅菌培地、EOG 滅菌培地の順で吸光度が高かっ
た。以上の結果から、滅菌処理後の培地の変色は電子線
滅菌が最も少ないことが判明した。Absorbance test After dissolving the medium subjected to the appearance test in sterile water (10 ml), the wavelength was measured using a photoelectric photometer (ANA-7S, manufactured by Tokyo Koden).
The absorbance was measured at 420 nm. The results are shown in Table 2.
The absorbance of the non-sterile medium was the lowest, followed by the electron beam sterilized medium, the γ-ray sterilized medium, and the EOG sterilized medium. From the above results, it was found that the discoloration of the medium after the sterilization treatment was the least in electron beam sterilization.
【0029】[0029]
【表2】 [Table 2]
【0030】 pH 試験 上記吸光度試験に供試した培地の pH を、pH メーター
(東亜株式会社製、HM-60V)を用いて測定した。結果は
表3に示す通りであり、滅菌処理直後の pH について、
EOG により滅菌した培地は若干 pH の上昇が認められた
が、γ線及び電子線により滅菌を行った培地は無滅菌培
地とほぼ同様の値を示し、本発明に係る滅菌法によって
は培地の pH に大きな変動を与えることはないことが判
明した。その後も本発明に係る滅菌法により滅菌した培
地は、pH に大きな変動は認められなかった。PH Test The pH of the medium subjected to the absorbance test was measured using a pH meter (HM-60V, manufactured by Toa Corporation). The results are as shown in Table 3, and the pH immediately after the sterilization treatment was
Although the pH of the medium sterilized by EOG slightly increased, the medium sterilized by γ-rays and electron beams showed almost the same value as that of the non-sterile medium. Has not been found to give a large fluctuation. Thereafter, the medium sterilized by the sterilization method according to the present invention did not show a large change in pH.
【0031】[0031]
【表3】 [Table 3]
【0032】培養試験 前記滅菌方法により得た電子線滅菌培地、EOG 滅菌培
地、γ線滅菌培地及び無滅菌培地に滅菌済み精製水 (10
ml) を加え、十分撹拌した後、Escherichia coli(ATCC
11775) を接種し、X-GAL (5-Bromo-4-chloro-3-indoxyl
-β-D-galactopyranoside、BIOSYNTH 社製) の反応と M
UG (4-Methylumbelliferyl-β-D-glucuronic acid dihy
drate、C16H16O9・2H2O、BIOTHYNTH 社製) における発色
反応を観察した。Culture test The sterilized purified water (10%) was added to the electron beam sterilized medium, EOG sterilized medium, γ-ray sterilized medium and non-sterile medium obtained by the sterilization method described above.
After adding Escherichia coli (ATCC
11775) and X-GAL (5-Bromo-4-chloro-3-indoxyl)
-β-D-galactopyranoside, BIOSYNTH) and M
UG (4-Methylumbelliferyl-β-D-glucuronic acid dihy
drate, C 16 H 16 O 9 · 2H 2 O, it was observed color development reaction in manufactured BIOTHYNTH Co.).
【0033】その結果を表 4 に示す。滅菌処理によ
り、或いは経時的変化により培地成分が劣化していれ
ば、発色反応が弱くなるか或いは発色反応が認められな
くなるが、本発明による滅菌方法により処理された培地
は X-GAL 反応及び MUG 反応による発色反応が認めら
れ、実質的照射線量が 7kGy 前後の電子線によっては培
地成分は変質しないことが明らかとなり、その保存安定
性は少なくとも 12ヶ月以上維持されることが推察され
た。一方、EOG 滅菌培地並びにγ線滅菌培地は、時間の
経過によって X-GAL 反応が弱くなることが観察され、
培地成分が経時的に劣化していることが推察された。Table 4 shows the results. If the medium components have deteriorated due to sterilization or due to changes over time, the color reaction is weakened or no color reaction is observed.However, the medium treated by the sterilization method of the present invention can be used for the X-GAL reaction and MUG reaction. A color reaction was observed due to the reaction, and it was clarified that the medium components did not change with an electron beam with a substantial irradiation dose of about 7 kGy, suggesting that the storage stability was maintained for at least 12 months. On the other hand, it was observed that the X-GAL reaction of EOG sterilized medium and γ-ray sterilized medium weakened over time,
It was presumed that the medium components had deteriorated with time.
