JPH11307020A - Field emission type display element - Google Patents

Field emission type display element

Info

Publication number
JPH11307020A
JPH11307020A JP10633398A JP10633398A JPH11307020A JP H11307020 A JPH11307020 A JP H11307020A JP 10633398 A JP10633398 A JP 10633398A JP 10633398 A JP10633398 A JP 10633398A JP H11307020 A JPH11307020 A JP H11307020A
Authority
JP
Japan
Prior art keywords
phosphor
fed
field emission
anode
display device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10633398A
Other languages
Japanese (ja)
Inventor
Yoshitaka Sato
義孝 佐藤
Hitoshi Toki
均 土岐
Shigeo Ito
茂生 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Futaba Corp
Original Assignee
Futaba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Futaba Corp filed Critical Futaba Corp
Priority to JP10633398A priority Critical patent/JPH11307020A/en
Publication of JPH11307020A publication Critical patent/JPH11307020A/en
Pending legal-status Critical Current

Links

Landscapes

  • Luminescent Compositions (AREA)
  • Cathode-Ray Tubes And Fluorescent Screens For Display (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a FED(field emission type display element) provided with a phosphor hard to decompose and scatter even under the driving conditions of low-voltage and high-current, and suppressing deterioration of an emitter. SOLUTION: A phosphor GaN: Zn is obtained by nitriding Ga2 S3 and ZnS in an air flow of NH3 at a temperature of 1000 deg.C. A FED using the phosphor is formed. The relationship between calcination temperature of the phosphor and initial luminance when it emits a light in the FED is shown. Here, the driving condition is 400 V, 1/240 Duty, 75 mA/cm<2> (average current 300 Α/cm<2> ). The phosphor GaN in this case is suitable for the FED as the phosphor having a luminescent peak at approximately 410 nm if the calcination temperature is in the range of 450 deg.C-550 deg.C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電界放出形陰極(F
ield Emission Cathode, FEC) を電子源に用いた電界放
出形表示素子(Field Emission Display, FED) の発光表
示部の蛍光体として有用な蛍光体を提供するものであ
る。
The present invention relates to a field emission cathode (F
An object of the present invention is to provide a phosphor which is useful as a phosphor of a light emitting display section of a field emission display device (Field Emission Display, FED) using an electron emission cathode (FEC) as an electron source.

【0002】[0002]

【従来の技術】現在、電界放出形陰極と蛍光体を組み合
わせた電界放出形表示素子(FED)の研究開発が行わ
れている。その駆動電圧は1kv以下であり、薄型軽量
化が期待されている。
2. Description of the Related Art At present, research and development of a field emission display (FED) combining a field emission cathode and a phosphor are being conducted. The driving voltage is 1 kv or less, and a reduction in thickness and weight is expected.

【0003】FEDにおいて電子を放出する部分がエミ
ッタであり、このエミッタにはMoなど金属を用いたも
のやダイヤモンドライクカーボンなどを用いたものが検
討されている。一方、蛍光体にはZnO:Zn蛍光体が
広く検討されている。また、フルカラー化に関しては酸
化物を中心とした色々な蛍光体が検討されている。
[0003] The portion of the FED that emits electrons is an emitter, and an emitter using a metal such as Mo or an emitter using diamond-like carbon has been studied. On the other hand, ZnO: Zn phosphor has been widely studied as a phosphor. In addition, various phosphors, mainly oxides, are being studied for full color.

【0004】CRT等に使用されている現状の蛍光体の
性能を前提としてグラフィック用のFEDを構成し、グ
ラフィック表示を行うとすると、その駆動電圧は1kV
以下、デューティ比は1/240、駆動電流は100m
A/cm2 以下(平均電流で400μA/cm2 )とい
った条件が必要である。
If a graphic FED is constructed based on the performance of the current phosphor used in a CRT or the like and a graphic display is performed, the driving voltage is 1 kV.
Hereinafter, the duty ratio is 1/240, and the driving current is 100 m.
A condition such as A / cm 2 or less (400 μA / cm 2 in average current) is required.

【0005】通常のCRT等では平均電流値は高々0.
数〜数μAであり、FEDはCRTに比べて100〜1
000倍の電流密度が必要になる。このようにFEDに
おいては大電流密度が必要であるため、通常の蛍光体で
は分解飛散を生じ、蛍光体自体の効率の低下及び飛散物
によるエミッタ汚染の問題が生じる。
In a normal CRT or the like, the average current value is at most 0.
Several to several μA, and FED is 100 to 1
A current density of 000 times is required. As described above, since a large current density is required in the FED, the usual phosphors are decomposed and scattered, and the efficiency of the phosphor itself is reduced, and the emitters are contaminated by the scattered matters.

