JPH11206159A - Vibration type driving equipment - Google Patents

Vibration type driving equipment

Info

Publication number
JPH11206159A
JPH11206159A JP10002948A JP294898A JPH11206159A JP H11206159 A JPH11206159 A JP H11206159A JP 10002948 A JP10002948 A JP 10002948A JP 294898 A JP294898 A JP 294898A JP H11206159 A JPH11206159 A JP H11206159A
Authority
JP
Japan
Prior art keywords
plating film
film
vibration
type driving
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10002948A
Other languages
Japanese (ja)
Inventor
Takayuki Shirasaki
隆之 白崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP10002948A priority Critical patent/JPH11206159A/en
Publication of JPH11206159A publication Critical patent/JPH11206159A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lubricants (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce wear of a hardened film of a vibrating body and obtain more stable motor performance, by forming a slide contact surface of one out of a vibrating body and a moving body of a composite resin layer in which resin or resin composition is filled with at least reinforcing material, and forming the other slide contact surface of a plating film having a recess. SOLUTION: A plating film is a nonelectrolytic plating film having porous surface quality. Its recess is coated with fluororesin (PTFE) as solid lubricant. Heat treatment is performed at a temperature higher than or equal to a melting point of PTFE, it is sealed and welded, the nonelectrolytic plating film is hardened, and a composite hardened film having self lubrication is obtained. An annular moving body 7 is concentrically fitted to the outer periphery of an intermediate member 15. The moving body 7 is constituted of an annular retainer 5 of aluminum alloy or the like and a composite resin layer 6 concentrically fixed on the surface of the retainer 5 with adhesive agent. As a result, wear due to friction drive of the slide contact surfaces of one composite hardened film and the other composite resin layer can be reduced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は振動型駆動装置に関
し、さらに詳しくは振動型駆動装置の構成部材である振
動体と、前記振動体に加圧接触する移動体の摺接面の材
料に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vibration type driving device, and more particularly to a vibration member which is a component of the vibration type driving device and a material of a sliding contact surface of a moving member which comes into pressure contact with the vibration member. It is.

【0002】[0002]

【従来の技術】振動波モータ等の振動型駆動装置は、振
動体とこれに加圧接触する移動体の摩擦を利用して、振
動エネルギーを連続的な機械運動エネルギーに変換させ
る形式の動力発生源である。このため両者の摺接面は自
己潤滑性を有し、耐摩耗性の高い材質で構成する必要が
ある。
2. Description of the Related Art A vibration type driving device such as a vibration wave motor utilizes a friction between a vibrating body and a moving body which comes into pressure contact with the vibrating body to generate power in a form of converting vibrational energy into continuous mechanical kinetic energy. Source. Therefore, it is necessary that both sliding surfaces have self-lubricating properties and are made of a material having high wear resistance.

【0003】従来の振動型駆動装置(以下振動波モータ
という)では、移動体の摺接面に熱可塑性樹脂であるポ
リエーテルニトリル(商品名:出光PEN)をベース樹
脂とし、これに強化材として、PAN系炭素繊維を重量
で10〜20%充填し、さらに固体潤滑剤としてフッ素
樹脂(PTFE)及びグラファイトを充填した複合樹脂
層を用い、他方の振動体の摺接面を粒子径が1μm以下
のフッ素樹脂(PTFE)を重畳比で1.5〜8.5%
共折した無電解ニッケルメッキ膜(Ni−p)を厚さ2
5μmで形成し、300℃で加熱硬化してビッカース硬
度(Hv)が800〜450の自己潤滑性を有する硬化
膜としていた。
In a conventional vibration type driving device (hereinafter referred to as a vibration wave motor), a sliding surface of a moving body is made of polyether nitrile (trade name: Idemitsu PEN) which is a thermoplastic resin as a base resin, which is used as a reinforcing material. A composite resin layer filled with 10-20% by weight of PAN-based carbon fiber and further filled with fluororesin (PTFE) and graphite as a solid lubricant is used, and the sliding surface of the other vibrator has a particle diameter of 1 μm or less. 1.5 to 8.5% by weight of fluororesin (PTFE)
Co-folded electroless nickel plating film (Ni-p) with thickness 2
It was formed at 5 μm and cured by heating at 300 ° C. to form a self-lubricating cured film having a Vickers hardness (Hv) of 800 to 450.

