JPH0747733B2 - Blue light emitting phosphor - Google Patents

Blue light emitting phosphor

Info

Publication number
JPH0747733B2
JPH0747733B2 JP63333876A JP33387688A JPH0747733B2 JP H0747733 B2 JPH0747733 B2 JP H0747733B2 JP 63333876 A JP63333876 A JP 63333876A JP 33387688 A JP33387688 A JP 33387688A JP H0747733 B2 JPH0747733 B2 JP H0747733B2
Authority
JP
Japan
Prior art keywords
phosphor
zno
mixed
brightness
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63333876A
Other languages
Japanese (ja)
Other versions
JPH02178386A (en
Inventor
義孝 佐藤
均 土岐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Futaba Corp
Original Assignee
Futaba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Futaba Corp filed Critical Futaba Corp
Priority to JP63333876A priority Critical patent/JPH0747733B2/en
Publication of JPH02178386A publication Critical patent/JPH02178386A/en
Publication of JPH0747733B2 publication Critical patent/JPH0747733B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Luminescent Compositions (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、電子線により励起されて、青色に発光する蛍
光体に係わり、特に硫黄(S)成分を含有せず、例えば
蛍光表示管用の蛍光体として使用するとエミッション特
性に優れ、長寿命である酸化物系の低速電子線励起蛍光
体に関するものである。
Description: TECHNICAL FIELD The present invention relates to a phosphor that emits blue light when excited by an electron beam, and does not particularly contain a sulfur (S) component and is used for, for example, a fluorescent display tube. The present invention relates to an oxide-based low-speed electron beam-excited phosphor having excellent emission characteristics and long life when used as a phosphor.

〔従来の技術〕[Conventional technology]

一般に、電子線励起蛍光体は、数10KV程度の加速電圧で
発光させるブラウン管用、平面形ディスプレイ用および
大画面表示装置の発光ユニット用等の蛍光体と、数V〜
数10V程度の低い加速電圧で発光させる蛍光表示管、蛍
光発光管用等の低速電子線励起蛍光体に分けられる。
Generally, an electron beam excitation phosphor is a phosphor for a cathode ray tube, a flat panel display, a light emitting unit of a large-screen display device or the like that emits light at an accelerating voltage of about several tens of KV and several V to several V.
It is classified into a fluorescent display tube that emits light at a low accelerating voltage of about several tens of volts, and a low-speed electron beam excitation phosphor for a fluorescent light emitting tube.

本発明は、後者の低速電子線励起蛍光体(以後単に蛍光
体と略す)に関するものであり、その代表的な蛍光体に
緑色発光のZnO:Zn蛍光体がある。このZnO:Zn蛍光体は発
光しきい値電圧が1〜2Vときわめて低く、通常10〜20V
程度の陽極電圧で表示を得るのに十分な輝度が得られる
ので、家電製品、オーディオ製品、クロック、自動車の
インパネ等各種の蛍光表示装置の蛍光体に使用されてい
る。
The present invention relates to the latter slow electron beam excitation phosphor (hereinafter simply referred to as a phosphor), and a typical phosphor thereof is a green light emitting ZnO: Zn phosphor. This ZnO: Zn phosphor has an extremely low emission threshold voltage of 1 to 2 V, usually 10 to 20 V.
Since it is possible to obtain sufficient brightness to obtain a display with a certain level of anode voltage, it is used as a phosphor for various fluorescent display devices such as home appliances, audio products, clocks, and instrument panels of automobiles.

しかし、最近の蛍光表示装置は、従来の緑一色から、赤
色、青色、黄色等を使った多色表示になって来ている傾
向である。
However, recent fluorescent display devices tend to have a multicolor display using red, blue, yellow, etc. instead of the conventional green color.

そこで、従来の青色発光蛍光体の例としては、ZnS:[Z
n]蛍光体、ZnS:Ag蛍光体、ZnS:Ag,Al蛍光体等の蛍光体
単体と、ZnS:Ag+In2O3蛍光体、ZnS:Ag,Al+In2O3蛍光
体等のように蛍光体単体に導電物質であるIn2O3を混合
した蛍光体が公知である。
Therefore, as an example of a conventional blue light emitting phosphor, ZnS: [Z
n] Phosphors, ZnS: Ag phosphors, ZnS: Ag, Al phosphors and other phosphors alone, and phosphors such as ZnS: Ag + In 2 O 3 phosphors and ZnS: Ag, Al + In 2 O 3 phosphors A phosphor in which In 2 O 3 which is a conductive substance is mixed with a simple substance is known.

そして、前記蛍光体の組成中には硫黄(S)成分が含ま
れていることから、これらの蛍光体を総称して硫化物蛍
光体と称し、青色カラー表示用として一般に使用されて
いる。
Since the composition of the phosphor contains a sulfur (S) component, these phosphors are generically referred to as sulfide phosphors and are generally used for blue color display.

しかし、前記硫化物蛍光体は組成中の硫黄(S)成分が
蛍光表示管の動作中にフィラメント状陰極に悪影響をお
よぼし、フィラメント状陰極のエミッション特性を劣化
させるという問題点があることが周知である。
However, it is well known that the sulfide phosphor has a problem that the sulfur (S) component in the composition adversely affects the filament cathode during the operation of the fluorescent display tube and deteriorates the emission characteristics of the filament cathode. is there.