【0006】このように、CRTにおける電子の加速電
圧はFEDよりもはるかに大きいので、従って発光時の
エネルギーが同一ならば、FEDの電流密度はCRTよ
りもはるかに大きくなければならない。従って、FED
はエネルギー変換効率が悪い低電圧・大電流の駆動条件
となり、エネルギーのロスが熱になって蛍光体を分解飛
散させる等の問題が生じていたのである。
As described above, the acceleration voltage of electrons in the CRT is much higher than that of the FED. Therefore, if the energy at the time of light emission is the same, the current density of the FED must be much higher than that of the CRT. Therefore, FED
This is a low voltage and large current driving condition with low energy conversion efficiency, and there has been a problem that energy loss becomes heat and the phosphor is decomposed and scattered.

【0007】また、特に金属製のコーン形状のエミッタ
の場合には、反応性の高いイオウや酸素による汚染は致
命的な劣化となることが報告されている。これらのこと
から、現状の蛍光体ではFEDに使用しても寿命特性が
悪いという問題があった。
It is also reported that particularly in the case of a metal cone-shaped emitter, contamination with highly reactive sulfur or oxygen causes fatal deterioration. For these reasons, there has been a problem that the current phosphor has poor life characteristics even when used for an FED.

【0008】本発明は、低電圧・大電流の駆動条件にお
いても分解飛散しにくく、エミッタを劣化しにくい蛍光
体を備えたFEDを提供することを目的としている。
An object of the present invention is to provide an FED having a phosphor which is hardly decomposed and scattered even under driving conditions of a low voltage and a large current and whose emitter is hardly deteriorated.

【0009】[0009]

【課題を解決するための手段】請求項1に記載された電
界放出形表示素子は、内面に電界放出形陰極が形成され
た陰極基板と、内面に蛍光体からなる蛍光面を有する陽
極が形成された陽極基板とを所定間隔をおいて対面さ
せ、前記陰極基板と前記陽極基板の各外周部の隙間を封
止した電界放出形表示素子において、前記蛍光体を窒化
ガリウム系の蛍光体としたことを特徴としている。
According to a first aspect of the present invention, there is provided a field emission display device comprising a cathode substrate having a field emission cathode formed on an inner surface thereof and an anode having a phosphor surface made of a phosphor on the inner surface. In the field emission display device in which the anode substrate is faced at a predetermined interval and the gaps between the outer peripheral portions of the cathode substrate and the anode substrate are sealed, the gallium nitride-based phosphor is used as the phosphor. It is characterized by:

【0010】請求項2に記載された電界放出素子は、請
求項1記載の電界放出形表示素子において、前記蛍光面
が、前記蛍光体の薄膜であることを特徴としている。
According to a second aspect of the present invention, in the field emission display device of the first aspect, the phosphor screen is a thin film of the phosphor.

【0011】請求項3に記載された電界放出形表示素子
は、請求項1記載の電界放出形表示素子において、前記
蛍光面が、前記蛍光体の粒子の集合体で構成された蛍光
体層であることを特徴としている。
According to a third aspect of the present invention, in the field emission display device according to the first aspect, the phosphor screen is a phosphor layer composed of an aggregate of the phosphor particles. It is characterized by having.

【0012】請求項4に記載された電界放出形表示素子
は、請求項1記載の電界放出形表示素子において、前記
窒化ガリウム系の蛍光体が次式で表される蛍光体である
ことを特徴とする。 Ga1-x Inx N:A,B 但し、上の式において、0≦x≦0.9、AはZnとM
gからなる群から選択され、Bは何もない状態とSiと
Geから選択される。
According to a fourth aspect of the present invention, in the field emission display device of the first aspect, the gallium nitride-based phosphor is a phosphor represented by the following formula. And Ga 1-x In x N: A, B where 0 ≦ x ≦ 0.9, where A is Zn and M
g is selected from the group consisting of g, and B is selected from nothing and Si and Ge.

【0013】請求項5に記載された電界放出形表示素子
は、請求項1記載の電界放出形表示素子において、陽極
に電圧が1kV以下、陽極電流が20μA/cm2 以上
で使用されることを特徴とする。
According to a fifth aspect of the present invention, in the field emission type display device of the first aspect, the anode is used at a voltage of 1 kV or less and an anode current of 20 μA / cm 2 or more. Features.

【0014】[0014]

【発明の実施の形態】本発明者等は、上記の目的を達成
するため、低電圧・大電流駆動でエミッタに悪影響を与
えないFED用蛍光体の開発に鋭意努力した。このよう
な蛍光体が備えるべき条件としては、蛍光体が分解して
もエミッタに悪影響を与えるような飛散物をださないこ
と、また大電流低電圧駆動のため適度な導電性を有して
いること、そして融点が比較的高いことなどが挙げられ
る。即ち、FED用の蛍光体は、低電圧・高電流密度の
駆動条件で使用されるので、電子の射突によっても分解
しにくく、また分解したとしても分解物がカソードを害
さないようなものであることが好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION The present inventors have made intensive efforts to develop a phosphor for an FED which can be driven at a low voltage and a large current and has no adverse effect on an emitter, in order to achieve the above object. The condition that such a phosphor should have is that, even if the phosphor is decomposed, it does not produce scattered substances that adversely affect the emitter, and that it has appropriate conductivity for driving a large current and a low voltage. And a relatively high melting point. That is, since the phosphor for FED is used under the driving conditions of low voltage and high current density, it is difficult to be decomposed even by the impact of electrons, and even if decomposed, the decomposed substance does not harm the cathode. Preferably, there is.