【0004】このように移動体の摺接面を耐熱性及び耐
摩耗性の複合樹脂層で形成し、振動体の摺接面を自己潤
滑性を有する硬化膜としたのは、両者の摩擦駆動で摺接
面間の摩擦係数が定常的に安定しており、又両者の摺接
面の摩耗を極力小さくすることが可能であると考えられ
たためである。
The sliding surface of the moving body is formed of a heat-resistant and wear-resistant composite resin layer, and the sliding surface of the vibrating body is a self-lubricating cured film. This is because it was considered that the friction coefficient between the sliding contact surfaces was steadily stable, and that the abrasion of both sliding contact surfaces could be minimized.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記の
ような従来の振動波モータにおいて、回転負荷を5kg
cmとし、64rpmの回転数で、1800時間の連続
運転テストをおこなったところ、移動体摺接面の複合樹
脂層の摩耗量は18μmで、他方の振動体摺接面の硬化
膜の摩耗は円周方向の摩耗痕として示され、最大深さが
2μmありいずれの摩耗量も目標値を満たさず、摩耗量
のさらなる軽減が必要とされた。
However, in the conventional vibration wave motor as described above, the rotational load is 5 kg.
cm and a rotation speed of 64 rpm, a continuous operation test was performed for 1800 hours. As a result, the wear amount of the composite resin layer on the sliding surface of the moving body was 18 μm, and the wear of the cured film on the sliding surface of the other vibrating body was circular. It was shown as circumferential wear marks, had a maximum depth of 2 μm, did not meet any of the wear requirements, and further reduction in wear was required.

【0006】本出願に係る第1の発明の目的は、振動波
モータの長時間連続運転において移動体及び振動体のそ
れぞれの摺接面の摩耗をより軽減することであり、特に
振動体の硬化膜の摩耗を軽減して、より安定したモータ
性能の振動型駆動装置を提供しようとするものである。
An object of a first invention according to the present application is to further reduce wear of sliding surfaces of a moving body and a vibrating body in continuous operation of a vibration wave motor for a long period of time, and in particular, to harden the vibrating body. It is an object of the present invention to provide a vibration-type driving device having more stable motor performance by reducing abrasion of a film.

【0007】本出願に係る第2の発明の目的は、振動波
モータの摺接面を形成する自己潤滑性を有する硬化膜を
表面性状の面で改良し、静摩擦係数と動摩擦係数の差を
小さくし、起動時のステイックスリップを軽減した振動
型駆動装置を提供しようとするものである。
An object of a second invention according to the present application is to improve a self-lubricating hardened film which forms a sliding contact surface of a vibration wave motor in terms of surface properties, and to reduce a difference between a static friction coefficient and a dynamic friction coefficient. It is another object of the present invention to provide a vibration type driving device in which a stick slip at the time of starting is reduced.

【0008】[0008]

【課題を解決するための手段】前記の目的を達成するた
め本願の発明は、振動が励起される振動体と、この振動
体に加圧力により移動体を接触させて相対的に摩擦駆動
する振動型駆動装置において、振動体および移動体のう
ち、一方の摺接面を樹脂又は樹脂組成物に少なくとも強
化材を充填した複合樹脂層で形成し、他方の摺接面を凹
所を有するメッキ膜で形成するものである。
SUMMARY OF THE INVENTION In order to achieve the above object, the present invention provides a vibrating body in which vibration is excited, and a vibrating body in which a moving body is brought into contact with the vibrating body by a pressing force to perform a relative friction drive. In the mold driving device, one of the vibrating body and the moving body is formed of a composite resin layer in which at least a reinforcing material is filled in a resin or a resin composition, and the other sliding contact surface is a plating film having a recess. It is formed by.

【0009】さらに、前記メッキ膜の凹所に固体潤滑剤
(二硫化モリブデン、グラファイト及びフッ素樹脂等)
を封入して自己潤滑性のある複合硬化膜を形成すること
である。
Further, a solid lubricant (molybdenum disulfide, graphite, fluororesin, etc.) is provided in the recess of the plating film.
To form a composite cured film having self-lubricating properties.

【0010】[0010]

【発明の実施の形態】(第1の実施の形態)本発明の第
1の実施の形態は、前記メッキ膜が多孔性表面性状の無
電解メッキ膜(Ni−p,Co−p等)であり、その凹
所に固体潤滑剤であるフッ素樹脂(PTFE)をコーテ
ィングし、PTFEの融点以上の温度(例えば350
℃)で熱処理して、PTFEを封入、融着するととも
に、無電解メッキ膜を硬化して、自己潤滑性のある複合
硬化膜とするものである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS (First Embodiment) In a first embodiment of the present invention, an electroless plating film (Ni-p, Co-p, etc.) having a porous surface texture is used as the plating film. The recess is coated with a fluorocarbon resin (PTFE) as a solid lubricant, and is heated to a temperature equal to or higher than the melting point of PTFE (for example, 350 ° C.).
C), heat-sealing the PTFE, sealing and fusing the PTFE, and curing the electroless plating film to form a self-lubricating composite cured film.

