JPH11317493A - Integrated circuit element mounting structure - Google Patents

Integrated circuit element mounting structure

Info

Publication number
JPH11317493A
JPH11317493A JP11041041A JP4104199A JPH11317493A JP H11317493 A JPH11317493 A JP H11317493A JP 11041041 A JP11041041 A JP 11041041A JP 4104199 A JP4104199 A JP 4104199A JP H11317493 A JPH11317493 A JP H11317493A
Authority
JP
Japan
Prior art keywords
integrated circuit
substrate
mounting structure
lsi
circuit element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11041041A
Other languages
Japanese (ja)
Other versions
JP3095383B2 (en
Inventor
Hironori Kodama
弘則 児玉
Satoru Ogiwara
覚 荻原
Hideo Arakawa
英夫 荒川
Koichi Inoue
広一 井上
Yoshiyuki Yasutomi
義幸 安富
Tadahiko Mitsuyoshi
忠彦 三吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP11041041A priority Critical patent/JP3095383B2/en
Publication of JPH11317493A publication Critical patent/JPH11317493A/en
Application granted granted Critical
Publication of JP3095383B2 publication Critical patent/JP3095383B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an integrated circuit element mounting structure which is able to minimize thermal stresses to semiconductor elements, having different materials at the mounting of the elements on an identical substrate. SOLUTION: In this integrated circuit element, mounting structure having a plurality of integrated circuit elements 2 and 3 which have different materials mounted in parallel on a substrate 1 having a wiring pattern formed thereon, the different materials of the integrated circuit elements have mutually different thermal conductivities, and a wiring density of the integrated circuit element of the material having a larger thermal conductivity is made higher than the wiring density of the integrated circuit element of the material having a smaller thermal conductivity.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は集積回路素子の実装
構造に係り、特に素材の異なる2種類以上の集積回路素
子を同一基板上に搭載し、且つ各素子の高信頼性と安価
な冷却方式を実現できる実装構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a mounting structure of an integrated circuit element, and more particularly, to mounting two or more types of integrated circuit elements having different materials on the same substrate, and having a high reliability and an inexpensive cooling method for each element. Related to a mounting structure capable of realizing

【0002】[0002]

【従来の技術】大型計算機の計算速度を向上させるに
は、集積回路素子の大規模集積化、高速化だけでなく、
高信頼性高密度実装による配線長の短縮など、あらゆる
方向からの総合的なアプローチが重要となってきてい
る。これらを実現してゆくためには、集積回路素子の大
型化、接続点数の増大、発熱量の増大等に伴う様々な問
題を解決することが必要で、各種の集積回路素子接続方
式、パッケージ/モジュール構造、冷却方式等が検討さ
れている。一方、集積回路素子の高速化の要求に対して
は、従来のSi半導体素子の改良に加えてGaAs素
子、超伝導素子などの研究、開発も活発であり、動作速
度、消費電力の面でSi半導体素子より優れた特性を持
つことが知られている。然し乍ら、現時点ではこれらの
素子は生産技術、コストなどの面で未だSi素子に及ば
ないため、広く実用化されるには至っておらず、現在の
ところSi半導体素子を用いた機器がほとんどである。
2. Description of the Related Art In order to improve the calculation speed of a large computer, not only large-scale integration and high-speed integration of integrated circuit elements, but also
A comprehensive approach from all directions is becoming important, such as shortening the wiring length with high reliability and high density mounting. In order to realize these, it is necessary to solve various problems associated with an increase in the size of the integrated circuit element, an increase in the number of connection points, an increase in the amount of heat generated, and the like. A module structure, a cooling method, and the like are being studied. On the other hand, in response to the demand for higher speed of integrated circuit devices, research and development of GaAs devices, superconducting devices, and the like have been active in addition to the improvement of conventional Si semiconductor devices. It is known to have characteristics superior to semiconductor devices. However, at present, these devices have not reached the level of Si devices in terms of production technology and cost, and thus have not yet been put to practical use. At present, most devices use Si semiconductor devices.

【0003】特開昭62−93961号公報にはムライ
ト基板にSi素子とGaAs素子とを搭載すること、特
開昭61−292383号公報にはSi素子上にGaA
s素子を搭載することにより実装密度の向上を図ること
が記載されている。
Japanese Patent Application Laid-Open No. 62-93961 discloses mounting a Si element and a GaAs element on a mullite substrate, and Japanese Patent Application Laid-Open No. 61-292383 discloses a method of mounting a GaAs element on a Si element.
It is described that mounting density is improved by mounting an s element.

【0004】[0004]

【発明が解決しようとする課題】今後益々高速化が要求
される大型コンピュータ、電子機器等の性能を更に向上
させて行くためには、Si半導体素子の改良だけでな
く、上記のような各種の高速動作可能な集積回路素子を
積極的に導入し、各種素子の長所を組み合わせて、最大
限に活用して行くことが重要な技術となる。然し乍ら、
素子材料が異なると素材の熱伝導率、熱容量等が大きく
異なるために、現在一般的な、LSIチップの素子形成
部で発生した熱をチップを通して同一の冷却方式で冷却
しようとする場合には、熱伝導率の小さい素材から成る
LSIチップの方が、熱伝導率の大きい素材から成るL
SIチップより冷却効率が悪くなってしまう。また一般
に集積回路素子内では常に全部の回路が作動している訳
ではないので、動作している部分としていない部分で発
熱量が異なる。従って、素子の熱伝導度が悪い場合には
素子内での温度バラツキが大きくなり、チップに大きな
熱歪がかかることになる。この様に単に従来のSi素子
の一部をそのまま他の素子に置き換えるというだけで
は、動作時に各素子の温度が大きく異なってしまった
り、各素子内での温度のバラツキが大きくなってしま
い、素子の信頼性の点で問題となる。一方、高密度実装
による配線長の短縮を実現するためには、これら各種の
集積回路素子を同一基板上に近接して搭載することが必
須技術となるが、この場合には実装基板全体から見た熱
バランスが悪くなるため、実装構造体全体としての信頼
性にも問題が生じる。これらに対処する方法として、簡
単には各素子の種類ごとに最適に冷却方式を選んだり、
温度上昇の最も大きな素子に対応できる高性能の冷却構
造を用いることなどが考えられるが、これでは冷却構造
が複雑かつ高価な物となってしまう。
In order to further improve the performance of large computers, electronic devices, etc., for which higher speeds are required in the future, not only the improvement of Si semiconductor devices, but also the various It is important technology to actively introduce integrated circuit elements capable of high-speed operation, combine the advantages of various elements, and make the most of them. However,
If the element materials are different, the thermal conductivity, heat capacity, etc. of the materials are greatly different. Therefore, when trying to cool the heat generated in the element forming portion of an LSI chip through the chip by the same cooling method at present, An LSI chip made of a material having a low thermal conductivity is better than an LSI chip made of a material having a high thermal conductivity.
The cooling efficiency is lower than that of the SI chip. Also, in general, not all circuits are always operating in an integrated circuit element, and thus, the amount of heat generated differs between operating and non-operating parts. Therefore, when the thermal conductivity of the device is poor, the temperature variation in the device becomes large, and a large thermal strain is applied to the chip. In this way, simply replacing a part of the conventional Si element with another element as it is would cause the temperature of each element to be greatly different at the time of operation, and the temperature variation within each element would be large. Is a problem in terms of reliability. On the other hand, in order to reduce the wiring length by high-density mounting, it is essential to mount these various integrated circuit elements close to each other on the same substrate. As a result, the heat balance is deteriorated, which causes a problem in reliability of the entire mounting structure. As a way to deal with these, simply select the optimal cooling method for each type of element,
Although it is conceivable to use a high-performance cooling structure capable of coping with the element having the largest temperature rise, the cooling structure becomes complicated and expensive.

【0005】前述のムライト基板へのSi素子及びGa
As素子の搭載には単に搭載する基板の熱膨脹係数をこ
れら素子のGaAs係数の中間にするだけであり、これ
だけでは熱応力は解決できない。またSi素子へのGa
As素子を搭載する例でも両者の熱膨脹及び発熱量の違
いによる応力の問題が生じる。
The above-mentioned Si element and Ga on the mullite substrate
In mounting an As element, the thermal expansion coefficient of the substrate to be mounted is merely set to be in the middle of the GaAs coefficient of these elements, and thermal stress cannot be solved by this alone. Ga to Si element
Even in the case where the As element is mounted, there is a problem of stress due to the difference between the thermal expansion and the calorific value of both.

【0006】本発明の目的は、素材の異なる複数の半導
体素子を同一基板上に搭載する際に、各素子に対して最
も熱応力が小さくできる集積回路素子実装構造体を提供
することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide an integrated circuit device mounting structure capable of minimizing thermal stress for each device when a plurality of semiconductor devices made of different materials are mounted on the same substrate.

【0007】本発明の他の目的は、素材の異なる複数の
半導体素子における各素子間での温度のバラツキを少な
くできる集積回路素子実装構造を提供するにある。
It is another object of the present invention to provide an integrated circuit device mounting structure capable of reducing temperature variations among a plurality of semiconductor devices made of different materials.

【0008】[0008]

【課題を解決するための手段】本発明は、配線が形成さ
れた基板上に、素材の異なる複数の集積回路素子を並列
に搭載してなる実装構造体において、前記素材は異なっ
た熱伝導率と異なった膨脹係数を有し、前記集積回路素
子は異なった配線密度、単位面積当り異なった発熱量及
び異なったサイズの少なくとも1つの要件を有し、以下
の(a)〜(d)の少なくとも1つの要件を備えたこと
を特徴とする集積回路素子実装構造体にある。
According to the present invention, there is provided a mounting structure in which a plurality of integrated circuit elements of different materials are mounted in parallel on a substrate on which wiring is formed, wherein the materials have different thermal conductivity. And the integrated circuit device has at least one requirement of different wiring density, different heating value per unit area and different size, and at least one of the following (a) to (d): An integrated circuit element mounting structure characterized by one of the requirements.

【0009】(a)該熱伝導率の大きい前記素材からな
る集積回路素子の配線密度が前記熱伝導率の大きい素材
の熱伝導率より小さい熱伝導率を有する前記素材からな
る集積回路素子の配線密度より高いこと; (b)熱伝導率の大きい素材からなる集積回路素子の単
位面積当りの発熱量が前記熱伝導率の大きい素材の熱伝
導率より小さい熱伝導率を有する素材からなる集積回路
素子の単位面積当りの発熱量より大きくしたこと; (c)前記基板の熱膨脹係数は前記サイズの最も小さい
集積回路素子の熱膨脹係数にくらべ前記サイズの最も大
きい集積回路素子の熱膨脹係数に近似していること;及
び (d)前記基板と集積回路素子との接合は前記サイズの
最も大きい集積回路素子が前記サイズの最も小さい集積
回路素子にくらべ接合部の応力を緩和する能力の大きい
手段、特に好ましくは可撓性部材で行われること。前記
サイズの最も小さいものを直接半田で接合を行う。
(A) The wiring of the integrated circuit element made of the material having a higher thermal conductivity than the material having the higher thermal conductivity, wherein the wiring density of the integrated circuit element is smaller than that of the material having the higher thermal conductivity. (B) an integrated circuit made of a material having a heat conductivity smaller than the heat conductivity of the material having a high thermal conductivity, wherein the integrated circuit element made of the material having a high heat conductivity has a lower calorific value per unit area; (C) the coefficient of thermal expansion of the substrate is closer to the coefficient of thermal expansion of the largest integrated circuit element than the coefficient of thermal expansion of the smallest integrated circuit element. And (d) the joint between the substrate and the integrated circuit element is stressed at the joint of the largest integrated circuit element as compared to the smallest integrated circuit element. Big means ability to mitigate, in particular preferably carried out in the flexible member. The one having the smallest size is directly joined by soldering.

【0010】本発明は、素材の異なる複数の集積回路素
子をキャリア基板に搭載し、該キャリア基板を多層回路
基板上に複数個並列に搭載してなる集積回路実装構造体
において、前記素材は異なった熱伝導率と異なった熱膨
脹係数を有し、前記集積回路素子は異なった配線密度、
単位面積当り異なった発熱量及び異なったサイズの少な
くとも1つの要件を有すること、更にまた、素材の異な
る複数の集積回路素子をキャリア基板に搭載し、キャッ
プにより前記素子が気密封止されたパッケージを多層回
路基板上に複数個並列に搭載してなる集積回路実装構造
体において、前記素材は異なった熱伝導率と異なった熱
膨脹係数を有し、前記集積回路素子は異なったサイズ及
び前記パッケージと多層回路板とを気体又は液体冷媒に
て直接冷却する冷却手段を有し、以下の(a)〜(d)
の少なくとも1つの要件を備えたことを特徴とする集積
回路素子実装構造体にある。
According to the present invention, there is provided an integrated circuit mounting structure in which a plurality of integrated circuit elements made of different materials are mounted on a carrier substrate and a plurality of the carrier substrates are mounted in parallel on a multilayer circuit board. The integrated circuit element has a different wiring density,
A package in which a plurality of integrated circuit elements having different materials are mounted on a carrier substrate, and the elements are hermetically sealed with a cap; In an integrated circuit mounting structure in which a plurality of layers are mounted in parallel on a multilayer circuit board, the materials have different thermal conductivity and different thermal expansion coefficients, and the integrated circuit elements have different sizes and the package and the multilayer. A cooling means for directly cooling the circuit board with a gas or liquid refrigerant;
Wherein the integrated circuit element mounting structure has at least one of the following requirements.