【0015】これらの条件を満足する材料の候補とし
て、カソードと反応しにくいN等の元素と、蒸気圧が低
くて分解しにくいGa等の金属を成分として含む蛍光体
が考えられる。本発明者等は、このような蛍光体の一例
としてGa1-x Inx N:A,BをFED用の蛍光体と
して使用できないか検討した。この蛍光体はLEDでは
すでに高効率の青色、緑色発光を示すことが知られてい
る。この材料はまた、大気中では900℃で酸化物にな
ることも知られている。
As a candidate for a material satisfying these conditions, a phosphor containing, as components, an element such as N which does not easily react with the cathode and a metal such as Ga which has a low vapor pressure and is difficult to decompose can be considered. The present inventors have examined whether Ga 1-x In x N: A, B can be used as a phosphor for FED as an example of such a phosphor. It is already known that this phosphor emits blue and green light with high efficiency in LED. This material is also known to become oxide at 900 ° C. in air.

【0016】しかしながら、この材料をFEDに応用す
る場合、スラリー塗布後大気中にて450℃から550
℃で焼成する必要があり、この時点での表面酸化を防止
するための手段を講じる必要がある。以下、Ga1-x
x N:A,B蛍光体の具体例について説明する。
However, when this material is applied to an FED, the slurry is applied at 450 ° C. to 550 ° C. in air.
It is necessary to bake at ° C., and it is necessary to take measures to prevent surface oxidation at this point. Hereinafter, Ga 1-x I
n x N: A, concrete examples of the B phosphor will be described.

【0017】(1) 実施例1(GaN:Zn蛍光体) GaN:Zn蛍光体は、例えばGa2 3 を母体材料と
し、ドーバントとなるZnを供給するための原料として
ZnSを用い、これらをNH3 気流中で1000℃でチ
ッ化することにより得ることができる。
(1) Example 1 (GaN: Zn phosphor) A GaN: Zn phosphor is made of, for example, Ga 2 S 3 as a base material, and ZnS as a raw material for supplying Zn as a dopant. It can be obtained by nitriding at 1000 ° C. in an NH 3 stream.

【0018】この蛍光体を用いたFEDを作製する。F
EDの構造を図1を参照して説明する。陰極基板1の内
面には、FEC2が形成されている。まずFEC2は陰
極導体3を有している。陰極導体3の上には絶縁層4が
ある。絶縁層4の上にはゲート電極5がある。ゲート電
極5と絶縁層4には、空孔6が形成されている。空孔6
内の陰極導体3上には、コーン形状のエミッタ7が形成
されている。
An FED using this phosphor is manufactured. F
The structure of the ED will be described with reference to FIG. An FEC 2 is formed on the inner surface of the cathode substrate 1. First, the FEC 2 has a cathode conductor 3. On the cathode conductor 3 is an insulating layer 4. On the insulating layer 4 is a gate electrode 5. Holes 6 are formed in the gate electrode 5 and the insulating layer 4. Vacancy 6
On the cathode conductor 3 inside, a cone-shaped emitter 7 is formed.

【0019】透明な陽極基板10の内面には陽極11が
構成されている。陽極11は、陽極基板10の内面に形
成されたITO膜等の透光性の陽極導体12と、その上
に形成された蛍光体層13からなる。陽極導体12に対
する蛍光体の塗布はスラリー法で行い、その後焼成して
スラリー構成材料のバインダーを除去する。
An anode 11 is formed on the inner surface of the transparent anode substrate 10. The anode 11 includes a translucent anode conductor 12 such as an ITO film formed on the inner surface of the anode substrate 10 and a phosphor layer 13 formed thereon. The phosphor is applied to the anode conductor 12 by a slurry method, and then fired to remove the binder of the slurry constituent material.

【0020】FEC2と陽極11が所定間隔をおいて対
面するように、陰極基板1と陽極基板10が対面して配
置され、両基板1,10の外周部の隙間がスペーサ部材
で封止されて外囲器が構成される。外囲器の内部は高真
空状態に排気される。
The cathode substrate 1 and the anode substrate 10 are arranged so as to face each other so that the FEC 2 and the anode 11 face each other at a predetermined interval, and the gap between the outer peripheral portions of the two substrates 1 and 10 is sealed by a spacer member. An envelope is configured. The interior of the envelope is evacuated to a high vacuum.