そこで、第1図の蛍光表示管の平面図、第2図の同断面
図によりエミッション特性劣化の理由を説明する。
Therefore, the reason for the emission characteristic deterioration will be described with reference to the plan view of the fluorescent display tube of FIG. 1 and the sectional view of FIG.

1は絶縁性を有する基板であり、この基板1の周囲に立
設した側面板2と、基板に対面した前面板3からなる箱
形の容器部4の前記基板1を覆って偏平箱形の外囲器を
形成している。外囲器内は高真空状態に保持されてい
て、配線導体5、陽極導体6、硫化物蛍光体層7が基板
1上に積層配設されている。そして、陽極導体6と、硫
化物蛍光体7で陽極8を構成している。
Reference numeral 1 denotes a substrate having an insulating property, which is a flat box-shaped container part 4 formed of a side plate 2 standing upright around the substrate 1 and a front plate 3 facing the substrate so as to cover the substrate 1. It forms the envelope. The inside of the envelope is kept in a high vacuum state, and the wiring conductor 5, the anode conductor 6 and the sulfide phosphor layer 7 are laminated on the substrate 1. The anode conductor 6 and the sulfide phosphor 7 constitute the anode 8.

この陽極8の上方にはメッシュ状の制御電極9が必要に
応じて配設され、さらに上方にフィラメント状陰極10が
張設されている。このフィラメント状陰極10は、直熱形
と傍熱形があるが、いずれもその表面は、アルカリ土類
金属例えば、Ba、Ca、Srの酸化物の固溶体(Ba,Ca,Br)
Oからなる電子放出層が形成されている。
A mesh-shaped control electrode 9 is provided above the anode 8 as required, and a filament cathode 10 is stretched above the control electrode 9. This filamentary cathode 10 has a direct heating type and an indirectly heating type, and the surface of each is a solid solution of an oxide of an alkaline earth metal such as Ba, Ca, Sr (Ba, Ca, Br).
An electron emission layer made of O is formed.

次に蛍光表示管の作用について説明する。Next, the operation of the fluorescent display tube will be described.

フィラメント状陰極10に陰極電圧を印加すると、加熱さ
れて、表面の電子放出層から電子を放出させる。この電
子を制御電極9により加速させると共に電子を陽極8に
通過させるか、カットさせるかの制御を行う。陽極8に
通過した電子は、陽極電極を印加した陽極8の硫化物蛍
光体層7に射突して、発光表示する。
When a cathode voltage is applied to the filament cathode 10, the filament cathode 10 is heated and emits electrons from the electron emission layer on the surface. The electrons are accelerated by the control electrode 9 and the electrons are passed through the anode 8 or cut. The electrons that have passed through the anode 8 impinge on the sulfide phosphor layer 7 of the anode 8 to which the anode electrode is applied, and emit light.

このようにフィラメント状陰極10から放出された電子
は、制御電極9および陽極8により引き付けられて加速
するので大きなエネルギーを有している。したがって硫
化物蛍光体層7に射突する際に蛍光体層7を発光させる
作用の他に表面の蛍光体層7を分解する作用も行う。そ
の結果硫化物蛍光体が分解して、S、SO、SO2等の硫化
物系のガスが飛散したり、硫黄(S)を含む微粒子が飛
散する。これらの硫化物系のガスや微粒子がフィラメン
ト状陰極10の電子放出層である酸化物と反応し、陰極10
の表面を毒化したり、シンターさせたりするので、フィ
ラメント状陰極10のエミッション特性を劣化させること
になる。
Thus, the electrons emitted from the filamentary cathode 10 are attracted by the control electrode 9 and the anode 8 and accelerated, and thus have a large energy. Therefore, in addition to the function of causing the phosphor layer 7 to emit light when impinging on the sulfide phosphor layer 7, the phosphor layer 7 on the surface is decomposed. As a result, the sulfide phosphor is decomposed, and a sulfide-based gas such as S, SO, and SO 2 scatters, or fine particles containing sulfur (S) scatter. These sulfide-based gas and fine particles react with the oxide that is the electron emission layer of the filamentary cathode 10, and the cathode 10
Since the surface of the cathode is poisoned or sintered, the emission characteristics of the filamentary cathode 10 are deteriorated.

そこで蛍光表示管に使用する青色発光蛍光体として硫化
物蛍光体以外の青色発光蛍光体が要求された。
Therefore, a blue light emitting phosphor other than a sulfide phosphor is required as a blue light emitting phosphor used for a fluorescent display tube.

そしてその一つにガリウム酸塩系複合酸化物蛍光体が特
公昭60-31236号で公知である。この蛍光体の組成式は、
A(Zn1-X Mgx)O・Ga2O3(但し、0.6≦A≦1.2及び0
≦X≦0.5である。)で示されている。
One of them is known as a gallate complex oxide phosphor in Japanese Patent Publication No. 60-31236. The composition formula of this phosphor is
A (Zn 1-X Mgx) O ・ Ga 2 O 3 (provided that 0.6 ≦ A ≦ 1.2 and 0
≦ X ≦ 0.5. ).