【0011】(a)該熱伝導率の大きい前記素材からな
る集積回路素子の配線密度が前記熱伝導率の大きい素材
の熱伝導率より小さい熱伝導率を有する前記素材からな
る集積回路素子の配線密度より高いこと; (b)熱伝導率の大きい素材からなる集積回路素子の単
位面積当りの発熱量が前記熱伝導率の大きい素材の熱伝
導率より小さい熱伝導率を有する素材からなる集積回路
素子の単位面積当りの発熱量より大きくしたこと; (c)前記多層回路基板の熱膨脹係数は前記サイズの最
も小さい集積回路素子の熱膨脹係数にくらべ前記サイズ
の最も大きい集積回路素子の熱膨脹係数に近似している
こと;及び (d)前記多層回路基板とキャリア基板との接合は前記
サイズの最も大きい集積回路素子が搭載されているキャ
リア基板では前記サイズの最も小さい集積回路素子が搭
載されているキャリア基板にくらべ接合部の応力を緩和
する能力の大きい手段、特に好ましくは可撓性部材で行
われること。前記サイズの最も小さいものでは直接半田
で接合されていること。
(A) Wiring of an integrated circuit element made of the material having a higher thermal conductivity than that of the material having the higher thermal conductivity, wherein the wiring density of the integrated circuit element is smaller than that of the material having the higher thermal conductivity. (B) an integrated circuit made of a material having a heat conductivity smaller than the heat conductivity of the material having a high thermal conductivity, wherein the integrated circuit element made of the material having a high heat conductivity has a lower calorific value per unit area; (C) The coefficient of thermal expansion of the multilayer circuit board is closer to the coefficient of thermal expansion of the largest integrated circuit element than the coefficient of thermal expansion of the smallest integrated circuit element. And (d) bonding the multi-layer circuit board and the carrier board to the carrier board on which the largest integrated circuit element is mounted. Smallest integrated circuit large means of elements capable of relaxing the stress of the joints compared to the carrier substrate which is mounted, in particular preferably carried out at a flexible member. In the smallest size, they are directly joined by solder.

【0012】本発明は、配線が形成された基板上に、S
iからなる論理素子とGaAsからなるメモリ素子とが
並列に搭載され、前記論理素子のサイズがメモリ素子の
サイズより大きく、前記基板の熱膨脹係数が前記GaA
sの熱膨脹係数にくらべ前記Siの熱膨脹係数に近似し
ていることを特徴とする集積回路素子実装構造体にあ
る。
According to the present invention, the S
i, and a memory element made of GaAs are mounted in parallel, the size of the logic element is larger than the size of the memory element, and the coefficient of thermal expansion of the substrate is made of GaAs.
An integrated circuit element mounting structure characterized in that the coefficient of thermal expansion is closer to the coefficient of thermal expansion of Si than to the coefficient of thermal expansion of s.

【0013】本発明によれば、より高集積度で高速演算
処理が可能になる。
According to the present invention, high-speed arithmetic processing can be performed with a higher degree of integration.

【0014】LSIチップの単位面積当りの発熱量は、
単位面積当りに形成されている回路数又は配線密度に比
例する。逆に言えば、LSIチップの単位面積当りに形
成されている回路数をコントロールすることによって、
簡単にLSIチップの単位面積当りの発熱量をコントロ
ールすることができる。従って、熱伝導率の大きい素材
から成るLSIチップの単位面積当りに形成されている
回路数を、熱伝導率の小さい素材から成るLSIチップ
のそれより多くすれば、素材が異なる各素子間の温度バ
ラツキを簡単に低減できる。また熱伝導率の小さい素材
から成るLSIチップで特に問題となる素子内での温度
バラツキも、単位面積当りに形成されている回路数を少
なくすれば、各部分での発熱量自体が少なくなるので低
減できる。この方法で、さらに組み合わせて使用する素
子の種類、各素子の動作頻度、配置、冷却構造等に対応
した、各素子に最適の単位面積当りの回路数を選べば、
前述のような複雑、高価な冷却構造を用いること無く、
従来の冷却構造をそのまま用いても、比較的簡単に各集
積回路素子の動作の高信頼性を確保できる。
The amount of heat generated per unit area of the LSI chip is
It is proportional to the number of circuits formed per unit area or the wiring density. Conversely, by controlling the number of circuits formed per unit area of the LSI chip,
The amount of heat generated per unit area of the LSI chip can be easily controlled. Therefore, if the number of circuits formed per unit area of an LSI chip made of a material having a high thermal conductivity is made larger than that of an LSI chip made of a material having a low thermal conductivity, the temperature between elements having different materials can be increased. Variation can be easily reduced. In addition, temperature variation in an element, which is a particular problem in an LSI chip made of a material having a low thermal conductivity, can also be reduced by reducing the number of circuits formed per unit area because the amount of heat generated in each portion is reduced. Can be reduced. In this way, if the number of circuits per unit area that is optimal for each element is selected in accordance with the type of element used in combination, the operation frequency of each element, arrangement, cooling structure, etc.,
Without using a complicated and expensive cooling structure as described above,
Even if the conventional cooling structure is used as it is, high reliability of operation of each integrated circuit element can be relatively easily secured.

【0015】本発明の集積回路素子実装構造体は、集積
回路素子として5mm角以上の大きさを有し、熱伝導率の
高い素子の配線密度を、該素子と該素子より熱伝導率の
小さい素子との熱伝導率差が1W/m・°K当り0.5
〜2.0回路/mm2前記熱伝導率の低い素子のそれより
高くすることが望ましい。特に0.7〜1.5回路/mm
2高くするのがよい。
The integrated circuit element mounting structure of the present invention has a size of 5 mm square or more as an integrated circuit element, and reduces the wiring density of an element having a high thermal conductivity by lowering the wiring density of the element and the element having a lower thermal conductivity than the element. The difference in thermal conductivity from the element is 0.5 per 1 W / m · ° K.
2.02.0 circuits / mm 2 It is desirable to make it higher than that of the low thermal conductivity element. Especially 0.7 to 1.5 circuits / mm
2 should be higher.

【0016】更に、本発明の実装構造体は、集積回路素
子として、5mm角以上の大きさを有し、熱伝導率の大き
い素子の発熱量を、該素子と該素子の熱伝導率より小さ
い熱伝導率を有する素子との熱伝導率差1W/m・°K
当り0.001〜0.02W/mm2前記熱伝導率の小さ
い素子の発熱量より高くすることが好ましい。特に0.
002〜0.01W/mm2とすることが好ましい。
Further, the mounting structure of the present invention has a size of 5 mm square or more as an integrated circuit element, and the heat generation of an element having a large thermal conductivity is smaller than that of the element and the thermal conductivity of the element. Thermal conductivity difference 1W / m · ° K from element having thermal conductivity
0.001 to 0.02 W / mm 2 per unit. Especially 0.
It is preferably 002 to 0.01 W / mm 2 .

【0017】さらに素材の異なるLSIチップの寸法を
素材ごとに変えることによって、本発明の実装構造を用
いた各種システムの他の異なる性能要求にも簡単に対応
することができる。例えば、チップ当りの集積度の、つ
まり1チップに形成される総回路数を素材の異なる各素
子間で同じようにしたい場合には、熱伝導率の小さい素
材から成るLSIチップ、すなわち単位面積当りに形成
されている回路数の少ない方のLSIチップの大きさを
大きくすればよい。また形成するLSI回路の特性やL
SIチップを構成する素材の強度上の問題などで、LS
Iチップ内の温度分布を小さくし、チップ内に発生する
熱歪を小さくすることが特に重要となる場合には、熱伝
導率の小さい素材から成るLSIチップの単位面積当り
に形成されている回路数を小さくすることに加えて、さ
らにそのチップの大きさを小さくすれば良い。
Further, by changing the dimensions of the LSI chips made of different materials for each material, it is possible to easily cope with other different performance requirements of various systems using the mounting structure of the present invention. For example, when the degree of integration per chip, that is, the total number of circuits formed on one chip is desired to be the same between elements having different materials, an LSI chip made of a material having a low thermal conductivity, that is, It is sufficient to increase the size of the LSI chip with the smaller number of circuits formed therein. Also, the characteristics of the LSI circuit to be formed and L
Due to problems such as the strength of the materials that make up the SI chip, LS
When it is particularly important to reduce the temperature distribution in the I chip and to reduce the thermal strain generated in the chip, a circuit formed per unit area of an LSI chip made of a material having a low thermal conductivity can be used. In addition to reducing the number, the size of the chip may be further reduced.

【0018】更に素材の異なる2種類以上のLSIチッ
プを同一の基板上に搭載する場合には、各種のLSIチ
ップが各々異なる熱膨脹係数を持つため、各素子と基板
との熱膨脹係数差により発生する応力をバランス良く制
御して素子と基板間の接続の信頼性を確保することも重
要な課題となる。この接続信頼性を確保するためにも、
素材ごとに素子の寸法(最大長さ)を変える方法は最も
簡単で、しかも前述の問題の解決と両立できる非常に有
効な方法である。即ち素材の異なる複数のLSIチップ
を搭載する基板の熱膨脹係数を、サイズの大きい方のチ
ップにより近く選ぶことにより、素子内部及び/又は素
子と基板との接合部に発生する応力を各種素子について
小さく抑えることができる。また素材の異なる2種類以
上のLSIチップを、これを搭載する小型基板若しくは
パッケージ構造体を介して、大型の同一基板上に搭載し
て成る集積回路素子実装構造体においては、大型基板を
最大寸法(長さ)の大きい方のLSIチップの熱膨脹係
数により近い熱膨脹係数を持つものに選ぶ、小型基板若
しくはパッケージ構造体を最大寸法(長さ)の大きい方
のLSIチップの熱膨脹係数により近い熱膨脹係数を持
つものに選ぶ、又は大型基板を最大寸法(長さ)の大き
い方の小型基板若しくはパッケージ構造体の熱膨脹係数
により近い熱膨脹係数を持つものに選ぶことにより素子
内部、素子と基板及び/又は大型基板と小型基板若しく
はパッケージ構造体との接合部に発生する応力を小さく
抑えることができる。
Further, when two or more kinds of LSI chips made of different materials are mounted on the same substrate, various LSI chips have different coefficients of thermal expansion. It is also important to control the stress in a well-balanced manner to ensure the reliability of the connection between the element and the substrate. To ensure this connection reliability,
The method of changing the dimensions (maximum length) of the element for each material is the simplest method, and is a very effective method compatible with solving the above-mentioned problem. That is, by selecting the thermal expansion coefficient of the substrate on which a plurality of LSI chips of different materials are mounted closer to the chip having the larger size, the stress generated inside the element and / or at the junction between the element and the substrate can be reduced for each element. Can be suppressed. In the case of an integrated circuit element mounting structure in which two or more types of LSI chips of different materials are mounted on the same large substrate via a small substrate or a package structure on which the LSI chip is mounted, the large substrate has a maximum size. A small substrate or package structure having a thermal expansion coefficient closer to the thermal expansion coefficient of the larger (length) LSI chip should be selected to have a thermal expansion coefficient closer to the thermal expansion coefficient of the larger LSI chip of the largest dimension (length). Inside the device, the device and the substrate and / or the large substrate by choosing to have one, or by choosing a large substrate to have a smaller thermal expansion coefficient closer to the thermal expansion coefficient of the package structure or the smaller substrate with the larger maximum dimension (length) Stress generated at the joint between the substrate and the small substrate or the package structure can be reduced.