【0034】[0034]
【表4】 X:X−GAL反応、M:MUG反応、+:反応有、W:反応弱、NT:試験 せず[Table 4] X: X-GAL reaction, M: MUG reaction, +: reaction, W: weak reaction, NT: not tested
【0035】比較試験例2 (照射線量の検討) (1) 次に、本発明による滅菌方法において、以下の要領
で電子線の照射条件を 6kGy〜60kGy に変更して滅菌を
行い、照射線量の相違が培地並びに容器に与える影響を
検討した。Comparative Test Example 2 (Examination of Irradiation Dose) (1) Next, in the sterilization method according to the present invention, sterilization was performed by changing the electron beam irradiation conditions to 6 kGy to 60 kGy in the following manner. The influence of the difference on the culture medium and the container was examined.
【0036】電子線滅菌 水質検査用培地をポリオレフィン樹脂製丸ボトル(本体
部の直径:18mm、高さ:100mm、壁厚:1.5mm)に入れ、
ポリプロピレン製の蓋で容器を密閉し、この容器を電子
線加速装置(「ダイナミトロン」標章)にて電子線を照
射した。尚、電圧は 4.8MeV に設定し、表面照射線量が
それぞれ 6kGy、10kGy、20kGy、40kGy、60kGy となるよ
うに、電流設定値並びにビーム下カートコンベア速度に
ついて下記の表 5 に示す値を設定した。Electron beam sterilization A culture medium for water quality inspection is placed in a polyolefin resin round bottle (diameter of main body: 18 mm, height: 100 mm, wall thickness: 1.5 mm).
The container was sealed with a lid made of polypropylene, and the container was irradiated with an electron beam using an electron beam accelerator ("Dynamitron"). The voltage was set to 4.8 MeV, and the current set value and the cart conveyor speed under the beam were set to the values shown in Table 5 below so that the surface irradiation dose was 6 kGy, 10 kGy, 20 kGy, 40 kGy, and 60 kGy, respectively.
【0037】[0037]
【表5】 [Table 5]
【0038】ここで、40kGy 照射は 20kGy 照射を 2 回
反復して行ったものであり、60kGy照射は 20kGy 照射を
3 回反復して行ったものである。また、電子線の照射
は容器を立たせ上部から行った。線量計により表面照射
線量を測定したところ、表 6に示す通りであった。Here, 40 kGy irradiation is obtained by repeating 20 kGy irradiation twice, and 60 kGy irradiation is 20 kGy irradiation.
Repeated three times. The irradiation of the electron beam was performed from the upper part with the container standing. Table 6 shows the surface irradiation dose measured with a dosimeter.
【0039】[0039]
【表6】 [Table 6]
【0040】EOG滅菌 電子線滅菌の場合と同様に水質検査用顆粒培地をポリオ
レフィン樹脂製丸ボトルに入れ、EOG 20%及び炭酸ガス
80%の混合ガスを 0.4kg/cm2 の圧力条件下で、温度 5
0℃で 5 時間処理した後、へパフィルターを通した空気
でチェンバー内のガスを 9 回置換した。EOG sterilization In the same manner as in the case of electron beam sterilization, a granular medium for water quality inspection is placed in a polyolefin resin round bottle, and EOG 20% and carbon dioxide gas are added.
80% mixed gas at a pressure of 0.4 kg / cm 2 at a temperature of 5
After treatment at 0 ° C for 5 hours, the gas in the chamber was replaced nine times with air passed through a hepar filter.