しかし、この蛍光体は、発光電圧が高く、発光輝度が低
いという問題点を有していたので、本発明者等は、上記
蛍光体のA=1、X=0であるZnO・Ga2O3蛍光体を母体
として、この母体にリチウム化合物を添加した蛍光体を
開発した。
However, since this phosphor has a problem that the emission voltage is high and the emission brightness is low, the present inventors have found that ZnO.Ga 2 O in which A = 1 and X = 0 of the above phosphor is used. We have developed a phosphor in which a lithium compound is added to this matrix, with three phosphors as a matrix.

前記リチウム化合物がハロゲン化リチウムの場合の蛍光
体が特開昭62-243679号で公知であり、リン酸リチウム
の場合が特願昭62-331358号で本願の先願関係をなる。
A phosphor in the case where the lithium compound is a lithium halide is known in JP-A-62-243679, and a case in which the lithium compound is lithium phosphate is in Japanese Patent Application No. 62-331358, which is related to the prior application of the present application.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

しかし、ハロゲン化リチウムやリン酸リチウムを添加し
たZnO・Ga2O3蛍光体は、低速電子線用として使用できる
が、従来のZnO:Zn蛍光体に比較すると、まだ抵抗が高
く、ある条件の低速電子線の射照では輝度が低かった。
特に陽極電圧及び制御電圧が30V以下の場合は輝度が低
く、また蛍光表示管の実際条件、特に蛍光体膜厚によっ
て輝度のばらつきも大きかった。
However, ZnO / Ga 2 O 3 phosphors containing lithium halide or lithium phosphate can be used for low-speed electron beams, but have higher resistance than conventional ZnO: Zn phosphors, and under certain conditions. The brightness was low when illuminated by a slow electron beam.
In particular, the brightness was low when the anode voltage and the control voltage were 30 V or less, and the brightness varied greatly depending on the actual conditions of the fluorescent display tube, particularly the phosphor film thickness.

そこで本発明は、ZnO・Ga2O3蛍光体を母体とした従来の
蛍光体をさらに低抵抗化して、低電圧でも高輝度の発光
が可能な、硫化物を含んでいない青色発光蛍光体を提供
することを目的とするものである。
Therefore, the present invention further reduces the resistance of the conventional phosphor having a ZnO / Ga 2 O 3 phosphor as a base material, and is capable of emitting light with high brightness even at a low voltage, a blue-emitting phosphor containing no sulfide. It is intended to be provided.

〔課題を解決するための手段〕[Means for Solving the Problems]

ZnOとGa2O3が等モルづつ固溶させて組成式がZnO・Ga2O3
で表わされる母体にリチウム化合物を添加して焼成した
蛍光体に対して平均粒径が3μm以下の酸化亜鉛又は金
属元素をドープした酸化亜鉛を0.1〜10wt%の割合で混
合した後400〜450℃の加熱工程を経ることを特徴とす
る。
ZnO and Ga 2 O 3 are solid-solved in equimolar proportions and the composition formula is ZnO ・ Ga 2 O 3
After the lithium oxide is added to the matrix represented by and the phosphor is baked, zinc oxide having an average particle size of 3 μm or less or zinc oxide doped with a metal element is mixed at a ratio of 0.1 to 10 wt%, and then 400 to 450 ° C. It is characterized by undergoing the heating step of.

又リチウム化合物としては、リン酸リチウムやハロゲン
化リチウムが好ましい。
Further, as the lithium compound, lithium phosphate and lithium halide are preferable.

〔作用〕[Action]

ZnO・Ga2O3で表わされる母体を有する蛍光体にZnOを混
合した蛍光体は、ZnOにより蛍光体自体の導電性が改善
されることに加えて、前記母体より酸素を奪うことによ
り発光中心を増やすので数V〜数10Vの低電圧でも高輝
度に発光する作用を有する。
A phosphor in which ZnO is mixed with a phosphor having a matrix represented by ZnO / Ga 2 O 3 has a feature that ZnO improves the conductivity of the phosphor itself, and in addition to the emission center by depriving the matrix of oxygen. Therefore, even if the voltage is as low as several V to several tens of V, it has the effect of emitting light with high brightness.

〔実施例1〕 まず母体となるZnO・Ga2O3を次のように形成する。Example 1 First, ZnO.Ga 2 O 3 as a base material is formed as follows.

ZnOとGa2O3を等モルづつ固溶させて母体を構成する。ZnO and Ga 2 O 3 are equimolarly dissolved to form a matrix.

すなわちZnOを3.3gとGa2O3を7.5gを秤量し、充分に混合
した後アルミナルツボに入れて、大気雰囲気中の焼成炉
中で焼成温度を1100〜1300℃の温度で3時間第1回目の
焼成を行い、ZnOとGa2O3の固溶体である母体を形成し
た。
That is, 3.3 g of ZnO and 7.5 g of Ga 2 O 3 are weighed, mixed well and put in an alumina crucible, and the firing temperature is 1100-1300 ° C. for 3 hours in a firing furnace in the atmosphere. The second firing was performed to form a matrix that was a solid solution of ZnO and Ga 2 O 3 .