【0019】本発明の実装構造体は、集積回路素子とし
て5mm角以上の大きさを有し、そのサイズが最も大きい
ものと最も小さいものとの大きさの差が1mm角のとき、
搭載される基板の熱膨脹係数を該基板のそれと前述のサ
イズの最も大きいものの素子の熱膨脹係数との差が10
×10-7/°K以下となるようにし、かつサイズの最も
大きいもののそれより小さくするか、又は素子の熱膨脹
係数の平均より大きくするとともに、前述のサイズの差
が1mm角増す毎に前述の熱膨脹係数の差を示す値を1/
2以下ずつ小さくすることが好ましい。例えば、サイズ
の差が2mm角に対しては5×10-7/°K以下、3mm角
に対しては2.5×10-7/°K以下、4mm角に対して
は1.25×10-7/°K以下の熱膨脹係数を有する基
板を用いることが好ましい。より好ましくは1mm角の差
に対し8×10-7/°K以下となるようにする。
The mounting structure of the present invention has a size of 5 mm square or more as an integrated circuit element, and when the size difference between the largest and the smallest is 1 mm square,
The difference between the coefficient of thermal expansion of the substrate to be mounted and that of the element having the largest size is 10%.
× 10 -7 / ° K or less and the largest one is smaller than that, or larger than the average of the coefficient of thermal expansion of the element, and the above-mentioned difference in size is increased by 1 mm square every time. The value indicating the difference in thermal expansion coefficient is 1 /
It is preferable to reduce the size by 2 or less. For example, the size difference is 5 × 10 −7 / ° K or less for a 2 mm square, 2.5 × 10 −7 / ° K or less for a 3 mm square, and 1.25 × for a 4 mm square. It is preferable to use a substrate having a coefficient of thermal expansion of 10 -7 / ° K or less. More preferably, the difference is 8 × 10 −7 / ° K or less for a difference of 1 mm square.

【0020】上記の方法は、素子とこれらを搭載する基
板、又は該素子とこれを搭載する小型基板若しくはパッ
ケージ構造体の間、及び小型基板若しくはパッケージ構
造体とこれらを搭載する大型基板の間の接続法式とし
て、C4(Controlled Collapse Chip Connection)、
TAB(Tape Automated Bonding)、ワイヤボンド、は
んだボール、微小リード及び/又はピン方式等のいずれ
を用いた場合にも有効である。さらに素材の異なる2種
類以上のLSIチップをC4方式により同一の基板上に
接続、又は素材の異なるLSIチップをC4方式により
これを搭載する小型基板若しくはパッケージ構造体に接
続し、これらを大型の同一基板上に接続した集積回路素
子実装構造体においては、LSIチップの大きさの変わ
りに各素子上の接続部に形成される半田バンプ間の最大
(最長)距離を用いて前記と同様の寸法効果を考慮する
ことにより各LSIチップ自信及び/又はLSIチップ
と基板とのはんだバンプ接合部に生じる応力を接続信頼
性が確保できるある一定範囲内に納めることが比較的容
易に可能となる。同様に、LSIチップを搭載する小型
基板若しくはパッケージ構造体とこれらを搭載する大型
基板の間及び/又はLSIチップとこれを直接搭載する
基板間が、はんだボール、微小リード及び/又はピン方
式により接続した集積回路素子実装構造体においても、
各小型基板、パッケージ構造体もしくはLSIチップ上
に形成される半田ボール間、微小リード間及び/又は接
続ピン間の最大(最長)距離を用いて同様の考え方が適
用でき、各接合部に生じる応力をコントロールでき、高
い接続信頼性が比較的容易に確保できる。
The above-described method is used for a method for mounting a device and a substrate on which the device is mounted, or between the device and a small substrate or a package structure on which the device is mounted, and between a small substrate or a package structure and a large substrate on which the device is mounted. As connection method, C4 (Controlled Collapse Chip Connection),
It is effective when any of TAB (Tape Automated Bonding), wire bonding, solder ball, micro lead and / or pin method is used. Furthermore, two or more types of LSI chips of different materials are connected on the same substrate by the C4 method, or LSI chips of different materials are connected to the small substrate or the package structure on which they are mounted by the C4 method, and these are connected to the same large-sized one. In the integrated circuit element mounting structure connected on the substrate, the same dimensional effect as described above is obtained by using the maximum (longest) distance between the solder bumps formed at the connection portion on each element instead of the size of the LSI chip. By taking into account the above, it is relatively easy to put the stress generated at each LSI chip itself and / or the solder bump joint between the LSI chip and the substrate within a certain range where the connection reliability can be ensured. Similarly, the connection between the small substrate or package structure on which the LSI chip is mounted and the large substrate on which the LSI chip is mounted and / or the connection between the LSI chip and the substrate on which the LSI chip is directly mounted is performed by a solder ball, a micro lead, and / or a pin method. Integrated circuit element mounting structure
The same concept can be applied using the maximum (longest) distance between solder balls, small leads, and / or connection pins formed on each small substrate, package structure or LSI chip, and the stress generated at each joint. , And high connection reliability can be relatively easily secured.

【0021】さらに非常に過酷な使用条件、実装上の制
約等により、一層高い動作及び接続の信頼性を確保する
ことが必要な場合には、異なる素材からなるLSIチッ
プごとにこれらを直接搭載する基板への搭載法(接続
法)を変更したり、異なる素材からなるLSIチップを
搭載する小型基板若しくはパッケージ構造体ごとに、こ
れら小型基板若しくはパッケージ構造体の大型基板への
搭載法(接続法)を変更することも非常に有効な手段と
なる。一般にLSIチップの冷却は素子を形成した面と
は反対側から主として行なわれるが、ワイヤボンティン
グ方式におけるワイヤ,TAB方式での配線が形成され
たテープやC4方式におけるはんだバンプ等の電気的な
接続を形成した部分からも当然ながら熱が除去できる。
従ってLSIチップの搭載方法として、C4,TAB,
ワイヤボンド,はんだボール,微小リード,ピン方式等
各種の異なる方法を選ぶことによって、LSIチップの
素子形成面から直接除去する熱をコントロールすること
ができる。すなわち、本発明の実装構造体を用いて非常
に高性能の機器を実現しようとする場合、より安定なL
SI温度のコントロールを要求されたり、LSIの実装
設定上の要求を満たしながら、前述のLSIチップの単
位面積当りに形成されている回路数をコントロールし
て、単位面積当りの発熱量自体をコントロールすること
には限界がでてくることが考えられるが、この様な場合
に熱伝導率が小さい素材から成るLSIチップの接続
を、他の熱伝導率の大きな素材から成るLSIチップの
接続より伝熱能力の大きな方法で行えば、素子形成面か
らも直接より多くの熱を除去でき、よって素子間の熱バ
ランスを良好に保つことが出来る。更にこの方法は、素
材の異なる2種類以上のLSIチップを同一の基板上に
搭載しようとする場合の、LSIチップと基板との熱膨
脹係数差により発生する応力を緩和するという目的にも
有効で、しかも前述の問題の解と両立できる方法であ
る。上記の搭載法(接続法)を変更する方法には、C
4,はんだボール等のはんだで主として接続する方式の
場合にはんだの種類を変更したり、TAB,ワイヤボン
ド,微小リード,ピン方式等で接続する場合に金属の種
類を変更するという方法なども含まれる。具体的には、
LSIチップとこれを直接搭載する基板の間やLSIチ
ップを搭載した小型基板若しくはパッケージ構造体とこ
れらを搭載する大型の基板の間の接続に用いる材料を、
集積回路素子実装構造体の用途に応じて応力緩和の大き
い接続が望まれる場合は、剛性の小さい材料で接続する
のがよい。
Further, when it is necessary to ensure higher operation and connection reliability due to extremely severe use conditions, mounting restrictions, and the like, these are directly mounted for each LSI chip made of a different material. The mounting method (connection method) on the substrate is changed, or for each small substrate or package structure on which an LSI chip made of a different material is mounted, the method for mounting the small substrate or package structure on a large substrate (connection method) Changing is also a very effective means. Generally, cooling of the LSI chip is mainly performed from the side opposite to the surface on which the elements are formed. However, electrical connection such as a wire in a wire bonding method, a tape in which a wiring in a TAB method is formed, a solder bump in a C4 method, and the like. Naturally, heat can also be removed from the portion where the is formed.
Therefore, C4, TAB,
By selecting various different methods such as a wire bond, a solder ball, a micro lead, and a pin method, it is possible to control the heat directly removed from the element forming surface of the LSI chip. That is, when an extremely high-performance device is to be realized using the mounting structure of the present invention, a more stable L
Controlling the number of circuits formed per unit area of the above-mentioned LSI chip and controlling the heat generation per unit area itself while controlling the SI temperature or satisfying the requirements for mounting the LSI. However, in such a case, the connection of the LSI chip made of a material having a small thermal conductivity is made more difficult than the connection of the LSI chip made of another material having a large heat conductivity. If a method having a large capacity is used, more heat can be directly removed from the element formation surface, and a good heat balance between the elements can be maintained. Furthermore, this method is also effective for the purpose of relaxing the stress generated due to the difference in thermal expansion coefficient between the LSI chip and the substrate when two or more types of LSI chips made of different materials are mounted on the same substrate. Moreover, this method is compatible with the solution of the above-mentioned problem. To change the mounting method (connection method),
4. Includes methods such as changing the type of solder when using the method of mainly connecting with solder such as solder balls, and changing the type of metal when connecting using TAB, wire bond, micro lead, pin method, etc. It is. In particular,
Materials used for connection between an LSI chip and a substrate on which the LSI chip is directly mounted, or between a small substrate or a package structure on which the LSI chip is mounted and a large substrate on which these are mounted,
If a connection with large stress relaxation is desired depending on the use of the integrated circuit element mounting structure, it is preferable to use a material having low rigidity.

【0022】本発明の集積回路実装構造体は、集積回路
素子として5mm角以上のサイズを有し、そのサイズが5
mm角のとき、素子が搭載される基板の熱膨脹係数と前述
の集積回路素子の熱膨脹係数との差が20×10-7/°
K以上のとき可撓性部材によって前期素子を基板に搭載
する構造とし、かつ素子サイズが5mm角に対し、これに
そのサイズが1mm角増す毎に前述の熱膨脹差より2.5
×10-7/°K減算した値以上で可撓性部材によって前
期素子を基板に搭載接合する構造とし、これらより低い
熱膨脹差を有するものの接合を直接はんだによって行う
ことが好ましい。例えば、10mm角のチップサイズに対
し、熱膨脹差が10×10-7/°K以上の場合にはピン
等の可撓性部材によつて接合し、9×10-7/°K以下
の場合にはC4によつて接合するのが好ましい。可撓性
部材として金属製ピン、金属製コイルばね等が好まし
い。
The integrated circuit mounting structure of the present invention has a size of 5 mm square or more as an integrated circuit element, and the size is 5 mm.
In the case of mm square, the difference between the coefficient of thermal expansion of the substrate on which the element is mounted and the coefficient of thermal expansion of the integrated circuit element is 20 × 10 -7 / °
When the element size is equal to or larger than K, the element is mounted on a substrate by a flexible member.
It is preferable to adopt a structure in which the element is mounted and bonded to the substrate by a flexible member at a value equal to or more than the value obtained by subtracting × 10 -7 / ° K, and the element having a lower thermal expansion difference is directly joined by soldering. For example, for a chip size of 10 mm square, when the thermal expansion difference is 10 × 10 −7 / ° K or more, bonding is performed by a flexible member such as a pin, and when the thermal expansion difference is 9 × 10 −7 / ° K or less. Is preferably joined by C4. As the flexible member, a metal pin, a metal coil spring, or the like is preferable.

【0023】本発明において、集積回路素子としてS
i,GaAs,InP,HEMT等の化合物半導体,ジ
ョセフソン,光素子など,各種の素子を用いることがで
きる。又これら集積回路素子は、集積回路素子を構成す
る基本素材と同じ素材の基板上に形成されたものでも、
異なった素材の基板上に形成されたものでも良い。すな
わち、本発明におけるLSIチップの構成としてはSi
基板上に形成されたSi半導体素子,GaAs基板上に
形成されたGaAs半導体素子,HEMT素子,InP
基板上に形成されたInP半導体素子などのほか、Si
基板上に形成されたGaAs半導体素子,HEMT素
子,ジョセフソン接合素子,光素子,GaAs基板上に
形成されたInP半導体素子,ジョセフソン素子,光素
子,サファイア基板上に形成されたGaAs半導体素
子,HEMT素子,ジョセフソン接合素子,光素子など
いずれでも良い。本発明における集積回路素子とは、論
理LSI,メモリLSIのいずれでも良く、素材の異な
るLSIチップごとに論理用とメモリ用に分けても、又
これらの区別無く用いても良い。さらに一つのLSIチ
ップ内に論理部とメモリ部を備えたものでも良い。例え
ば、SiとGaAsを複数個同一基板上に搭載して使用
する場合には、各々Siが論理又はメモリLSIで、G
aAsがメモリ又は論理LSIとしても良いし、またS
i,GaAsともそれぞれ論理LSI,メモリLSIを
搭載しても良い。
In the present invention, the integrated circuit element is S
Various elements such as i, GaAs, InP, HEMT, and other compound semiconductors, Josephson, and optical elements can be used. Also, these integrated circuit elements are formed on a substrate of the same material as the basic material constituting the integrated circuit element,
It may be formed on a substrate made of a different material. That is, the configuration of the LSI chip in the present invention is Si
Si semiconductor device formed on a substrate, GaAs semiconductor device formed on a GaAs substrate, HEMT device, InP
In addition to InP semiconductor elements formed on the substrate,
A GaAs semiconductor device formed on a substrate, a HEMT device, a Josephson junction device, an optical device, an InP semiconductor device formed on a GaAs substrate, a Josephson device, an optical device, a GaAs semiconductor device formed on a sapphire substrate, Any of a HEMT device, a Josephson junction device, and an optical device may be used. The integrated circuit element in the present invention may be either a logic LSI or a memory LSI, and may be divided into a logic LSI and a memory LSI for each LSI chip having a different material, or may be used without distinction. Further, a device having a logic unit and a memory unit in one LSI chip may be used. For example, when a plurality of Si and GaAs are mounted on the same substrate and used, each Si is a logic or memory LSI, and
aAs may be a memory or a logic LSI.
Both i and GaAs may be equipped with a logic LSI and a memory LSI, respectively.