【0041】γ線滅菌 電子線滅菌培地と同様に水質検査用顆粒培地をポリオレ
フィン樹脂製丸ボトルに入れ、60Co 線源昇降装置によ
り 6kGy、10kGy、20kGy、40kGy、60kGy でγ線を照射し
た。Γ-ray sterilization In the same manner as the electron beam sterilization medium, a granular medium for water quality inspection was placed in a polyolefin resin round bottle, and γ-rays were irradiated at 6 kGy, 10 kGy, 20 kGy, 40 kGy, and 60 kGy by a 60 Co source raising / lowering device.
【0042】(2) 試験方法 前記の滅菌方法により処理した電子線滅菌培地、EOG 滅
菌培地、γ線滅菌培地を使用して下記に記載の容器外観
試験、培地外観試験、pH 試験、吸光度試験、無菌試
験、性能試験を行った。尚、対照として無滅菌培地につ
いても同様に試験を行った。(2) Test method Using an electron beam sterilized medium, an EOG sterilized medium, and a γ-ray sterilized medium treated by the sterilization method described above, the following container appearance test, medium appearance test, pH test, absorbance test, A sterility test and a performance test were performed. In addition, the same test was performed on a non-sterile medium as a control.
【0043】容器外観試験 上記滅菌方法により得られた容器について観察した結
果、電子線を照射した後の容器の外観は、60kGy もの強
い電子線を照射した場合でも容器に着色は認められなか
った。このことから、発色或いは発光等により試験結果
を判定する培地の滅菌には、本発明に係る滅菌方法が適
していることが明らかとなった。一方、EOG 滅菌では容
器の内蓋の剥離が観察され、γ線を 40kGy 照射した場
合並びに60kGy 照射した場合では容器が褐色に着色する
ことが判明した(表 7「容器の外観」の欄参照)。Container appearance test As a result of observation of the container obtained by the above sterilization method, no coloration was observed in the appearance of the container after irradiation with an electron beam even when the container was irradiated with an electron beam as strong as 60 kGy. From this, it became clear that the sterilization method according to the present invention is suitable for sterilization of a culture medium for which a test result is determined based on color development or luminescence. On the other hand, in EOG sterilization, peeling of the inner lid of the container was observed, and it was found that the container colored brown when irradiated with γ-rays at 40 kGy or 60 kGy (see Table 7 “Appearance of container”). .
【0044】培地外観試験 上記滅菌方法により得られた培地について観察した結
果、電子線滅菌処理された培地は、40kGy の照射条件で
も培地に変化は認められなかった。これに対して、従来
乳白色であるはずの培地が EOG 滅菌後は黄色に変色
し、培地が容器の壁面に付着しているのが観察された。
一方、γ線及び電子線照射条件が 60kGyの場合では灰色
に変色した(表 7「培地の外観」の欄参照)。Culture Medium Appearance Test As a result of observing the culture medium obtained by the above sterilization method, no change was observed in the culture medium that had been subjected to electron beam sterilization even under the irradiation conditions of 40 kGy. On the other hand, the medium, which should have been milky white in the past, turned yellow after EOG sterilization, and it was observed that the medium adhered to the wall of the container.
On the other hand, when the γ-ray and electron beam irradiation conditions were 60 kGy, the color changed to gray (see the column in Table 7, “Appearance of culture medium”).
【0045】 pH 試験 上記外観試験で供試された培地を滅菌水 (10ml) で溶解
後、pH メーター (東亜株式会社製、HM-60V) により測
定した。その結果、本発明に係る滅菌方法により処理さ
れた培地は、いずれの滅菌条件においても他の滅菌処理
方法と同様、大きな pH 変動は認められなかった(表 7
「pH」の欄参照)。PH Test The medium tested in the above appearance test was dissolved in sterilized water (10 ml), and measured with a pH meter (HM-60V, manufactured by Toa Corporation). As a result, in the medium treated by the sterilization method according to the present invention, no significant pH fluctuation was observed under any of the sterilization conditions, as in the other sterilization methods (Table 7).