【0021】このような構成のFEDによれば、FEC
のエミッタ7から放出された電子は、陽極11の蛍光体
層13に射突してこれを発光させる。蛍光体層13の発
光は、透光性の陽極導体12と透明な陽極基板10を通
して外囲器の外から観察される。
According to the FED having such a configuration, the FEC
The electrons emitted from the emitter 7 strike the phosphor layer 13 of the anode 11 to emit light. Light emission of the phosphor layer 13 is observed from outside the envelope through the translucent anode conductor 12 and the transparent anode substrate 10.

【0022】なお本実施例においては、比較のため、青
色蛍光体としてY2 SiO5 :Ceを用いたFEDも試
作した。また、GaN塗布後に焼成する際の焼成温度を
400℃〜600℃範囲において変化させ、特性の変化
を検討した。
In this embodiment, for comparison, an FED using Y 2 SiO 5 : Ce as a blue phosphor was also experimentally manufactured. Further, the firing temperature at the time of firing after the application of GaN was changed in the range of 400 ° C. to 600 ° C., and the change in characteristics was examined.

【0023】図2に焼成温度と初期輝度の関係を示す。
駆動条件は400V,1/240Duty,75mA/
cm2 (同平均電流300μA/cm2 )である。この
ように、本例のGaN蛍光体は、焼成温度450℃〜5
50℃の範囲であれば、約410nmにピークを持つ青
色発光の蛍光体として使用可能であることが分かった。
FIG. 2 shows the relationship between the firing temperature and the initial luminance.
The driving conditions were 400V, 1/240 Duty, 75mA /
cm 2 (the same average current of 300 μA / cm 2 ). Thus, the GaN phosphor of this example has a firing temperature of 450 ° C. to 5 ° C.
In the range of 50 ° C., it was found that the phosphor can be used as a blue-emitting phosphor having a peak at about 410 nm.

【0024】図3に寿命試験の結果を示す。本例のGa
N蛍光体は、焼成温度450℃〜550℃の範囲であれ
ば、5000時間経過後にも輝度残存率が70%以上あ
り、FED用蛍光体として良好であることが分かった。
これは、エミッション量の低下が少なく、また蛍光体自
体の劣化を示す発光効率の劣化も殆ど無いことを示して
いると考えられる。
FIG. 3 shows the results of the life test. Ga of this example
The N phosphor had a luminance remaining ratio of 70% or more even after lapse of 5000 hours when the firing temperature was in the range of 450 ° C. to 550 ° C., which proved to be good as a phosphor for FED.
This is considered to indicate that the decrease in the emission amount is small, and that the luminous efficiency, which indicates the deterioration of the phosphor itself, hardly deteriorates.

【0025】表1に、本例のGaN蛍光体の表面のAE
S分析の結果を焼成温度別に示す。この結果から、55
0℃以下であれば蛍光体表面の酸化が抑えられることが
わかる。この温度は、前記有効な焼成温度範囲内の値で
ある。
Table 1 shows the AE of the surface of the GaN phosphor of this example.
The results of S analysis are shown for each firing temperature. From this result, 55
It can be seen that if the temperature is 0 ° C. or lower, the oxidation of the phosphor surface can be suppressed. This temperature is a value within the effective firing temperature range.

【0026】[0026]

【表1】 [Table 1]

【0027】表2に寿命試験後のカソード表面のAES
分析結果を示す。「Life無」が寿命試験後の試料で
あることを示している。これによると、比較例である酸
化物蛍光体としてのY2 SiO5 :Ce蛍光体を用いた
場合は、寿命試験後に酸素が増えていることがわかる。
一方、本例のGaN蛍光体では、有害な酸素の増加は焼
成温度600℃においてすら少なく、前記有効な焼成温
度範囲内の値である500℃においては全く増加が認め
られない。
Table 2 shows the AES of the cathode surface after the life test.
The results of the analysis are shown. "No Life" indicates that the sample is after the life test. According to this, when the Y 2 SiO 5 : Ce phosphor is used as the oxide phosphor as a comparative example, it is found that oxygen increases after the life test.
On the other hand, in the GaN phosphor of this example, an increase in harmful oxygen is small even at the firing temperature of 600 ° C., and no increase is observed at 500 ° C. which is a value within the effective firing temperature range.

【0028】[0028]

【表2】 [Table 2]

【0029】また、本例のGaN蛍光体をフィラメント
カソードを有するVFDに実装して同様に評価したとこ
ろ、約10000時間で70%の輝度残存率であった。
When the GaN phosphor of this example was mounted on a VFD having a filament cathode and evaluated in the same manner, a luminance remaining ratio of 70% was obtained in about 10,000 hours.