【0011】従来のPTFEを共折した無電解メッキの
硬化膜は、図4に示すように、粒径が1μm以下、例え
ば0.5μm程度のPTFEが25μmのメッキ膜中に
体積比で5〜25%程度均一に分散しており、そのため
荷重を支持する硬度或は靭性が無電解メッキの硬化膜自
体のそれより小さくこの点で不利であった。
As shown in FIG. 4, a conventional cured film of electroless plating obtained by co-folding PTFE has a particle size of 1 μm or less, for example, about 0.5 μm PTFE having a volume ratio of 5 μm in a plating film of 25 μm. It is uniformly dispersed by about 25%, so that the hardness or toughness for supporting the load is smaller than that of the cured film itself of electroless plating, which is disadvantageous in this point.

【0012】しかし、本発明の第1の実施の形態の無電
解メッキの硬化膜は、粒子径が1μm以下のPTFEを
摺接面に点在する凹所にのみ封入しているため、荷重を
支持する硬度或は靭性は無電解メッキ自体の特性を有し
ており、相対的に硬度および靭性が高く、且つ多量のP
TFEを封入した自己潤滑性の複合硬化膜であって、耐
摩耗性のさらなる向上が期待できる。
However, in the cured film of the electroless plating according to the first embodiment of the present invention, PTFE having a particle diameter of 1 μm or less is sealed only in the recesses dotted on the sliding contact surface, so that the load is not applied. The supporting hardness or toughness has the characteristics of the electroless plating itself, and has relatively high hardness and toughness, and a large amount of P.
It is a self-lubricating composite cured film in which TFE is encapsulated, and further improvement in wear resistance can be expected.

【0013】無電解メッキ膜を多孔性表面性状とする表
面処理技術としては、ニダックス(商品名:アルバック
テクノ社)或はレジスタック(商品名:旭テクノプロデ
ュース社)等があり、これ等無電解ニッケルメッキ膜の
生成の課程で、硬化膜に深さが2〜8μmの微細凹凸を
形成する周知の表面処理技術である。
As a surface treatment technique for making an electroless plating film porous, there are Nidax (trade name: ULVAC TECHNO) or RESIST (trade name: Asahi Techno Produce). This is a well-known surface treatment technique for forming fine unevenness having a depth of 2 to 8 μm in a cured film in the process of forming a nickel plating film.

【0014】次いで、図5の(a)に示すように、無電
解ニッケル膜の凹所に、粒径が1μm以下のPTFEを
コーティングし、PTFEの融点より高い350℃程度
の温度で熱処理して、PTFEを含浸、融着して、密着
力の強い自己潤滑性を有する複合硬化膜としている。
Next, as shown in FIG. 5A, PTFE having a particle size of 1 μm or less is coated on the concave portion of the electroless nickel film, and heat-treated at a temperature of about 350 ° C. higher than the melting point of PTFE. And PTFE are impregnated and fused to form a composite cured film having a strong self-lubricating property with strong adhesion.

【0015】また、図5の(b)に示すように、別の表
面処理技術ではリンデン809及びコンボスP(いずれ
も商品名:ワールドメタル社)等周期律表の8族金属
(Fe,Co,Ni等)の触媒作用による無電解メッキ
の生成の過程で、硬化膜に直径及び深さが5〜10μm
のたこつぼ型の凹所を形成し、コーティングしたPTF
Eを350℃の温度で熱処理して、自己潤滑性を有する
複合硬化膜とするものがある。
As shown in FIG. 5 (b), another surface treatment technique employs a group 8 metal (Fe, Co, or Co) in the periodic table of Linden 809 and Combos P (both are trade names: World Metal Co., Ltd.). In the process of producing electroless plating by the catalytic action of Ni or the like, the cured film has a diameter and depth of 5 to 10 μm.
PTF coated with a takotsubo-shaped recess
In some cases, E is heat-treated at a temperature of 350 ° C. to form a composite cured film having self-lubricating properties.

【0016】(第2の実施の形態)本発明の第2の実施
の形態は、図5の(c)に示すように、前記メッキ膜が
クラック(深さが10〜20μm)を有する多孔性クロ
ームメッキであって、このマイクロクラック状の凹所に
PTFEを封入して自己潤滑性のある複合硬化膜を形成
するものである。
(Second Embodiment) In a second embodiment of the present invention, as shown in FIG. 5C, the plating film has a crack (depth of 10 to 20 μm). This is chrome plating, in which PTFE is sealed in the microcrack-shaped recesses to form a self-lubricating composite cured film.