PH column).
【0046】吸光度試験 上記 pH 試験で供試した培地について、光電光度計 (東
京弘電社製、ANA-7S)を用いて波長 420nm で吸光度を
測定した。その結果、電子線の照射量が増大するに従っ
て若干吸光度が上昇する傾向が認められたが、全体とし
てγ線滅菌やEOG 滅菌培地よりも吸光度の変動は少なか
った。このことより、滅菌における培地の変色は電子線
滅菌が最も少ないことが推察された(表 7「吸光度」の
欄参照)。Absorbance Test The medium tested in the above pH test was measured for absorbance at a wavelength of 420 nm using a photoelectric photometer (ANA-7S, manufactured by Tokyo Koden Co., Ltd.). As a result, the absorbance tended to increase slightly as the irradiation amount of the electron beam increased, but the change in the absorbance was smaller than that of the γ-ray sterilized medium or the EOG sterilized medium as a whole. From this, it was presumed that the discoloration of the medium in the sterilization was the least in the case of electron beam sterilization (see the column of "absorbance" in Table 7).
【0047】無菌性試験 各滅菌方法により得た培地を、滅菌済みトリプトソーヤ
ブイヨン(日水製薬株式会社製)で溶解し、室温並びに
35℃で 1 週間培養し、無菌性の確認をした結果、本発
明に係る滅菌方法により処理された培地は全ての照射条
件で無菌であることが確認され、本発明による電子線の
滅菌効果が立証された。しかしながら、無滅菌の培地に
限りグラム陽性ブドウ球菌の生育が認められ、このよう
な水質検査用培地も滅菌をする必要性があることを確認
した(表 7「無菌性試験」の欄参照)。Sterility test The medium obtained by each sterilization method was dissolved in sterilized tryptosome bouillon (manufactured by Nissui Pharmaceutical Co., Ltd.),
After culturing at 35 ° C for 1 week and confirming the sterility, the medium treated by the sterilization method of the present invention was confirmed to be sterile under all irradiation conditions, and the sterilizing effect of the electron beam according to the present invention was confirmed. Proven. However, the growth of Gram-positive staphylococci was observed only in the non-sterile medium, and it was confirmed that such a medium for water quality test also needs to be sterilized (see Table 7 “Sterility Test”).
【0048】[0048]
【表7】 *1:培地が壁面に付着、*2:グラム陽性ブドウ球菌
の生育有、NG:増殖無[Table 7] * 1: Medium adheres to the wall, * 2: Gram-positive staphylococci grow, NG: No growth
【0049】性能試験 前記滅菌方法により得た電子線滅菌培地、EOG 滅菌培
地、γ線滅菌培地及び無滅菌培地に滅菌精製水 (10ml)
を加え、培地を十分撹拌した後、Escherichia coli (ATC
C 11775)、Citrobacter freundii (ATCC 8090) 及び St
aphylococcusaureus (ATCC 6538) をそれぞれ接種し、X
-GAL の反応と MUG の反応及び菌の増殖の有無を観察し
た。尚、培地として使用した水質検査用培地は E. coli
と C.freundii は増殖可能であるが、グラム陽性菌で
ある S. aureus は増殖することができない性能を有し
ている。また、C. freundii は増殖しても MUG の反応
を生じるための酵素を分泌することができないため、培
地成分が正常であれば MUGの反応は起こらない。Performance test Sterilized purified water (10 ml) was added to the electron beam sterilized medium, EOG sterilized medium, γ-ray sterilized medium and non-sterile medium obtained by the sterilization method described above.
, And the medium is sufficiently stirred, and then Escherichia coli (ATC
C 11775), Citrobacter freundii (ATCC 8090) and St
aphylococcusaureus (ATCC 6538)
-The reaction of GAL and MUG and the presence or absence of bacterial growth were observed. The medium used for the water quality test was E. coli.