【0030】比較用のY2 SiO5 :Ce蛍光体と本例
のGaN蛍光体に関し、1000時間経過時点でのエミ
ッション及び発光効率の残存率を測定して表3及び表4
に示した。ここで、駆動時の電流密度を、実用的な駆動
条件の値ではないが、通常使用の条件より低い0.4μ
A/cm2 から逆に高い400μA/cm2 まで変化さ
せた。結果から明らかなように、本例のGaN蛍光体は
高電流密度でも劣化が少なく特に5mA/cm2 以上で
の電流密度での使用において優れており、これを用いる
ことにより高信頼性のFEDを実現することが可能であ
る。なお、1kV以下の駆動電圧で表示を行う場合、電
流密度が1mA/cm2 以下では室内の明るさの基では
十分な明るさを得ることができない。
With respect to the Y 2 SiO 5 : Ce phosphor for comparison and the GaN phosphor of this example, the emission and residual ratio of the luminous efficiency after 1000 hours were measured, and Tables 3 and 4 were obtained.
It was shown to. Here, the current density at the time of driving is not a value under practical driving conditions, but is 0.4 μm lower than that under normal use.
It was changed from A / cm 2 to 400 μA / cm 2 which was higher. As is evident from the results, the GaN phosphor of this example shows little degradation even at a high current density, and is particularly excellent in use at a current density of 5 mA / cm 2 or more. It is possible to realize. When a display is performed with a drive voltage of 1 kV or less, sufficient brightness cannot be obtained based on the brightness of the room when the current density is 1 mA / cm 2 or less.

【0031】[0031]

【表3】 [Table 3]

【0032】[0032]

【表4】 [Table 4]

【0033】(2) 実施例2(GaInN:Mg蛍光体) 実施例1と同様にして原料にGa2 3 0.7mol、
In2 3 0.3molを母体材料とし、ドーバントと
なるMgを供給するための原料としてMgCl 2 を用
い、これらをNH3 気流中で1000℃でチッ化するこ
とにより得ることができる。
(2) Example 2 (GaInN: Mg phosphor) In the same manner as in Example 1, GaTwoSThree0.7 mol,
InTwoSThree0.3 mol as the base material,
MgCl as a raw material for supplying Mg TwoFor
These are NHThreeNitting at 1000 ° C in an air stream
And can be obtained by

【0034】実施例1と同様に、FEDを試作して蛍光
体の発光状態を評価した結果、青緑色の発光が得られ
た。また、本例のGaInN:Mg蛍光体と、比較用と
して試作したY3 Al5 12:Tb蛍光体について、実
施例1の表3と同様の実験を行った。実施例1と同様、
本例の蛍光体も高電流密度において劣化が少なく、特に
5mA/cm2 以上での電流密度での使用において優れ
ており、これを用いることにより高信頼性のFEDを実
現することが可能である。
In the same manner as in Example 1, a prototype FED was manufactured to evaluate the light emitting state of the phosphor. As a result, blue-green light was emitted. In addition, the same experiment as in Table 3 of Example 1 was performed on the GaInN: Mg phosphor of this example and the Y 3 Al 5 O 12 : Tb phosphor produced as a trial for comparison. As in Example 1,
The phosphor of this example is also less deteriorated at a high current density, and is particularly excellent in use at a current density of 5 mA / cm 2 or more. By using this, a highly reliable FED can be realized. .

【0035】(3) 実施例3(GaInN:Zn,Si蛍
光体) 原料にTMGa,NH3 さらにTMIn(トリメチルイ
ンジウム)及びドーパントとしてDEZn(ジエチル亜
鉛)とシラン(SiH4 )を用い、核となる粉体に平均
粒径が0.5μmのAlNを用い、この表面に蛍光体を
成長させた。成長方法は真空チャンバー内でAlNを載
せたSiウエハーをランプ加熱によりSiウエハーの温
度で800℃に設定し、真空チャンバー内を40tor
rの圧力とし、TMGを5μmol/min,TMIn
を20μmol/min,NH3を0.08mol/m
in流し、ドーパントとして上記材料を各々0.5μm
ol/min流し、AlNの粒の表面にGaIn
0.6 N:Zn,Siを成長させた。これを窒素中にて6
50℃でアニールし蛍光体を作製した。
(3) Example 3 (GaInN: Zn, Si phosphor) TMGa, NH 3 and TMIn (trimethylindium) as raw materials, DEZn (diethyl zinc) and silane (SiH 4 ) as dopants, and serve as nuclei. AlN having an average particle size of 0.5 μm was used as a powder, and a phosphor was grown on this surface. The growth method is as follows. A Si wafer on which AlN is placed is set in a vacuum chamber to 800 ° C. at a temperature of the Si wafer by lamp heating, and the inside of the vacuum chamber is set to 40 torr.
r, TMG is 5 μmol / min, TMIn
Is 20 μmol / min and NH 3 is 0.08 mol / m
Inflow, each of the above materials as a dopant is 0.5 μm
ol / min and GaIn is applied to the surface of the AlN particles.
0.6 N: Zn, Si was grown. Put this in nitrogen 6
Annealing was performed at 50 ° C. to produce a phosphor.