【0017】こうした技術として、テフ・ロック(商品
名:オテック社)或はプロトニクスシステムTA(商品
名:日本プロトン社)等があり、前者は表面が網目状の
クラックである多孔性クロームメッキを約200℃で加
熱し、袋状のクラックを拡大して、その中に−70℃迄
冷却収縮したPTFEの微粒子を封入し、膨張させて強
固に密着した複合硬化膜とするものであり、後者は同様
の多孔性クロームメッキに対し、PTFEと耐熱性樹脂
バインダーからなる複合材を特殊処理して、PTFEの
超微粒子を圧入固着するものである。
Examples of such techniques include Teff Rock (trade name: Otec) or Protonics System TA (trade name: Nippon Proton). The former employs porous chrome plating whose surface is a network-like crack. Heating at about 200 ° C., the bag-like crack is expanded, and PTFE fine particles that have been cooled and shrunk to −70 ° C. are enclosed therein and expanded to form a tightly adhered composite cured film. Is a method in which a composite material composed of PTFE and a heat-resistant resin binder is subjected to a special treatment to the same porous chrome plating, and ultrafine particles of PTFE are pressed and fixed.

【0018】前記の第1及び第2の実施形態の振動体の
摺接面は、荷重を支持する高硬度で適度の靭性を有し、
耐摩耗性のあるメッキ膜面と、非粘着性と潤滑性機能を
有する固体潤滑剤面とが分離した、表面性状を示す複合
硬化膜である。
The sliding surface of the vibrating body of the first and second embodiments has a high hardness and a moderate toughness for supporting a load,
This is a composite cured film having a surface property in which a wear-resistant plating film surface and a solid lubricant surface having non-adhesive and lubricity functions are separated.

【0019】従って従来のPTFEを摺動面の全面に均
一に分散した硬化膜に比し、本発明の複合硬化膜の硬度
或は靭性はメッキ膜自体の特性を有していて、荷重を支
持するので耐摩耗性の面で有利であり、更に固体潤滑剤
であるPTFEが摺接面上に多量に専有することが可能
のため、摩擦駆動の際、短時間にすべり方向にPTFE
分子を配向し移着フィルムを形成するので、静及び動摩
擦係数の差は小さく、起動時のステイックスリップを軽
減することが可能となる。
Therefore, the hardness or toughness of the composite cured film of the present invention has the characteristics of the plating film itself, and supports the load, as compared with the cured film in which the conventional PTFE is uniformly dispersed on the entire sliding surface. This is advantageous in terms of abrasion resistance, and since PTFE, which is a solid lubricant, can be occupied in a large amount on the sliding surface, the frictional drive can be performed in the sliding direction in a short time.
Since the molecules are oriented to form the transfer film, the difference between the static and dynamic friction coefficients is small, and it is possible to reduce stick-slip during startup.

【0020】また、短時間に固体潤滑剤の移着フィルム
の形成が可能なため、振動体の複合硬化膜及び移動体の
複合樹脂層、いずれの摺接面の初期摩耗に対しても有効
である。
Further, since the transfer film of the solid lubricant can be formed in a short time, it is effective against the initial abrasion of any of the sliding surfaces of the composite cured film of the vibrating body and the composite resin layer of the moving body. is there.

【0021】[0021]

【実施例】(第1の実施例)図1は、本発明の第1の実
施例である振動波モータ(振動型駆動装置)の全体構成
を示し、図2は、この振動波モータを構成する振動体と
移動体を拡大して示している。
FIG. 1 shows an overall configuration of a vibration wave motor (vibration type driving apparatus) according to a first embodiment of the present invention, and FIG. 2 shows a configuration of the vibration wave motor. The vibrating body and the moving body that move are shown in an enlarged manner.

【0022】これらの図において、1は薄い円環形状の
圧電素子である。2は弾性材料により作られた振動体で
あり、この振動体2の摺接面側には、λ/2あたり4個
の突起(くし歯)が等間隔で全周にわたって形成されて
いる。そして、各くし歯の表面(摺接面)には、後述す
る硬化膜が形成されている。また、振動体2の摺接面と
反対の面には圧電素子1の電極面全面が固着されてお
り、両者でステータを構成している。
In these figures, reference numeral 1 denotes a thin ring-shaped piezoelectric element. Reference numeral 2 denotes a vibrating body made of an elastic material, and four protrusions (comb teeth) per [lambda] / 2 are formed on the sliding surface side of the vibrating body 2 at equal intervals over the entire circumference. A hardened film described later is formed on the surface (sliding contact surface) of each comb tooth. Further, the entire surface of the electrode surface of the piezoelectric element 1 is fixed to the surface of the vibrating body 2 opposite to the sliding contact surface, and the two constitute a stator.

【0023】3はこの振動波モータの筐体であり、この
筐体3には、振動体2がビス4によって同心的に固定さ
れている。また、筐体3の中心部には、第1ボール軸受
11の外輪が固着されている。10は回転軸であり、こ
の回転軸10の軸方向中間部には中間部材15が、例え
ば焼ばめ等の方法により固着されている。回転軸10の
一端は、第1ボール軸受11の内輪に軸方向に摺動可能
に支持され、他端は第2ボール軸受12の内輪に軸方向
に摺動可能に支持されている。なお、第2ボール軸受1
2の外輪は、筐体3にネジ9により固定された筐体カバ
ー8の中心軸に固着されている。
Reference numeral 3 denotes a housing of the vibration wave motor, and a vibrating body 2 is concentrically fixed to the housing 3 by screws 4. The outer ring of the first ball bearing 11 is fixed to the center of the housing 3. Reference numeral 10 denotes a rotating shaft, and an intermediate member 15 is fixed to an axially intermediate portion of the rotating shaft 10 by, for example, shrink fitting. One end of the rotating shaft 10 is axially slidably supported by the inner ring of the first ball bearing 11, and the other end is axially slidably supported by the inner ring of the second ball bearing 12. The second ball bearing 1
The outer ring 2 is fixed to a central axis of a housing cover 8 fixed to the housing 3 with screws 9.

【0024】中間部材15の外周部には、環状の移動体
7が同心的に嵌合して設けられている。この移動体7
は、アルミ合金等から環状に作られた支持体5と、この
支持体5の表面に接着剤により同心的に固着された後述
する複合樹脂層6とから構成されている。支持体5の裏
面と中間部材15のフランジ部との間には、ゴム製の弾
性シート材17が介在しており、中間部材15と第2ボ
ール軸受12の内輪との間に設けられた圧縮ばね部材1
4が発生する軸方向加圧力がこの弾性シート部材17を
介して支持体5に軸方向に作用する構成となっている。
この軸方向加圧力により、移動体7の摺接面(複合樹脂
層6の表面)は、振動体2の摺接面に圧接される。
On the outer peripheral portion of the intermediate member 15, an annular moving body 7 is provided so as to fit concentrically. This moving body 7
Is composed of an annular support 5 made of an aluminum alloy or the like, and a later-described composite resin layer 6 concentrically fixed to the surface of the support 5 with an adhesive. An elastic sheet material 17 made of rubber is interposed between the back surface of the support 5 and the flange portion of the intermediate member 15, and a compression member provided between the intermediate member 15 and the inner ring of the second ball bearing 12. Spring member 1
The axial pressure generated by the pressure member 4 acts on the support 5 in the axial direction via the elastic sheet member 17.
By this axial pressure, the sliding contact surface of the moving body 7 (the surface of the composite resin layer 6) is pressed against the sliding contact surface of the vibrating body 2.

【0025】なお、圧縮ばね部材14が発生する軸方向
加圧力(つまりは移動体7と振動体2との圧接力)は、
第2ボール軸受12の内輪と圧縮ばね部材14との間に
設けられた不図示のスペーサ部材によって調整すること
ができる。
The axial pressing force generated by the compression spring member 14 (that is, the pressure contact force between the moving body 7 and the vibrating body 2) is
It can be adjusted by a spacer member (not shown) provided between the inner ring of the second ball bearing 12 and the compression spring member 14.

【0026】前記の支持体5に固着した複合樹脂層6と
しては、ベース樹脂に融点が340℃、ガラス転移点が
145℃の結晶性の熱可塑性樹脂であるポリエーテルニ
トリル(出光PEN:出光マテリアル社商品名)を用
い、これに強化材としてPAN系炭素繊維を重量比で1
0%充填し、さらに固体潤滑剤としてフッ素樹脂(PT
FE)及びグラファイトを充填した複合樹脂層を用い
た。
The composite resin layer 6 fixed to the support 5 is made of polyether nitrile (Idemitsu PEN: Idemitsu Material) which is a crystalline thermoplastic resin having a melting point of 340 ° C. and a glass transition point of 145 ° C. PAN-based carbon fiber as a reinforcing material in a weight ratio of 1%.
0%, and a fluororesin (PT
A composite resin layer filled with FE) and graphite was used.

【0027】表1に従来の振動波モータの振動体および
本実施形態の振動波モータの振動体2の硬化膜の構成と
ビッカース硬さ(Hv)及び摩擦係数μを示す。
Table 1 shows the configuration of the cured film, the Vickers hardness (Hv) and the friction coefficient μ of the vibrating body of the conventional vibration wave motor and the vibrating body 2 of the vibration wave motor of the present embodiment.

【0028】従来例は無電解ニッケル膜(Ni−p)に
フッ素樹脂(PTFE)を重量比で約7.5%共折し、
300℃で熱処理して所定のビッカース硬さと、摩擦係
数を得ている。
In the conventional example, a fluorine resin (PTFE) is co-folded by about 7.5% by weight on an electroless nickel film (Ni-p).
Heat treatment was performed at 300 ° C. to obtain a predetermined Vickers hardness and a friction coefficient.

【0029】本実施例としては、多孔性表面性状を示す
無電解ニッケルメッキ膜を採用し、微細凹凸を形成する
硬化膜の凹所に粒径が1μm以下のPTFEをコーティ
ングし、360℃の温度で熱処理した複合硬化膜を用い
た。
In this embodiment, an electroless nickel plating film having a porous surface property is adopted, PTFE having a particle size of 1 μm or less is coated on the concave portion of the cured film for forming fine irregularities, and a temperature of 360 ° C. The composite cured film heat-treated in was used.

【0030】[0030]

【表1】 [Table 1]

【0031】表2は本実施例の振動波モータの目標性能
であり、又表3は主設計仕様である。
Table 2 shows the target performance of the vibration wave motor of this embodiment, and Table 3 shows the main design specifications.

【0032】[0032]

【表2】 [Table 2]

【0033】[0033]

【表3】 [Table 3]

【0034】上記の設計仕様の振動波モータに本実施例
の振動体2を組込んだ図1の構造の振動波モータを製作
し、表2の目標性能に対応して連続運転テストをした。
A vibration wave motor having the structure shown in FIG. 1 in which the vibration body 2 of the present embodiment was incorporated into the vibration wave motor having the above-described design specifications was manufactured, and a continuous operation test was performed in accordance with the target performance shown in Table 2.

【0035】テストはモータの回転軸10の出力側にパ
ーマトルク(商品名:工進製作所製)を連絡し、回転負
荷を5kgcmに設定し、回転軸の他端にエンコーダー
の回転板を支持し64rpm一定で制御しおこなった。
In the test, a perm torque (trade name: manufactured by Kojin Seisakusho) was communicated to the output side of the rotating shaft 10 of the motor, the rotating load was set to 5 kgcm, the rotating plate of the encoder was supported at the other end of the rotating shaft, and 64 rpm. It was controlled at a constant level.

【0036】モータの性能を300時間間隔で測定し、
又摺接面の摩耗は900時間間隔で測定して、合計18
00時間の連続回転テストをおこなった。
The performance of the motor was measured at 300 hour intervals,
The wear of the sliding contact surface was measured at 900-hour intervals, giving a total of 18
A continuous rotation test of 00 hours was performed.

【0037】モータ性能は運転初期で最も大きく、時間
が進につれ、やや小さくなる傾向が見られるが、その変
動幅は従来例の振動体のモータより小さかった。
The motor performance is greatest in the early stage of operation, and tends to decrease slightly as time progresses, but the fluctuation range is smaller than that of the conventional vibrating body motor.

【0038】この理由は振動体及び移動体のそれぞれの
摺接面へのPTFEの移着膜の生成が、従来例より本実
施例のほうが短時間で行われ、摺接面の摩耗係数の変動
の巾が小さいためと思われる。
The reason is that the transfer film of PTFE on the sliding surfaces of the vibrating body and the moving body is formed in a shorter time in the present embodiment than in the conventional example, and the variation of the wear coefficient of the sliding surface is changed. This is probably due to the small width.

【0039】本実施例の潤滑性を有するPTFEが、摺
接面に多量に占有するので、すべり方向への移着フィル
ムの生成が早く、又静及び動摩擦係数の差も小さく、起
動性に優れていることも確認された。
Since the lubricating PTFE of this embodiment occupies a large amount on the sliding contact surface, the transfer film in the sliding direction is generated quickly, the difference between the static and dynamic friction coefficients is small, and the startability is excellent. It was also confirmed that.

【0040】連続運転による移動体の摺接面の複合樹脂
層の摩耗量は900時間後が6μm、1800時間後は
10μmで時間あたりの摩耗率は0.006μmで従来
型の摩耗率0.01μmより小さかった。
The wear amount of the composite resin layer on the sliding contact surface of the moving body by continuous operation was 6 μm after 900 hours, 10 μm after 1800 hours, the wear rate per hour was 0.006 μm, and the conventional wear rate was 0.01 μm. It was smaller.

【0041】また、振動体の複合硬化膜の摩擦痕の最大
深さは、0.9μmと改善されていた。
Further, the maximum depth of the friction mark of the composite cured film of the vibrating body was improved to 0.9 μm.

【0042】(第2の実施例)図3は本発明の第2の実
施例である振動波モータの振動体と移動体の部分を拡大
して示している。
(Second Embodiment) FIG. 3 is an enlarged view of a vibrating body and a moving body of a vibration wave motor according to a second embodiment of the present invention.

【0043】図3において、51は圧電素子、52はこ
の圧電素子51が固着された振動体で、第1実施例の振
動波モータの振動体と同じ材料、形状で作られている。
In FIG. 3, reference numeral 51 denotes a piezoelectric element, and 52, a vibrator to which the piezoelectric element 51 is fixed, which is made of the same material and shape as the vibrator of the vibration wave motor of the first embodiment.

【0044】56は複合樹脂層であり、振動体のくし歯
の表面に接着剤で固着されており、第1実施例の支持体
に固着した複合樹脂層と同じ材料である。
Reference numeral 56 denotes a composite resin layer, which is fixed to the surface of the comb teeth of the vibrator with an adhesive, and is the same material as the composite resin layer fixed to the support of the first embodiment.

【0045】57は移動体であり第1の実施例の支持体
5と同様の形状寸法のアルミ合金製であって、この表面
(複合樹脂層56との摺接面)には、第1の実施例の振
動体硬化膜と同種の多孔性表面性状を示す無電解ニッケ
ル膜の凹所にフッ素樹脂(PTFE)を含浸融着した複
合硬化膜としたものである。
Reference numeral 57 denotes a moving body made of an aluminum alloy having the same shape and dimensions as the support 5 of the first embodiment, and the surface thereof (the surface in sliding contact with the composite resin layer 56) has the first shape. This is a composite cured film obtained by impregnating and welding fluorine resin (PTFE) in a recess of an electroless nickel film having the same kind of porous surface properties as the vibrating body cured film of the example.

【0046】[0046]

【発明の効果】以上説明したように、本発明によれば、
振動体および移動体のうち一方の摺接面を、凹所を有す
るメッキ膜を形成し、その凹所に固体潤滑剤、例えばフ
ッ素樹脂(PTFE)を充填し、荷重を支持する高硬度
で耐摩耗性を有するメッキ膜面と、潤滑性を有する固体
潤滑剤面を分離してなる自己潤滑性のある複合硬化膜を
形成したので、メッキ膜自体の高い耐摩耗性と固体潤滑
剤の潤滑機能の相乗効果で、一方の複合硬化膜と他方の
複合樹脂層のそれぞれの摺接面の摩擦駆動における摩耗
の軽減が可能である。
As described above, according to the present invention,
A plating film having a recess is formed on one of the sliding surfaces of the vibrating body and the moving body, and the recess is filled with a solid lubricant, for example, fluororesin (PTFE). The self-lubricating composite cured film is formed by separating the wear-resistant plating film surface and the lubricating solid lubricant surface, so the plating film itself has high wear resistance and the solid lubricant lubrication function. By the synergistic effect of the above, it is possible to reduce the abrasion in the friction drive of the respective sliding contact surfaces of the one composite cured film and the other composite resin layer.

【0047】又、フッ素樹脂(PTFE)のような固体
潤滑剤が短時間で摺接面間に移着フィルムの形成を可能
とするため、静及び動摩擦係数の差が小さく、起動時の
ステイックスリップを小さくすることができる。
Further, since a solid lubricant such as a fluororesin (PTFE) enables a transfer film to be formed between the sliding surfaces in a short time, the difference between the static and dynamic friction coefficients is small, and Can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施例の振動波モータの断面
図。
FIG. 1 is a sectional view of a vibration wave motor according to a first embodiment of the present invention.

【図2】図1の振動体と移動体の部分拡大断面図。FIG. 2 is a partially enlarged sectional view of a vibrating body and a moving body of FIG. 1;

【図3】本発明の第2の実施例の振動体と移動体の部分
拡大断面図。
FIG. 3 is a partially enlarged sectional view of a vibrating body and a moving body according to a second embodiment of the present invention.

【図4】従来の硬化膜の拡大断面図。FIG. 4 is an enlarged sectional view of a conventional cured film.

【図5】(a)(b)は第1の実施形態の複合硬化膜の
拡大断面図、(c)は第2の実施形態の複合硬化膜の拡
大断面図。
FIGS. 5A and 5B are enlarged sectional views of the composite cured film of the first embodiment, and FIGS. 5C and 5C are enlarged sectional views of the composite cured film of the second embodiment.

【符号の説明】[Explanation of symbols]

1,51…圧電素子 2,52…振動体 5…支持体 6,56…複合樹脂層 7,57…移動体 1, 51: piezoelectric element 2, 52: vibrator 5: support 6, 56: composite resin layer 7, 57: moving body

