JPH11318090A - Oscillatory driver, its manufacture, and apparatus equipped with the same - Google Patents

Oscillatory driver, its manufacture, and apparatus equipped with the same

Info

Publication number
JPH11318090A
JPH11318090A JP10139250A JP13925098A JPH11318090A JP H11318090 A JPH11318090 A JP H11318090A JP 10139250 A JP10139250 A JP 10139250A JP 13925098 A JP13925098 A JP 13925098A JP H11318090 A JPH11318090 A JP H11318090A
Authority
JP
Japan
Prior art keywords
vibration
vibrating body
driving device
contact surface
sliding contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10139250A
Other languages
Japanese (ja)
Inventor
Takayuki Shirasaki
隆之 白崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP10139250A priority Critical patent/JPH11318090A/en
Publication of JPH11318090A publication Critical patent/JPH11318090A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an oscillatory driver using a hardening film making use of the property of an electroless plated film, for the contact face of a contactor, at low cost and with good mass-productivity. SOLUTION: In an oscillatory driver which drives an oscillator 2 for exciting vibration and a contactor 7 to contact with this oscillator relatively through friction, one sliding face between the oscillator 2 and the contactor 7 is processed for leveling, and then electroless plating is applied to make a hardening film, and the other sliding face is made of a composite resin layer 6 containing the reinforcing material in resin or a resin composition.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、振動型駆動装置に
関し、さらに詳しくは振動型駆動装置の構成部材である
振動体と接触体の摺接面の形成に係る振動型駆動装置、
その製造方法およびそれを備えた機器に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vibration-type driving device, and more particularly, to a vibration-type driving device for forming a sliding contact surface between a vibrating body and a contact body which are members of the vibration-type driving device.
The present invention relates to a method of manufacturing the same and a device including the same.

【0002】[0002]

【従来の技術】振動波モータ等と称される振動型駆動装
置は、振動体とこれに加圧接触する接触体との間の摩擦
を利用して、振動体の高周波振動の振動エネルギーを接
触体(移動体)の連続的な機械運動エネルギーに変換さ
せる形式の動力発生源である。このため、両者の摺接面
は耐摩耗性の高い材質で構成されていることが必要であ
る。
2. Description of the Related Art A vibration-type driving device called a vibration wave motor or the like uses the friction between a vibrating body and a contact body that comes into pressure contact with the vibrating body to contact vibration energy of high-frequency vibration of the vibrating body. It is a power source of the type that converts it into continuous mechanical kinetic energy of the body (moving body). For this reason, it is necessary that both sliding contact surfaces are made of a material having high wear resistance.

【0003】従来の振動型駆動装置において、振動体の
摺接面は、例えば平均粒子径が1μm程度のフッ素樹脂
(例えば、PTFE)を体積比で5〜25%均一に分散
した無電解ニッケル膜や、三元合金の無電解ニッケル膜
(例えばNi−P−B)を厚さ20〜30μm程度に形
成し、そのあと400℃以下で加熱硬化処理をして高硬
度の硬化膜の摺接面を得ていた。この高硬度の硬化膜の
摺接面は、更に例えば粒径3μm以下のダイヤモンド微
粒子を用いた研磨材により、平面度だしのためのラップ
加工をおこなって、平面度が3μm以下、中心線平均粗
さRa(μm)が0.03以下の平面に仕上げていた。
In the conventional vibration type driving device, the sliding surface of the vibrating body is made of an electroless nickel film in which a fluororesin (for example, PTFE) having an average particle diameter of about 1 μm is uniformly dispersed in a volume ratio of 5 to 25%. Alternatively, a ternary alloy electroless nickel film (e.g., Ni-P-B) is formed to a thickness of about 20 to 30 [mu] m, and then subjected to heat hardening treatment at 400 [deg.] C. or less to make a sliding contact surface of a hardened hard film. Was getting. The sliding surface of the high hardness cured film is further wrapped for flatness with an abrasive using fine diamond particles having a particle diameter of 3 μm or less, for example, to have a flatness of 3 μm or less and a center line average roughness. The surface was finished to have a surface Ra (μm) of 0.03 or less.

【0004】また、移動体の摺接面には、耐熱性の熱可
塑性樹脂又は液晶性の全芳香族ポリエステル樹脂等のベ
ース樹脂に、強化材として炭素ビーズを重量比で10〜
30%充填し、さらに必要に応じて潤滑剤であるフッ素
樹脂(PTFE)を重量比で5〜10%程度充填した複
合樹脂の層を設けていた。
On the sliding surface of the moving body, a base resin such as a heat-resistant thermoplastic resin or a liquid-crystalline wholly aromatic polyester resin, and carbon beads as a reinforcing material in a weight ratio of 10 to 10 are used.
A composite resin layer filled with 30% and, if necessary, with a fluororesin (PTFE) as a lubricant at a weight ratio of about 5 to 10% was provided.

【0005】このように振動体の摺接面に硬化膜を形成
し、移動体の摺接面に複合樹脂層を形成したものは、両
摺接面間の摩擦係数が安定しており、且つ大きな駆動出
力が期待でき、旦つ振動体の摺接面の摩耗がほとんどな
く、移動体の摺接面の複合樹脂層の摩耗も極力小さくす
ることが可能とされたからである。
[0005] As described above, when the cured film is formed on the sliding contact surface of the vibrating body and the composite resin layer is formed on the sliding contact surface of the moving body, the friction coefficient between both sliding contact surfaces is stable, and This is because a large driving output can be expected, and the sliding surface of the vibrating body is hardly worn every time, and the wear of the composite resin layer on the sliding surface of the moving body can be minimized.

【0006】また、複合樹脂層のベース樹脂には耐熱性
の熱可塑性樹脂が使用されるが、これは材料物性の温度
依存性が比較的小さく、駆動時の温度上昇に対しても樹
脂材の軟化に起因するトルクダウンの現象が発生せず、
駆動性能および精度を安定させることができるからであ
る。
A heat-resistant thermoplastic resin is used as the base resin of the composite resin layer. However, this resin has relatively small temperature dependence of the physical properties of the material. The phenomenon of torque down due to softening does not occur,
This is because driving performance and accuracy can be stabilized.

【0007】さらに、複合樹脂層に潤滑剤であるフッ素
樹脂(PTFE)を充填するのは、フッ素樹脂が潤滑
性、非粘着性および撥水性等の特性を有しているので、
振動体の摺接面(硬化膜上)にフッ素樹脂の移着膜を形
成させることにより、両摺接面間の潤滑性を向上させ、
摩擦係数の安定化や複合樹脂層の摩耗減少を図るためで
ある。
Further, the fluororesin (PTFE) as a lubricant is filled in the composite resin layer because the fluororesin has properties such as lubricity, non-adhesion and water repellency.
By forming a fluorocarbon resin transfer film on the sliding contact surface (on the cured film) of the vibrator, lubrication between both sliding contact surfaces is improved,
This is for stabilizing the coefficient of friction and reducing the wear of the composite resin layer.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、上記の
ような従来の振動型駆動装置において、振動体の摺接面
を所定の平面度(3μm以下)と面粗さRa(0.03
μm以下)で形成するのには、 メッキ処理前の摺接面の平面度が悪いため、硬化膜を
約25μmと厚くする必要がある メッキ処理後の摺接面の平面度が悪いため、平面度だ
しのための硬化膜の除去する厚みが大きい等の加工時間
に関するコストアップの要因が課題となっていた。
However, in the above-described conventional vibration-type driving device, the sliding surface of the vibrating body has a predetermined flatness (3 μm or less) and a surface roughness Ra (0.03 μm).
(μm or less), it is necessary to thicken the cured film to about 25 μm because the flatness of the sliding contact surface before plating is poor, and the flatness of the sliding contact surface after plating is poor. Factors of cost increase, such as processing time, such as a large thickness of the cured film for removal, have been a problem.

【0009】又、硬度の高い振動体の摺接面に所定の平
面度(3μm以下)或は面粗さ(0.03μm以下)を
形成するのに、研磨材によるラップ加工を前提としてい
たため加工時間が長いほかに量産性にも欠けるという問
題もあった。
Further, since a predetermined flatness (3 μm or less) or surface roughness (0.03 μm or less) is formed on the sliding surface of the vibrating body having a high hardness, lapping with an abrasive is premised. In addition to the long processing time, there was also a problem that mass productivity was lacking.

【0010】本発明は、この様な従来技術の問題を解決
するためになされたものであり、振動体或は接触体の摺
接面に無電解メッキ膜の特性を生かした硬化膜を用いた
振動型駆動装置を、低コストで、量産性良く提供するこ
とを目的とするものである。また、その振動型駆動装置
を備えた機器を提供することを目的とするものである。
The present invention has been made to solve such a problem of the prior art, and uses a cured film utilizing the characteristics of an electroless plating film on a sliding surface of a vibrating body or a contact body. An object of the present invention is to provide a vibration type driving device at low cost and with good mass productivity. It is another object of the present invention to provide a device provided with the vibration type driving device.

【0011】[0011]

【課題を解決するための手段】即ち、本発明の第一の発
明は、振動が励起される振動体と、この振動体に接触す
る接触体とを相対的に摩擦駆動する振動型駆動装置にお
いて、前記振動体および前記接触体のうち一方の摺接面
を平面度だし加工後に無電解メッキを施して硬化膜を形
成し、他方の摺接面を樹脂又は樹脂組成物に強化材を含
有させた複合樹脂層で形成したことを特徴とする振動型
駆動装置である。
That is, a first aspect of the present invention is directed to a vibration type driving device which relatively frictionally drives a vibrating body whose vibration is excited and a contact body which comes into contact with the vibrating body. , One of the vibrating body and the contact body is flattened to form a cured film by performing electroless plating after processing to form a cured film, and the other sliding contact surface is made of a resin or a resin composition containing a reinforcing material. And a vibration type driving device formed of a composite resin layer.

【0012】前記振動体或は接触体の摺接面の平面度だ
しは研磨加工或は研磨剤を含む回転平定盤で研削加工す
るのが好ましい。前記振動体及び前記移動体の摺接面を
平面度が5μm以下で、中心線平均粗さRa(μm)が
0.4以下の平面に形成することが好ましい。前記無電
界メッキの硬化膜が硬質の微粒子或はフッ素樹脂(例え
ば、PTFE)を共折する無電解ニッケルメッキである
ことが好ましい。
It is preferable that the flatness of the sliding contact surface of the vibrating body or the contacting body is ground by a grinding process or a rotary flat plate containing an abrasive. It is preferable that the sliding surfaces of the vibrating body and the moving body are formed on a flat surface having a flatness of 5 μm or less and a center line average roughness Ra (μm) of 0.4 or less. It is preferable that the cured film of the electroless plating is electroless nickel plating in which hard fine particles or fluorine resin (for example, PTFE) are folded together.