【0036】前記各実施例と同様の手法で評価したとこ
ろ、黄色の発光が得られ、寿命試験1000時間後でも
劣化は認められなかった。
Evaluation was made in the same manner as in each of the above Examples. As a result, yellow luminescence was obtained, and no deterioration was observed even after a life test of 1,000 hours.

【0037】(3) 実施例4(Ga0.2 In0.8 N:Z
n,Si蛍光体) In2 3 0.8molにGa2 3 0.2molを固
容した原料に、ZnCl2 とポリシラザン(Si,N,
Hの化合物)をドーバントとして用い、窒化してGa
0.2 In0.8 N:Zn,Si蛍光体を作製した。
(3) Example 4 (Ga 0.2 In 0.8 N: Z
n, a Ga 2 S 3 0.2 mol of the Si phosphor) In 2 S 3 0.8mol the raw material KataHiroshi, ZnCl 2 and polysilazane (Si, N,
H) as a dopant, nitrided and Ga
A 0.2 In 0.8 N: Zn, Si phosphor was produced.

【0038】前記各実施例と同様の手法で評価したとこ
ろ、赤色の発光が得られた。また、400V,1/24
0Duty,75mA/cm2 (同平均電流300μA
/cm2 )、寿命評価500時間では劣化は認められな
かった。
Evaluation was made in the same manner as in each of the above Examples, and red light emission was obtained. Also, 400V, 1/24
0 Duty, 75 mA / cm 2 (same average current 300 μA
/ Cm 2 ) and no deterioration was observed in the life evaluation of 500 hours.

【0039】以上説明した実施例1〜4においては、F
EDの蛍光面を、蛍光体の粒子の集合体である蛍光体層
によって構成した。しかしながら、FEDの蛍光面を蛍
光体の薄膜、即ち蛍光体が原子乃至分子のレベルで結合
して構成された膜の場合には、単なる蛍光体層の場合に
比べて表面積が減少するので、ガスの放出が少なくな
り、また表面に吸着するガスの量も少なくなる。
In the first to fourth embodiments described above, F
The phosphor screen of the ED was constituted by a phosphor layer which was an aggregate of phosphor particles. However, in the case of a thin film of a phosphor, that is, a film in which the phosphor is bonded at the atomic or molecular level, the surface area of the FED is smaller than that of a simple phosphor layer. And the amount of gas adsorbed on the surface is reduced.

【0040】(5) 実施例5(Ga1-X InX N:A,B
蛍光体を用いたRGB3色の発光色を有するカラーグラ
フィック用FEDの例。但し、0≦x≦0.9であり、
AはZnとMgからなる群から選択され、Bは何もない
状態とSiとGeから選択されるものとする。)
(5) Embodiment 5 (Ga 1 -x In x N: A, B
5 is an example of a color graphic FED having three emission colors of RGB using phosphors. However, 0 ≦ x ≦ 0.9,
A is selected from the group consisting of Zn and Mg, and B is selected from nothing and Si and Ge. )

【0041】図4に示す基板は、MgAl2 4 基板、
サファイア基板、又はSiO2 /Si基板上である。こ
の基板上に、Ga1-X InX N:A,B蛍光体を形成す
る。その際、Xの値を周期的に変えて組成の異なる3つ
の蛍光体の薄膜をそれぞれ帯状に一定の順序で形成す
る。Xの値を変えることにより、Ga1-X InX N:
A,B蛍光体は発光色も変わる。例えば、X=0で青、
X=0.4で緑、X=0.8〜0.9で赤となる。これ
によって、R(赤)、G(緑)、B(青)の3色の美状
パターンの繰り返しからなるカラーグラフィックFED
用の蛍光面(薄膜)が形成できる。
The substrate shown in FIG. 4 is a MgAl 2 O 4 substrate,
It is on a sapphire substrate or a SiO 2 / Si substrate. On this substrate, Ga 1-x In x N: A, B phosphor is formed. At this time, thin films of three phosphors having different compositions are formed in a certain order in a strip shape by periodically changing the value of X. By changing the value of X, Ga 1-X In X N:
The emission colors of the A and B phosphors also change. For example, blue at X = 0,
Green at X = 0.4 and red at X = 0.8-0.9. Thus, a color graphic FED composed of repetitions of three beautiful patterns of R (red), G (green), and B (blue)
Phosphor screen (thin film) can be formed.

【0042】上記蛍光体の薄膜を形成するには、マスク
蒸着法を用いてInの量が3段階になるようにする。蛍
光体薄膜を形成した基板は、そのまま真空気密容器中に
実装する。又は、表示素子の外囲器を構成する陽極基板
の内面上に該基板を固定して外部端子電極と接続し、真
空気密容器内に実装されるようにする。
In order to form the above-mentioned phosphor thin film, the amount of In is adjusted to three levels by using a mask vapor deposition method. The substrate on which the phosphor thin film is formed is directly mounted in a vacuum-tight container. Alternatively, the substrate is fixed on the inner surface of the anode substrate constituting the envelope of the display element, connected to the external terminal electrodes, and mounted in a vacuum-tight container.