【0024】LSIチップを直接搭載する基板及び/又
はLSIチップを搭載した小型基板若しくはパッケージ
構造体を搭載する大型の基板としては、Si,アルミ
ナ,サファイア,ムライト,ガラス,結晶化ガラス,セ
ラミックス−ガラス複合材,シリカ,SiC,AlN,
BN,BeO,ZrO2,MεO等の無機材料基板、エ
ポキシ/ケプラー複合材,エポキシ/ガラス複合材など
の樹脂基板、ほうろう製基板など種々の基板又は多層回
路基板を用いることができる。更に、各種ノイズの低減
等の必要に応じて前記基板にコンデンサを内蔵させたも
の、若しくはコンデンサを表面に形成した基板を用いる
ことも有効である。さらに本発明の素子実装構造体を使
用する場合には、素材の異なる各集積回路素子ごとに特
有の駆動電源電圧を、これらLSIチップを直接搭載す
る基板及び/又はLSIチップを搭載した小型基板若し
くはパッケージ構造体を搭載する大型の基板の内部及び
/又は表面に形成した配線を通して供給することが有効
である。
Examples of the substrate on which the LSI chip is directly mounted and / or the small substrate on which the LSI chip is mounted or the large substrate on which the package structure is mounted include Si, alumina, sapphire, mullite, glass, crystallized glass, and ceramic-glass. Composite, silica, SiC, AlN,
Various substrates such as inorganic material substrates such as BN, BeO, ZrO 2 , and MεO, resin substrates such as an epoxy / Kepler composite material and an epoxy / glass composite material, and enamel substrates, or multilayer circuit substrates can be used. Furthermore, it is also effective to use a substrate having a built-in capacitor or a substrate having a capacitor formed on the surface thereof as required for reducing various noises. Further, when the device mounting structure of the present invention is used, a drive power supply voltage specific to each integrated circuit device made of a different material is applied to a substrate on which these LSI chips are directly mounted and / or a small substrate on which the LSI chips are mounted or It is effective to supply through a wiring formed inside and / or on the surface of a large substrate on which the package structure is mounted.

【0025】本発明の素子実施構造体は、自然空冷,強
制空冷,間接液冷,直接液冷等の各種の冷却法を用いて
使用することができる。特に高速処理能力を要求され、
為に発熱量が非常に大きい場合には、フロン、液体窒素
等の液体冷媒中に本発明の素子実装構造体を浸潰して使
用する方法が有効である。また本発明の素子実装構造体
にを液体窒素等の非常に低温の液体冷媒中に浸漬して使
用する。場合には、特に集積回路素子として、室温に較
べて低温で動作速度が高速化する素子、例えば、Siの
CMOS,Bj−CMOS,GaAs,HEMT等の素
子を用いることが本発明の素子実装構造体を用いた大型
計算機や各種電子制御装置性能を向上させる上で好まし
い。さらに接合に用いる材料も、低温でも材料特性の優
れたもの、例えばはんだ材としては、低温でも柔らか
く、脆化しにくいインジウム系のはんだ等を選ぶことが
好ましい。
The element implementation structure of the present invention can be used by using various cooling methods such as natural air cooling, forced air cooling, indirect liquid cooling, and direct liquid cooling. In particular, high-speed processing capability is required,
Therefore, when the calorific value is very large, it is effective to immerse the element mounting structure of the present invention in a liquid refrigerant such as Freon or liquid nitrogen. Further, the element mounting structure of the present invention is used by being immersed in a very low temperature liquid refrigerant such as liquid nitrogen. In this case, an element mounting structure according to the present invention is to use an element whose operating speed is increased at a lower temperature than room temperature, for example, an element such as CMOS, Bj-CMOS, GaAs, and HEMT of Si, particularly as an integrated circuit element. It is preferable to improve the performance of a large computer using a body and various electronic control devices. Further, it is preferable to select an indium-based solder which is soft and hard to be brittle even at a low temperature.

【0026】[0026]

【発明の実施の形態】(実施例1)表面及び内部にCu
の導体配線を形成したガラスセラミック多層配線基板
(熱膨脹係数:40×10-7/K)の上に、単位面積当
りに形成された回路数が約200回路/mm2,5mm□
(チップ当たりの集積度:5000ゲート)のSi半導
体集積回路素子を形成したSiからなるLSIチップ
(熱伝導率:150W/m・K、熱膨脹係数:26×1
-7/K)および単位面積当りに形成された回路数が約
100回路/mm2,5mm□(集積度:2500ゲート)
のGaAs半導体集積回路素子を形成したGaAsから
なるLSIチップ(熱伝導率:58W/m・K,熱膨脹
係数:57×10-7/K)を高さ約150μmのPb−
5%Sn製のはんだバンプを用いてC4方式により接続
した。一方比較例として、ともに集積度5000ゲー
ト、5mm□のSi−LSIチップおよびGaAs−LS
Iチップを同様の方法によりガラスセラミック多層配線
基板上に接続した。なお、最大バンプ間距離は、Si−
LSIチップ,GaAs−LSIチップとも6.3mmで
あった。
(Embodiment 1) Cu on the surface and inside
The number of circuits formed per unit area is about 200 circuits / mm 2 , 5 mm □ on a glass ceramic multilayer wiring board (thermal expansion coefficient: 40 × 10 −7 / K) on which a conductor wiring is formed.
(Integration per chip: 5000 gates) LSI chip made of Si on which a Si semiconductor integrated circuit element is formed (thermal conductivity: 150 W / m · K, coefficient of thermal expansion: 26 × 1)
0 -7 / K) and the number of circuits formed per unit area is about 100 circuits / mm 2 , 5 mm square (integration degree: 2500 gates)
An LSI chip (thermal conductivity: 58 W / m · K, thermal expansion coefficient: 57 × 10 −7 / K) made of GaAs on which a GaAs semiconductor integrated circuit element of the above-described type is formed by using a Pb-
The connection was made by a C4 method using 5% Sn solder bumps. On the other hand, as a comparative example, both a 5000-integrated Si-LSI chip and a GaAs-LS
The I chip was connected on a glass ceramic multilayer wiring board by the same method. The maximum distance between bumps is Si-
The size of both the LSI chip and the GaAs-LSI chip was 6.3 mm.

【0027】本実施例におけるSiとGaAs素子の熱
伝導率の差は92W/m・°Kであり、回路数の差は1
00回路数/mm2であり、熱伝導率の差1W/mK当た
り約1.1回路数/mm2高い回路がSi素子に形成する
ことができる。
The difference in thermal conductivity between the Si and GaAs devices in this embodiment is 92 W / m · ° K, and the difference in the number of circuits is 1
The number of circuits is 00 circuits / mm 2 , and a circuit having an increase of about 1.1 circuits / mm 2 per 1 W / mK difference in thermal conductivity can be formed in the Si element.

【0028】これらの実装構造体を用いて、各LSIを
同一の間接液冷条件下で実使用条件を模したLSIの動
作試験を行ない、チップ内のジャンクション温度分布
(温度バラツキ)及び定常状態での各素子の平均温度を
測定した。比較例の単位面積当りに形成された回路数が
共に同じ場合には、熱伝導率が小さいGaAs素子の方
が素子内に、より大きな温度分布(温度バラツキ)を生
じていることが明らかになった。これに対して本実施例
の、Si素子に較べてGaAs素子の集積度を小さくし
た実装構造体では、GaAs素子内の温度分布がかなり
低減されていることが確認できた。さらに定常状態での
両素子の平均温度も、比較例ではSi素子に較べてGa
As素子の方が高かったのに対して、本実施例ではほぼ
同じ温度となっていた。
Using these mounting structures, an operation test of each LSI was performed under the same indirect liquid cooling conditions, simulating actual use conditions, and the junction temperature distribution (temperature variation) in the chip and the steady state were evaluated. The average temperature of each device was measured. When the number of circuits formed per unit area of the comparative example is the same, it is clear that a GaAs element having a small thermal conductivity has a larger temperature distribution (temperature variation) in the element. Was. On the other hand, it was confirmed that the temperature distribution in the GaAs element was considerably reduced in the mounting structure according to the present embodiment in which the integration degree of the GaAs element was smaller than that of the Si element. Furthermore, the average temperature of both elements in the steady state was also higher in the comparative example than in the Si element.
While the As element was higher, the temperature was almost the same in this embodiment.

【0029】本実施例ではセラミックス多層板は更に有
機多層回路板に搭載され、コネクタを介してプラッタに
接続され、三次元的に配置され、大型計算機等に用いら
れる。
In this embodiment, the ceramic multilayer board is further mounted on an organic multilayer circuit board, connected to a platter via a connector, arranged three-dimensionally, and used for a large-scale computer or the like.

【0030】冷却としては強制的に衝風冷却又は直接液
体冷却にすることができる。本実施例において、論理素
子とSi,メモリをGaAsとし、前者の集積度が前者
より大きくなっている。
The cooling may be forced blast cooling or direct liquid cooling. In this embodiment, the logic element, Si, and memory are made of GaAs, and the former has a higher degree of integration than the former.

【0031】(実施例2)表面及び内部に導体配線を形
成したアルミナ多層配線基板I(熱膨脹係数:55×1
-7/K)の上に、単位面積当りに形成された回路数が
約200回路/mm2、7mm□(集積度:10000ゲー
ト)のSi−LSIチップ2および単位面積当りに形成
された回路数が約100回路/mm2、10mm□(集積
度:10000ゲート)のGaAs−LSIチップ3を
高さ約150μmのPb−5%Sn製のはんだバンプ4
を用いてC4方式により接続した。このアルミナ多層配
線基板1のLSIチップを接続していない面には、I/
Oピン5が接続されている。基板に垂直な断面の一部を
図1に示す。一方比較例として、チップサイズおよび単
位面積当りに形成されている回路数がそれぞれ7mm□、
200回路/mm2のSi−LSIチップおよびGaAS
−LSIチップを同様の方法によりアルミナ多層配線基
板上に接続した。なお、最大バンプ間距離は、7mm□の
LSIチップで9mm、10mm□のLSIチップで13.
5mmであった。
Example 2 Alumina multilayer wiring board I having conductor wirings formed on the surface and inside (coefficient of thermal expansion: 55 × 1)
0 −7 / K), the number of circuits formed per unit area is about 200 circuits / mm 2 , and a 7 mm square (integration: 10,000 gates) is formed on the Si-LSI chip 2 and the unit area. A GaAs-LSI chip 3 having a number of circuits of about 100 circuits / mm 2 and 10 mm square (integration degree: 10000 gates) is soldered to a Pb-5% Sn solder bump 4 having a height of about 150 μm.
And connected by C4 method. On the surface of the alumina multilayer wiring board 1 to which the LSI chip is not connected, I / O
O pin 5 is connected. FIG. 1 shows a part of a cross section perpendicular to the substrate. On the other hand, as comparative examples, the chip size and the number of circuits formed per unit area are 7 mm □, respectively.
200 circuits / mm 2 Si-LSI chip and GaAs
-The LSI chip was connected on the alumina multilayer wiring board by the same method. The maximum distance between bumps is 9 mm for a 7 mm square LSI chip and 13.000 mm for a 10 mm square LSI chip.
It was 5 mm.

【0032】本実施例においては、SiとGaAs素子
とのチップサイズの差は3mm角でありサイズの大きい、
GaAs素子とアルミナ基板との熱膨脹差は2×10-7
/°Kであり、Si及びGaAs両者の熱応力を顕著に
緩和できる。
In this embodiment, the difference between the chip sizes of the Si and GaAs devices is 3 mm square and the size is large.
The thermal expansion difference between the GaAs device and the alumina substrate is 2 × 10 -7
/ ° K, and the thermal stress of both Si and GaAs can be remarkably reduced.