次に前記ZnO・Ga2O3の母体にLi3PO4を母体1モルに対し
て5×10-3〜4×10-1モル添加する。本実施例の場合は
5×10-2モルに相当する0.23gのLi3PO4を添加した。
Next, 5 × 10 −3 to 4 × 10 −1 mol of Li 3 PO 4 is added to the ZnO · Ga 2 O 3 matrix, relative to 1 mole of the matrix. In the case of this example, 0.23 g of Li 3 PO 4 corresponding to 5 × 10 −2 mol was added.

前記ZnO・Ga2O3の母体にメノウ製のボールミルを用いて
充分に粉砕して、凝集の分散を行う。粉砕後前記Li3PO4
の0.23gを前記ZnO・Ga2O3の母体に充分混合した後アル
ミナボートに入れて、還元雰囲気、例えばH2とN2の混合
雰囲気をH2/N2=40/160(ml/分)の条件で送り込んだ焼
成炉で、焼成温度1000℃に設定し、1時間焼成を行い、
Li及びPを母体にドープさせたZnO・Ga2O3:Li,P蛍光体
が得られた。
The ZnO.Ga 2 O 3 matrix is sufficiently crushed using an agate ball mill to disperse the agglomerates. After grinding, said Li 3 PO 4
Put the 0.23g alumina boat was thoroughly mixed in the base of the ZnO · Ga 2 O 3, a reducing atmosphere, for example, a mixed atmosphere of H 2 and N 2 H 2 / N 2 = 40/160 (ml / min In the firing furnace sent under the conditions of (1), the firing temperature is set to 1000 ° C and firing is performed for 1 hour.
A ZnO.Ga 2 O 3 : Li, P phosphor having a matrix doped with Li and P was obtained.

このZnO・Ga2O3:Li,P蛍光体にさらに低抵抗化させるた
めに導電材料として酸化インジウムIn2O3、酸化亜鉛Zn
O、酸化スズSnO2を各々加え混合させた。混合量は、蛍
光体に対して1wt%、3wt%、5wt%、10wt%とした。導
電材料の粒径は、平均粒径が1μmのものを使用した。
In order to further reduce the resistance of this ZnO / Ga 2 O 3 : Li, P phosphor, indium oxide In 2 O 3 and zinc oxide Zn are used as conductive materials.
O and tin oxide SnO 2 were added and mixed. The mixing amounts were 1 wt%, 3 wt%, 5 wt% and 10 wt% with respect to the phosphor. The conductive material used had an average particle diameter of 1 μm.

このようにして、混合導電材料、および混合量を変えた
蛍光体を形成し、有機バインダーと混合して蛍光体ペー
ストにし、スクリーン印刷法で、第1図、第2図に示す
蛍光表示管の基板1上の陽極導体6の表面に蛍光体層7
を被着形成させた。さらにメッシュ状制御電極9、フィ
ラメント状陰極10を配設し、これらの電極を覆うように
容器部4を封着し、内部を排気し、高真空状態になった
ら封止して蛍光表示管を製作した。
In this way, mixed conductive materials and phosphors with different mixing amounts are formed, mixed with an organic binder to form a phosphor paste, and screen-printed to produce the phosphor display tube shown in FIGS. 1 and 2. A phosphor layer 7 is formed on the surface of the anode conductor 6 on the substrate 1.
Was deposited. Further, a mesh-shaped control electrode 9 and a filament cathode 10 are arranged, the container portion 4 is sealed so as to cover these electrodes, the inside is evacuated, and when the high vacuum state is reached, the fluorescent display tube is sealed. I made it.

比較のために、導電材料を混合しない蛍光体を使用して
同様に同一蛍光表示管を実装した。
For comparison, the same fluorescent display tube was mounted in the same manner by using a phosphor in which a conductive material was not mixed.

完成した蛍光表示管を次の駆動条件で点灯し比較した。
陰極電圧1.7Vdc、制御電圧12Vdc、陽極電圧30Vdcを印加
し、その輝度の特性を評価した。その結果を表−1に示
す。
The completed fluorescent display tube was lit under the following driving conditions for comparison.
A cathode voltage of 1.7 Vdc, a control voltage of 12 Vdc, and an anode voltage of 30 Vdc were applied, and the characteristics of the brightness were evaluated. The results are shown in Table-1.

発光輝度および発光効率は5サンプルの平均である。Luminous intensity and luminous efficiency are averages of 5 samples.

上記結果から、In2O3及びSnO2は導電材料を混合しない
従来の蛍光体によりも輝度及び発光効率が悪くなり、効
果がないことがわかった。
From the above results, it was found that In 2 O 3 and SnO 2 were ineffective because the luminance and the luminous efficiency were worse than the conventional phosphor in which the conductive material was not mixed.

導電材料としてZnOを混合したZnO・Ga2O3:Li,P+ZnO蛍
光体は、発光輝度が導電材料なしの160cd/m2に対し280
〜320cd/m2とおよそ1.75〜2倍になり、発光効率も0.37
3lm/wに対し0.441〜0.564lm/wとおよそ1.5倍に改善され
た。
The ZnO / Ga 2 O 3 : Li, P + ZnO phosphor mixed with ZnO as the conductive material has an emission brightness of 280 vs. 160 cd / m 2 without the conductive material.
~ 320cd / m 2, which is about 1.75 to 2 times, and the luminous efficiency is 0.37
It was improved from 0.441 to 0.564 lm / w, which is about 1.5 times that of 3 lm / w.