And C. freundii can grow, but S. aureus , a gram-positive bacterium, has the ability to grow. In addition, C. freundii cannot secrete an enzyme for producing a MUG reaction even when proliferated, so that the MUG reaction does not occur if the medium components are normal.
【0050】結果を表 8 に示す。本発明に係る滅菌方
法により処理された培地は何れの照射条件においても正
常な培地性能を発揮し、電子線照射による培地成分の変
化には影響しないことが判明した。一方、EOG 滅菌培地
では E. coli における X-GAL 反応が弱く、培地成分に
若干の変化が生じていることが推察された。Table 8 shows the results. It has been found that the medium treated by the sterilization method according to the present invention exhibits normal medium performance under any irradiation conditions and does not affect the change of the medium components due to electron beam irradiation. On the other hand, in the EOG sterilized medium, the X-GAL reaction in E. coli was weak, and it was inferred that the medium components slightly changed.
【0051】[0051]
【表8】 増:菌の増殖、X:X-GAL 反応、M:MUG 反応、G:菌の増殖有、NG:菌の 増殖無、+:反応有、−:反応無、W:反応弱[Table 8] Increase: bacterial growth, X: X-GAL reaction, M: MUG reaction, G: bacterial growth, NG: no bacterial growth, +: reactive,-: no reactive, W: weak response
【0052】実施例1(異なる培地組成を対象にした電
子線滅菌) 異なる組成で調製された種々の培地を、本発明に係る滅
菌方法を用いて滅菌処理した。即ち、標準寒天培地、デ
ゾキシコレート培地、血液寒天培地、トリプトソーヤ寒
天培地、TSI 培地、ふき取り液を表面照射線量でそれぞ
れ 10kGy、40kGy で滅菌処理を行い、培地並びに容器の
着色、形状等への影響を観察した。使用した培地の培地
組成は下記の表 9 に示す通りである。尚、ふき取り液
は液状であり、それ以外の培地は全て寒天培地を用い
た。寒天を含有している培地は滅菌処理に先立ち、水を
添加して加熱溶解し、冷却してゲル化した状態のものを
使用した。Example 1 (Electron Beam Sterilization for Different Medium Compositions) Various media prepared with different compositions were sterilized using the sterilization method according to the present invention. That is, a standard agar medium, a desoxycholate medium, a blood agar medium, a tryptosome agar medium, a TSI medium, and a wipe were sterilized at a surface irradiation dose of 10 kGy and 40 kGy, respectively, and the effects on the coloring and shape of the medium and container were observed. did. The medium composition of the medium used is as shown in Table 9 below. The wiping solution was liquid, and the other media were all agar media. Prior to the sterilization treatment, the medium containing agar was heated and dissolved by adding water, and then cooled and gelled.
【0053】[0053]
【表9】 [Table 9]
【0054】結果を表 10 に示す。10kGy の電子線照射
条件では培地に変化を生じたものは確認されず、寒天培
地並びに液状培地も本発明に係る滅菌方法に使用可能で
あることが明らかとなった。容器に与える影響について
も、TSI 培地のガラス製容器が若干褐色を帯びたのみで
大きな変化は認められなかった。一方、40kGy もの比較
的強度の照射条件下では、培地に気泡を生じる、培地の
色が退色する等変化を生じるものが散見され、容器に褐
色の着色を帯びたものもあった。これにより、培地の電
子滅菌処理は 40kGy 以下で行うことが適当であると推
察された。Table 10 shows the results. No change was observed in the medium under the electron beam irradiation condition of 10 kGy, and it was revealed that agar medium and liquid medium can be used in the sterilization method according to the present invention. Regarding the effect on the container, no significant change was observed in the TSI medium glass container, which was slightly brownish. On the other hand, under relatively intense irradiation conditions of 40 kGy, there were sporadic changes in the medium, such as formation of bubbles in the medium and fading of the color of the medium, and some of the containers were colored brown. It was concluded that it is appropriate to perform the electronic sterilization of the medium at 40 kGy or less.