【0033】上記実装構造体の各LSIの裏面を、同一
の間接液冷ヒートシンクに接触させて冷却しながらLS
Iの動作試験を行なった。チップ当りの総回路数を同じ
とするために、熱伝導率が小さいGaAs素子の単位面
積当りの回路数をSiに比べて小さくし、且つチップサ
イズをSiに比べて大きくした本実施例では、比較例の
単位面積当りの回路数とチップサイズを共に等しくした
場合に比べて、GaAs素子内の温度分布(温度バラツ
キ)及び定常状態での両素子の平均温度差を共に低減で
きた。一方実施例1と較べて、単位面積当りの回路数を
同じとした場合には、GaAs素子内での温度バラツキ
は素子サイズが大きい方が大きくなることも確認でき
た。
The back surface of each LSI of the mounting structure is brought into contact with the same indirect liquid cooling heat sink to cool the LSI.
An operation test of I was performed. In order to make the total number of circuits per chip the same, the number of circuits per unit area of the GaAs element having a small thermal conductivity was made smaller than that of Si, and the chip size was made larger than that of Si in this embodiment. Compared to the comparative example in which the number of circuits per unit area and the chip size were both equal, the temperature distribution (temperature variation) in the GaAs device and the average temperature difference between both devices in the steady state were both reduced. On the other hand, when the number of circuits per unit area was the same as in Example 1, it was also confirmed that the temperature variation in the GaAs element became larger as the element size became larger.

【0034】本実施例でも実施例1と同様に三次元実装
を行うことができる。
In this embodiment, three-dimensional mounting can be performed in the same manner as in the first embodiment.

【0035】また、本実施例ではSiを論理とし、Ga
Asをメモリとしたもの、又はこの逆の構成も実施され
る。冷却も前述と同様に行うことができる。
In this embodiment, Si is a logic and Ga
A configuration in which As is used as a memory, or the reverse configuration is also implemented. Cooling can be performed in the same manner as described above.

【0036】(実施例3)表面及び内部に導体配線を形
成したムライト多層配線基板(熱膨脹係数:30×10
-7/K)の上に、単位面積当りに形成された回路数が約
200回路/mm2、7mm□(集積度:10000ゲー
ト)のSi−LSIチップおよび単位面積当りに形成さ
れた回路数が約100回路/mm2、5mm□(集積度:2
500ゲート)のGaAs−LSIチップを高さ約15
0μmのPb−5%Sn製のはんだバンプを用いてC4
方式により接続した。一方比較例として、チップサイズ
がともに7mm□で、単位面積当りに形成された回路数が
それぞれ、200回路/mm2のSi−LSIチップおよ
び100回路/mm2のGaAs−LSIチップを同様の
方法によりムライト多層は線基板上に接続した。なお、
最大バンプ間距離は、5mm□のLSIチップで6.3m
m、7mm□のLSIチップで9mmであった。
(Example 3) A mullite multilayer wiring board having conductor wirings formed on the surface and inside (coefficient of thermal expansion: 30 × 10
-7 / K), the number of circuits formed per unit area is approximately 200 circuits / mm 2 , and the number of circuits formed per unit area is 7 mm □ (integration: 10,000 gates). Is about 100 circuits / mm 2 , 5mm □ (integration degree: 2
GaAs-LSI chip of about 500 gates
C4 using a 0 μm Pb-5% Sn solder bump
Connected by method. On the other hand, as a comparative example, an Si-LSI chip having a chip size of 7 mm □ and a number of circuits formed per unit area of 200 circuits / mm 2 and a GaAs-LSI chip having 100 circuits / mm 2 were used in the same manner. Thus, the mullite multilayer was connected on the wire substrate. In addition,
The maximum distance between bumps is 6.3m for a 5mm □ LSI chip.
m, 9 mm for a 7 mm square LSI chip.

【0037】本実施例におけるSiとGaAs素子サイ
ズの差は2mm角であり、サイズの大きいSiとムライト
基板の熱膨脹係数の差は4×10-7/°Kであり、これ
らの素子の熱応力を顕著に緩和できる。
In this embodiment, the difference between the Si and GaAs element sizes is 2 mm square, and the difference between the large Si and the mullite substrate has a thermal expansion coefficient of 4 × 10 −7 / ° K. Can be remarkably reduced.

【0038】上記実装構造体の各LSIの裏面を、同一
の間接冷却ヒートシングに接触させて冷却しながらLS
Iの動作試験を行った。熱伝導率が小さいGaAs素子
の単位面積当りの回路数およびチップサイズを共にSi
に比べて小さくした本実施例では、GaAs素子の単位
面積当りの回路数を小さくしただけの比較例に比べて、
GaAsS素子内の温度分布(温度バラツキ)がさらに
小さくなり、Si素子と同程度にまで低減できることが
確認できた。
The back surface of each LSI of the mounting structure is brought into contact with the same indirect cooling
An operation test of I was performed. Both the number of circuits per unit area and the chip size of a GaAs element having a small thermal conductivity are Si
In this embodiment, which is smaller than that of the comparative example, the number of circuits per unit area of the GaAs element is smaller than that of the comparative example in which only the number of circuits is smaller.
It was confirmed that the temperature distribution (temperature variation) in the GaAsS element was further reduced and could be reduced to about the same level as the Si element.

【0039】次に、これらの実装構造体を−55℃〜1
50℃、1サイクル/hの条件で温度サイクル試験を行
った結果、比較例で示したサンプルでは約300サイク
ル後、10mm□のGaAs素子を接続したはんだ部に疲
労破壊によるクラックが観察された。また通電試験を行
いながら同時に同様の温度サイクル試験を行ったとこ
ろ、比較例のサンプルで約250サイクル後、10mm□
のGaAs素子の端部にクラックが生じていることが判
明した。一方、本実施例の実装構造体では、1000サ
イクル経過後でも全くはんだ接合部や素子にクラック等
の欠陥は発生しておらず、端子接続の信頼性の点でも良
好な実装構造が実現できる事が明らかとなった。
Next, these mounting structures were placed at -55 ° C to 1 ° C.
As a result of conducting a temperature cycle test under the conditions of 50 ° C. and 1 cycle / h, in the sample shown in the comparative example, after about 300 cycles, cracks due to fatigue fracture were observed in the solder portion connected to the 10 mm square GaAs element. In addition, when a similar temperature cycle test was performed at the same time as the energization test, the sample of the comparative example was 10 mm square after about 250 cycles.
It was found that cracks occurred at the ends of the GaAs device. On the other hand, in the mounting structure of the present example, no defect such as cracks occurred in the solder joints or the elements at all even after the lapse of 1000 cycles, and a good mounting structure could be realized in terms of the reliability of terminal connection. Became clear.

【0040】他、実施例1と同様に三次元実装を行うこ
とができる。
In addition, three-dimensional mounting can be performed as in the first embodiment.

【0041】(実施例4)表面及び内部に導体配線を形
成したガラスセラミック多層配線基板6(熱膨脹係数:
35×10-7/K)の上に、単位面積当りの発熱量が
0.7W/mm2、10mm□のSi−論理LSIチップ7
および単位面積当りの発熱量が0.3W/mm2、7mm□
のGaAs−メモリLSIチップ8を高さ約150μm
のPb−5%Sn製のはんだバンプ9を用いてC4方式
により接続した。なお、最大バンプ間距離は、7mm□の
LSIチップで9mm,10mm□のLSIチップで13.
5mmであった。またこのガラスセラミック多層配線基板
6のLSIチップを接続していない面には、I/Oピン
10が接続されている。また各LSIチップの平面での
配置は、Si−論理LSIチップの周囲にGaAs−メ
モリLSIチップが多数存在する配置とした。基板に垂
直な断面の一部を図2に、基板上部から見た平面図を図
3に示す。
Example 4 A glass ceramic multilayer wiring board 6 having conductor wirings formed on the surface and inside (coefficient of thermal expansion:
35 × 10 −7 / K), and a Si-logic LSI chip 7 with a heat value per unit area of 0.7 W / mm 2 and 10 mm □.
And the heat value per unit area is 0.3W / mm 2 , 7mm □
GaAs-memory LSI chip 8 having a height of about 150 μm
Are connected by the C4 method using the Pb-5% Sn solder bump 9 described above. The maximum bump-to-bump distance is 13.1 mm for a 7 mm square LSI chip and 13 mm for a 10 mm square LSI chip.
It was 5 mm. Further, I / O pins 10 are connected to a surface of the glass ceramic multilayer wiring board 6 where no LSI chip is connected. The layout of each LSI chip on the plane was such that many GaAs-memory LSI chips exist around the Si-logic LSI chip. FIG. 2 shows a part of a cross section perpendicular to the substrate, and FIG. 3 shows a plan view seen from above the substrate.

【0042】SiとGaAsの熱伝導率の差は98W/
m・Kで、これら両者の発熱量の差は0.4W/mm2
り、本実施例においては熱伝導率の差1W/mK当り、
0.004W/mm2だけSiの発熱量をGaAsのそれ
より高くすることができる。このようにすることにより
両者の素子の発熱量の同等にし、局部的な温度上昇をな
くすことができるとともに、同一の冷却手段にすること
ができる。
The difference in thermal conductivity between Si and GaAs is 98 W /
m · K, the difference between these two calorific values is 0.4 W / mm 2, and in this embodiment, the difference in thermal conductivity per 1 W / mK is:
The calorific value of Si can be made higher than that of GaAs by 0.004 W / mm 2 . This makes it possible to make the calorific values of both elements equal, to eliminate a local rise in temperature, and to use the same cooling means.

【0043】上記実装構造体の各LSIの裏面を、同一
の間接液冷ヒートシンクに接触させて冷却しながらLS
Iの動作試験を行った。熱伝導率の小さいGaAs素子
内の温度分布(温度バラツキ)及び定常状態でのSi,
GaAs両素子の平均温度差は共に小さく、実用上問題
のないレベルであった。
The back surface of each LSI of the mounting structure is brought into contact with the same indirect liquid cooling heat sink to cool the LSI while cooling.
An operation test of I was performed. Temperature distribution (temperature variation) in a GaAs device having a small thermal conductivity and Si,
The average temperature difference between both GaAs devices was small, and was at a level that would not cause any problem in practical use.

【0044】本実施例では論理素子の周囲に規則的にメ
モリ素子を配置したものである。論理素子の周囲に配置
されるメモリとしては高速大容量バッファ記憶,制御記
憶及び大容量ワーク記憶があり、これらは高速化が要求
され、これらの少なくとも1つにGaAsが使用され
る。
In this embodiment, a memory element is regularly arranged around a logic element. As memories arranged around the logic element, there are high-speed large-capacity buffer storage, control storage, and large-capacity work storage, and high speed is required, and GaAs is used for at least one of them.

【0045】(実施例5)単位面積当りに形成されてい
る回路数が約200回路/mm2、10mm□(集積度20
000ゲート)のSi−LSIチップ11を外形寸法が
12mm□でその表面及び/又は内部に導体配線を形成し
た小型のムライト基板12(熱膨脹係数:30×10-7
/K)の上に、また単位面積当りに形成されている回路
数が約100回路/mm2、7mm□(集積度5000ゲー
ト)のGaAs−LSIチップ13を外形寸法が9mm□
でその表面及び/又は内部に導体配線を形成した小型の
アルミナ基板14(熱膨脹係数:55×10-7/K)の
上に、それぞれ高さ約150μmPb−5%Sn製のは
んだバンプ15を用いてC4方式で接続した。更に半導
体素子の保護とはんだ接続信頼性の向上のために、これ
らの小型基板とLSIチップの間隙に、球状のシリカフ
イラとゴム状粒子とを複合してその熱膨脹係数をPb−
5%Sn製のはんだ材の熱膨脹係数に近似せられたエポ
キシ樹脂87を充填し、これを熱硬化させて、一種のパ
ッケージ構造とした。これらの小型基板のうち、Si−
LSIチップ11を搭載した12mm□の基板12は金属
からなる微小の数ターンのコイルばねからなるリード方
式16により大型のガラスセラミック多層配線基板17
(熱膨脹係数:40×10-7・K)の上に接続した。ま
たこの多層配線基板17のLSIチップを接続していな
い面には、I/Oピン18が接続されている。一方、G
aAS−LSIチップ13を搭載した9mm□の基板14
はPb−10%Sn製のはんだバンプ19を用いて前記
と同じ大型ガラスセラミック多層配線基板17に接続
し、図4に示した様な集積回路素子実装構造体を構成し
た。一方比較例として、Si−LSIチップおよびGa
As−LSIチップを搭載した小型基板をどちらもマイ
クロリード方式により大型のガラスセラミック多層配線
基板上に接続した以外は、すべて本実施例と同じ構成で
集積回路素子実装構造体を構成した。なお、最大バンプ
間距離は、7mm□のLSIチップで9mm、10mm□のL
SIチップで13.5mm、9mm□の小型基板で12mm、
9mm□,12mm□の小型基板での最長リード間距離はそ
れぞれ12mm,15.5mmであった。
Embodiment 5 The number of circuits formed per unit area is about 200 circuits / mm 2 , 10 mm square (integration degree 20
000-gate) Si-LSI chip 11 is a small mullite substrate 12 having an outer dimension of 12 mm □ and conductor wiring formed on its surface and / or inside (coefficient of thermal expansion: 30 × 10 −7).
/ K) and a GaAs-LSI chip 13 of about 100 circuits / mm 2 and 7 mm □ (integration of 5000 gates) formed per unit area and having an outer dimension of 9 mm □.
On a small alumina substrate 14 (thermal expansion coefficient: 55 × 10 −7 / K) having conductor wirings formed on the surface and / or inside thereof, solder bumps 15 each having a height of about 150 μm Pb-5% Sn are used. Connected in the C4 system. Further, in order to protect the semiconductor element and to improve the reliability of the solder connection, a spherical silica filler and rubber-like particles are compounded in the gap between these small substrates and the LSI chip to obtain a thermal expansion coefficient of Pb-.
An epoxy resin 87 having a coefficient of thermal expansion approximated to that of a solder material made of 5% Sn was filled and thermally cured to form a kind of package structure. Among these small substrates, Si-
The 12 mm square substrate 12 on which the LSI chip 11 is mounted is made of a large-sized glass ceramic multilayer wiring board 17 by a lead system 16 composed of a small number of turns of a coil spring made of metal.
(Coefficient of thermal expansion: 40 × 10 −7 · K). Further, I / O pins 18 are connected to a surface of the multilayer wiring board 17 to which no LSI chip is connected. On the other hand, G
a 9 mm square substrate 14 on which an AS-LSI chip 13 is mounted
Was connected to the same large glass ceramic multilayer wiring board 17 as above using solder bumps 19 made of Pb-10% Sn to form an integrated circuit element mounting structure as shown in FIG. On the other hand, as comparative examples, a Si-LSI chip and Ga
An integrated circuit element mounting structure was configured in the same manner as in this example, except that both the small substrates on which the As-LSI chips were mounted were connected to a large glass-ceramic multilayer wiring substrate by the micro-lead method. Note that the maximum distance between bumps is 9 mm for a 7 mm
13.5mm for SI chip, 12mm for small board of 9mm □,
The longest lead-to-lead distances on small boards of 9 mm □ and 12 mm □ were 12 mm and 15.5 mm, respectively.