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 振動が励起される振動体と、この振動体
に加圧接触する移動体とを相対的に摩擦駆動する振動型
駆動装置において、 前記振動体および移動体のうち一方の摺接面を、樹脂又
は樹脂組成物に、少なくとも強化材を充填した複合樹脂
層で形成し、他方の摺接面を凹所を有するメッキ膜で形
成することを特徴とする振動型駆動装置。
1. A vibration-type driving device that relatively frictionally drives a vibrating body for which vibration is excited and a moving body that presses and contacts the vibrating body, wherein one of the vibrating body and the moving body is slidably contacted. A vibration type driving device, wherein the surface is formed of a composite resin layer in which a resin or a resin composition is filled with at least a reinforcing material, and the other sliding contact surface is formed of a plating film having a recess.
【請求項2】 前記メッキ膜の凹所に固体潤滑剤を封入
して自己潤滑性のある複合硬化膜を形成することを特徴
とする請求項1に記載の振動型駆動装置。
2. The vibration-type driving device according to claim 1, wherein a solid lubricant is sealed in the recess of the plating film to form a composite cured film having self-lubricating properties.
【請求項3】 前記固体潤滑剤がフッ素樹脂であること
を特徴とする請求項1または2に記載の振動型駆動装
置。
3. The vibration type driving device according to claim 1, wherein the solid lubricant is a fluororesin.
【請求項4】 前記メッキ膜が多孔性表面性状の無電解
メッキ膜であることを特徴とする請求項1または2に記
載の振動型駆動装置。
4. The vibration type driving device according to claim 1, wherein said plating film is an electroless plating film having a porous surface property.
【請求項5】 前記無電解メッキ膜の凹所に固体潤滑剤
であるフッ素樹脂をコーティングし、融点以上の温度で
熱処理して、フッ素樹脂を融着するとともに、無電解メ
ッキ膜を硬化したことを特徴とする請求項1、2、3ま
たは4に記載の振動型駆動装置。
5. The method according to claim 1, wherein the recess of the electroless plating film is coated with a fluororesin as a solid lubricant, and heat-treated at a temperature equal to or higher than the melting point to fuse the fluororesin and to cure the electroless plating film. The vibration type driving device according to claim 1, 2, 3, or 4, wherein
【請求項6】 前記メッキ膜がクラックを有するクロー
ムメッキであることを特徴とする請求項1、2または3
に記載の振動型駆動装置。
6. The plating film according to claim 1, wherein said plating film is chrome plating having cracks.
The vibration-type driving device according to item 1.
JP10002948A 1998-01-09 1998-01-09 Vibration type driving equipment Pending JPH11206159A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10002948A JPH11206159A (en) 1998-01-09 1998-01-09 Vibration type driving equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10002948A JPH11206159A (en) 1998-01-09 1998-01-09 Vibration type driving equipment

Publications (1)

Publication Number Publication Date
JPH11206159A true JPH11206159A (en) 1999-07-30

Family

ID=11543603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10002948A Pending JPH11206159A (en) 1998-01-09 1998-01-09 Vibration type driving equipment

Country Status (1)

Country Link
JP (1) JPH11206159A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001124061A (en) * 1999-10-28 2001-05-08 Matsushita Electric Ind Co Ltd Dynamic pressure gas bearing device and manufacturing method thereof
JP2006271034A (en) * 2005-03-22 2006-10-05 Nikon Corp Oscillatory wave motor
JP2014230570A (en) * 2013-05-28 2014-12-11 室本鉄工株式会社 Cutting tool and method for production thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001124061A (en) * 1999-10-28 2001-05-08 Matsushita Electric Ind Co Ltd Dynamic pressure gas bearing device and manufacturing method thereof
JP2006271034A (en) * 2005-03-22 2006-10-05 Nikon Corp Oscillatory wave motor
JP2014230570A (en) * 2013-05-28 2014-12-11 室本鉄工株式会社 Cutting tool and method for production thereof

Similar Documents

Publication Publication Date Title
KR101413838B1 (en) Motor, lens barrel, camera system and method for manufacturing motor
US11664746B2 (en) Friction member to contact opposite member, method for manufacturing friction member, vibration-type actuator, and electronic device
JP2898053B2 (en) Vibration wave device
JPH05161368A (en) Vibration wave motor
JP2017225333A (en) Friction material, method for producing friction material, vibration type actuator and electronic equipment
WO2011096574A1 (en) Oscillation actuator, and lens-barrel and camera provided with same
JPH11206159A (en) Vibration type driving equipment
JP2012125070A (en) Vibration-type drive device
JP3450733B2 (en) Sliding member, vibration wave driving device and device using the same
JPH05219762A (en) Oscillation wave motor
JPH11318090A (en) Oscillatory driver, its manufacture, and apparatus equipped with the same
JP2012203085A (en) Vibration actuator, lens barrel and electronic apparatus
JP4257062B2 (en) Sliding bearing device and small equipment using sliding bearing device
JP2874773B2 (en) Vibration wave drive
JPS63265574A (en) Ultrasonic motor
JPS63136986A (en) Ultrasonic motor
JPH11113272A (en) Vibration-type driving device and device with the same
JP2000166266A (en) Vibration-type driving device and equipment therewith
JPH01238473A (en) Lining material and ultrasonic drive motor using the same material
JP2018050467A (en) Vibration actuator, lens barrel, and electronic apparatus
JP3160139B2 (en) Vibration wave motor
JPH1014264A (en) Oscillatory driver and apparatus with oscillatory driver
WO2024060990A1 (en) Friction pair assembly and ultrasonic motor
JP2011010424A (en) Vibration actuator and optical apparatus
JP2690101B2 (en) Lining material and ultrasonic drive motor using the lining material