【0055】[0055]
【表10】 −:変化無し[Table 10] -: No change
【0056】[0056]
【発明の効果】本発明による電子線を利用した培地の滅
菌方法によれば、容器に収納した粉末培地、顆粒培地、
寒天培地及び液体培地を短時間で滅菌することができ、
経時的変化等(色調変化乃至劣化)も著しく少ない。従
って、培地を使用する際は改めて滅菌することなく検体
を直接加えて微生物の検査ができる。According to the method for sterilizing a medium using an electron beam according to the present invention, a powder medium, a granule medium contained in a container,
Agar medium and liquid medium can be sterilized in a short time,
Changes over time (color tone change or deterioration) are also extremely small. Therefore, when using a culture medium, a microorganism can be tested by directly adding a specimen without sterilization again.
【0057】また、本発明は電子線を使用することか
ら、電圧及び電流の値を設定することにより照射線量を
管理することができるために滅菌管理が容易であり、照
射された電子線が残留することがないため安全である。
滅菌時間も従来のγ線滅菌の場合と比較して大幅に短縮
し、包装状態での滅菌も可能であるため一度に大量の滅
菌処理を行うことができる。Further, since the present invention uses an electron beam, it is possible to control the irradiation dose by setting the voltage and current values, so that sterilization control is easy and the irradiated electron beam remains. It is safe because there is nothing to do.
The sterilization time is greatly reduced as compared with the conventional γ-ray sterilization, and sterilization in a packaged state is also possible, so that a large amount of sterilization can be performed at one time.
【0058】更に、ランニングコストを概算すると、設
備の維持費がγ線滅菌の約 10 分の1 で済む上、線源に
関しても、γ線が輸入放射性物質を線源としているのに
対し、電子線は電気を線源とするためコストパフォーマ
ンスに優れている。Further, when the running cost is roughly estimated, the maintenance cost of the equipment is about one-tenth of that of γ-ray sterilization, and γ-rays use imported radioactive materials as the source, whereas Wire is excellent in cost performance because it uses electricity as a source.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 水落 慎吾 東京都豊島区巣鴨2丁目11番1号 日水製 薬株式会社内 (72)発明者 仙石 博 東京都豊島区巣鴨2丁目11番1号 日水製 薬株式会社内 (72)発明者 橘 圀臣 東京都豊島区巣鴨2丁目11番1号 日水製 薬株式会社内 (72)発明者 山瀬 豊 茨城県つくば市緑ヶ原4−16 日本照射サ ービス株式会社つくば電子照射センター内 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Shingo Mizuochi 2-11-1, Sugamo, Toshima-ku, Tokyo Nissui Pharmaceutical Co., Ltd. (72) Inventor Hiroshi Sengoku 2-1-1, Sugamo, Toshima-ku, Tokyo Nissui Pharmaceutical Co., Ltd. (72) Inventor Kunitachi Tachibana 2-1-1, Sugamo, Toshima-ku, Tokyo Nissui Pharmaceutical Co., Ltd. (72) Inventor Yutaka Yamase 4-16 Midorigahara, Tsukuba, Ibaraki Prefecture Japan Irradiation Service Co., Ltd. Tsukuba Electron Irradiation Center
Claims (4)
電子線を照射することを特徴とする培地の滅菌方法。1. A method for sterilizing a medium, which comprises irradiating an electron beam at a substantial irradiation dose of 3 kGy to 40 kGy.
ル状又は液状であることを特徴とする請求項 1 に記載
の培地の滅菌方法。2. The method for sterilizing a medium according to claim 1, wherein the medium is in the form of a film, a powder, a granule, a gel, or a liquid.