【0046】上記実装構造体の各LSIの裏面に冷却用
のフィンを接続し、上記実装構造体全体を強制空冷しな
がらLSIの動作試験を行った。比較例の小型基板−大
型基板間をどちらも微小リード方式により接続した場合
には、リードが細いためLSIで発生した熱を基板側か
ら除去する分の寄与は小さく、熱は主としてチップの裏
面から除去される。このため熱伝導率が小さいGaAs
素子では、Si素子に較べて素子内の温度分布(温度バ
ラツキ)が大きく、GaAs素子の動作が安定しなかっ
た。これに対して、本実施例ではGaAs−LSIチッ
プを搭載した小型基板の大型基板への接続を、微小リー
ドより伝熱特性の良いPb−10%Sn製のはんだバン
プで行ったため、GaAs素子部で発生した熱はこのは
んだバンプを通しても除去できる様になり、よって素子
内での温度分布(温度バラツキ)を比較例に較べて大き
く改善でき、GaAs−LSIの安定動作を確保でき
た。
A cooling fin was connected to the back surface of each LSI of the mounting structure, and an LSI operation test was performed while the entire mounting structure was forcibly air-cooled. When both the small substrate and the large substrate of the comparative example are connected by the fine lead method, the contribution of removing the heat generated in the LSI from the substrate side is small because the leads are thin, and the heat is mainly transmitted from the back surface of the chip. Removed. Therefore, GaAs having low thermal conductivity
In the device, the temperature distribution (temperature variation) in the device was larger than that in the Si device, and the operation of the GaAs device was not stable. On the other hand, in the present embodiment, the connection of the small substrate on which the GaAs-LSI chip is mounted to the large substrate is performed using Pb-10% Sn solder bumps having better heat transfer characteristics than the fine leads. Can be removed through the solder bumps, so that the temperature distribution (temperature variation) in the device can be greatly improved as compared with the comparative example, and the stable operation of the GaAs-LSI can be secured.

【0047】本実施例においては、大きい方のSiのチ
ップ10mm角のものをムライト基板に搭載し、これを4
0×10-7/°Kのガラス基板に搭載したものであり、
ムライト基板とガラス基板との熱膨脹差が10×10-7
/°Kであり、可撓を有する微小リード16によって接
合するようにしたものである。これにより両者のα差を
緩和することができる。
In this embodiment, a larger Si chip of 10 mm square is mounted on a mullite substrate and
It is mounted on a glass substrate of 0 × 10 −7 / ° K.
Thermal expansion difference between mullite substrate and glass substrate is 10 × 10 -7
/ ° K, and are joined by flexible minute leads 16. Thereby, the α difference between the two can be reduced.

【0048】(実施例6)単位面積当たりに形成されて
いる回路数が約200回路/mm2、10mm□(集積度2
0000ゲート)のSi−LSIチップ20を外形寸法
が12mm□の小型ガラスセラミック基板21(熱膨脹係
数:35×10-7/K)の上に、高さ約150μmのP
b−5%Sn製のはんだバンプ22を用いてC4方式で
接続し、これに高熱伝導SiC製のキャップ23(熱膨
脹係数:37×10-7/Kをかぶせてはんだ封止24
し、小型パッケージとした。さらにこのパッケージをP
b−10%Sn製のはんだ25を用いたはんだボール方
式により大型のガラスセラミック多層配線基板26(熱
膨脹係数:35×10-7/K)上に接続した。一方、単
位面積当りに形成されている回路数が約100回路/mm
2、10mm□(集積度10000ゲート)のGaAs−
LSIチップ27は、外形寸法が12mm□の小型ガラス
セラミック基板28(熱膨脹係数:45×10-7/K)
上にやはり高さ約150μmのPb−5%Sn製のはん
だバンプ22を用いてC4方式で接続され、さらにこれ
にAlN(窒化アルミニュウム)製のキャップ29(熱
膨脹係数:37×10-7/K)をかぶせてはんだ封止3
0し、小型パッケージとした。このパッケージ構造体を
ピン方式31により前記大型ガラスセラミック多層配線
基板26上に接続した。但し、これらパッケージ構造体
のキャップの内面とSi−LSIチップ20及びGaA
s−LSIチップ27の裏面ははんだ32,33で固着
されている。またこれらの小型ガラスセラミック基板に
は、その表面及び/又は内部に導体配線とコンデンサ3
4,35が形成されている。また大型のガラスセラミッ
ク多層配線基板26のLSIチップを接続していない面
には、I/Oピン36が接続されている。図5に本実施
例の集積回路素子実装構造体の断面図を示す。一方、比
較例として単位面積当りに形成されている回路数がとも
に200回路/mm2のSi−LSIチップおよびGaA
s−LSIチップを用いて同様の方法により実装構造体
を構成した。なお、最大バンプ間距離は、10mm□のL
SIチップで13.5mm、最大はんだボール又はピン間
距離は12mm□の小型ガラスセラミック基板で15.5
mmであった。
(Embodiment 6) The number of circuits formed per unit area is about 200 circuits / mm 2 and 10 mm square (integration degree 2
0000 gate) on a small glass ceramic substrate 21 (coefficient of thermal expansion: 35 × 10 −7 / K) with an outer dimension of 12 mm □
b-5% Sn solder bumps 22 are connected by C4 method, and a high thermal conductive SiC cap 23 (thermal expansion coefficient: 37 × 10 −7 / K) is put on the solder seals 24 to cover them.
And a small package. In addition, this package
b- Connected to a large glass ceramic multilayer wiring board 26 (coefficient of thermal expansion: 35 × 10 −7 / K) by a solder ball method using a solder 25 made of 10% Sn. On the other hand, the number of circuits formed per unit area is about 100 circuits / mm.
2 , GaAs of 10mm □ (integration 10,000 gates)
The LSI chip 27 is a small glass ceramic substrate 28 having an outer dimension of 12 mm □ (coefficient of thermal expansion: 45 × 10 −7 / K).
The solder bumps 22 made of Pb-5% Sn having a height of about 150 μm are connected on the upper surface by a C4 method, and a cap 29 made of AlN (aluminum nitride) (thermal expansion coefficient: 37 × 10 −7 / K) ) And solder sealing 3
0 and a small package. This package structure was connected on the large glass ceramic multilayer wiring board 26 by a pin method 31. However, the inner surfaces of the caps of these package structures, the Si-LSI chip 20 and the GaAs
The back surface of the s-LSI chip 27 is fixed with solders 32 and 33. In addition, these small glass ceramic substrates have conductor wiring and capacitors 3 on the surface and / or inside thereof.
4, 35 are formed. Further, I / O pins 36 are connected to a surface of the large-sized glass ceramic multilayer wiring board 26 where no LSI chip is connected. FIG. 5 shows a cross-sectional view of the integrated circuit element mounting structure of the present embodiment. On the other hand, as a comparative example, a Si-LSI chip having 200 circuits / mm 2 and a GaAs
A mounting structure was formed using an s-LSI chip by the same method. Note that the maximum distance between bumps is 10 mm square L
13.5mm for SI chip, 15.5mm for small glass ceramic substrate with maximum solder ball or pin distance of 12mm □
mm.

【0049】本実施例において、直接Si素子を搭載す
る基板29とその基板を搭載した多層板との熱膨脹係数
の差は10×10-7/°Kでピンによる接合とし、その
差が9×10-7/°K以下となる部分ではC4による接
合ができる。
In this embodiment, the difference in the thermal expansion coefficient between the substrate 29 on which the Si element is directly mounted and the multilayer board on which the substrate is mounted is 10 × 10 −7 / ° K, and the joining is performed by pins, and the difference is 9 ×. In the portion where the temperature is 10 -7 / ° K or less, bonding by C4 can be performed.

【0050】上記実装構造体の各小型パッケージの裏面
を、同一の間接液冷ヒートシンクに接続させて冷却しな
がら、実使用条件を模擬したLSIの動作試験を行い、
チップ内にジャンクション温度分布(温度バラツキ)及
び定常状態での各素子の平均温度を測定した。比較例の
単位面積当りに形成されている回路数が共に同じ場合に
は、熱伝導率が小さいGaAs素子の方が素子内に、よ
り大きな温度分布(温度バラツキ)を生じているのに対
して、本実施例の実装構造体では、GaAs素子内の温
度分布がかなり低減されていることが確認できた。さら
に定常状態での両素子の平均温度も、本実施例ではほぼ
同じで、大型基板内における温度バラツキも低減するこ
とができた。
An operation test of an LSI simulating actual use conditions was performed while the back surface of each small package of the mounting structure was connected to the same indirect liquid cooling heat sink and cooled.
The junction temperature distribution (temperature variation) in the chip and the average temperature of each element in a steady state were measured. When the number of circuits formed per unit area of the comparative example is the same, the GaAs element having a small thermal conductivity has a larger temperature distribution (temperature variation) in the element. In the mounting structure of this example, it was confirmed that the temperature distribution in the GaAs element was considerably reduced. Furthermore, the average temperature of both elements in the steady state was almost the same in this embodiment, and the temperature variation in the large substrate could be reduced.