このように導電材料としてIn2O3及びSnO2よりZnOが優れ
ているのは次のような理由によるものである。
The reason why ZnO is superior to In 2 O 3 and SnO 2 as the conductive material is as follows.

蛍光表示管に実装した蛍光体は、製造工程中に数回400
〜450℃の熱処理を経る。そこでZnO:Ga2O3を母体とする
蛍光体に前記のようなIn2O3又はSnO3導電材料が混合さ
れていると、工程中の熱処理により蛍光体と導電物質と
の間で酸素のやり取りが生じたためと考えられる。例え
ば、In2O3は、非常に酸素欠陥を作り易い材料であるの
で、製造工程中の熱処理において、In2O3と接しているZ
nO・Ga2O3母体に酸素を与えることにより、ZnO・Ga2O3
母体の酸素欠陥が関与した発光中心を潰すために輝度特
性が改善されなかったと考えられる。
The fluorescent material mounted on the fluorescent display tube is
Heat treatment at ~ 450 ℃. Therefore, when ZnO: Ga 2 O 3 as a host phosphor is mixed with the above-mentioned In 2 O 3 or SnO 3 conductive material, heat treatment during the process causes oxygen to be generated between the phosphor and the conductive material. It is considered that the exchange occurred. For example, since In 2 O 3 is a material that easily creates oxygen defects, Z that is in contact with In 2 O 3 during heat treatment during the manufacturing process
By supplying oxygen to the nO ・ Ga 2 O 3 matrix, ZnO ・ Ga 2 O 3
It is considered that the luminance characteristics were not improved because the luminescent centers related to the oxygen defects of the base were destroyed.

しかしながら本願のZnOの場合は、蛍光体自体の導電性
が改善されることに加えてIn2O3等より酸素を離しにく
いために、製造工程の熱処理において、ZnOに接してい
るZnO・Ga2O3母体から酸素を奪うことにより、ZnO・Ga2
O3母体の酸素欠陥が関与した発光中心を増やし、母体自
体も導電性が改善される。したがってこのZnO導電材料
を混合すると低電圧領域のアノード電流は増加し蛍光体
層が低抵抗化して、輝度特性が改善されたのである。
However, in the case of ZnO of the present application, in addition to improving the conductivity of the phosphor itself, it is more difficult to release oxygen than In 2 O 3, etc., so in the heat treatment of the manufacturing process, ZnO ・ Ga 2 in contact with ZnO By depriving oxygen of the O 3 matrix, ZnO ・ Ga 2
The number of luminescence centers related to oxygen defects in the O 3 matrix is increased, and the conductivity of the matrix itself is improved. Therefore, when this ZnO conductive material is mixed, the anode current in the low voltage region increases, the resistance of the phosphor layer is lowered, and the brightness characteristics are improved.

次にZnO導電材料の混合量について説明する。Next, the mixing amount of the ZnO conductive material will be described.

第3図は、ZnO導電材料の混合量と相対発光輝度との関
係を示すグラフである。前述の実施例の場合は、粒径が
平均粒径1μmであるのでAで示す曲線のグラフとなっ
た。輝度は1μmのもので最高値を100とした相対輝度
で表わした。
FIG. 3 is a graph showing the relationship between the amount of ZnO conductive material mixed and the relative emission brightness. In the case of the above-mentioned examples, the average particle size is 1 μm, and therefore the graph of the curve indicated by A is obtained. The brightness was 1 μm and expressed as relative brightness with the maximum value being 100.

ZnOの混合量が3wt%付近が最も輝度が高く、相対輝度が
50以上を優れている範囲とすると、0.1〜10wt%が輝度
の高くなる範囲である。ZnOの混合量が0.1wt%以下では
低抵抗化の効果が認められず、又10wt%以上多い場合
は、非発光で蛍光体の発光を遮断するZnOの面積が増加
し、発光面積が減少するので輝度が低下してしまう。
The highest brightness is obtained when the mixing amount of ZnO is around 3 wt%, and the relative brightness is
When 50 or more is considered as an excellent range, 0.1 to 10 wt% is a range where the brightness is high. When the content of ZnO is 0.1 wt% or less, the effect of lowering the resistance is not recognized, and when it is 10 wt% or more, the area of ZnO that does not emit light and blocks the emission of the phosphor increases, and the light emitting area decreases. Therefore, the brightness is reduced.

次にZnO導電材料の粒径を平均粒径が3μmのものを混
合するとBで示す曲線のグラフになる。
Next, when a ZnO conductive material having an average particle diameter of 3 μm is mixed, a curve graph B is obtained.

粒径が大きくなると全般的に輝度は低くなる傾向があ
る。又最高混合量(ピーク値)も増加する傾向である。
この3μmの平均粒径で、相対輝度が50以上の範囲は、
3〜13.5wt%と上限が広がる傾向がある。これは、粒径
が大きくなると同じ混合量でも粒子数が少なくなり、遮
断する全面積が小さくなるからである。
The larger the particle size, the lower the brightness as a whole. The maximum mixing amount (peak value) also tends to increase.
With this average particle size of 3 μm, the range where the relative brightness is 50 or more is:
The upper limit tends to widen to 3 to 13.5 wt%. This is because the larger the particle size, the smaller the number of particles even with the same mixing amount, and the smaller the total area to be blocked.