【0043】基板上に蛍光体の薄膜を成長させる方法と
しては、選択MOCVD法等がある。また、MOCVD
法で成長させたGaN膜へ、マスクイオン注入法により
ドープ材料を必要な量だけ必要なパターンで注入して前
記ストライプ状に構成を得ることもできる。
As a method of growing a phosphor thin film on a substrate, there is a selective MOCVD method or the like. MOCVD
The GaN film grown by the method can be obtained by implanting a necessary amount of a doping material in a required pattern by a mask ion implantation method in a required pattern.

【0044】以上説明した各例では、Moからなるコー
ン形状のエミッタを有するFEDに本発明の蛍光体を適
用していたが、本発明の蛍光体は他の構成の発光素子に
も適用可能である。例えば、表面伝導形のFEC、SC
E素子、MIM(メタルアイスレートメタル)素子等の
冷陰極電子源にも適用可能である。
In each of the embodiments described above, the phosphor of the present invention is applied to the FED having the cone-shaped emitter made of Mo. However, the phosphor of the present invention can be applied to a light emitting element having another configuration. is there. For example, surface conduction type FEC, SC
The present invention is also applicable to a cold cathode electron source such as an E element and a MIM (metal ice rate metal) element.

【0045】さらに、FED等の冷陰極電子源だけでな
く、本発明の蛍光体は、タングステンフィラメント、酸
化物フィラメント、酸化物コート電子銃等に対しても適
用できる。
Further, in addition to a cold cathode electron source such as an FED, the phosphor of the present invention can be applied to a tungsten filament, an oxide filament, an oxide-coated electron gun, and the like.

【0046】[0046]

【発明の効果】本発明のFEDによれば、蒸気圧が低く
て分解しにくいGaと、カソードと反応しにくいNとを
成分として含む蛍光体を発光部に有している。このた
め、FEDのようにCRTに比べて低電圧・高電流密度
の表示素子においても蛍光体は分解しにくく、また分解
してもカソードへ付着して汚染するおそれが少なく、こ
のため高信頼性のFEDが得られる。
According to the FED of the present invention, the light emitting portion has a phosphor containing, as components, Ga, which has a low vapor pressure and is hardly decomposed, and N, which is hard to react with the cathode. Therefore, even in a display device having a low voltage and a high current density, such as an FED, a phosphor is less likely to be decomposed than a CRT. Is obtained.

【0047】また、特に前記蛍光体をGa1-x In
x N:A,B(但し、0≦x≦0.9、AはZnとMg
からなる群から選択され、Bは何もない状態とSiとG
eから選択される。)とすれば、Xを変化させてGaと
Inの組成を変えることにより、青色から赤色まで各色
に発光するFEDが作れる。
In particular, the phosphor is preferably made of Ga 1-x In
xN : A, B (where 0 ≦ x ≦ 0.9, where A is Zn and Mg
Is selected from the group consisting of
e. ), An FED that emits light of each color from blue to red can be made by changing the composition of Ga and In by changing X.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の各例におけるFEDの断面図である。FIG. 1 is a sectional view of an FED in each example of the present invention.

【図2】実施例1における蛍光体の焼成温度と初期輝度
の関係を示す。
FIG. 2 shows the relationship between the firing temperature of the phosphor and the initial luminance in Example 1.

【図3】実施例1における蛍光体の焼成温度別の寿命試
験の結果を示す。
FIG. 3 shows the results of a life test at different firing temperatures of the phosphor in Example 1.

【図4】Xの値の異なる3種類のGa1-X InX N:
A,B蛍光体が薄膜で帯状に形成された実施例5の基板
の斜視図である。
FIG. 4 shows three types of Ga 1 -X In X N having different values of X :
FIG. 13 is a perspective view of a substrate of Example 5 in which A and B phosphors are formed in a thin-film strip shape.

【符号の説明】[Explanation of symbols]

1 陰極基板 2 電界放出形陰極(FEC) 10 陽極基板 11 陽極 12 陽極導体 13 蛍光体層 DESCRIPTION OF SYMBOLS 1 Cathode substrate 2 Field emission cathode (FEC) 10 Anode substrate 11 Anode 12 Anode conductor 13 Phosphor layer