培地であることを特徴とする請求項 1 又は 2 に記載の
培地の滅菌方法。3. The method for sterilizing a medium according to claim 1, wherein the medium is a medium for testing water quality or a medium for growing microorganisms.
に所定数収納された包装状態の培地に、照射線量が 10k
Gy - 40kGy の電子線を包装容器の外部から照射するこ
とを特徴とする請求項 1 - 3 の何れか 1 つに記載の培
地の滅菌方法。4. An irradiation dose of 10k is applied to a packaged culture medium contained in a container and a predetermined number of said containers contained in a packaging container.
4. The method for sterilizing a medium according to claim 1, wherein the electron beam of Gy-40 kGy is irradiated from outside the packaging container.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10133235A JPH11319040A (en) | 1998-05-15 | 1998-05-15 | Sterilization of culture medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10133235A JPH11319040A (en) | 1998-05-15 | 1998-05-15 | Sterilization of culture medium |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH11319040A true JPH11319040A (en) | 1999-11-24 |
Family
ID=15099879
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10133235A Pending JPH11319040A (en) | 1998-05-15 | 1998-05-15 | Sterilization of culture medium |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH11319040A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6464937B2 (en) * | 2000-11-01 | 2002-10-15 | Pml Microbiologicals, Inc. | Ultrapure sterilization of microbiological test media by electron beam irradiation |
-
1998
- 1998-05-15 JP JP10133235A patent/JPH11319040A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6464937B2 (en) * | 2000-11-01 | 2002-10-15 | Pml Microbiologicals, Inc. | Ultrapure sterilization of microbiological test media by electron beam irradiation |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6203755B1 (en) | Electron beam sterilization of biological tissues | |
US10046899B2 (en) | Methods for disinfecting or sterilizing articles | |
EP1349580B2 (en) | Process to improve stability of a pharmaceutical composition | |
US4071412A (en) | Ready made sterilized culture media and process of preparation | |
CN1087258C (en) | A method of sterilizing closed containers | |
Peterson | Respiration of soil sterilized by ionizing radiations | |
JPH11319040A (en) | Sterilization of culture medium | |
JP3320430B2 (en) | Method for producing sterile phospholipid, aqueous phospholipid dispersion or aqueous liposome dispersion by radiation sterilization | |
US6464937B2 (en) | Ultrapure sterilization of microbiological test media by electron beam irradiation | |
JP2582002B2 (en) | Sterilization method of aluminum lid or container | |
JP2553955B2 (en) | Method for sterilizing petri dishes made of synthetic resin for culture medium | |
JP3697475B2 (en) | Drug vial holding assembly and related technology | |
CA2063068C (en) | Ionizing irradiation sterilizable culture medium suitable for use in environmental sampling devices | |
JPS59175879A (en) | Disinfection of contaminant bacteria in enzyme | |
CN114075560A (en) | Stable composition of beta-lactamase | |
JP2897775B2 (en) | Sterilization method of experimental animal feed by high energy electron beam irradiation | |
Hayashi et al. | Comparative effects of gamma rays and electron beams on spores of Bacillus pumilus | |
Beteshobabrud et al. | The stability studies of penicillin and ampicillin following γ-irradiation in the solid state | |
KR910005281B1 (en) | Method of sterilization of agricultural products | |
CN106701579A (en) | Rose bengal sodium agar culture medium flat plate capable of irradiation sterilization | |
JPS6115672A (en) | Sterilization of packaging materials | |
KR100340728B1 (en) | Methods And Compositions For Controlling Fungi And Bacteria During Plant Tissue Culture | |
CN115671344A (en) | Method for sterilizing disposable sanitary articles | |
JPH07115960A (en) | Method for culturing thermostable bacteria | |
JP2006304698A (en) | Culture medium for quickly detecting thermophilic strictly anaerobic bacterium, and method for shortening highly sensitive detection period |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050511 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070306 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20071009 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20080220 |