しかし、平均粒径が10μmになると相対輝度が50がピー
クとなる。従って10μm以上の粒径はすべて50以下にな
るので好ましくないことが知見した。
However, when the average particle size is 10 μm, the relative brightness reaches a peak of 50. Therefore, it was found that particle diameters of 10 μm or more are all less than 50, which is not preferable.

又混合量の上限は、10μmのときのピークが20wt%であ
るのでそれ以下の範囲すなわち20wt%以下であれば輝度
が高くなり、低速電子線用蛍光体として実用化できるこ
とがわかった。
It was also found that the upper limit of the mixing amount is 20 wt% at 10 μm, so that the luminance is high in the range below that, that is, 20 wt% or less, and it can be put to practical use as a phosphor for low-speed electron beams.

しかし、好ましくは、粒径が平均粒径3μm以下であ
り、混合量は0.1〜10wt%が最適範囲である。
However, preferably, the average particle size is 3 μm or less, and the optimum amount of the mixture is 0.1 to 10 wt%.

第4図は、平均粒径が1μmのZnO導電材料をZnO・Ga2O
3:Li,P蛍光体に対し、混合量を0wt%、1wt%、5wt%、1
0wt%混合した蛍光体を蛍光表示管に実装して、陽極電
圧を変化させて発光させた場合の輝度Lと陽極電圧Ebの
関係を示すグラフである。
Fig. 4 shows the ZnO conductive material with an average particle size of 1 μm as ZnO ・ Ga 2 O.
3 : For Li, P phosphor, mixing amount is 0wt%, 1wt%, 5wt%, 1
7 is a graph showing the relationship between the luminance L and the anode voltage Eb when a fluorescent substance mixed with 0 wt% is mounted on a fluorescent display tube and the anode voltage is changed to emit light.

混合量が0wt%の従来例に比較し、本発明のすべての混
合量において輝度が高く、特に1wt%混合した蛍光表示
管は、陽極電圧が25V以上で輝度が他の混合量のものよ
りも最も高い。
Compared with the conventional example in which the mixing amount is 0 wt%, the brightness is higher in all the mixing amounts of the present invention, and particularly, the fluorescent display tube mixed with 1 wt% has an anode voltage of 25 V or more and the brightness is higher than that of other mixing amounts. highest.

5wt%混合した蛍光表示管は、同様に約25V以上では1wt
%の混合量に次いで輝度が高い。
Fluorescent display tube mixed with 5wt% is also 1wt above 25V.
The brightness is the second highest after the mixed amount of%.

10wt%混合した蛍光表示管では、従来例(0wt%)に近
い値であるが40V以下では輝度が高くなっている。特に2
5V以下では効果が顕著に表われている。
The fluorescent display tube mixed with 10 wt% has a value close to that of the conventional example (0 wt%), but the brightness is high at 40 V or less. Especially 2
The effect is remarkable when the voltage is 5 V or less.

又発光開始電圧も、従来例よりもさらに低くなってい
る。このように、本発明の蛍光体は低電圧領域で、従来
例より高輝度にすることが可能になった。
The light emission start voltage is also lower than that of the conventional example. As described above, the phosphor of the present invention can have higher brightness than the conventional example in the low voltage region.

第5図は、ZnO・Ga2O3+ZnO蛍光体で平均粒径1μmのZ
nOの混合量が0wt%の従来例と3wt%混合した蛍光体と、
10wt%混合した蛍光体の発光スペクトル図である。
Figure 5 shows ZnO / Ga 2 O 3 + ZnO phosphor with average particle size of 1μm.
A phosphor mixed with a conventional example in which the amount of nO mixed is 0 wt% and 3 wt%,
It is an emission spectrum figure of the fluorescent substance which mixed 10 wt%.

混合量が0wt%の従来例のピークは415nmにあるのに対
し、混合量が3wt%であると425nmにピークがあり、混合
量が10wt%になるとさらに長波長側にシフトして、435n
mにピークがくる。このように混合量が増加すると長波
長側にシフトする傾向がある。すなわち、紫色からより
青色へと変化している。
The peak of the conventional example with a mixing amount of 0 wt% is at 415 nm, whereas there is a peak at 425 nm when the mixing amount is 3 wt%, and when the mixing amount is 10 wt%, it shifts to the longer wavelength side, and 435 n
There is a peak at m. When the mixing amount increases in this way, there is a tendency to shift to the long wavelength side. That is, it changes from purple to blue.

いずれにしても、本発明の蛍光体の発光スペクトルには
青成分である420nm〜530nmを含んでいるので発光色は青
色である。
In any case, since the emission spectrum of the phosphor of the present invention contains a blue component of 420 nm to 530 nm, the emission color is blue.

〔実施例2〕 ZnO・Ga2O3母体を形成するまでは実施例1と同様である
ので説明を略す。粉砕したZnO・Ga2O3母体にハロゲン化
リチウムを母体1モルに対し0.05〜15モル%を添加して
充分に混合する。本実施例の場合のハロゲン化リチウム
は、フッ化リチウムを3モル%添加した。
[Example 2] The description is omitted since it is the same as in Example 1 until the ZnO.Ga 2 O 3 matrix is formed. Lithium halide is added to the crushed ZnO.Ga 2 O 3 matrix in an amount of 0.05 to 15 mol% with respect to 1 mol of the matrix, and they are mixed sufficiently. In the case of the present embodiment, 3 mol% of lithium fluoride was added to the lithium halide.

充分混合した蛍光体材料を実施例1と同様のH2とN2の混
合還元雰囲気を同様の条件で送り込んだ還元炉で、焼成
温度1000℃で1時間焼成してZnO・Ga2O3:Li,Fの組成式
を有する蛍光体を得た。
A well-mixed phosphor material was fired in a reducing furnace in which the same mixed reducing atmosphere of H 2 and N 2 as in Example 1 was fed under the same conditions as above, and was fired at a firing temperature of 1000 ° C. for 1 hour to obtain ZnO / Ga 2 O 3 :. A phosphor having a composition formula of Li and F was obtained.

この蛍光体に導電材料として、金属元素をドープした酸
化亜鉛、例えばアルミニウムAlをドープしたZnOすなわ
ちZnO:Alを用いた。
Zinc oxide doped with a metal element, for example, ZnO doped with aluminum Al, that is, ZnO: Al was used as a conductive material for this phosphor.

このZnO:Al導電材料は、AlCl3・6H2Oを溶かした水溶液に
ZnOを加えて蒸発乾固させたものを弱還元雰囲気すなわ
ちH2/N2の割合が5/195(ml/分)である還元炉中で焼成
温度が1000℃で1時間焼成してAlをドープさせた。
The ZnO: Al conductive material, an aqueous solution prepared by dissolving AlCl 3 · 6H 2 O
After adding ZnO and evaporating it to dryness, it was calcined for 1 hour at a firing temperature of 1000 ° C in a reducing furnace with a weak reducing atmosphere, that is, a H 2 / N 2 ratio of 5/195 (ml / min), to remove Al. Made dope

ZnO:Alの添加量は、ZnO・Ga2O3:Li,F蛍光体に対し5wt%
混合し、実施例1と同様に蛍光表示管に実装して、同じ
駆動条件で点灯させたら陽極電圧が15V付近から青色発
光が認められ、30Vで約200cd/m2が得られZnOと同様の効
果が得られた。
The amount of ZnO: Al added is 5 wt% based on the ZnO / Ga 2 O 3 : Li, F phosphor.
When mixed and mounted on a fluorescent display tube in the same manner as in Example 1 and turned on under the same driving conditions, blue light emission was observed from around 15 V of the anode voltage, and about 200 cd / m 2 was obtained at 30 V, which was similar to ZnO. The effect was obtained.

なお、前記導電材料のZnO:Alの平均粒径は1μmのもの
を使用した。
The conductive material used had an average particle size of ZnO: Al of 1 μm.

又、金属元素をドープした酸化亜鉛としてZnO:Alの他に
ZnO:B,ZnO:Ga,ZnO:In,ZnO:Tl,ZnO:Zn等でも同様に低抵
抗化させる効果がある。
In addition to ZnO: Al as zinc oxide doped with metallic elements,
ZnO: B, ZnO: Ga, ZnO: In, ZnO: Tl, ZnO: Zn, etc. have the same effect of reducing the resistance.

〔発明の効果〕〔The invention's effect〕

本発明は、以上説明したように、従来のZnO・Ga2O3を母
体とする蛍光体に対し、酸化亜鉛又は金属をドープした
酸化亜鉛を0.1〜10wt%混合させたので次のような効果
を有する。
The present invention, As described above, the conventional ZnO · Ga 2 O 3 with respect to the phosphor as a matrix, since the zinc oxide doped with zinc oxide or metal mixed 0.1-10% following effects Have.

(1) 本発明の蛍光体は、従来の導電材料を入れない
蛍光体に比較して蛍光体塗布膜の導電性を向上させたの
で低電圧領域で輝度が高いので蛍光表示管用蛍光体とし
て充分使用することができる。
(1) Since the phosphor of the present invention has improved conductivity of the phosphor coating film as compared with the conventional phosphor containing no conductive material, it has high brightness in a low voltage region, and thus is sufficient as a phosphor for a fluorescent display tube. Can be used.

(2) 本発明の蛍光体組成中に硫黄S成分を含有して
いないので、硫化物系ガス等の飛散もなく、フィラメン
ト状陰極のエミッション特性を劣化させない非硫化物系
の青色発光蛍光体を提供することができる。
(2) Since the phosphor composition of the present invention does not contain a sulfur S component, a non-sulfide type blue light emitting phosphor that does not scatter sulfide type gas or the like and does not deteriorate the emission characteristics of the filamentary cathode is obtained. Can be provided.

【図面の簡単な説明】[Brief description of drawings]

第1図は、一般的な蛍光表示管の平面図であり、第2図
は、同断面図であり、第3図は、導電材料のZnOの粒径
別の混合量と相対輝度の関係を示すグラフ、第4図は、
本発明の従来例の陽極電圧と輝度の関係を示すグラフ、
第5図は、本発明と従来例の発光スペクトル図である。
FIG. 1 is a plan view of a general fluorescent display tube, FIG. 2 is a cross-sectional view of the same, and FIG. 3 shows the relationship between the mixing amount and the relative brightness of ZnO particles of a conductive material by particle size. The graph shown in Fig. 4 is
A graph showing the relationship between the anode voltage and the brightness of the conventional example of the present invention,
FIG. 5 is an emission spectrum diagram of the present invention and a conventional example.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】ZnOとGa2O3が等モルづつ固溶させて組成式
がZnO・Ga2O3で表わされる母体にリチウム化合物を添加
して焼成した蛍光体に対して平均粒径が3μm以下の酸
化亜鉛又は金属元素をドープした酸化亜鉛を0.1〜10wt
%の割合で混合した後、400〜450℃の加熱工程を経るこ
とを特徴とする青色発光蛍光体。
The average particle size relative to 1. A ZnO and Ga 2 O 3 phosphor having a composition formula by solid solution equimolar increments were calcined by adding a lithium compound to the mother represented by ZnO · Ga 2 O 3 is 0.1-10wt% of zinc oxide less than 3μm or zinc oxide doped with metal element
%, Followed by a heating step at 400 to 450 ° C., which is a blue light emitting phosphor.
【請求項2】前記リチウム化合物がリン酸リチウム、ハ
ロゲン化リチウム、チタン酸リチウムから選ばれた一種
である請求項1記載の青色発光蛍光体。
2. The blue light-emitting phosphor according to claim 1, wherein the lithium compound is one selected from lithium phosphate, lithium halide and lithium titanate.
JP63333876A 1988-12-28 1988-12-28 Blue light emitting phosphor Expired - Lifetime JPH0747733B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63333876A JPH0747733B2 (en) 1988-12-28 1988-12-28 Blue light emitting phosphor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63333876A JPH0747733B2 (en) 1988-12-28 1988-12-28 Blue light emitting phosphor

Publications (2)

Publication Number Publication Date
JPH02178386A JPH02178386A (en) 1990-07-11
JPH0747733B2 true JPH0747733B2 (en) 1995-05-24

Family

ID=18270940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63333876A Expired - Lifetime JPH0747733B2 (en) 1988-12-28 1988-12-28 Blue light emitting phosphor

Country Status (1)

Country Link
JP (1) JPH0747733B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2719209B2 (en) * 1989-11-24 1998-02-25 双葉電子工業株式会社 Phosphor manufacturing method
KR100315106B1 (en) * 1994-07-26 2002-02-19 김순택 Display device
JP2746192B2 (en) * 1995-05-09 1998-04-28 双葉電子工業株式会社 Phosphor for slow electron beam

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6031236B2 (en) * 1977-05-13 1985-07-20 大日本塗料株式会社 Slow electron beam excitation fluorescent display tube
JPS56167782A (en) * 1980-05-30 1981-12-23 Nec Corp Luminescent material
JPS59105254A (en) * 1982-12-08 1984-06-18 Futaba Corp Low velocity electron ray phosphor and fluorescent character display tube
JPS59133285A (en) * 1983-01-20 1984-07-31 Nec Corp Phosphor excited by low-speed electron beam
JPS62243679A (en) * 1986-04-17 1987-10-24 Futaba Corp Fluorescent substance for slow electon ray and production thereof
JPH0830184B2 (en) * 1986-06-16 1996-03-27 化成オプトニクス株式会社 Luminescent composition and low-speed electron beam excited fluorescent display using the same
JPH066704A (en) * 1992-06-23 1994-01-14 Matsushita Electric Ind Co Ltd Television receiver

Also Published As

Publication number Publication date
JPH02178386A (en) 1990-07-11

Similar Documents

Publication Publication Date Title
JP2729190B2 (en) Phosphor
JP2809084B2 (en) Field emission fluorescent display
US6090309A (en) Visible light-emitting phosphor composition having an enhanced luminescent efficiency over a broad range of voltages
JP4173057B2 (en) Fluorescent substance and fluorescent display device
KR20040097910A (en) Fluorescent Material for Low-Speed Electron Beam and Fluorescent Display Tube
JPH0747733B2 (en) Blue light emitting phosphor
JP2001303042A (en) Fluorescent substance for rapid starting type fluorescent lamp and rapid starting type fluorescent lamp using the same
KR100533512B1 (en) Phosphor of warm luminous colors and fluorescent display device
JPS6253554B2 (en)
JP3514836B2 (en) Green light emitting phosphor
JP2002080845A (en) Fluorescent substance by low-energy electron beam excitation and fluorescent display tube
JP3982667B2 (en) Slow electron beam excited phosphor and fluorescent display tube
JPH066704B2 (en) Electron beam excited phosphor and method for producing the same
JP3707131B2 (en) Phosphor
JPH0257827B2 (en)
KR820001593B1 (en) Blue fluorescent compositions
JPS6244035B2 (en)
JPS6234079B2 (en)
JPS6039310B2 (en) Red luminescent composition and slow electron beam excitation fluorescent display tube
JP2004099692A (en) Zinc oxide phosphor
JP4081582B2 (en) Blue light emitting phosphor
JP3867555B2 (en) Fluorescent display tube
JPS6234080B2 (en)
JPH0892551A (en) Fluorescent display tube
JPH0260707B2 (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090524

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090524

Year of fee payment: 14