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 内面に電界放出形陰極が形成された陰極
基板と、内面に蛍光体からなる蛍光面を有する陽極が形
成された陽極基板とを所定間隔をおいて対面させ、前記
陰極基板と前記陽極基板の各外周部の隙間を封止した電
界放出形表示素子において、前記蛍光体を窒化ガリウム
系の蛍光体としたことを特徴とする電界放出形表示素
子。
1. A cathode substrate having a field emission cathode formed on an inner surface thereof and an anode substrate having an anode having a phosphor screen made of a phosphor formed on an inner surface thereof at a predetermined interval. A field emission display device in which gaps at respective outer peripheral portions of the anode substrate are sealed, wherein the phosphor is a gallium nitride-based phosphor.
【請求項2】 前記蛍光面が、前記蛍光体の薄膜である
ことを特徴とする請求項1記載の電界放出形表示素子。
2. The field emission display device according to claim 1, wherein said phosphor screen is a thin film of said phosphor.
【請求項3】 前記蛍光面が、前記蛍光体の粒子の集合
体で構成された蛍光体層であることを特徴とする請求項
1記載の電界放出形表示素子。
3. The field emission display device according to claim 1, wherein the phosphor screen is a phosphor layer composed of an aggregate of the phosphor particles.
【請求項4】 前記窒化ガリウム系の蛍光体が次式で表
されることを特徴とする請求項1記載の電界放出形表示
素子。 Ga1-x Inx N:A,B 但し、0≦x≦0.9、AはZnとMgからなる群から
選択され、Bは何もない状態とSiとGeから選択され
る。
4. The field emission display device according to claim 1, wherein the gallium nitride-based phosphor is represented by the following formula. Ga 1-x In x N: A, B where 0 ≦ x ≦ 0.9, A is selected from the group consisting of Zn and Mg, B is selected from nothing and Si and Ge.
【請求項5】 陽極に電圧が1kV以下、陽極電流が2
0μA/cm2 以上で使用されることを特徴とする請求
項1記載の電界放出形表示素子。
5. An anode having a voltage of 1 kV or less and an anode current of 2 kV.
2. The field emission display device according to claim 1, wherein the device is used at 0 μA / cm 2 or more.
JP10633398A 1998-04-16 1998-04-16 Field emission type display element Pending JPH11307020A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10633398A JPH11307020A (en) 1998-04-16 1998-04-16 Field emission type display element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10633398A JPH11307020A (en) 1998-04-16 1998-04-16 Field emission type display element

Publications (1)

Publication Number Publication Date
JPH11307020A true JPH11307020A (en) 1999-11-05

Family

ID=14430960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10633398A Pending JPH11307020A (en) 1998-04-16 1998-04-16 Field emission type display element

Country Status (1)

Country Link
JP (1) JPH11307020A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1246262A2 (en) * 2001-03-27 2002-10-02 Ngk Insulators, Ltd. Light-emitting element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1246262A2 (en) * 2001-03-27 2002-10-02 Ngk Insulators, Ltd. Light-emitting element
EP1246262A3 (en) * 2001-03-27 2009-12-23 Ngk Insulators, Ltd. Light-emitting element

Similar Documents

Publication Publication Date Title
JP2947156B2 (en) Phosphor manufacturing method
CN1855352B (en) Electron beam excited fluorescence emitting device
US6373184B1 (en) Red phosphor for fluorescent display and preparation method thereof
US20010051269A1 (en) Method for manufacturing phosphor-coated particles and method for forming cathodoluminescent screen using the same or field emission display
WO2007024017A1 (en) Base material for luminescent layer formation, luminous body, and luminescent material
JP2003078165A (en) Light emitting element
JPH11307020A (en) Field emission type display element
JP4047095B2 (en) Inorganic electroluminescent device and manufacturing method thereof
KR100397577B1 (en) Phosphor and method for preparing same
KR20000059998A (en) Low-voltage blue phosphor and method of preparing the same
KR100572796B1 (en) Phosphor, phosphor layer manufacturing method and fluorescent display tube
JP2897716B2 (en) Phosphor
JPH01168789A (en) Electron beam-excited phosphor and preparation thereof
JP2002080845A (en) Fluorescent substance by low-energy electron beam excitation and fluorescent display tube
JP3982667B2 (en) Slow electron beam excited phosphor and fluorescent display tube
JP5192854B2 (en) Phosphor and display panel using the same
CN1347957A (en) Illuminating material and producing process and display substrate and display device containing the same illuminating material
KR100449582B1 (en) Phosphors and their preparation method for field emission display
JPH0747733B2 (en) Blue light emitting phosphor
JPS63135481A (en) Phosphor excited with electron beam
JP2013115277A (en) Hetero-junction light-emitting element manufacturing method
JP3707131B2 (en) Phosphor
JP2011057953A (en) Ultraviolet excitation phosphor, electron-beam excitation phosphor, blue phosphor for collision excitation type el, method for producing thin film of blue phosphor for collision excitation type el, filmy el element, filmy el display, and filmy el lamp
KR100341532B1 (en) Method for producing a fluorescent material
JP2001064639A (en) Blue fluorescent substance for low voltage and its production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060530

A521 Written amendment

Effective date: 20060721

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Effective date: 20071023

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20080311

Free format text: JAPANESE INTERMEDIATE CODE: A02