【0051】(実施例7)単位面積当りに形成されてい
る回路数が約200回路/mm2、15mm□(集積度45
000ゲート)のSi−CMOS LSIチップ37を
外形寸法が17mm□で表面及び内部に導体配線を形成し
た小型のムライト基板38(熱膨脹係数:30×10-7
/K)上に、高さ約150μmのIn製のはんだバンプ
39を用いてC4方式で接続し、これに高熱伝導SiC
製のキャップ40をかぶせてはんだ封止41し、小型パ
ッケージとした。さらにこのパッケージをIn−48%
Sn製のはんだ42を用いたはんだボール方式により大
型ムライト多層配線基板43(熱膨脹係数:30×10
-7/K)上に接続した。一方、単位面積当りに形成され
ている回路数が約100回路/mm2、6mm□(集積度4
000ゲート)のGaAs−LSIチップ4個44a−
dを、外形寸法が17mm□で表面及び内部に導体配線を
形成した小型のアルミナ基板45(熱膨脹係数:50×
10-7/K)上にやはり高さ約150μmのIn製のは
んだバンプ39を用いてC4方式で接続され、さらにこ
れにAlN製のキャップ46をかぶせてはんだ封止47
し、一つの小型パッケージとした。このパッケージ構造
体をピン方式48により前記大型ムライト多層配線基板
43上に接続した。ここで、これらパッケージ構造体の
キャップの内面とSi−LSIチップ37及びGaAs
−LSIチップ44の裏面は接触しており、さらにパッ
ケージ構造体の内部にはHeガス49が封入されてい
る。又、これらの小型基板には、その表面及び/又は内
部に導体配線とコンデンサ50が形成されており、さら
にその基板の表面には数層の薄膜配線層51及び抵抗体
52が形成されている。また大型のムライト多層配線基
板43のLSIチップを接続していない面には、I/O
ピン53が接続されている。なお、最大バンプ間距離
は、6mm□のLSIチップで7.5mm、15mm□のLS
Iチップで20.5mm、最大はんだボール又はピン間距
離は17mm□の小型基板で23mmであった。
(Embodiment 7) The number of circuits formed per unit area is about 200 circuits / mm 2 , 15 mm square (integration degree 45
Small mullite substrate 38 (coefficient of thermal expansion: 30 × 10 −7 ) having a Si-CMOS LSI chip 37 of 000 gates and an outer dimension of 17 mm □ and conductor wiring formed on the surface and inside.
/ K), using an In solder bump 39 having a height of about 150 μm and connecting with a C4 method,
The package was covered with a cap 40 and sealed with solder 41 to form a small package. In addition, this package is In-48%
A large mullite multilayer wiring board 43 (coefficient of thermal expansion: 30 × 10 3) is formed by a solder ball method using a solder 42 made of Sn.
-7 / K). On the other hand, the number of circuits formed per unit area is about 100 circuits / mm 2 ,
000-gate) GaAs-LSI chip 4 44a-
d is a small alumina substrate 45 (having a thermal expansion coefficient of 50 ×
10 −7 / K), which are also connected by a C4 method using In solder bumps 39 having a height of about 150 μm, and further covered with a cap 46 made of AlN to form a solder seal 47.
And one compact package. This package structure was connected on the large-sized mullite multilayer wiring board 43 by a pin method 48. Here, the inner surfaces of the caps of these package structures, the Si-LSI chip 37 and the GaAs
-The back surface of the LSI chip 44 is in contact, and a He gas 49 is sealed inside the package structure. On these small substrates, conductor wiring and capacitors 50 are formed on the surface and / or inside, and several thin film wiring layers 51 and resistors 52 are formed on the surface of the substrate. . The surface of the large mullite multilayer wiring board 43 to which the LSI chip is not connected is provided with an I / O
Pin 53 is connected. The maximum distance between bumps is 7.5 mm for a 6 mm square LSI chip and LS for a 15 mm square LSI chip.
The size of the I-chip was 20.5 mm, and the maximum distance between solder balls or pins was 23 mm for a small board of 17 mm square.

【0052】上記実装構造体を、循環対流している液体
窒素88中に浸漬して、実装構造体全体から冷却しなが
ら、実使用条件を模擬したLSIの動作試験を行い、チ
ップ内のジャンクション温度分布(温度バラツキ)及び
定常状態での各素子の平均温度を測定した。その結果、
熱伝導率の小さいGaAs素子内の温度分布(温度バラ
ツキ)及び定常状態でのSi,GaAs両素子の平均温
度差は共に小さく、実用上問題のないレベルであった。
図6に本実施例の集積回路素子実装構造体の一部断面図
および冷却状態を示す。
The above mounting structure is immersed in circulating convection liquid nitrogen 88, and while the entire mounting structure is cooled, an operation test of an LSI simulating actual use conditions is performed. The distribution (temperature variation) and the average temperature of each element in a steady state were measured. as a result,
Both the temperature distribution (temperature variation) in the GaAs device having a small thermal conductivity and the average temperature difference between the Si and GaAs devices in a steady state were small, and were at a level that would not cause any practical problem.
FIG. 6 shows a partial cross-sectional view and a cooling state of the integrated circuit element mounting structure of this embodiment.

【0053】(実施例8)単位面積当りに形成されてい
る回路数が約200回路/mm2、15mm□(集積度45
000ゲート)のSi−LSIチップ54を外形寸法が
17mm□で表面及び内部に導体配線を形成した小型のA
lN基板55(熱膨脹係数:45×10-7/K)上に、
TAB方式56で接続し、これにAN製のキャップ57
をかぶせてはんだ封止58し、小型パッケージとした。
一方、単位面積当りに形成されている回路数が100回
路/mm2、10mm□(集積度10000ゲート)のHE
MT−LSIチップ59を、外形寸法が12mm□で表面
及び内部に導体配線を形成した小型のAlN基板60上
にやはりTAB方式61で接続され、さらにこれにAN
製のキャップ62をかぶせてはんだ封止63し、小型パ
ッケージとした。これらのパッケージをピン方式64に
より大型のガラスセラミック多層配線基板65(熱膨脹
係数:40×10-7/K)上に接続した。ここで、これ
らパッケージ構造体のキャップの内面とSi−LSIチ
ップ54及びHEMT−LSIチップ59の裏面はそれ
ぞれはんだ66,67で固着されている。またこれら小
型基板には、その表面及び/又は内部に導体配線が形成
されており、さらにその表面には数層の薄膜配線層68
及び抵抗体69が形成されている。また大型のガラスセ
ラミック多層配線基板65には、その上面に数層の有機
薄膜多層配線部70が形成されている。またLSIチッ
プを接続していない下面には、I/Oピン71が接続さ
れている。なお、最大ピン間距離は12mm□の小型基板
で15.5mm、17mm□の小型基板で23mmであった。
(Embodiment 8) The number of circuits formed per unit area is about 200 circuits / mm 2 , 15 mm square (integration degree 45
000 gate) Si-LSI chip 54 is a small A with an outer dimension of 17 mm square and conductor wiring formed on the surface and inside.
On an 1N substrate 55 (coefficient of thermal expansion: 45 × 10 −7 / K),
Connected by TAB method 56, and AN cap 57
To form a small package.
On the other hand, an HE having a number of circuits formed per unit area of 100 circuits / mm 2 and 10 mm square (integration of 10,000 gates)
The MT-LSI chip 59 is also connected by a TAB method 61 on a small-sized AlN substrate 60 having an outer dimension of 12 mm square and having conductor wirings formed on the surface and inside thereof.
And a small package. These packages were connected to a large glass ceramic multilayer wiring board 65 (coefficient of thermal expansion: 40 × 10 −7 / K) by a pin method 64. Here, the inner surfaces of the caps of these package structures and the back surfaces of the Si-LSI chip 54 and the HEMT-LSI chip 59 are fixed by solders 66 and 67, respectively. On these small substrates, conductor wiring is formed on the surface and / or inside, and several thin film wiring layers 68 are formed on the surface.
And a resistor 69 are formed. On the large glass ceramic multilayer wiring board 65, several layers of organic thin film multilayer wiring sections 70 are formed on the upper surface thereof. Also, I / O pins 71 are connected to the lower surface where no LSI chip is connected. The maximum distance between pins was 15.5 mm for a small board of 12 mm □ and 23 mm for a small board of 17 mm □.

【0054】上記実装構造体を、循環対流している液体
窒素88中に浸漬して、実装構造体全体から冷却しなが
ら、実使用条件を模擬したLSIの動作試験を行い、チ
ップ内のジャンクション温度分布(温度バラツキ)及び
定常状態での各素子の平均温度を測定した。その結果、
熱伝導率の小さいGaAs素子内の温度分布(温度バラ
ツキ)及び定常状態でのSi,GaAs両素子の平均温
度差は共に小さく、実用上問題のないレベルであった。
図7に本実施例の集積回路素子実装構造体の一部断面図
および冷却状態を示す。
The above mounting structure was immersed in circulating convection liquid nitrogen 88, and while cooling the entire mounting structure, an operation test of an LSI simulating actual use conditions was performed to determine the junction temperature in the chip. The distribution (temperature variation) and the average temperature of each element in a steady state were measured. as a result,
Both the temperature distribution (temperature variation) in the GaAs device having a small thermal conductivity and the average temperature difference between the Si and GaAs devices in a steady state were small, and were at a level that would not cause any practical problem.
FIG. 7 shows a partial cross-sectional view and a cooling state of the integrated circuit element mounting structure of this embodiment.

【0055】(実施例9)単位面積当りに形成されてい
る回路数が約100回路/mm2、5mm□(集積度250
0ゲート)のSi−LSIチップ72を外形寸法が8mm
□で表面及び内部に導体配線を形成した小型のAlN
(窒化アルミニウム)基板73(熱膨脹係数:45×1
-7/K)上に、高さ約150μmのPb−5%Sn製
のはんだバンプ74を用いてC4方式で接続し、これに
AlN製のキャップ75をかぶせてはんだ封止76し、
小型パッケージとした。一方、単位面積当りに形成され
ている回路数が約50回路/mm2、7mm□(集積度25
00ゲート)のGaAs−LSIチップ77は、外形寸
法が10mm□で表面及び内部に導体配線を形成した小型
のAlN基板78上にやはり高さ約150μmのPb−
5%Sn製のはんだバンプ74を用いてC4方式で接続
され、さらにこれにAlN製のキャップ79をかぶせて
はんだ封止80し、小型パッケージとした。これらのパ
ッケージ構造体をピン方式81により大型のガラス繊維
−エポキシ複合多層配線基板82(熱膨脹係数:65×
10-7/K)上に接続した。ここでこれらパッケージ構
造体のキャップの内面とSi−LSIチップ72及びG
aAs−LSIチップ77の裏面はんだ83,84で固
着されている。また最大バンプ間距離は、5mm□のLS
Iチップで6.3mm、7mm□のLSIチップで9mm、8
mm□,10mm□の小型基板での最長リード間距離はそれ
ぞれ10mm,13mmであった。
(Embodiment 9) The number of circuits formed per unit area is about 100 circuits / mm 2 , 5 mm square (integration degree 250
0-gate) Si-LSI chip 72 with external dimensions of 8 mm
□ Small AlN with conductor wiring formed on the surface and inside
(Aluminum nitride) substrate 73 (coefficient of thermal expansion: 45 × 1)
0 −7 / K), using a solder bump 74 made of Pb-5% Sn having a height of about 150 μm and connecting them in a C4 system, and covering this with a cap 75 made of AlN and sealing with solder 76.
Small package. On the other hand, the number of circuits formed per unit area is about 50 circuits / mm 2 , 7 mm square (integration degree 25
A GaAs-LSI chip 77 having a thickness of about 150 μm is also formed on a small AlN substrate 78 having external dimensions of 10 mm square and conductor wiring formed on the surface and inside.
5% Sn solder bumps 74 were used for connection in the C4 mode, and a cap 79 made of AlN was put on the solder bumps 74 to seal them with solder 80 to form a small package. A large glass fiber-epoxy composite multilayer wiring board 82 (coefficient of thermal expansion: 65 ×
10 −7 / K). Here, the inner surfaces of the caps of these package structures and the Si-LSI chip 72 and G
The aAs-LSI chip 77 is fixed by solders 83 and 84 on the back surface. The maximum distance between bumps is 5mm □ LS
6.3mm for I chip, 9mm for LSI chip of 7mm □, 8mm
The longest lead-to-lead distances on small boards of mm □ and 10 mm □ were 10 mm and 13 mm, respectively.

【0056】上記実装構造体の各小型パッケージの裏面
に冷却用のAl製フイン85,86を接続し、上記実装
構造体絶体を強制空冷しながらLSIの動作試験を行っ
た。その結果、熱伝導率の小さいGaAs素子内の温度
分布(温度バラツキ)及び定常状態でのSi,GaAs
両素子の平均温度差は共に小さく、実用上問題のないレ
ベルであった。図8に本実施例の集積回路素子実装構造
体及び冷却構造の断面図を示す。
An Al fin 85, 86 for cooling was connected to the back surface of each small package of the mounting structure, and an LSI operation test was performed while the mounting structure was forcibly air-cooled. As a result, the temperature distribution (temperature variation) in the GaAs element having a small thermal conductivity and Si, GaAs in a steady state
The average temperature difference between the two elements was small, and was at a level that would not cause any problem in practical use. FIG. 8 is a cross-sectional view of the integrated circuit element mounting structure and the cooling structure of the present embodiment.

【0057】(実施例10)図9及び図10は、本発明
の他の実施例を示す集積回路素子実装構造体の断面図で
ある。
(Embodiment 10) FIGS. 9 and 10 are sectional views of an integrated circuit element mounting structure showing another embodiment of the present invention.