【0013】前記無電解メッキの硬化膜が三元合金の無
電解メッキであることが好ましい。前記無電解メッキの
硬化膜が凹所を有するメッキ膜にフッ素樹脂(例えば、
PTFE)を封入した無電解ニッケル膜であることが好
ましい。前記無電解メッキの硬化膜が100〜400℃
で加熱硬化処理されていることが好ましい。
Preferably, the cured film of the electroless plating is a ternary alloy electroless plating. The cured film of the electroless plating is a fluororesin (for example,
It is preferably an electroless nickel film encapsulating PTFE). The cured film of the electroless plating is 100 to 400 ° C.
Is preferably heat-cured.

【0014】前記振動体の母材がマルテンサイト系ステ
ンレス鋼であることが好ましい。前記振動体の母材が鉄
系(ステンレスを含む)の焼結合金であることが好まし
い。
It is preferable that the base material of the vibrator is martensitic stainless steel. It is preferable that a base material of the vibrating body is an iron-based (including stainless) sintered alloy.

【0015】前記振動体は平面度だしの機械加工の前或
は後に応力除去熱処理がおこなわれることが好ましい。
前記接触体の母材がアルミ合金であることが好ましい。
前記接触体のアルミ合金は熱処理型合金であることが好
ましい。
The vibrating body is preferably subjected to a stress relief heat treatment before or after the flatness machining.
Preferably, a base material of the contact body is an aluminum alloy.
Preferably, the aluminum alloy of the contact body is a heat treatment type alloy.

【0016】本発明の第二の発明は、振動が励起される
振動体と、この振動体に接触する加圧部を有する接触体
とを相対的に摩擦駆動する振動型駆動装置において、前
記振動体および前記接触体のうち一方の摺接面を平面或
はテーパ形状に加工し、加工後無電解メッキを施して硬
化膜を形成し、他方の摺接面をテーパ形状或は平面の樹
脂又は樹脂組成物に強化材を含有した複合樹脂層で形成
したことが好ましい。
According to a second aspect of the present invention, there is provided a vibration type driving apparatus for relatively driving a vibrating body for exciting vibration and a contacting body having a pressurizing portion in contact with the vibrating body. One of the sliding contact surfaces of the body and the contact body is processed into a flat surface or a tapered shape, and after processing, an electroless plating is performed to form a cured film, and the other sliding contact surface is formed of a tapered or flat resin or The resin composition is preferably formed of a composite resin layer containing a reinforcing material.

【0017】前記振動体或は前記接触体の摺接面のテー
パ形状は加圧部に加工用加圧力を作用させ、研磨剤を含
む回転平定盤で研削加工して形成することが好ましい。
前記振動体或は接触体のテーパ形状の摺接面を中心線粗
さRa(μm)が0.4以下で形成することが好まし
い。
Preferably, the tapered shape of the sliding contact surface of the vibrating body or the contacting body is formed by applying a processing pressure to a pressing portion and performing a grinding process on a rotating flat plate containing an abrasive.
It is preferable to form the tapered sliding contact surface of the vibrating body or the contact body with a center line roughness Ra (μm) of 0.4 or less.

【0018】本発明の第三の発明は、振動が励起される
振動体と、この振動体に接触する接触体とを相対的に摩
擦駆動する振動型駆動装置の製造方法において、前記振
動体および前記接触体のうち一方の摺接面を平面度だし
加工した後、無電解メッキを施して硬化膜を形成する工
程、他方の摺接面に樹脂又は樹脂組成物に強化材を含有
させた複合樹脂層を形成する工程、前記振動体と前記接
触体を摺接面で接触させる工程を有することを特徴とす
る振動型駆動装置の製造方法である。前記振動体或は接
触体の摺接面の平面度だしは研磨加工或は研磨剤を含む
回転平定盤で研削加工することが好ましい。
According to a third aspect of the present invention, there is provided a method of manufacturing a vibration-type drive device for relatively driving a vibrating body, which is excited by vibration, and a contact body that comes into contact with the vibrating body, A step of forming a cured film by applying electroless plating after processing one of the sliding bodies of the contact body to obtain flatness, a composite in which a reinforcing material is contained in a resin or a resin composition on the other sliding body. A method of manufacturing a vibration-type driving device, comprising: a step of forming a resin layer; and a step of bringing the vibrating body and the contact body into contact with each other on a sliding contact surface. It is preferable that the flatness of the sliding contact surface of the vibrating body or the contact body is ground by a grinding process or a rotary flat plate containing an abrasive.

【0019】本発明の第四の発明は、振動が励起される
振動体と、この振動体に接触する加圧部を有する接触体
とを相対的に摩擦駆動する振動型駆動装置の製造方法に
おいて、前記振動体および前記接触体のうち一方の摺接
面を平面或はテーパ形状に加工した後、無電解メッキを
施して硬化膜を形成する工程、他方の摺接面をテーパ形
状或は平面の樹脂又は樹脂組成物に強化材を含有した複
合樹脂層を形成する工程、前記振動体と前記接触体を摺
接面で加圧して接触させる工程を有することを特徴とす
る振動型駆動装置の製造方法である。
According to a fourth aspect of the present invention, there is provided a method of manufacturing a vibration-type driving device for relatively driving a vibrating body which is excited by vibration and a contacting body having a pressurizing portion which comes into contact with the vibrating body. Forming one of the vibrating body and the contact body into a flat or tapered shape, and then applying an electroless plating to form a hardened film; and forming the other sliding contact surface into a tapered or flat shape. Forming a composite resin layer containing a reinforcing material in the resin or resin composition of the above, further comprising a step of bringing the vibrating body and the contact body into contact with each other by pressing the sliding body with a sliding surface. It is a manufacturing method.

【0020】前記振動体と前記接触体を一方はテーパ形
状で他方は平面の摺接面で加圧して接触させるのが好ま
しい。前記振動体或は前記接触体の摺接面のテーパ形状
は加圧部に加工用加圧力を作用させ、研磨剤を含む回転
平定盤で研削加工して形成するのが好ましい。
It is preferable that one of the vibrating body and the contact body is brought into contact with a tapered shape and the other is pressed by a flat sliding contact surface. It is preferable that the tapered shape of the sliding contact surface of the vibrating body or the contact body is formed by applying a processing pressure to a pressing portion and grinding with a rotary flat plate containing an abrasive.

【0021】本発明の第五の発明は上記の振動波駆動装
置からなることを特徴とする振動波モータである。さら
に、本発明は、上記の振動波駆動装置または振動波モー
タを駆動源として設けたことを特徴とする機器である。
According to a fifth aspect of the present invention, there is provided a vibration wave motor comprising the above vibration wave driving device. Further, the present invention is a device provided with the above-mentioned vibration wave driving device or vibration wave motor as a driving source.

【0022】[0022]

【発明の実施の形態】以下、本発明を詳細に説明する。
上記の目的を達成するため本発明で第一の実施形態では
振動が励起される振動体と、この振動体に接触する接触
体とを相対的に摩擦駆動する振動型駆動装置において、
前記振動体および前記接触体のうち一方の摺接面を平面
度だし加工後に無電解メッキをおこない硬化膜を形成
し、他方の摺接面を樹脂又は樹脂組成物に硬化材を含有
させた複合樹脂層で形成する。その際振動体或は接触体
の平面度だしは、研磨加工或は研磨剤を含む回転平定盤
で研削加工しておこない、振動体或は接触体の摺接面を
平面度が5μm以下で、中心線平均粗さRa(μm)が
0.4以下の平面で形成する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail.
In order to achieve the above object, in the first embodiment of the present invention, in a vibration type driving device that relatively frictionally drives a vibration body whose vibration is excited and a contact body that comes into contact with the vibration body,
A composite in which one of the vibrating body and the contact body is flattened to form a cured film by performing electroless plating after processing, and the other sliding contact surface is made of a resin or a resin composition containing a hardening material. It is formed of a resin layer. At that time, the flatness of the vibrating body or the contact body is determined by polishing or grinding with a rotating flat plate containing an abrasive, and the flatness of the sliding surface of the vibrating body or the contact body is 5 μm or less. It is formed on a plane having a center line average roughness Ra (μm) of 0.4 or less.

【0023】前記無電解メッキの硬化膜が硬質の微粒子
又はフッ素樹脂(PTFE)を共折する無電解ニッケツ
メッキ膜、三元合金の無電解メッキ膜及び凹所を有する
メッキ膜にフッ素樹脂(PTFE)を封入した無電解ニ
ッケルメッキ膜のいずれか1つであって、これらの無電
解メッキは100〜400℃で加熱硬化処理された硬化
膜である。
The cured film of the electroless plating is formed by co-folding hard fine particles or fluororesin (PTFE), an electroless nickel plating film, a ternary alloy electroless plating film, and a fluororesin (PTFE) on a plating film having a recess. Are electroless nickel plated films, and these electroless plated films are cured films that have been subjected to heat curing at 100 to 400 ° C.

【0024】前記振動体の母材はマルテンサイト系ステ
ンレス鋼或は鉄系(ステンレス鋼を含む)の焼結合金で
あり、機械加工の前或は後に応力除去熱処理がおこなわ
れる。前記接触体の母材はアルミ合金で形成され、アル
ミ合金としては熱処理型合金とする。
The base material of the vibrating body is a martensitic stainless steel or an iron-based (including stainless steel) sintered alloy, and is subjected to a stress relief heat treatment before or after machining. The base material of the contact body is formed of an aluminum alloy, and the heat treatment type alloy is used as the aluminum alloy.

【0025】本発明の第二の実施形態では、振動体が励
起される振動体と、この振動体に接触する加圧部を有す
る接触体とを相対的に摩擦駆動する振動型駆動装置にお
いて、前記振動体および前記接触体のうち一方の摺接面
を平面或はテーパ形状に加工し、加工後に無電解メッキ
をおこない硬化膜を形成し、他方の摺接面をテーパ形状
或は平面の樹脂又は樹脂組成物に硬化材を含有させた複
合樹脂層を設ける。その際、振動体或は接触体の摺接面
のテーパ形状は加圧部に加工用加圧力を作用させ、研磨
剤を含む回転平定盤で研削加工しておこない、振動体或
は接触体のテーパ形状の摺接面を中心線平均粗さRa
(μm)が0.4以下で形成する。
According to a second embodiment of the present invention, there is provided a vibration-type driving device which relatively frictionally drives a vibrating body in which a vibrating body is excited and a contacting body having a pressurizing portion in contact with the vibrating body. One of the vibrating body and the contact body is processed into a flat or tapered shape, and after the processing, electroless plating is performed to form a cured film, and the other sliding contact surface is formed into a tapered or flat resin. Alternatively, a composite resin layer containing a hardening material in a resin composition is provided. At that time, the tapered shape of the sliding contact surface of the vibrating body or the contacting body is formed by applying a processing pressure to the pressurizing portion and performing grinding by a rotating flat plate containing an abrasive. The center line average roughness Ra is the tapered sliding surface.
(Μm) is 0.4 or less.

【0026】振動体の母材にマルテンサイト系のステン
レスであるSUS420J2を用いた具体例で加工工程
を説明すると、機械加工が完了したあと、650℃で3
時間加熱し、徐冷して応力除去熱処理(焼きなまし)を
行う。次に振動体の摺接面の平面度だしで、所定の平面
度(5μm以下)と中心線平均粗さRa(0.4μm以
下)の平面を形成する。
The working process will be described using a specific example in which SUS420J2 which is a martensitic stainless steel is used as the base material of the vibrating body.
Heating is performed for a period of time, followed by slow cooling to perform a stress relief heat treatment (annealing). Next, a plane having a predetermined flatness (5 μm or less) and a center line average roughness Ra (0.4 μm or less) is formed by measuring the flatness of the sliding contact surface of the vibrating body.

【0027】振動体の摺接面の精度が非常に厳しいとき
は、3μm程度のダイアモンド粒子を用いた研磨加工を
おこない、平面度が2μm程度、中心線平均粗さRaは
0.03μm程度の平面が得られる。
When the accuracy of the sliding surface of the vibrating body is extremely severe, polishing using diamond particles of about 3 μm is performed to obtain a flat surface having a flatness of about 2 μm and a center line average roughness Ra of about 0.03 μm. Is obtained.

【0028】振動体の摺接面の形成をより量産的に実施
したいときは、例えば研磨剤を含む回転平定盤に振動体
の摺接面を置き、必要に応じて適度の荷重を摺接面の真
上に付加して平面度だしの研削加工をおこない、平面度
が4μm程度、中心線平均粗さRaは0.3μm程度の
平面が得られる。
When it is desired to form the sliding contact surface of the vibrating body in a more mass-produced manner, the sliding contact surface of the vibrating body is placed on, for example, a rotating platen containing an abrasive, and an appropriate load is applied as necessary. Then, the flatness is ground and the flatness is about 4 μm and the center line average roughness Ra is about 0.3 μm.

【0029】次に、平面度だし加工が完了した振動体を
無電解メッキ処理する。無電解メッキは全てのメッキ面
に対して均一な厚みの膜を形成するが、特にニッケル系
のメッキは最も一般的で技術も十分確立しており、信頼
性あるメツキ膜である。
Next, the vibrating body that has been finished with the flatness processing is subjected to electroless plating. Electroless plating forms a film with a uniform thickness on all plating surfaces. In particular, nickel-based plating is the most common and well-established technology, and is a reliable plating film.

【0030】無電解メッキの膜厚は従来の膜厚20〜3
0μmに対し、5〜10μmと薄くしてもよい。無電解
メッキの種類としては、よく知られている共析型がある
が、これには炭化ケイ素(SiC)等、硬質の微粒子を
共折する硬質複合メッキと、粒径が1μm程度のフッ素
樹脂(PTFE)を共析する自己潤滑性メッキがある。
フッ素樹脂を体積比で5〜15%共析する自己潤滑性の
無電解ニッケルメッキは100〜400℃で加熱硬化処
理をすると、ビッカース硬さ(Hv)が1000〜60
0程度の硬化膜が得られる。
The film thickness of the electroless plating is the conventional film thickness of 20 to 3
The thickness may be as thin as 5 to 10 μm with respect to 0 μm. As the types of electroless plating, there are well-known eutectoid types. These include hard composite plating that co-folds hard fine particles such as silicon carbide (SiC) and fluororesin having a particle size of about 1 μm. There is a self-lubricating plating for eutectoid (PTFE).
The self-lubricating electroless nickel plating, in which the fluororesin is eutectoid at a volume ratio of 5 to 15%, has a Vickers hardness (Hv) of 1000 to 60 when heat-cured at 100 to 400 ° C.
A cured film of about 0 is obtained.

【0031】次に有効な無電解メッキとして三元合金の
無電解メッキがあるが、ニッケル−リン−ホウ素から無
電解ニッケルメッキ(Ni−P−B)は300℃及び2
00℃の加熱硬化処理でビッカース硬さ(Hv)がそれ
ぞれ1000及び900と高硬度の硬化膜が得られる。
The next effective electroless plating is ternary alloy electroless plating. Nickel-phosphorus-boron electroless nickel plating (Ni-P-B) is performed at 300 ° C. and 2 ° C.
A cured film having a high hardness of Vickers hardness (Hv) of 1000 and 900, respectively, can be obtained by heat curing at 00 ° C.

【0032】三元合金の無電解メッキには上記のNi−
P−Bの他にNi−P−W及びN−P−Co等のNi−
P系やNi−B−W及びNi−B−Co等のNi−B系
の合金膜と、さらにCo−P−W及びCo−B−W等の
無電解コバルトメッキの合金膜等が知られており、これ
等の三元合金の無電解メッキはいずれも100〜400
℃で加熱硬化処理して硬質の硬化膜として用いる。
For the electroless plating of a ternary alloy, the above Ni-
In addition to P-B, Ni- such as Ni-P-W and N-P-Co
Known are Ni-B based alloy films such as P-based, Ni-B-W and Ni-B-Co, and electroless cobalt-plated alloy films such as Co-P-W and Co-B-W. The electroless plating of these ternary alloys is 100 to 400
Heat cured at ℃ to use as a hard cured film.

【0033】特殊な無電解メッキとして凹所を有するメ
ッキ膜にフッ素樹脂(PTFE)を封入した自己潤滑性
の複合硬化膜がある。このメッキ膜は多孔性表面性状を
示しており、例えば直径が60μm、深さが6μm程度
の点在する凹所にPTFEを融点以上の温度、例えば3
60℃で融着封入した硬質の無電解メッキ膜である。
As a special electroless plating, there is a self-lubricating composite cured film in which a fluorine resin (PTFE) is sealed in a plating film having a recess. This plating film has a porous surface property. For example, PTFE is heated to a temperature higher than the melting point, for example, 3 μm in a dotted part having a diameter of 60 μm and a depth of about 6 μm.
It is a hard electroless plating film fused and sealed at 60 ° C.

【0034】次にアルミ合金の接触体の加工工程を説明
すると、アルミ合金としては例えば非熱処理型合金のA
l−Mg系合金(具体的にはA5056−H34材)や
熱処理型合金の2000、6000および7000系の
アルミ合金が用いられるが、無電解メッキをし、そのあ
と加熱硬化処理するさいの接触体の変形等を考慮して、
515〜550℃で溶体化処理されている熱処理型合金
であるA6061−T4材等を使用するのがよい。
Next, a description will be given of a processing step of an aluminum alloy contact body.
1-Mg alloys (specifically, A5056-H34) and heat-treated alloys of 2000, 6000, and 7000 aluminum alloys are used, but the contact body is subjected to electroless plating and then heat hardening. Considering the deformation of
A6061-T4 material or the like, which is a heat treatment type alloy solution-treated at 515 to 550 ° C, is preferably used.

【0035】接触体を旋削加工した後、摺接面をダイア
モンド粒子を用いた研磨加工で平面度2μm程度、中心
線平均粗さRaが0.03μm程度に仕上がる。
After the contact body is turned, the sliding surface is polished with diamond particles to a flatness of about 2 μm and a center line average roughness Ra of about 0.03 μm.

【0036】摺接面の形成をより量産的に実施したいと
きは、研磨剤を含む回転平定盤に接触体の摺接面を置
き、研削加工して仕上げる。その際加工時間の短縮のた
め適度の荷重を摺接面の真上に付加して、平面度だしの
研削加工をおこない、平面度が4μm程度、中心線平均
粗さRaは0.3μm程度の平面が得られる。
When it is desired to form the sliding contact surface in a more mass-produced manner, the sliding contact surface of the contact body is placed on a rotary flat plate containing an abrasive and finished by grinding. At that time, an appropriate load is applied just above the sliding contact surface to shorten the processing time, and the flatness is ground. The flatness is about 4 μm, and the center line average roughness Ra is about 0.3 μm. A plane is obtained.

【0037】適度の荷重を接触体の加圧部に付加して研
削加工をおこなうと、中心線平均粗さRaが0.3μm
程度のテーパ形状の摺接面が得られる。
When an appropriate load is applied to the pressurized portion of the contact body and grinding is performed, the center line average roughness Ra is 0.3 μm.
A sliding contact surface having a tapered shape of a degree is obtained.

【0038】次に、平面度だし加工が完了した接触体を
無電解メッキ処理する。無電解メッキとして例えば三元
合金の無電解ニッケルメッキ(Ni−P−B)を選択
し、接触体の摺接面に厚み20〜30μmのメッキ膜を
形成し、200℃で加熱硬化処理をして、ビッカース硬
さ(Hv)が850程度の硬化膜を形成する。メッキ膜
の厚みを20〜30μmと厚めにしたのは接触体の母材
がアルミ合金で比較的軟らかい材料で変形しやすいため
である。
Next, the contact body that has been finished with the flatness processing is subjected to electroless plating. As the electroless plating, for example, ternary alloy electroless nickel plating (Ni-P-B) is selected, a plating film having a thickness of 20 to 30 μm is formed on the sliding contact surface of the contact body, and heat-cured at 200 ° C. Thus, a cured film having a Vickers hardness (Hv) of about 850 is formed. The reason why the thickness of the plating film is made as large as 20 to 30 μm is that the base material of the contact body is an aluminum alloy, which is a relatively soft material and is easily deformed.

【0039】本発明においては、振動体或は移動体の他
方の摺接面を樹脂又は樹脂組成物に硬化材を含有させた
複合樹脂層で形成する。
In the present invention, the other sliding contact surface of the vibrating body or the moving body is formed of a resin or a composite resin layer containing a resin composition containing a hardening material.

【0040】複合樹脂層としては、ガラス移転点が14
5℃の結晶性の熱可塑性樹脂であるポリエーテルニトリ
ル(出光PEN)をベース樹脂とし、これに強化材とし
てPAN系の炭素繊維(CF)を重量比で20%、さら
に潤滑剤であるフッ素樹脂(PTFE)及び黒鉛を重量
比で10%及び5%、それぞれ充填した複合樹脂で形成
する。
The composite resin layer has a glass transition point of 14
The base resin is polyether nitrile (Idemitsu PEN) which is a crystalline thermoplastic resin at 5 ° C., and PAN-based carbon fiber (CF) is used as a reinforcing material in a weight ratio of 20%, and a fluorine resin as a lubricant is used. (PTFE) and graphite are formed of a filled composite resin at a weight ratio of 10% and 5%, respectively.

【0041】振動体或は接触体に複合樹脂層を形成する
方法は、例えば複合樹脂の射出成形品から、リング形状
のワッシャーを削りだしたあと、振動体或は接触体に固
着して、複合樹脂層を形成したあと、振動体或は接触体
の複合樹脂層を切削加工で所定の形状寸法に仕上げ、最
後に前記の加工法で摺接面を形成する。
A method of forming a composite resin layer on a vibrating body or a contact body is, for example, by shaving a ring-shaped washer from an injection-molded product of a composite resin and then fixing the ring-shaped washer to the vibrating body or a contact body. After the formation of the resin layer, the composite resin layer of the vibrating body or the contact body is finished to a predetermined shape and size by cutting, and finally a sliding contact surface is formed by the above-described processing method.

【0042】本発明の振動型駆動装置の製造方法は、前
記振動体および前記接触体のうち一方の摺接面を平面度
だし加工した後、無電解メッキを施して硬化膜を形成す
る工程、他方の摺接面に樹脂又は樹脂組成物に強化材を
含有させた複合樹脂層を形成する工程、前記振動体と前
記接触体を摺接面で接触させる工程により行う。
The method of manufacturing a vibration type driving device according to the present invention includes a step of forming a hardened film by subjecting one of the vibrating body and the contact body to a sliding contact surface to flatness, and then performing electroless plating. The step of forming a composite resin layer containing a resin or a resin composition containing a reinforcing material on the other sliding contact surface and the step of bringing the vibrating body and the contact body into contact with each other on the sliding contact surface are performed.

【0043】また、本発明の振動型駆動装置の製造方法
は、前記振動体および前記接触体のうち一方の摺接面を
平面或はテーパ形状に加工した後、無電解メッキを施し
て硬化膜を形成する工程、他方の摺接面をテーパ形状或
は平面の樹脂又は樹脂組成物に強化材を含有した複合樹
脂層を形成する工程、前記振動体と前記接触体を摺接面
で加圧して接触させる工程により行う。
In the method of manufacturing a vibration type driving device according to the present invention, one of the vibrating body and the contacting body may be formed into a flat or tapered sliding contact surface and then subjected to electroless plating to form a cured film. Forming a composite resin layer containing a reinforcing material in a resin or resin composition having a tapered or flat surface on the other sliding contact surface, and pressing the vibrating body and the contact body with the sliding contact surface. The contact is performed by the step of contacting with

【0044】本発明の振動波駆動装置は、例えば振動波
モータ、紙送り装置、リニアモータ等に用いることがで
きる。また、本発明の振動波駆動装置は、駆動源として
各種の機器に用いることができる。機器の具体例として
は、カメラなどの光学機器、プリンター,複写機等の事
務機器、パワーウインドー,アクティブサスペンション
等の自動車関連機器が挙げられる。
The vibration wave driving device of the present invention can be used for, for example, a vibration wave motor, a paper feeder, a linear motor and the like. Further, the vibration wave driving device of the present invention can be used for various devices as a driving source. Specific examples of the equipment include optical equipment such as a camera, office equipment such as a printer and a copying machine, and automobile-related equipment such as a power window and an active suspension.

【0045】[0045]

【実施例】以下に実施例を挙げて本発明を具体的に説明
する。図1には、本発明の第一の実施形態である振動波
モータ(振動型駆動装置)の全体構成を示す断面図であ
り、図2には、この振動波モータを構成する振動体と接
触体の部分拡大断面図を示している。
EXAMPLES The present invention will be specifically described below with reference to examples. FIG. 1 is a cross-sectional view showing the overall configuration of a vibration wave motor (vibration type driving device) according to a first embodiment of the present invention. FIG. FIG. 2 shows a partially enlarged sectional view of the body.

【0046】これらの図において、1は薄い円環形状の
圧電素子である。2は弾性材料により作られた振動体で
あり、この振動体2の摺接面側には、λ/2あたり4個
の突起(くし歯)が等間隔で全周にわたって形成されて
いる。そして、各くし歯の表面(摺接面)には、後述す
る硬化膜が形成されている。また、振動体2の摺接面と
反対側の面には圧電素子1の電極面全面が固着されてお
り、両者でステータを構成している。
In these figures, reference numeral 1 denotes a thin ring-shaped piezoelectric element. Reference numeral 2 denotes a vibrating body made of an elastic material, and four protrusions (comb teeth) per [lambda] / 2 are formed on the sliding surface side of the vibrating body 2 at equal intervals over the entire circumference. A hardened film described later is formed on the surface (sliding contact surface) of each comb tooth. In addition, the entire surface of the electrode surface of the piezoelectric element 1 is fixed to the surface of the vibrating body 2 opposite to the sliding contact surface, and both form a stator.

【0047】3はこの振動波モータの筐体であり、この
筐体3には、振動体2がビス4によって同心的に固定さ
れている。また、筐体3の中心部には、第1ボール軸受
11の外輪が固着されている。10は回転軸であり、こ
の回転軸10の軸方向中間部には中間部材15が、例え
ば焼ばめ等の方法により固着されている。回転軸10の
一端は、第1ボール軸受11の内輪に軸方向に摺動可能
に支持され、他端は第2ボール軸受12の内輪に軸方向
に摺動可能に支持されている。なお、第2ボール軸受1
2の外輪は、筐体3にネジ9により固定された筐体カバ
ー8の中心軸に固着されている。
Reference numeral 3 denotes a housing of the vibration wave motor, and a vibrating body 2 is fixed to the housing 3 by screws 4 concentrically. The outer ring of the first ball bearing 11 is fixed to the center of the housing 3. Reference numeral 10 denotes a rotating shaft, and an intermediate member 15 is fixed to an axially intermediate portion of the rotating shaft 10 by, for example, shrink fitting. One end of the rotating shaft 10 is axially slidably supported by the inner ring of the first ball bearing 11, and the other end is axially slidably supported by the inner ring of the second ball bearing 12. The second ball bearing 1
The outer ring 2 is fixed to a central axis of a housing cover 8 fixed to the housing 3 with screws 9.

【0048】中間部材15の外周部には、環状の接触体
7が同心的に嵌合して設けられている。この接触体7
は、アルミ合金等から環状に作られた支持体5と、この
支持体5の表面に接着剤により同心的に固着された複合
樹脂層6とから構成されている。支持体5の裏面と中間
部材15のフランジ部との間には、ゴム製の弾性シート
材17が介在しており、中間部材15と第2ボール軸受
12の内輪との間に設けられた圧縮ばね部材14が発生
する軸方向加圧力がこの弾性シート部材17を介して支
持体5に軸方向に作用する構成となっている。この軸方
向加圧力により、接触体7の摺接面(複合樹脂層6の表
面)は、振動体2の摺接面に圧接される。なお、圧縮ば
ね部材14が発生する軸方向加圧力(つまりは接触体7
と振動体2との圧接力)は、第2ボール軸受12の内輪
と圧縮ばね部材14との間に設けられた不図示のスペー
サ部材によって調整することができる。
On the outer peripheral portion of the intermediate member 15, an annular contact body 7 is provided so as to fit concentrically. This contact body 7
Is composed of an annular support 5 made of an aluminum alloy or the like, and a composite resin layer 6 concentrically fixed to the surface of the support 5 with an adhesive. An elastic sheet material 17 made of rubber is interposed between the back surface of the support 5 and the flange portion of the intermediate member 15, and a compression member provided between the intermediate member 15 and the inner ring of the second ball bearing 12. The axial pressure generated by the spring member 14 acts on the support 5 in the axial direction via the elastic sheet member 17. By this axial pressure, the sliding contact surface of the contact body 7 (the surface of the composite resin layer 6) is pressed against the sliding contact surface of the vibrating body 2. The axial force generated by the compression spring member 14 (that is, the contact body 7)
The pressure contact force between the second ball bearing 12 and the compression member 14 can be adjusted by a spacer member (not shown) provided between the inner ring of the second ball bearing 12 and the compression spring member 14.

【0049】このように構成された振動波モータに対す
る要求特性を表1に示す。
Table 1 shows the required characteristics of the vibration wave motor configured as described above.

【0050】[0050]

【表1】 [Table 1]

【0051】また上記振動波モータの主設計仕様を表2
に示す。
Table 2 shows the main design specifications of the vibration wave motor.
Shown in

【0052】[0052]

【表2】 [Table 2]

【0053】また本第一の実施形態の振動波モータの振
動体2の硬化膜の例と、その硬化処理温度および荷重5
0gfでのビッカース硬度(Hv)の実測値を表3に示
す。
An example of the cured film of the vibrating body 2 of the vibration wave motor according to the first embodiment, its curing temperature and load 5
Table 3 shows the measured values of the Vickers hardness (Hv) at 0 gf.

【0054】[0054]

【表3】 [Table 3]

【0055】 (注) *1 セラミックス カニゼン (商品名 日本カニゼン社) *2 カニフロンB (商品名 日本カニゼン社) *3 ニムフロンT (商品名 上村工業社) *4 カニボロン (商品名 日本カニゼン社) *5 ニダックス (商品名 アルバックテクノ社)(Note) * 1 Ceramics Kanigen (trade name Nippon Kanigen) * 2 Kaniflon B (trade name Nippon Kanigen) * 3 Nimflon T (trade name Uemura Kogyo) * 4 Canibolone (trade name Nippon Kanigen) * 5 Nidax (Product name: ULVAC TECHNO)

【0056】また接触体の複合樹脂層6の例とその材料
構成およびロックウエルMスケールの硬度(HRM)を
表4に示す。
Table 4 shows an example of the composite resin layer 6 of the contact body, its material constitution, and Rockwell M scale hardness (HRM).

【0057】[0057]

【表4】 [Table 4]

【0058】 (注)*1 ポリエーテルニトリル (出光マテリアル PEN) *2 ポリエーテルエーテルケトン (ビクトレックス PEEK) *3 全芳香族ポリエステル (アモコ ザイダー SRT−500) *4 炭素繊維 (PAN系) *5 炭素微粒子 (鐘紡ベルパール C−2000) *6 四フッ化エチレン樹脂 (ダイキン L2)(Note) * 1 Polyethernitrile (Idemitsu Material PEN) * 2 Polyetheretherketone (Victrex PEEK) * 3 Wholly aromatic polyester (Amoco Sider SRT-500) * 4 Carbon fiber (PAN-based) * 5 Carbon fine particles (Kanebo Bellpearl C-2000) * 6 Polytetrafluoroethylene resin (Daikin L2)

【0059】図1および図2の振動体2はSUS420
T2を母材とし、機械加工されたあと、摺接面は摺接面
の真上に荷重を付加して、研磨剤を含む回転平定盤で研
削加工され、平面度が4μm程度、中心線平均粗さ(R
a)が0.3μm程度に仕上げた。次に無電解ニッケル
メッキの方法により、膜厚が5〜10μmの表3に示す
無電解メッキの硬化膜を形成し、加熱硬化処理をすると
振動体の摺接面は平面度が5μm程度、中心線平均粗さ
(Ra)が0.4μm程度の平面に仕上がる。
The vibrating body 2 shown in FIGS. 1 and 2 is made of SUS420.
After machining with T2 as the base material, the sliding surface is ground with a rotating flat plate containing an abrasive by applying a load directly above the sliding surface, and has a flatness of about 4 μm and a center line average. Roughness (R
a) was finished to about 0.3 μm. Next, by a method of electroless nickel plating, a cured film of electroless plating having a film thickness of 5 to 10 μm shown in Table 3 is formed, and when subjected to heat curing treatment, the sliding surface of the vibrator has a flatness of about 5 μm and a center. The surface is finished to have a linear average roughness (Ra) of about 0.4 μm.

【0060】接触体7はアルミ合金の支持体5に表4に
示すリング状の複合樹脂を固着し、切削加工して複合樹
脂層6を形成し、接触体7を構成する。接触体7の複合
樹脂層6の摺接面は荷重を摺接面の真上に付加して、研
磨剤を含む回転平定盤で研削加工し、接触体の摺接面を
平面度5μm、中心線平均粗さ(Ra)が複合樹脂層の
材料構成により異なるが0.3〜0.5μm程度とな
る。
The contact body 7 forms a composite resin layer 6 by fixing a ring-shaped composite resin shown in Table 4 to an aluminum alloy support 5 and forming the composite resin layer 6. The sliding contact surface of the composite resin layer 6 of the contact body 7 is applied with a load right above the sliding contact surface, and is ground by a rotary flat plate containing an abrasive. The linear average roughness (Ra) varies depending on the material composition of the composite resin layer, but is about 0.3 to 0.5 μm.

【0061】第一の実施形態における振動体(平面)と
接触体(平面)の摺接面の研磨加工および研削加工での
精度の概要を表5に示す。
Table 5 shows an outline of the accuracy of polishing and grinding of the sliding contact surface between the vibrating body (plane) and the contact body (plane) in the first embodiment.

【0062】[0062]

【表5】 (注) ( )内は無電解メッキ後の精度を示す。[Table 5] (Note) Figures in parentheses indicate the accuracy after electroless plating.

【0063】図3は本発明の第二の実施形態である振動
波モータ(振動型駆動装置)を構成する振動体と接触体
の部分拡大断面図を示している。本実施形態の振動体と
接触体の組合わせは図2に示した振動波モータの振動体
と接触体の組合わせと互換性があり、これを図1に示し
た第一実施形態の振動波モータに組込むことで第二の実
施形態の振動波モータが得られる。
FIG. 3 is a partially enlarged sectional view of a vibrating body and a contact body constituting a vibration wave motor (vibration type driving device) according to a second embodiment of the present invention. The combination of the vibrating body and the contact body of the present embodiment is compatible with the combination of the vibrating body and the contact body of the vibration wave motor shown in FIG. The vibration wave motor of the second embodiment can be obtained by incorporating the vibration wave motor into the motor.

【0064】図3で圧電素子1および振動体2は第一実
施形態の図2と同等のものであり、又接触体107は第
一実施形態の接触体7と同様に支持体5に複合樹脂を固
着し、切削して複合樹脂層106を形成するが、その複
合樹脂層の摺接面がテーパ形状になっている。
In FIG. 3, the piezoelectric element 1 and the vibrating body 2 are the same as those in FIG. 2 of the first embodiment, and the contact body 107 is a composite resin on the support 5 like the contact body 7 of the first embodiment. Is fixed and cut to form the composite resin layer 106. The sliding contact surface of the composite resin layer is tapered.

【0065】図4は接触体107の複合樹脂層をテーパ
形状に研削加工するときの説明図で、接触体107は一
部拡大して示してある。図4(a)で20は粒度5〜1
0μmの研磨剤を含む粒度表示が#2000のレヂン製
の回転平定盤で500rpmで回転する。21は外径が
φdの円環状の支持治具で接触体107を支持して、支
持体5の外径がφDの加圧部5bに加工用加圧力Fを付
加する。図示の通り支持治具の外径φdは支持体5の加
圧部5bの径φDより小さい。加工用加圧力Fは振動体
2の可撓性を考慮して設定するが、一般的には振動波モ
ータの軸方向加圧力(表2で19Kgf)より大きく、
例えば22Kgfとする。
FIG. 4 is an explanatory view when the composite resin layer of the contact body 107 is ground into a tapered shape, and the contact body 107 is partially enlarged. In FIG. 4 (a), 20 is the particle size of 5-1.
The sample is rotated at 500 rpm on a rotary platen made of # 2000 having a particle size of # 2000 containing an abrasive of 0 μm. Reference numeral 21 denotes an annular support jig having an outer diameter of φd, which supports the contact body 107, and applies a processing pressure F to the pressing portion 5b having an outer diameter of the support 5 of φD. As shown in the figure, the outer diameter φd of the support jig is smaller than the diameter φD of the pressing portion 5b of the support 5. The processing pressure F is set in consideration of the flexibility of the vibrating body 2, but is generally larger than the axial pressure of the vibration wave motor (19 kgf in Table 2).
For example, it is 22 kgf.

【0066】図4(b)は研削加工後の接触体107の
寸法形状を示すもので、支持体5に固着された複合樹脂
層106の摺接面の傾きはθ=9分(0.15度)で軸
方向の寸法差Lが2.6μm程度のテーパ形状となり、
又中心線平均粗さRaは0.3〜0.5μmである。
FIG. 4B shows the dimensions and shape of the contact body 107 after the grinding process. The inclination of the sliding contact surface of the composite resin layer 106 fixed to the support 5 is θ = 9 minutes (0.15 minutes). Degree), the axial dimension difference L becomes a tapered shape of about 2.6 μm,
The center line average roughness Ra is 0.3 to 0.5 μm.

【0067】上記の通り振動体の摺接面を平面とし、接
触体の摺接面をテーパ形状にするのは摺接面同志のなじ
みが早く、摺接面の単位面積あたりの加圧力が早く所定
の設計値となり、摺接面の摩耗の低減に有効であり、又
モータ性能の経時的変動が小さくなるためである。
As described above, when the sliding contact surface of the vibrating body is made flat and the sliding contact surface of the contact body is made tapered, the sliding contact surfaces are familiar with each other quickly, and the pressing force per unit area of the sliding contact surface is fast. This is because the predetermined design value is obtained, which is effective in reducing the wear of the sliding contact surface, and also reduces the fluctuation over time of the motor performance.

【0068】従って本発明の第二の実施形態で振動体の
摺接面をテーパ形状にし、接触体の摺接面を平面にして
も同様の効果が期待できるが、このときの振動体のテー
パ形状は図3における振動体2の加圧部2bに加工用加
圧力を与えて、研磨剤を含む回転平定盤上で研削する。
Therefore, in the second embodiment of the present invention, the same effect can be expected even if the sliding contact surface of the vibrating body is formed in a tapered shape and the sliding contact surface of the contacting member is made flat. The shape is such that a pressing force for processing is applied to the pressing portion 2b of the vibrating body 2 in FIG.

【0069】図5は第二の実施形態における別の実施例
で一方の摺接面を形成する複合樹脂層を振動体側に形成
したものである。1は圧電素子、52は圧電素子1に固
着された振動体で第一の実施形態の振動波モータの振動
体2と同じ材料(表2参照)で同じ形に作られている。
56は複合樹脂層であって、本実施形態では振動体52
のくし歯の表面(摺接面)に接着剤で固着されている。
この複合樹脂層56はベース樹脂又は樹脂組成物に強化
材又は強化材と潤滑剤との混合物を充填した複合樹脂
(表4参照)により形成される。
FIG. 5 shows another example of the second embodiment in which a composite resin layer forming one sliding contact surface is formed on the vibrator side. 1 is a piezoelectric element, 52 is a vibrating body fixed to the piezoelectric element 1 and is made of the same material (see Table 2) as the vibrating body 2 of the vibration wave motor of the first embodiment and has the same shape.
Reference numeral 56 denotes a composite resin layer.
It is fixed to the surface (sliding contact surface) of the comb teeth with an adhesive.
The composite resin layer 56 is formed of a composite resin in which a base resin or a resin composition is filled with a reinforcing material or a mixture of a reinforcing material and a lubricant (see Table 4).

【0070】振動体の摺接面(複合樹脂層5b)は摺接
面の真上に適度の荷重を付加して、研磨剤を含む回転平
定盤で研削加工され、平面度5μm、中心線平均粗さ
(Ra)が0.3〜0.5μm程度の平面に打上げられ
る。57はアルミ合金からなる接触体で、特に熱処理型
合金のA6061−T4材等が用いられ、第一実施形態
の振動波モータの支持体5と形状寸法が同じにつくらた
あと摺接面はテーパ形状に仕上げられる。
The sliding surface (composite resin layer 5b) of the vibrating body is ground by a rotating flat plate containing an abrasive by applying an appropriate load directly above the sliding surface, and has a flatness of 5 μm and a center line average. It is launched on a plane having a roughness (Ra) of about 0.3 to 0.5 μm. Reference numeral 57 denotes a contact body made of an aluminum alloy, particularly a heat-treatable alloy A6061-T4 material or the like is used, and the sliding contact surface is made to have the same shape and dimensions as the support 5 of the vibration wave motor of the first embodiment. Finished in shape.

【0071】図6は接触体57の摺接面をテーパ形状に
加工するときの説明図で、研磨材を含む回転平定盤20
に接触体57の摺接面を置き、径がφDの加圧部57b
に接触体57の支持治具21をおき、加工用加圧力を付
加して研削加工して、摺接面をテーパ形状にする。
FIG. 6 is an explanatory view when the sliding contact surface of the contact body 57 is machined into a tapered shape.
The pressing portion 57b having a diameter φD is placed on the sliding surface of the contact body 57.
Then, the support jig 21 of the contact body 57 is placed, and a grinding force is applied by applying a processing pressure to make the sliding contact surface tapered.

【0072】加工用加圧力Fを振動波モータの軸方向加
圧力(表2参照)より大きい、例えば22Kgfとする
と接触体の摺接面の傾きはθ=9分、軸方向の寸法差l
が2.6μm程度のテーパ形状となり、その中心線平均
粗さRaは0.3μm程度である。
When the processing pressure F is larger than the axial pressure of the vibration wave motor (see Table 2), for example, 22 kgf, the inclination of the sliding contact surface of the contact body is θ = 9 minutes, and the dimension difference l in the axial direction is l.
Has a tapered shape of about 2.6 μm, and its center line average roughness Ra is about 0.3 μm.

【0073】次に、表3の無電解ニッケルメッキをし、
厚さが20〜30μmのメッキ膜を形成し、加熱硬化処
理をすると、接触体の摺接面は中心線平均粗さ(Ra)
が0.4μm程度のテーパ形状となる。
Next, electroless nickel plating shown in Table 3 was performed.
When a plating film having a thickness of 20 to 30 μm is formed and subjected to heat curing treatment, the sliding surface of the contact body has a center line average roughness (Ra).
Has a tapered shape of about 0.4 μm.

【0074】上記の通り振動体の摺接面(複合樹脂層)
を平面とし、接触体の摺接面をテーパ形状にするのに対
し、振動体の摺接面をテーパ形状とし、接触体の摺接面
を平面としても、同様の効果が期待できるのは前記の第
二実施形態の場合と同様である。
As described above, the sliding surface of the vibrator (composite resin layer)
Is a flat surface and the sliding surface of the contact body is tapered, whereas the sliding surface of the vibrating body is tapered and the sliding surface of the contact body is flat. This is the same as in the second embodiment.

【0075】第二の実施形態における振動体(平面)と
接触体(テーパ面)の摺接面の研削加工での精度の概要
を表6に示す。
Table 6 shows an outline of the accuracy of the grinding processing of the sliding contact surface between the vibrating body (flat surface) and the contact body (taper surface) in the second embodiment.

【0076】[0076]

【表6】 (注) ( )内は無電解メッキ後の精度を示す。[Table 6] (Note) Figures in parentheses indicate the accuracy after electroless plating.

【0077】本発明の第二の実施形態の振動波モータを
製作し、表1の目標性能に対応して連続運転テストをし
た。第一のモータでは振動体2の摺接面を研削加工し
て、平面度4μm、中心線平均粗さ(Ra)が0.3μ
m程度の平面とし、そのあと表3ののPTFEを体積
比で5%共析した無電界ニッケルを5〜10μmの膜厚
で形成し、300℃で加熱硬化処理をして、平面度が5
μm程度、中心線平均粗さ(Ra)が0.4μmでビッ
カース硬度(Hv)が900程度の摺接面とした。
A vibration wave motor according to the second embodiment of the present invention was manufactured, and a continuous operation test was performed according to the target performance shown in Table 1. In the first motor, the sliding surface of the vibrating body 2 is ground, and the flatness is 4 μm and the center line average roughness (Ra) is 0.3 μm.
m, a 5 to 10 μm-thick film of electroless nickel obtained by eutectoid deposition of PTFE in Table 3 at a volume ratio of 5%, and heat-hardening treatment at 300 ° C.
The sliding surface had a thickness of about μm, a center line average roughness (Ra) of 0.4 μm, and a Vickers hardness (Hv) of about 900.

【0078】又接触体107はアルミ合金(A5056
−H34材)の支持体5に表4ののポリエーテルニト
リル(PEN)をベース樹脂とし、強化剤としてPAN
系の炭素繊維を重量比で20%、潤滑剤としてPTFE
とグラファイトを重量比でそれぞれ10%および5%充
填して形成した複合樹脂層106を固着したもので摺接
面は中心線平均粗さ(Ra)が0.4μm程度のテーパ
形状に仕上げている。
The contact body 107 is made of an aluminum alloy (A5056).
-H34 material) as a base resin using the polyether nitrile (PEN) shown in Table 4 as a base resin, and PAN as a reinforcing agent.
20% carbon fiber by weight, PTFE as lubricant
And a composite resin layer 106 formed by filling graphite at a weight ratio of 10% and 5%, respectively, and the sliding surface is finished in a tapered shape having a center line average roughness (Ra) of about 0.4 μm. .

【0079】又第二のモータとして振動体52の摺接面
に表4ののポリエーテルニトリル(PEN)をベース
樹脂とし、これにPAN系の炭素繊維を重量比で10
%、PTFEとグラファイトを重量比でそれぞれ5%充
填して形成した複合樹脂層56を固着したもので摺接面
は平面度が5μm程度、中心線平均粗さ(Ra)が0.
3μm程度の表面に仕上げてある。
As a second motor, polyethernitrile (PEN) shown in Table 4 was used as a base resin on the sliding surface of the vibrating body 52, and PAN-based carbon fibers were added thereto in a weight ratio of 10%.
%, And a composite resin layer 56 formed by filling 5% by weight of PTFE and graphite, respectively, is fixed, and the sliding contact surface has a flatness of about 5 μm and a center line average roughness (Ra) of 0.5%.
Finished to a surface of about 3 μm.

【0080】一方の接触体57はアルミ合金(A606
1−T4材)とし、摺接面を中心線平均粗さ(Ra)が
0.3μm程度のテーパ形状に形成し、そのあと表3の
の三元合金の無電界ニッケル(Ni−P−B)を20
〜30μmの膜厚で形成し、200℃で加熱硬化処理し
て、中心線平均粗さ(Ra)が0.4μm程度でビッカ
ース硬度(Hv)が850程度のテーパ形状の摺接面と
した。
One contact body 57 is made of an aluminum alloy (A606).
1-T4 material), and the sliding contact surface is formed in a tapered shape having a center line average roughness (Ra) of about 0.3 μm, and then a ternary alloy electroless nickel (Ni-P-B) shown in Table 3 ) To 20
A film having a thickness of about 30 μm was formed and heat-cured at 200 ° C. to form a tapered sliding contact surface having a center line average roughness (Ra) of about 0.4 μm and a Vickers hardness (Hv) of about 850.

【0081】テストは、モータの回転軸10の出力側に
パーマトルク(工進製作所製)を連結し、回転負荷を5
Kgcmに設定し、回転軸の他端にエンコーダの回転軸
を支持し、64rpm一定で制御しておこなった。
In the test, a perma torque (manufactured by Kojin Seisakusho) was connected to the output side of the rotating shaft 10 of the motor, and the rotating load was reduced to 5
Kgcm, the rotation shaft of the encoder was supported at the other end of the rotation shaft, and the control was performed at a constant 64 rpm.

【0082】モータの性能は300時間間隔で測定し、
3000時間迄連続運転をおこない性能の時間変動を確
認した。又3000時間の連続運転後、モータを分解
し、振動体と接触体のそれぞれの摺接面の摩耗量と中心
線平均粗さRa(μm)を測定した。
The performance of the motor was measured at 300 hour intervals,
Continuous operation was performed up to 3000 hours, and the time variation of the performance was confirmed. After continuous operation for 3000 hours, the motor was disassembled, and the wear amount and the center line average roughness Ra (μm) of the respective sliding contact surfaces of the vibrating body and the contacting body were measured.

【0083】第二の実施形態の第一のモータで、モータ
性能の時間変動を最大出力(W)でみるとスタート時は
6.5Wで途中7.2Wと最大値を示し、3000時間
後は7.0W程度で要求特性をみたしていた。
When the time variation of the motor performance of the first motor of the second embodiment is viewed at the maximum output (W), the maximum value is 6.5 W at the start and 7.2 W on the way, and 3000 hours later, The required characteristics were satisfied at about 7.0 W.

【0084】次に、摩耗量とテスト後の摺接面の表面性
状であるが、振動体硬化膜は接触巾0.7mmの内径側
で1.5μm、外径側で1.2μm、平均で1.35μ
m摩耗しており時間あたりの摩耗量は0.00045μ
mと目標面を満たしていた。又摺接面の中心線平均粗さ
Raはスタート時0.4μmだったのが1.5μmに低
下していた一方接触体の複合樹脂層は12μm程度摩耗
しており、時間あたりの摩耗量は0.004μmで目標
値を満たしており、摺接面の中心線平均粗さは0.4μ
mが3μm程度に変わっていた。
Next, regarding the amount of abrasion and the surface properties of the sliding contact surface after the test, the vibrating body cured film was 1.5 μm on the inner diameter side and 0.7 μm on the outer diameter side of the contact width of 0.7 mm. 1.35μ
m wear, wear amount per hour is 0.00045μ
m and the target plane were satisfied. Also, the center line average roughness Ra of the sliding contact surface was 0.4 μm at the start, but decreased to 1.5 μm, while the composite resin layer of the contact body was worn by about 12 μm. The target value is satisfied at 0.004 μm, and the center line average roughness of the sliding contact surface is 0.4 μm.
m was changed to about 3 μm.

【0085】上記のとおり本実施形態の振動波モータで
は長時間運動後、振動体或は接触体摺接面は中心線平均
粗さ(Ra)は低下しているが、性能の最大出力値は目
標値を達成しており、性能の経時的変動は比較的小さ
く、摺接面の摩耗量を当面の目標値を満たしていた。従
って本実施形態で振動体或は接触体を研削加工して得ら
れる平面度或は中心線平均粗さ(Ra)等の摺接面精度
は特に問題とならないことがわかる。
As described above, in the vibration wave motor according to the present embodiment, the center line average roughness (Ra) of the vibrating body or the contacting surface of the vibrating body is reduced after prolonged motion, but the maximum output value of the performance is as follows. The target value was attained, and the variation over time of the performance was relatively small, and the wear amount of the sliding contact surface satisfied the target value for the time being. Therefore, it can be seen that there is no particular problem with the sliding contact surface accuracy such as flatness or center line average roughness (Ra) obtained by grinding the vibrating body or the contact body in the present embodiment.

【0086】第二の実施形態の第二のモータではモータ
性能の時間変動はやはり小さかったが、3000時間後
の最大出力は6.7W程度で要求特性を満たしておら
ず、設計的な改良が尚必要であることがわかった。
In the second motor of the second embodiment, the time variation of the motor performance was still small, but the maximum output after 3000 hours was about 6.7 W, which did not satisfy the required characteristics. It turned out to be necessary.

【0087】摩耗量については振動体の複合樹脂層の摩
耗量は18μmと時間あたりの摩耗量が0.006μm
とやや大きかった。一方接触体の硬化膜の摩耗量は1.
5μmで目標値に等しかった。摺接面の中心線平均粗さ
(Ra)は振動体の複合樹脂層が0.3μmから2μm
程度となり、接触体硬化膜は0.4μmが1.3μmと
なりやはり低下していた。
The wear amount of the composite resin layer of the vibrating body was 18 μm, and the wear amount per hour was 0.006 μm.
It was a bit big. On the other hand, the wear amount of the cured film of the contact body was 1.
At 5 μm, it was equal to the target value. The center line average roughness (Ra) of the sliding contact surface is 0.3 μm to 2 μm for the composite resin layer of the vibrator.
The thickness of the cured film of the contact body was 0.4 μm to 1.3 μm, which was also lower.

【0088】第二のモータでは振動体と接触体の摺接面
を形成する複合樹脂層と無電界ニッケルメッキの材種を
変えることで摩耗量をより低下させることが可能であ
り、又モータ性能の向上も期待できる。又本実施形態で
の振動体或は接触体の研削加工して得られる摺接面精度
も有効であるといえる。
In the second motor, the amount of wear can be further reduced by changing the composite resin layer forming the sliding contact surface between the vibrating body and the contacting body and the material type of the electroless nickel plating. Can also be expected to improve. In addition, it can be said that the sliding surface accuracy obtained by grinding the vibrating body or the contact body in the present embodiment is also effective.

【0089】また、図7は本発明の振動波駆動装置の一
例として振動波モータを駆動源とする機器の概略図であ
る。23は大歯車23aと小歯車23bを有するギア
で、大歯車23aが振動波モータA側のギア20と噛合
している。24は被駆動部材、例えばレンズ鏡筒で、外
周部に設けられたギア24aにギア23の小歯車23b
が噛合し、モータの駆動力により回転する。一方、ギア
23にはエンコーダスリット板25が取り付けられ、ギ
ア23の回転をフォトカップラー26により検出し、例
えばオートフォーカスのためにモータの回転、停止を制
御する。
FIG. 7 is a schematic view of an apparatus using a vibration wave motor as a drive source as an example of the vibration wave driving device of the present invention. A gear 23 has a large gear 23a and a small gear 23b, and the large gear 23a meshes with the gear 20 on the vibration wave motor A side. Reference numeral 24 denotes a driven member, for example, a lens barrel.
Are rotated by the driving force of the motor. On the other hand, an encoder slit plate 25 is attached to the gear 23, and the rotation of the gear 23 is detected by the photocoupler 26, and the rotation and stop of the motor are controlled, for example, for autofocus.

【0090】[0090]

【発明の効果】以上説明した様に、本発明によれば、振
動体或は接触体を機械加工の前或は後で応力除去熱処理
し、そのあと摺接面の平面度だし加工をおこない、接触
体或は振動体は熱処理型合金を用い機械加工後に摺接面
の平面度だし加工或はテーパ形状加工し、摺接面の精度
を最高にしておき、その後無電解メッキをし、加熱硬化
処理をして、振動体或は接触体の摺接面を比較的メッキ
膜が薄くて高い精度を保持した硬質の硬化膜で形成する
ことができる。
As described above, according to the present invention, the vibrating body or the contact body is subjected to a stress relieving heat treatment before or after machining, and thereafter, the flatness of the sliding contact surface is processed. The contact body or vibrating body is heat-treated using a heat-treated alloy, and after machining, flatness or taper processing of the sliding contact surface is performed to maximize the accuracy of the sliding contact surface, and then electroless plating is performed, followed by heat hardening. By performing the treatment, the sliding contact surface of the vibrating body or the contact body can be formed of a hard cured film having a relatively thin plated film and high accuracy.

【0091】従って上記の摺接面の形成の工程では、
メッキ膜が薄めでよい。硬質の硬化膜を除去する必要
がない等の点で加工時間の短縮が可能でありコストダウ
ンとなる。又加熱硬化処理したメツキの硬化膜を後加工
せず生地のまま摺接面とするのでメッキ膜の特性を生か
して用いることが可能である。
Therefore, in the step of forming the sliding contact surface,
The plating film may be thin. In that there is no need to remove the hard cured film, the processing time can be reduced and the cost can be reduced. Further, since the cured film of the heat-cured plating is used as the sliding surface without fabricating the post-processing, it is possible to utilize the characteristics of the plating film.

【0092】尚、研磨剤を含む回転平定盤での研削加工
で得られる摺接面の平面度或は中心線平均粗さは研磨加
工での精度より低下しているが、長時間耐久での摩耗量
や性能の経時的変動で評価した結果では問題がなく、上
記の研削加工は量産性もあり加工時間の短縮ひいてはコ
ストダウンのため非常に有効である。また、本発明は上
記の振動波駆動装置からなる振動波モータおよびそれを
用いた機器を提供できる。
Although the flatness or the center line average roughness of the sliding surface obtained by grinding with a rotary platen containing an abrasive is lower than the accuracy in grinding, it is not suitable for long-term durability. There is no problem in the result of evaluating the amount of wear and the performance over time, and the above-mentioned grinding is very effective for mass production, shortening the processing time, and reducing the cost. Further, the present invention can provide a vibration wave motor including the above-described vibration wave driving device and a device using the same.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第一実施形態である振動波モータの断
面図である。
FIG. 1 is a sectional view of a vibration wave motor according to a first embodiment of the present invention.

【図2】第一実施形態の振動波モータを構成する振動体
と接触体の部分拡大断面図である。
FIG. 2 is a partially enlarged cross-sectional view of a vibrating body and a contact body constituting the vibration wave motor of the first embodiment.

【図3】第二実施形態の振動波モータの振動体と接触体
の部分拡大断面図である。
FIG. 3 is a partially enlarged sectional view of a vibrating body and a contact body of a vibration wave motor according to a second embodiment.

【図4】第二実施形態の振動体の摺接面加工の説明図で
ある。
FIG. 4 is an explanatory diagram of processing of a sliding surface of a vibrating body according to a second embodiment.

【図5】第二実施形態の他の振動体と接触体の部分拡大
断面図である。
FIG. 5 is a partially enlarged sectional view of another vibrating body and a contact body of the second embodiment.

【図6】第二実施形態の他の接触体の摺接面加工の説明
図である。
FIG. 6 is an explanatory diagram of a sliding contact surface processing of another contact body of the second embodiment.

【図7】振動波モータを駆動源とする機器の概略図であ
る。
FIG. 7 is a schematic diagram of a device using a vibration wave motor as a driving source.

【符号の説明】[Explanation of symbols]

1 圧電素子 2,52 振動体 3 筐体 5 支持体 6,106,56 複合樹脂層 7,107,57 接触体 20 回転平定盤 DESCRIPTION OF SYMBOLS 1 Piezoelectric element 2, 52 Vibration body 3 Case 5 Support body 6, 106, 56 Composite resin layer 7, 107, 57 Contact body 20 Rotating flat plate

Claims (22)

【特許請求の範囲】[Claims] 【請求項1】 振動が励起される振動体と、この振動体
に接触する接触体とを相対的に摩擦駆動する振動型駆動
装置において、前記振動体および前記接触体のうち一方
の摺接面を平面度だし加工後に無電解メッキを施して硬
化膜を形成し、他方の摺接面を樹脂又は樹脂組成物に強
化材を含有させた複合樹脂層で形成したことを特徴とす
る振動型駆動装置。
In a vibration type driving device for relatively frictionally driving a vibrating body for which vibration is excited and a contacting body that comes into contact with the vibrating body, a sliding contact surface of one of the vibrating body and the contacting body. A vibration type drive characterized by forming a cured film by applying electroless plating after processing to obtain flatness and forming the other sliding contact surface with a resin or a composite resin layer containing a reinforcing material in a resin composition. apparatus.
【請求項2】 前記振動体或は接触体の摺接面の平面度
だしは、研磨加工或は研磨剤を含む回転平定盤で研削加
工することを特徴とする請求項1に記載の振動型駆動装
置。
2. The vibrating mold according to claim 1, wherein the flatness of the sliding contact surface of the vibrating body or the contacting body is determined by polishing or grinding with a rotary flat plate containing an abrasive. Drive.
【請求項3】 前記振動体及び前記接触体の摺接面を平
面度が5μm以下で、中心線平均粗さRa(μm)が
0.4以下の平面に形成することを特徴とする請求項1
または2に記載の振動型駆動装置。
3. The sliding surface of the vibrating body and the contact body is formed as a flat surface having a flatness of 5 μm or less and a center line average roughness Ra (μm) of 0.4 or less. 1
Or the vibration type driving device according to 2.
【請求項4】 前記無電界メッキの硬化膜が硬質の微粒
子或はフッ素樹脂を共折する無電解ニッケルメッキであ
ることを特徴とする請求項1に記載の振動型駆動装置。
4. The vibration type driving device according to claim 1, wherein the cured film of the electroless plating is an electroless nickel plating in which hard fine particles or a fluorine resin are folded together.
【請求項5】 前記無電解メッキの硬化膜が三元合金の
無電解メッキであることを特徴とする請求項1に記載の
振動型駆動装置。
5. The vibration type driving device according to claim 1, wherein the cured film of the electroless plating is a ternary alloy electroless plating.
【請求項6】 前記無電解メッキの硬化膜が凹所を有す
るメッキ膜にフッ素樹脂を封入した無電解ニッケル膜で
あることを特徴とする請求項1に記載の振動型駆動装
置。
6. The vibration type driving device according to claim 1, wherein the cured film of the electroless plating is an electroless nickel film in which a fluororesin is sealed in a plating film having a recess.
【請求項7】 前記無電解メッキの硬化膜が100〜4
00℃で加熱硬化処理されていることを特徴とする請求
項1、4、5および6のいずれかの項に記載の振動型駆
動装置。
7. The cured film of the electroless plating has a thickness of 100 to 4
The vibration-type driving device according to any one of claims 1, 4, 5, and 6, wherein the vibration-type driving device is heat-cured at 00 ° C.
【請求項8】 前記振動体の母材がマルテンサイト系ス
テンレス鋼であることを特徴とする請求項1乃至3のい
ずれかの項に記載の振動型駆動装置。
8. The vibration type driving device according to claim 1, wherein a base material of said vibrating body is martensitic stainless steel.
【請求項9】 前記振動体の母材が鉄系の焼結合金であ
ることを特徴とする請求項1乃至3のいずれかの項に記
載の振動型駆動装置。
9. The vibration type driving device according to claim 1, wherein a base material of the vibrating body is an iron-based sintered alloy.
【請求項10】 前記振動体は平面度だしの機械加工の
前或は後に応力除去熱処理がおこなわれることを特徴と
する請求項1、2、3、8及び9のいずれかの項に記載
の振動型駆動装置。
10. The method according to claim 1, wherein the vibrating body is subjected to a stress relief heat treatment before or after the flatness machining. Vibration type driving device.
【請求項11】 前記接触体の母材がアルミ合金である
ことを特徴とする請求項1乃至3のいずれかの項に記載
の振動型駆動装置。
11. The vibration type driving device according to claim 1, wherein a base material of the contact body is an aluminum alloy.
【請求項12】 前記接触体のアルミ合金は熱処理型合
金であることを特徴とする請求項11に記載の振動型駆
動装置。
12. The vibration type driving device according to claim 11, wherein the aluminum alloy of the contact body is a heat treatment type alloy.
【請求項13】 振動が励起される振動体と、この振動
体に接触する加圧部を有する接触体とを相対的に摩擦駆
動する振動型駆動装置において、前記振動体および前記
接触体のうち一方の摺接面を平面或はテーパ形状に加工
し、加工後無電解メッキを施して硬化膜を形成し、他方
の摺接面をテーパ形状或は平面の樹脂又は樹脂組成物に
強化材を含有した複合樹脂層で形成したことを特徴とす
る振動型駆動装置。
13. A vibratory drive device that relatively frictionally drives a vibrating body for which vibration is excited and a contacting body having a pressurizing portion that comes into contact with the vibrating body. One of the sliding surfaces is processed into a flat or tapered shape, and after the processing, electroless plating is performed to form a cured film, and the other sliding contact surface is formed of a tapered or flat resin or resin composition with a reinforcing material. A vibration type driving device characterized by comprising a composite resin layer containing the same.
【請求項14】 前記振動体或は前記接触体の摺接面の
テーパ形状は加圧部に加工用加圧力を作用させ、研磨剤
を含む回転平定盤で研削加工して形成することを特徴と
する請求項13に記載の振動型駆動装置。
14. A tapered shape of a sliding contact surface of the vibrating body or the contact body is formed by applying a processing pressure to a pressurizing portion and performing a grinding process on a rotary flat plate containing an abrasive. The vibration type driving device according to claim 13, wherein:
【請求項15】 前記振動体或は接触体のテーパ形状の
摺接面を中心線粗さRa(μm)が0.4以下で形成す
ることを特徴とする請求項13または14に記載の振動
型駆動装置。
15. The vibration according to claim 13, wherein a center line roughness Ra (μm) of 0.4 or less is formed in the tapered sliding contact surface of the vibrator or the contact body. Mold drive.
【請求項16】 振動が励起される振動体と、この振動
体に接触する接触体とを相対的に摩擦駆動する振動型駆
動装置の製造方法において、前記振動体および前記接触
体のうち一方の摺接面を平面度だし加工した後、無電解
メッキを施して硬化膜を形成する工程、他方の摺接面に
樹脂又は樹脂組成物に強化材を含有させた複合樹脂層を
形成する工程、前記振動体と前記接触体をそれぞれの摺
接面で接触させる工程を有することを特徴とする振動型
駆動装置の製造方法。
16. A method of manufacturing a vibration-type driving device for relatively driving a vibrating body excited by vibration and a contacting body that comes into contact with the vibrating body, wherein one of the vibrating body and the contacting body is provided. After the sliding contact surface is processed for flatness, a step of forming a cured film by applying electroless plating, a step of forming a composite resin layer containing a reinforcing material in a resin or a resin composition on the other sliding contact surface, A method of manufacturing a vibration-type driving device, comprising a step of bringing the vibrating body and the contact body into contact with each other on a sliding contact surface.
【請求項17】 前記振動体或は接触体の摺接面の平面
度だしは研磨加工或は研磨剤を含む回転平定盤で研削加
工することを特徴とする請求項16に記載の振動型駆動
装置の製造方法。
17. The vibration-type drive according to claim 16, wherein the flatness of the sliding contact surface of the vibrating body or the contact body is ground by grinding or a rotary flat plate containing an abrasive. Device manufacturing method.
【請求項18】 振動が励起される振動体と、この振動
体に接触する加圧部を有する接触体とを相対的に摩擦駆
動する振動型駆動装置の製造方法において、前記振動体
および前記接触体のうち一方の摺接面を平面或はテーパ
形状に加工した後、無電解メッキを施して硬化膜を形成
する工程、他方の摺接面をテーパ形状或は平面の樹脂又
は樹脂組成物に強化材を含有した複合樹脂層で形成する
工程、前記振動体と前記接触体をそれぞれの摺接面で加
圧して接触させる工程を有することを特徴とする振動型
駆動装置の製造方法。
18. A method of manufacturing a vibration-type drive device for relatively driving a vibrating body in which vibration is excited and a contacting body having a pressurizing portion in contact with the vibrating body, the vibrating body and the contact After processing one sliding contact surface of the body into a flat or tapered shape, forming a cured film by applying electroless plating, and applying the other sliding contact surface to a tapered or flat resin or resin composition. A method of manufacturing a vibration-type driving device, comprising: forming a composite resin layer containing a reinforcing material; and bringing the vibrating body and the contact body into contact with each other by pressing the respective sliding surfaces.
【請求項19】 前記振動体と前記接触体を一方はテー
パ形状で他方は平面の摺接面で加圧して接触させる請求
項18に記載の振動型駆動装置の製造方法。
19. The method of manufacturing a vibration-type driving device according to claim 18, wherein one of the vibrating body and the contact body is brought into contact with a tapered shape and the other is pressed by a flat sliding contact surface.
【請求項20】 前記振動体或は前記接触体の摺接面の
テーパ形状は加圧部に加工用加圧力を作用させ、研磨剤
を含む回転平定盤で研削加工して形成することを特徴と
する請求項18に記載の振動型駆動装置の製造方法。
20. The tapered shape of the sliding contact surface of the vibrating body or the contacting body is formed by applying a processing pressure to a pressurizing portion and performing a grinding process on a rotary flat plate containing an abrasive. The method for manufacturing a vibration type driving device according to claim 18, wherein
【請求項21】 請求項1乃至15のいずれかの項に記
載の振動波駆動装置からなることを特徴とする振動波モ
ータ。
21. A vibration wave motor comprising the vibration wave drive device according to claim 1. Description:
【請求項22】 請求項1乃至15、21のいずれかの
項に記載の振動波駆動装置を駆動源として設けたことを
特徴とする機器。
22. An apparatus provided with the vibration wave driving device according to claim 1 as a driving source.
JP10139250A 1998-05-07 1998-05-07 Oscillatory driver, its manufacture, and apparatus equipped with the same Pending JPH11318090A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10139250A JPH11318090A (en) 1998-05-07 1998-05-07 Oscillatory driver, its manufacture, and apparatus equipped with the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10139250A JPH11318090A (en) 1998-05-07 1998-05-07 Oscillatory driver, its manufacture, and apparatus equipped with the same

Publications (1)

Publication Number Publication Date
JPH11318090A true JPH11318090A (en) 1999-11-16

Family

ID=15240947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10139250A Pending JPH11318090A (en) 1998-05-07 1998-05-07 Oscillatory driver, its manufacture, and apparatus equipped with the same

Country Status (1)

Country Link
JP (1) JPH11318090A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006271034A (en) * 2005-03-22 2006-10-05 Nikon Corp Oscillatory wave motor
JP2014057447A (en) * 2012-09-13 2014-03-27 Canon Inc Vibration type drive device
JP2016152403A (en) * 2015-02-19 2016-08-22 東京エレクトロン株式会社 Manufacturing method of optical device including shielding body and recording medium
WO2022113510A1 (en) * 2020-11-24 2022-06-02 ミツミ電機株式会社 Optical element driving device, camera module, and camera-equipped device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006271034A (en) * 2005-03-22 2006-10-05 Nikon Corp Oscillatory wave motor
JP2014057447A (en) * 2012-09-13 2014-03-27 Canon Inc Vibration type drive device
JP2016152403A (en) * 2015-02-19 2016-08-22 東京エレクトロン株式会社 Manufacturing method of optical device including shielding body and recording medium
WO2022113510A1 (en) * 2020-11-24 2022-06-02 ミツミ電機株式会社 Optical element driving device, camera module, and camera-equipped device
JPWO2022113510A1 (en) * 2020-11-24 2022-06-02

Similar Documents

Publication Publication Date Title
US11664746B2 (en) Friction member to contact opposite member, method for manufacturing friction member, vibration-type actuator, and electronic device
EP1818993B1 (en) Motor, lens barrel, camera system, and method for producing motor
JPH02197272A (en) Large output oscillatory wave motor
US6463642B1 (en) Method of manufacturing a vibration type driving apparatus
JP2898053B2 (en) Vibration wave device
JP2017225333A (en) Friction material, method for producing friction material, vibration type actuator and electronic equipment
US6107724A (en) Vibration wave driving device and apparatus having the same
JPH11318090A (en) Oscillatory driver, its manufacture, and apparatus equipped with the same
CN110365248B (en) Vibration type actuator, electronic device, and method for inspecting friction material
JP2022030103A (en) Vibration type actuator and contact body for use in the same
JP2000166266A (en) Vibration-type driving device and equipment therewith
JP2925192B2 (en) Vibration wave drive
JPH11206159A (en) Vibration type driving equipment
JP7451211B2 (en) Contact body, vibration type actuator having the same, method for manufacturing the contact body, and method for deriving the amount of polishing in the contact body
JP7182918B2 (en) Vibration type drive device, electronic device and moving object
JP2012203085A (en) Vibration actuator, lens barrel and electronic apparatus
JP2024021763A (en) Vibration type actuator, its manufacturing method, and drive device
JP3016617B2 (en) Vibration wave motor
JPH09327183A (en) Oscillatory wave drive unit and equipment provided with this unit
JPH11113272A (en) Vibration-type driving device and device with the same
JP2001008474A (en) Vibration driving device, manufacture thereof and apparatus provided with the same
JP2022152714A (en) Vibration type actuator, apparatus, contact body, and manufacturing method thereof
JPH1014264A (en) Oscillatory driver and apparatus with oscillatory driver
JP2018050467A (en) Vibration actuator, lens barrel, and electronic apparatus
JP3160139B2 (en) Vibration wave motor