【0058】前述の実施例と同様に、図9においては1
0mm角のSi素子92と7mm角のGaAs素子93とを
CuW合金又はAlN焼結体基板90に金属接合され、
TAB96にてアルミナ板95に搭載したものである。
封止はメタルキャップ98によってなされ、C4接続9
1にてアルミナ多層基板94に搭載される。このアルミ
ナ多層基板94にはポリイミド多層薄膜(Cu,Au薄
膜)が5層以上形成されている。本実施例は他実施例4
と同じである。
As in the previous embodiment, FIG.
A 0 mm square Si element 92 and a 7 mm square GaAs element 93 are metal-bonded to a CuW alloy or AlN sintered body substrate 90,
It is mounted on an alumina plate 95 by TAB 96.
Sealing is provided by metal cap 98 and C4 connection 9
At 1, it is mounted on the alumina multilayer substrate 94. On this alumina multilayer substrate 94, five or more polyimide multilayer thin films (Cu, Au thin films) are formed. This embodiment is another embodiment 4.
Is the same as

【0059】図10においては、AlN焼結体からなる
ヒートシンク100に10mm角のSi素子102とGa
As素子103が各々半田にて金属接合され、TABに
てAlN基板105に搭載されるとともに、メタルキャ
ップ108にて封止される。AlN基板105にはスル
ーホール導体が設けられ、ピン107にてCu導体から
なるアルミナ分散ガラス多層基板に接続されている。A
lN基板105には多層の金属薄膜を有するポリイミド
層及びガラス多層基板には同様にポリイミド層が形成さ
れている。本実施例では他実施例6と同じである。
In FIG. 10, a 10 mm square Si element 102 and a Ga
The As elements 103 are each metal-bonded with solder, mounted on the AlN substrate 105 with TAB, and sealed with a metal cap 108. The AlN substrate 105 is provided with a through-hole conductor, and is connected to an alumina-dispersed glass multilayer substrate made of a Cu conductor by pins 107. A
A polyimide layer having a multilayer metal thin film is formed on the 1N substrate 105, and a polyimide layer is similarly formed on the glass multilayer substrate. This embodiment is the same as the other embodiment 6.

【0060】[0060]

【発明の効果】本発明によれば、各種の素材の異なるL
SIチップを、同一基板上に搭載して使用、または小型
基板若しくはパッケージ構造体を介して大型の同一基板
上に搭載して使用する際、複雑または高価な冷却構造を
必要とせず、一般的な冷却方法で信頼性の高い集積回路
素子実装構造体を構成するに必須の、チップ内温度分
布、モジュール基板全体の熱のバランス等に対する条件
を簡単に満足できる。
According to the present invention, different L values of various materials are used.
When using the SI chip mounted on the same substrate, or mounted and used on the same large substrate via a small substrate or package structure, a complicated or expensive cooling structure is not required, and a general It is possible to easily satisfy conditions such as a temperature distribution in a chip and a balance of heat of the entire module substrate, which are essential for forming a highly reliable integrated circuit element mounting structure by a cooling method.

【図面の簡単な説明】[Brief description of the drawings]

【図1】2種類のLSIチップを同一の基板上に搭載し
た本発明の集積回路素子実装構造体の構造の一例を示す
断面図。
FIG. 1 is a sectional view showing an example of the structure of an integrated circuit element mounting structure of the present invention in which two types of LSI chips are mounted on the same substrate.

【図2】2種類のLSIチップを同一の基板上に搭載し
た本発明の集積回路素子実装構造体の構造の一例を示す
断面図。
FIG. 2 is a cross-sectional view showing an example of the structure of an integrated circuit element mounting structure of the present invention in which two types of LSI chips are mounted on the same substrate.

【図3】2種類のLSIチップを同一の基板上に搭載し
た本発明の集積回路素子実装構造体の構造の一例を示す
平面図。
FIG. 3 is a plan view showing an example of the structure of the integrated circuit element mounting structure of the present invention in which two types of LSI chips are mounted on the same substrate.

【図4】2種類のLSIチップを小型基板を介して大型
の同一基板上に搭載した本発明の集積回路素子実装構造
体の構造の一例を示す断面図。
FIG. 4 is a cross-sectional view showing an example of the structure of an integrated circuit element mounting structure of the present invention in which two types of LSI chips are mounted on the same large substrate via a small substrate.

【図5】2種類のLSIチップを小型パッケージ構造体
を介して大型の同一基板上に搭載した本発明の集積回路
素子実装構造体の構造の一例を示す断面図である。
FIG. 5 is a cross-sectional view showing an example of the structure of an integrated circuit element mounting structure of the present invention in which two types of LSI chips are mounted on the same large substrate via a small package structure.

【図6】2種類のLSIチップを小型パッケージ構造体
を介して大型の同一基板上に搭載した本発明の集積回路
素子実装構造体の構造の一例を示す断面図である。
FIG. 6 is a cross-sectional view showing an example of the structure of an integrated circuit element mounting structure of the present invention in which two types of LSI chips are mounted on the same large substrate via a small package structure.

【図7】2種類のLSIチップを小型パッケージ構造体
を介して大型の同一基板上に搭載した本発明の集積回路
素子実装構造体の構造の一例を示す断面図である。
FIG. 7 is a cross-sectional view showing an example of the structure of an integrated circuit element mounting structure of the present invention in which two types of LSI chips are mounted on the same large substrate via a small package structure.

【図8】2種類のLSIチップを小型パッケージ構造体
を介して大型の同一基板上に搭載した本発明の集積回路
素子実装構造体の構造の一例を示す断面図である。
FIG. 8 is a sectional view showing an example of the structure of an integrated circuit element mounting structure of the present invention in which two types of LSI chips are mounted on the same large substrate via a small package structure.

【図9】2種類のLSIチップを小型パッケージ構造体
を介して大型の同一基板上に搭載した本発明の集積回路
素子実装構造体の構造の一例を示す断面図である。
FIG. 9 is a cross-sectional view showing an example of the structure of an integrated circuit element mounting structure of the present invention in which two types of LSI chips are mounted on the same large substrate via a small package structure.

【図10】2種類のLSIチップを小型パッケージ構造
体を介して大型の同一基板上に搭載した本発明の集積回
路素子実装構造体の構造の一例を示す断面図である。
FIG. 10 is a sectional view showing an example of the structure of an integrated circuit element mounting structure of the present invention in which two types of LSI chips are mounted on the same large substrate via a small package structure.

【符号の説明】[Explanation of symbols]

1,6,17,26,43,65,82…大型多層配線
基板、2,7,11,16,20,37,54,72,
92,102…Si−LSIチップ、3,8,13,2
3,27,44,59,77,98,103…GaAs
−LSIチップ、4,15,18,39,74…はんだ
バンプ、5,18,36,53,71…I/Oピン、1
2,14,17,24,38,45,55,60,7
3,78…小型基板 16…微小リード、19,35,42,91…はんだボ
ール、19,25,40,46,57,62,75,7
9,98,108…キャップ 20,26,28,29,41,47,58,63,6
6,67,76,80,83,84…接合用はんだ、2
7,48,64,81,97,107…ピン、30,3
1,50…コンデンサ、49…Heガス、51,70…
薄膜多層配線部、52…抵抗体、85,86…冷却フイ
ン、87…エポキシ樹脂、88…液体窒素。
1, 6, 17, 26, 43, 65, 82 ... large multilayer wiring board, 2, 7, 11, 16, 20, 37, 54, 72,
92, 102 ... Si-LSI chip, 3, 8, 13, 2
3,27,44,59,77,98,103 ... GaAs
-LSI chip, 4, 15, 18, 39, 74 ... solder bump, 5, 18, 36, 53, 71 ... I / O pin, 1
2,14,17,24,38,45,55,60,7
3, 78: small substrate 16: minute lead, 19, 35, 42, 91: solder ball, 19, 25, 40, 46, 57, 62, 75, 7
9, 98, 108 ... caps 20, 26, 28, 29, 41, 47, 58, 63, 6
6, 67, 76, 80, 83, 84 ... solder for joining, 2
7, 48, 64, 81, 97, 107 ... pins, 30, 3
1,50 ... condenser, 49 ... He gas, 51,70 ...
Thin film multilayer wiring section, 52: resistor, 85, 86: cooling fin, 87: epoxy resin, 88: liquid nitrogen.

フロントページの続き (72)発明者 井上 広一 茨城県日立市久慈町4026番地 株式会社日 立製作所日立研究所内 (72)発明者 安富 義幸 茨城県日立市久慈町4026番地 株式会社日 立製作所日立研究所内 (72)発明者 三吉 忠彦 茨城県日立市久慈町4026番地 株式会社日 立製作所日立研究所内Continuing from the front page (72) Inventor Koichi Inoue 4026 Kuji-cho, Hitachi City, Ibaraki Prefecture Within Hitachi Research Laboratory, Hitachi, Ltd. (72) Inventor Yoshiyuki Yasuto 4026 Kuji-machi, Hitachi City, Hitachi, Ltd. (72) Inventor Tadahiko Miyoshi 4026 Kuji-cho, Hitachi City, Ibaraki Prefecture Hitachi Research Laboratory, Hitachi, Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】配線が形成された基板上に、素材の異なる
複数の集積回路素子を並列に搭載してなる集積回路素子
実装構造体において、前記集積回路素子の異なる素材は
互いに異なった熱伝導率を有し、該熱伝導率の大きい前
記素材からなる集積回路素子の配線密度が、小さい熱伝
導率を有する前記素材からなる集積回路素子の配線密度
より高いことを特徴とする集積回路素子実装構造体。
1. An integrated circuit device mounting structure comprising a plurality of integrated circuit devices of different materials mounted in parallel on a substrate on which wiring is formed, wherein the different materials of the integrated circuit devices have different thermal conductivities. Wherein the wiring density of an integrated circuit element made of the material having a high thermal conductivity is higher than the wiring density of an integrated circuit element made of the material having a low thermal conductivity. Structure.
【請求項2】配線が形成された基板上に、素材の異なる
複数の集積回路素子を並列に搭載してなる集積回路素子
実装構造体において、前記集積回路素子の異なる素材は
互いに異なった熱伝導率を有し、該熱伝導率の大きい素
材からなる集積回路素子の単位面積当りの発熱量が、小
さい熱伝導率を有する素材からなる集積回路素子の単位
面積当りの発熱量より大きくしたことを特徴とする集積
回路素子実装構造体。
2. An integrated circuit device mounting structure comprising a plurality of integrated circuit devices of different materials mounted in parallel on a substrate on which wiring is formed, wherein the different materials of the integrated circuit devices have different thermal conductivity. The heat generation per unit area of the integrated circuit element made of a material having a high thermal conductivity is made larger than the heat generation per unit area of the integrated circuit element made of a material having a low heat conductivity. Characteristic integrated circuit element mounting structure.
JP11041041A 1999-02-19 1999-02-19 Integrated circuit element mounting structure Expired - Fee Related JP3095383B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11041041A JP3095383B2 (en) 1999-02-19 1999-02-19 Integrated circuit element mounting structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11041041A JP3095383B2 (en) 1999-02-19 1999-02-19 Integrated circuit element mounting structure

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP1242036A Division JP2978511B2 (en) 1989-09-20 1989-09-20 Integrated circuit element mounting structure

Publications (2)

Publication Number Publication Date
JPH11317493A true JPH11317493A (en) 1999-11-16
JP3095383B2 JP3095383B2 (en) 2000-10-03

Family

ID=12597330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11041041A Expired - Fee Related JP3095383B2 (en) 1999-02-19 1999-02-19 Integrated circuit element mounting structure

Country Status (1)

Country Link
JP (1) JP3095383B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009170777A (en) * 2008-01-18 2009-07-30 National Institute Of Advanced Industrial & Technology Programmable josephson voltage standard apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009170777A (en) * 2008-01-18 2009-07-30 National Institute Of Advanced Industrial & Technology Programmable josephson voltage standard apparatus

Also Published As

Publication number Publication date
JP3095383B2 (en) 2000-10-03

Similar Documents

Publication Publication Date Title
JP2978511B2 (en) Integrated circuit element mounting structure
US6317326B1 (en) Integrated circuit device package and heat dissipation device
US6229216B1 (en) Silicon interposer and multi-chip-module (MCM) with through substrate vias
US5155661A (en) Aluminum nitride multi-chip module
US5525834A (en) Integrated circuit package
JP3815239B2 (en) Semiconductor device mounting structure and printed wiring board
US7786486B2 (en) Double-sided package for power module
US5701032A (en) Integrated circuit package
US20010026955A1 (en) Flip chip thermally enhanced ball grid array
JPH07106477A (en) Heat sink assembly with heat conduction board
JPH0758276A (en) Multichip module
JPH01253942A (en) Semiconductor package and computer using the same
KR100653605B1 (en) Semiconductor chip package having metal core heat sink and semiconductor module comprising thereof
JP3095383B2 (en) Integrated circuit element mounting structure
JP2000323610A (en) Film carrier semiconductor device
JPH09213847A (en) Semiconductor integrated circuit device, manufacture thereof, and electronic device equipped therewith
US6963129B1 (en) Multi-chip package having a contiguous heat spreader assembly
JP3178405B2 (en) Stacked semiconductor device module with reduced thermal stress
JPH10256428A (en) Semiconductor package
JP2003258153A (en) Package structure of semiconductor package
JP3592515B2 (en) Package for semiconductor device
JPH07235633A (en) Multi-chip module
JPS63313846A (en) Module packaging structure
JPH05114665A (en) Heat radiative substrate
KR20050031599A (en) Semiconductor package having thermal interface material

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees