JPH02178386A - Blue luminous fluorescent substance - Google Patents

Blue luminous fluorescent substance

Info

Publication number
JPH02178386A
JPH02178386A JP33387688A JP33387688A JPH02178386A JP H02178386 A JPH02178386 A JP H02178386A JP 33387688 A JP33387688 A JP 33387688A JP 33387688 A JP33387688 A JP 33387688A JP H02178386 A JPH02178386 A JP H02178386A
Authority
JP
Japan
Prior art keywords
phosphor
zno
fluorescent substance
zinc oxide
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33387688A
Other languages
Japanese (ja)
Other versions
JPH0747733B2 (en
Inventor
Yoshitaka Sato
義孝 佐藤
Hitoshi Toki
均 土岐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Futaba Corp
Original Assignee
Futaba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Futaba Corp filed Critical Futaba Corp
Priority to JP63333876A priority Critical patent/JPH0747733B2/en
Publication of JPH02178386A publication Critical patent/JPH02178386A/en
Publication of JPH0747733B2 publication Critical patent/JPH0747733B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an oxide based low-speed electronic beam-excited blue luminous fluorescent substance containing no S component by blending a fluorescent substance matrix consisting of ZnO.Ga2O3 with zinc oxide (based electroconductive material) at a specific ratio. CONSTITUTION:The aimed fluorescent substance obtained by blending a zinc oxide or zinc oxide based electroconductive material with a fluorescent substance obtained by adding a lithium compound, preferably selected from lithium phosphate, lithium halide and lithium titanium to a matrix expressed by the composition formula ZnO.Ga2O3 at an amount of 0.1-20wt.% based on the fluorescent substance. Furthermore, when the above-mentioned fluorescent substance is used for fluorescent display tube, etc., excellent emission characteristics and long life are exhibited.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、電子線により励起されて、青色に発光する蛍
光体に係わり、特に硫黄(S)成分を含有せず、例えば
蛍光表示管用の蛍光体として使用するとエミッシ目ン特
性に優れ、長寿命である酸化物系の低速電子線励起蛍光
体に関するものである。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to a phosphor that emits blue light when excited by an electron beam, and in particular does not contain a sulfur (S) component and is used, for example, in a fluorescent display tube. This invention relates to an oxide-based low-speed electron beam-excited phosphor that has excellent emissive properties and a long life when used as a phosphor.

〔従来の技術〕[Conventional technology]

一般に、電子線励起蛍光体は、数10KV程度の加速電
圧で発光させるブラウン管用、平面形デイスプレィ用お
よび大画面表示装置の発光ユニット用等の蛍光体と、数
V〜数数10径程度低い加速電圧で発光させる蛍光表示
管、蛍光発光管用等の低速電子線励起蛍光体に分けられ
る。
In general, electron beam-excited phosphors are used for cathode ray tubes, flat displays, and light-emitting units of large-screen display devices that emit light at an accelerating voltage of several tens of kilovolts, and those that emit light at an acceleration voltage of several volts to several tens of diameters. It is divided into low-speed electron beam-excited phosphors for use in fluorescent display tubes and fluorescent light emitting tubes that emit light using voltage.

本発明は、後者の低速電子線励起蛍光体(以後単に蛍光
体と略す)に関するものであり、その代表的な蛍光体に
緑色発光のZnO: Zn蛍光体がある。
The present invention relates to the latter type of low-speed electron beam excited phosphor (hereinafter simply referred to as phosphor), and a typical phosphor thereof is a green-emitting ZnO:Zn phosphor.

このZnO: Zn蛍光体は発光しきい値電圧が1〜2
Vときわめて低く、通常10〜20V程度の陽極電圧で
表示を得るのに十分な輝度が得られるので、家電製品、
オーディオ製品、クロック、自動車のインパネ等各種の
蛍光表示装置の蛍光体に使用されている。
This ZnO: Zn phosphor has an emission threshold voltage of 1 to 2.
Since the anode voltage is extremely low, usually around 10 to 20 V, sufficient brightness can be obtained for display, making it suitable for home appliances,
It is used as a phosphor in various fluorescent display devices such as audio products, clocks, and automobile instrument panels.

しかし、最近の蛍光表示装置は、従来の緑一色から、赤
色、青色、黄色等を使った多色表示になって来ている傾
向である。
However, recent fluorescent display devices have tended to display multicolor displays using red, blue, yellow, etc. instead of the conventional one-color green display.

そこで、従来の青色発光蛍光体の例としては、ZnS 
: [Zn]蛍光体、ZnS : Ag蛍光体、 Zn
S : Ag、AQ蛍光体等の蛍光体単体と、ZnS 
: Ag + In2O,蛍光体。
Therefore, as an example of a conventional blue-emitting phosphor, ZnS
: [Zn] phosphor, ZnS: Ag phosphor, Zn
S: Single phosphor such as Ag or AQ phosphor, and ZnS
: Ag + In2O, phosphor.

ZnS : Ag r AQ +In2ow1蛍光体等
のように蛍光体単体に導電物質であるIn2O,を混合
した蛍光体が公知である。
Phosphors such as ZnS:Ag r AQ +In2ow1 phosphors are known, which are a mixture of a single phosphor and a conductive substance, In2O.

そして、前記蛍光体の組成中には硫黄(S)成分が含ま
れていることから、これらの蛍光体を総称して硫化物蛍
光体と称し、青色カラー表示用として一般に使用されて
いる。
Since the composition of the phosphor contains a sulfur (S) component, these phosphors are collectively called sulfide phosphors and are generally used for blue color display.

しかし、前記硫化物蛍光体は組成中の硫黄(S)成分が
蛍光表示管の動作中にフィラメント状陰極に悪影響をお
よぼし、フィラメント状陰極のエミッション特性を劣化
させるという問題点があることが周知である。
However, it is well known that the sulfide phosphor has a problem in that the sulfur (S) component in its composition adversely affects the filament cathode during operation of the fluorescent display tube, degrading the emission characteristics of the filament cathode. be.

そこで、第1図の蛍光表示管の平面図、第2図の同断面
図によりエミッション特性劣化の理由を説明する。
Therefore, the reason for the deterioration of the emission characteristics will be explained with reference to the plan view of the fluorescent display tube shown in FIG. 1 and the sectional view shown in FIG.

1は絶縁性を有する基板であり、この基板1の周囲に立
設した側面板2と、基板に対面した前面板3からなる箱
形の容器部4を前記基板1を覆って偏平箱形の外囲器を
形成している。外囲器内は高真空状態に保持されていて
、配線導体5、陽極導体6、硫化物蛍光体層7が基板1
上に積層配設されている。そして、陽極導体6と、硫化
物蛍光体7で陽極8を構成している。
Reference numeral 1 designates an insulating substrate, and a box-shaped container portion 4 consisting of a side plate 2 standing upright around the substrate 1 and a front plate 3 facing the substrate is placed over the substrate 1 in the form of a flat box. It forms an envelope. The inside of the envelope is maintained in a high vacuum state, and the wiring conductor 5, anode conductor 6, and sulfide phosphor layer 7 are connected to the substrate 1.
Laminated on top. The anode conductor 6 and the sulfide phosphor 7 constitute an anode 8.

この陽極8の上方にはメツシュ状の制御fIi極9が必
要に応じて配設され、さらに上方にフィラメント状陰極
10が張設されている。このフィラメント状陰極10は
、直熱形と傍熱形があるが、いずれもその表面は、アル
カリ土類金属例えば、Da、 Ca。
A mesh-like control fIi electrode 9 is disposed above the anode 8 as required, and a filament-like cathode 10 is stretched above it. The filamentary cathode 10 has a directly heated type and an indirectly heated type, but in both cases, the surface is made of an alkaline earth metal such as Da or Ca.

Srの酸化物の固溶体(+3a、Ca、5r)Oからな
る電子放出層が形成されている。
An electron emitting layer made of a solid solution of Sr oxide (+3a, Ca, 5r)O is formed.

次に蛍光表示管の作用について説明する。Next, the function of the fluorescent display tube will be explained.

フィラメント状陰極10に陰極電圧を印加すると。When a cathode voltage is applied to the filamentary cathode 10.

加熱されて、表面の電子放出層から電子を放出させる。It is heated to cause electrons to be emitted from the electron-emitting layer on the surface.

この電子を制御電極9により加速させると共に電子を陽
極8に通過させるが、カットさせるかの制御を行う。陽
極8に通過した電子は、陽極電極を印加した陽極8の硫
化物蛍光体層7に射突して1発光表示する。
These electrons are accelerated by the control electrode 9 and are allowed to pass through the anode 8, but control is performed as to whether they are cut or not. The electrons that have passed through the anode 8 impinge on the sulfide phosphor layer 7 of the anode 8 to which the anode electrode is applied, resulting in one light emission display.

このようにフィラメント状陰極10から放出された電子
は、制御電極9および陽極8により引き付けられて加速
するので大きなエネルギーを有している。したがって硫
化物蛍光体層7に射突する際に蛍光体層7を発光させる
作用の他に表面の蛍光体層7を分解する作用も行う。そ
の結果硫化物蛍光体が分解して、s、so、 so□等
の硫化物系のガスが飛散したり、硫黄(S)を含む微粒
子が飛散する。これらの硫化物系のガスや微粒子がフィ
ラメント状陰極lOの電子放出層である酸化物と反応し
、陰極10の表面を毒化したり、シンターさせたりする
ので、フィラメント状陰極lOのエミッション特性を劣
化させることになる。
The electrons emitted from the filamentary cathode 10 in this manner are attracted by the control electrode 9 and the anode 8 and accelerated, so they have large energy. Therefore, when it hits the sulfide phosphor layer 7, it not only causes the phosphor layer 7 to emit light but also decomposes the phosphor layer 7 on the surface. As a result, the sulfide phosphor decomposes, and sulfide-based gases such as s, so, and so□ are scattered, and fine particles containing sulfur (S) are scattered. These sulfide-based gases and fine particles react with the oxide that is the electron emission layer of the filamentary cathode 10, poisoning or sintering the surface of the cathode 10, and thus deteriorating the emission characteristics of the filamentary cathode 10. I will let you do it.

そこで蛍光表示管に使用する青色発光蛍光体として硫化
物蛍光体以外の青色発光蛍光体が要求された。
Therefore, a blue-emitting phosphor other than a sulfide phosphor was required as a blue-emitting phosphor for use in fluorescent display tubes.

そしてその一つにガリウム酸塩系複合酸化物蛍光体が特
公昭60−31236号で公知である。この蛍光体の組
成式は、A(7,n)−z Mgx)O・Ga2O,(
但し2O.6≦A≦1.2及び0≦X≦0.5である。
One of them is a gallate-based composite oxide phosphor, which is known from Japanese Patent Publication No. 31236/1983. The compositional formula of this phosphor is A(7,n)-z Mgx)O・Ga2O, (
However, 2O. 6≦A≦1.2 and 0≦X≦0.5.

)で示されている。).

しかし、この蛍光体は、発光電圧が高く、発光輝度が低
いという問題点を有していたので、本発明者等は、上記
蛍光体のA=1.X=OであるZnO・Ga、 o、蛍
光体を母体として、この母体にリチウム化合物を添加し
た蛍光体を開発した。
However, this phosphor had problems in that the emission voltage was high and the emission brightness was low, so the inventors of the present invention developed the above phosphor with A=1. We developed a phosphor in which a lithium compound is added to a matrix of ZnO.Ga, o, in which X=O, as a matrix.

前記リチウム化合物がハロゲン化リチウムの場合の蛍光
体が特開昭62−243679号で公知であり、リン酸
リチウムの場合が特開昭62−331358号で公知で
ある。
A phosphor in which the lithium compound is lithium halide is known from JP-A No. 62-243679, and a phosphor in which the lithium compound is lithium phosphate is known from JP-A No. 62-331358.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、ハロゲン化リチウムやリン酸リチウムを添加し
たZn0−Ga、O,蛍光体は、低速電子線用として使
用できるが、従来のZnO: Zn蛍光体に比較すると
、まだ抵抗が高く、ある条件の低速電子線の対照では輝
度が低かった。特に陽極電圧及び制御電圧が30V以下
の場合は輝度が低く、また蛍光表示管の実際条件、特に
蛍光体膜厚によって輝度のバラ付も大きかった。
However, although ZnO-Ga,O, phosphors doped with lithium halide or lithium phosphate can be used for low-speed electron beams, they still have high resistance compared to conventional ZnO:Zn phosphors, and under certain conditions The brightness was low in the slow electron beam control. In particular, when the anode voltage and control voltage were 30 V or less, the brightness was low, and the brightness varied widely depending on the actual conditions of the fluorescent display tube, especially the thickness of the phosphor film.

そこで本発明は、znO−Ga203蛍光体を母体とし
た従来の蛍光体をさらに低抵抗化して、低電圧でも高輝
度の発光が可能な、硫化物を含んでいない青色発光蛍光
体を提供することを目的とするものである。
Therefore, an object of the present invention is to further lower the resistance of the conventional phosphor based on the znO-Ga203 phosphor to provide a blue-emitting phosphor that does not contain sulfides and is capable of emitting high-intensity light even at low voltage. The purpose is to

〔課題を解決するための手段〕[Means to solve the problem]

前述の目的を達成するために本発明は1組成式がZnO
・Ga、O,で表わされる母体を有する蛍光体に対して
酸化亜鉛又は酸化亜鉛系導電材料を0.1〜20wt%
の割合で混合することを特徴とする。
In order to achieve the above object, the present invention has one compositional formula of ZnO.
・0.1 to 20 wt% of zinc oxide or zinc oxide-based conductive material to the phosphor having a matrix represented by Ga, O,
It is characterized by mixing at a ratio of .

又、蛍光体はZnO−Ga2O3で表わされる母体にリ
チウム化合物を添加したものでもよい。
Further, the phosphor may be one in which a lithium compound is added to a matrix represented by ZnO-Ga2O3.

さらに、又リチウム化合物としては、リン酸リチウムや
ハロゲン化リチウムが好ましい。
Furthermore, as the lithium compound, lithium phosphate and lithium halide are preferable.

〔作 用〕[For production]

ZnO−Ga2O3で表わされる母体を有する蛍光体に
ZnOを混合した蛍光体は、 ZnOにより蛍光体自体
の導電性が改善されることに加えて、前記母体より酸素
を奪うことにより発光中心を増やすので数V〜数10V
の低電圧でも高輝度に発光する作用を有する。
A phosphor in which ZnO is mixed into a phosphor having a matrix represented by ZnO-Ga2O3 not only improves the conductivity of the phosphor itself due to ZnO, but also increases the number of luminescent centers by depriving the matrix of oxygen. Several volts to several tens of volts
It has the ability to emit light with high brightness even at low voltages.

〔実施例1〕 まず母体となるznO−Ga20.を次のように形成す
る。
[Example 1] First, a matrix of znO-Ga20. is formed as follows.

2nOとGa2O,を等モルづつ固溶させて母体を構成
する。
A matrix is formed by dissolving equimolar amounts of 2nO and Ga2O.

すなわちZnOを3.3gとGa2O3を7.5gを秤
量し、充分に混合した後アルミナルツボに入れて、大気
雰囲気中の焼成炉中で焼成温度をttoo〜1300℃
の温度で3時間第1回目の焼成を行い、ZnOとGa2
O。
That is, 3.3 g of ZnO and 7.5 g of Ga2O3 were weighed, mixed thoroughly, and then placed in an alumina crucible, and the firing temperature was set at ttoo to 1300°C in a firing furnace in an atmospheric atmosphere.
The first firing was carried out for 3 hours at a temperature of
O.

の固溶体である母体を形成した。A matrix was formed which was a solid solution of .

次に前記Zn0−Ga、O,の母体にし13PO,を母
体1モルに対して5X10−3〜4X10−1モル添加
する。本実施例の場合は5X10’モルに相当する0、
23 gのLi。
Next, 5X10-3 to 4X10-1 mol of 13PO is added to the Zn0-Ga, O base material per 1 mole of the base material. In this example, 0, which corresponds to 5X10' moles,
23 g of Li.

po4を添加した。po4 was added.

前記ZnO・Ga2O3の母体にメノウ製のボールミル
を用いて充分に粉砕して、凝集の分散を行う。粉砕後前
記Li、 PO,の0.23gを前記Zn0−Ga2O
.の母体に充分混合した後アルミナボートに入れて、還
元雰囲気、例えばN2とN2の混合雰囲気をH,/N2
=40/160(m97分)の条件で送り込んだ焼成炉
で、焼成温度1000℃に設定し、1時間焼成を行い、
Li及びPを母体にドープさせたZnO−Ga2O3:
Li、 P蛍光体が得られた。
The ZnO.Ga2O3 matrix is thoroughly ground using an agate ball mill to disperse the agglomerates. After pulverization, 0.23 g of the Li, PO, was added to the Zn0-Ga2O
.. After thoroughly mixing with the matrix, place it in an alumina boat and create a reducing atmosphere, such as a mixed atmosphere of N2 and N2, with H,/N2.
= 40/160 (m97 minutes) in a firing furnace, set the firing temperature to 1000°C, and fired for 1 hour.
ZnO-Ga2O3 whose matrix is doped with Li and P:
A Li,P phosphor was obtained.

このZnO・Gaz03 : Li、 P蛍光体にさら
に低抵抗化させるために導電材料として酸化インジウム
In2O,、酸化亜鉛ZnO1酸化スズSnO2を各々
加え混合させた。混合量は、蛍光体に対して1wt%、
3wt%、5wt%、10wt%とした。導電材料の粒
径は、平均粒径が1μmのものを使用した。
In order to further lower the resistance of this ZnO.Gaz03:Li,P phosphor, indium oxide In2O, zinc oxide ZnO1, and tin oxide SnO2 were respectively added and mixed as conductive materials. The mixing amount is 1wt% based on the phosphor.
They were 3wt%, 5wt%, and 10wt%. The conductive material used had an average particle size of 1 μm.

このようにして、混合導電材料、および混合量を変えた
蛍光体を形成し、有機バインダーと混合して蛍光体ペー
ストにし、スクリーン印刷法で、第1図、第2図に示す
蛍光表示管の基板1上の陽極導体6の表面に蛍光体層7
を被着形成させた。
In this way, the mixed conductive material and the phosphor mixed in different amounts are formed, mixed with an organic binder to form a phosphor paste, and then screen printed to form the fluorescent display tube shown in FIGS. 1 and 2. A phosphor layer 7 is formed on the surface of the anode conductor 6 on the substrate 1.
was deposited.

さらにメツシュ状制御電極9、フィラメント状陰極lO
を配設し、これらの電極を覆うように容器部4を封着し
、内部を排気し、高真空状態になったら封止して蛍光表
示管を製作した。
Furthermore, a mesh-like control electrode 9, a filament-like cathode lO
were arranged, the container part 4 was sealed so as to cover these electrodes, the inside was evacuated, and when a high vacuum state was achieved, the container was sealed to produce a fluorescent display tube.

比較のために、導電材料を混合しない蛍光体を使用して
同様に同一蛍光表示管を実装した。
For comparison, the same fluorescent display tube was similarly implemented using a phosphor without a conductive material mixed therein.

完成した蛍光表示管を次の駆動条件で点灯し比較した。The completed fluorescent display tube was lit under the following driving conditions and compared.

陰極電圧1.7Vdc、制御電圧12Vdc、陽極電圧
30Vdcを印加し、その輝度の特性を評価した。
A cathode voltage of 1.7 Vdc, a control voltage of 12 Vdc, and an anode voltage of 30 Vdc were applied to evaluate the brightness characteristics.

その結果を表−1に示す。The results are shown in Table-1.

発光輝度および発光効率は5サンプルの平均である。Luminous brightness and luminous efficiency are averages of 5 samples.

(以下余白) 表−1 上記結果から、 In、O,及びSnO□は導電材料を
混合しない従来の蛍光体によりも輝度及び発光効率が悪
くなり、効果がないことがわかった6導電材料としてZ
nOを混合したZnO−Ga2O,: Li。
(Margins below) Table 1 From the above results, it was found that In, O, and SnO□ had lower brightness and luminous efficiency than conventional phosphors that did not contain conductive materials, and were found to be ineffective.6 As conductive materials, Z
ZnO-Ga2O mixed with nO: Li.

P+ZnO蛍光体は、発光輝度が導電材料なしの160
cd/ rrrに対し280〜320cd/rrfとお
よそ1.75〜2倍になり、発光効率も0.373Qm
/wに対し0.441〜0.564Qrn/νとおよそ
1.5倍に改善された。
P+ZnO phosphor has an emission brightness of 160% without conductive material.
cd/rrr is 280-320cd/rrf, which is approximately 1.75-2 times, and the luminous efficiency is also 0.373Qm.
/w was improved by about 1.5 times to 0.441 to 0.564 Qrn/ν.

このように導電材料としてIn、 O,及びSnO2よ
りZnOが優れているのは次のような理由によるもので
ある。
The reason why ZnO is superior to In, O, and SnO2 as a conductive material is as follows.

蛍光表示管に実装した蛍光体は、製造工程中に数回40
0〜450℃の熱処理を経る。そこでZnO: Ga2
O3を母体とする蛍光体に前記のようなIn2O,又は
SnO,導電材料が混合されていると、工程中の熱処理
により蛍光体と導電物質との間で酸素のやり取りが生じ
たためと考えられる。例えば、In2O3は。
The phosphor mounted on the fluorescent display tube is exposed to 40°C several times during the manufacturing process.
It undergoes heat treatment at 0-450°C. So ZnO: Ga2
This is thought to be due to the exchange of oxygen between the phosphor and the conductive material due to heat treatment during the process when the above-mentioned In2O, SnO, or conductive material is mixed with the O3-based phosphor. For example, In2O3.

非常に酸素欠陥を作り易い材料であるので、製造工程中
の熱処理において、 In2O3と接しているZnO・
Ga2O,母体に酸素を与えることにより、ZnO・G
a2O、母体の酸素欠陥が関与した発光中心を潰すため
に輝度特性が改善されなかったと考えられる。
Since it is a material that easily creates oxygen defects, during heat treatment during the manufacturing process, ZnO, which is in contact with In2O3, is
Ga2O, by giving oxygen to the parent body, ZnO・G
It is thought that the brightness characteristics were not improved because the luminescent centers related to a2O and parent oxygen defects were destroyed.

しかしながら本願のZnOの場合は、蛍光体自体の導電
性が改善されることに加えてIn、 03等より酸素を
離しにくいために、製造工程の熱処理において、ZnO
に接しているZnO・Ga、 03母体から酸素を奪う
ことにより、ZnO・Ga、 O,母体の酸素欠陥が関
与した発光中心を増やし、母体自体も導電性が改善され
る。したがってこのZnO導電材料を混合すると低電圧
領域のアノード電流は増加し蛍光体層が低抵抗化して、
輝度特性が改善されたのである。
However, in the case of ZnO in this application, in addition to improving the conductivity of the phosphor itself, it is also difficult to release oxygen compared to In, 03, etc., so ZnO is used in the heat treatment of the manufacturing process.
By depriving oxygen from the ZnO·Ga, 03 matrix that is in contact with the ZnO·Ga, 03 matrix, the number of luminescent centers associated with oxygen defects in the ZnO·Ga, 0, matrix increases, and the conductivity of the matrix itself is improved. Therefore, when this ZnO conductive material is mixed, the anode current in the low voltage region increases and the resistance of the phosphor layer decreases.
The brightness characteristics have been improved.

次にZnO導電材料の混合量について嘔明する。Next, the amount of ZnO conductive material to be mixed will be explained.

第3図は、ZnO導電材料の混合量と相対発光輝度との
関係を示すグラフである。前述の実施例の場合は、粒径
が平均粒径1μmであるのでAで示す曲線のグラフとな
った。輝度は1μmのもので最高値を100とした相対
輝度で表わした。
FIG. 3 is a graph showing the relationship between the amount of ZnO conductive material mixed and relative luminance. In the case of the above-mentioned example, the average particle size was 1 μm, so the graph represented by the curve A was obtained. The brightness was measured at 1 μm and expressed as relative brightness with the highest value being 100.

ZnOの混合量が3%11%付近が最も輝度が高く、相
対輝度が50以上を優れている範囲とすると、0.1〜
10wt%が輝度の高くなる範囲である。ZnOの混合
量が0.1wt%以下では低抵抗化の効果が認められず
、又IQwt%以上多い場合は、非発光で蛍光体の発光
を遮断するZnOの面積が増加し、発光面積が減少する
ので輝度が低下してしまう。
The brightness is highest when the mixing amount of ZnO is around 3% to 11%, and if the relative brightness is in the excellent range of 50 or more, it is 0.1 to 11%.
10 wt% is the range where the brightness becomes high. If the amount of ZnO mixed is less than 0.1 wt%, the effect of lowering the resistance is not observed, and if it is more than IQwt%, the area of ZnO that does not emit light and blocks the light emission of the phosphor increases, and the light emitting area decreases. As a result, the brightness decreases.

次にZnO導電材料の粒径を平均粒径が3μmのものを
混合するとBで示す曲線のグラフになる。
Next, when a ZnO conductive material having an average particle size of 3 μm is mixed, a curve shown as B is obtained.

粒径が大きくなると全般的に輝度は低くなる傾向がある
。又最高混合量(ピーク値)も増加する傾向である。こ
の3μmの平均粒径で、相対輝度が50以上の範囲は、
3〜3.5すt%と上限が広がる傾向がある。これは、
粒径が大きくなると同じ混合量でも粒子数が少なくなり
、遮断する全面積が小さくなるからである。
As the particle size increases, the brightness generally tends to decrease. Furthermore, the maximum mixing amount (peak value) also tends to increase. With this average particle size of 3 μm, the range where the relative brightness is 50 or more is
There is a tendency for the upper limit to widen to 3 to 3.5 t%. this is,
This is because as the particle size increases, the number of particles decreases even with the same mixing amount, and the total area to be blocked becomes smaller.

しかし、平均粒径が10μmになる相対輝度が50がピ
ークとなる。従って10μm以上の粒径はすべて50以
下になるので好ましくないことが知見した。
However, the relative brightness peaks at 50 when the average particle size is 10 μm. Therefore, it was found that all particle sizes of 10 μm or more are undesirable because they are 50 or less.

又混合量の上限は、10μmのときのピークが20wt
%であるのでそれ以下の範囲すなわち201%以下であ
れば輝度が高くなり、低速電子線用蛍光体として実用化
できることがわかった。
Also, the upper limit of the mixing amount is 20wt when the peak is 10μm.
%, so it was found that if it is in a lower range, that is, 201% or less, the brightness will be high and it can be put to practical use as a phosphor for low-speed electron beams.

しかし、好ましくは、粒径が平均粒径3μl以下であり
、混合量は0.1〜10wt%が最適範囲である。
However, preferably, the average particle size is 3 μl or less, and the optimum mixing amount is 0.1 to 10 wt%.

第4図は、平均粒径が1μmのZnO導電材料をZn0
−Ga2O. : Li、 P蛍光体に対し、混合量を
0tit%、1wt%、5iit%、10wt%混合し
た蛍光体を蛍光表示管に実装して、陽極電圧を変化させ
て発光させた場合の輝度りと陽極電圧Ebの関係を示す
グラフである。
Figure 4 shows a ZnO conductive material with an average particle size of 1 μm.
-Ga2O. : Luminance when phosphors mixed with Li and P phosphors at 0t%, 1wt%, 5iit%, and 10wt% are mounted in a fluorescent display tube and emitted by changing the anode voltage. It is a graph showing the relationship between anode voltage Eb.

混合量がOυt%の従来例に比較し、本発明のすべての
混合量において輝度が高く、特に1wt%混合した蛍光
表示管は、陽極電圧が25V以上で輝度が他の混合量の
ものよりも最も高い。
Compared to the conventional example with a mixture amount of Oυt%, the brightness of the present invention is higher at all mixture amounts.In particular, the fluorescent display tube with a 1wt% mixture has a brightness higher than that of other mixture amounts when the anode voltage is 25V or more. highest.

5wt%混合した蛍光表示管は、同様に約25V以上で
は1wt%の混合量に次いで輝度が高い。
Similarly, a fluorescent display tube with a mixture of 5 wt% has the second highest brightness at about 25 V or higher than a mixture of 1 wt%.

10wt%混合した蛍光表示管では、従来例(Qwt%
)に近い値であるが40V以下では輝度が高くなってい
る。特に25V以下では効果が顕著に表われている。
In the fluorescent display tube containing 10wt% mixture, the conventional example (Qwt%
), but the brightness is high below 40V. The effect is particularly noticeable below 25V.

又発光開始電圧も、従来例よりさらに低くなっている。Furthermore, the light emission starting voltage is also lower than that of the conventional example.

このように1本発明の蛍光体は低電圧領域で、従来例よ
り高輝度にすることが可能になった。
In this way, the phosphor of the present invention can achieve higher luminance than the conventional example in a low voltage region.

第5図は、 Zn0−Ga、O,+ZnO蛍光体で平均
粒径1μmのZnOの混合量がQwt%の従来例と3t
st%混合した蛍光体と、10wt%混合した蛍光体の
発光スペクトル図である。
Figure 5 shows a conventional example in which the ZnO-Ga, O, +ZnO phosphor has a mixed amount of Qwt% of ZnO with an average particle size of 1 μm, and a 3t
It is an emission spectrum diagram of a phosphor mixed with st% and a phosphor mixed with 10 wt%.

混合量が0wt%の従来例のピークは415nmにある
のに対し、混合量が3tit%であると425nmにピ
ークがあり、混合量が1(ht%になるとさらに長波長
側にシフトして、435nmにピークがくる。このよう
に混合量が増加すると長波長側にシフトする傾向がある
。すなわち、紫色からより青色へと変化している。
The conventional example with a mixing amount of 0 wt% has a peak at 415 nm, whereas when the mixing amount is 3 tit%, there is a peak at 425 nm, and when the mixing amount becomes 1 (ht%), it shifts further to the longer wavelength side, The peak appears at 435 nm.As the amount of mixture increases in this way, there is a tendency for the wavelength to shift to the longer wavelength side.In other words, the color changes from purple to bluer.

いずれにしても1本発明の蛍光体の発光スペクトルには
青成分である420r+m〜530nmを含んでいるの
で発光色は青色である。
In any case, the emission spectrum of the phosphor of the present invention includes a blue component of 420r+m to 530nm, so the emission color is blue.

〔実施例2〕 Zn0−Ga2O.母体を形成するまでは実施例1と同
様であるので説明を略す。粉砕したZnO・Ga、 0
.母体にハロゲン化リチウムを母体1モルに対し0.0
5〜15モル%を添加して充分に混合する。本実施例の
場合のハロゲン化リチウムは、フン化リチウムを3モル
%添加した。
[Example 2] Zn0-Ga2O. The steps up to the formation of the matrix are the same as in Example 1, so the explanation will be omitted. Pulverized ZnO・Ga, 0
.. 0.0 lithium halide per 1 mole of base material
Add 5-15 mol% and mix thoroughly. In the case of this example, 3 mol% of lithium fluoride was added to the lithium halide.

充分混合した蛍光体材料を実施例1と同様のN2とN2
の混合還元雰囲気を同様の条件で送り込んだ還元炉で、
焼成温度1000℃で1時間焼成してZnO・Ga2O
3: Li、 Fの組成式を有する蛍光体を得た。
The well-mixed phosphor material was mixed with N2 and N2 as in Example 1.
The reduction furnace is fed with a mixed reducing atmosphere under similar conditions.
Sintered at a firing temperature of 1000℃ for 1 hour to form ZnO・Ga2O
3: A phosphor having a composition formula of Li, F was obtained.

この蛍光体に導電材料として、酸化亜鉛系導電材料、例
えばアルミニウムMをドープしたZnOすなわちZnO
: Mlを用いた。
A zinc oxide-based conductive material such as ZnO doped with aluminum M is used as a conductive material in this phosphor.
: Ml was used.

このZnO: M導電材料は、MCL・6H20を溶か
した水溶液にZnOを加えて蒸発乾固させたものを弱還
元雰囲気すなわち+1./N、の割合が5/195(+
nR/分)である還元炉中で焼成温度が1000°Cで
1時間焼成して超をドープさせた。
This ZnO:M conductive material is prepared by adding ZnO to an aqueous solution of MCL 6H20 and evaporating it to dryness in a weak reducing atmosphere, that is, +1. /N, the ratio is 5/195 (+
nR/min) in a reducing furnace at a firing temperature of 1000° C. for 1 hour to dope the material.

ZnOCAQの添加量は、ZnO・Ga2O3: Li
、 F蛍光体に対し5wt%混合し、実施例1と同様に
蛍光表示管に実装して、同じ駆動条件で点灯させたら陽
極電圧が15V付近から青色発光が認められ、30Vで
約200Cd/ rdが得られZnOと同様の効果が得
られた。
The amount of ZnOCAQ added is ZnO・Ga2O3: Li
When mixed with 5 wt% of the F phosphor, mounted in a fluorescent display tube in the same manner as in Example 1, and lit under the same driving conditions, blue light emission was observed from around 15 V at the anode voltage, and approximately 200 Cd/rd at 30 V. was obtained, and the same effect as ZnO was obtained.

なお、前記導電材料のZnO: Aflの平均粒径は1
μmのものを使用した。
Note that the average particle size of ZnO: Afl of the conductive material is 1
μm ones were used.

又、酸化亜鉛系導電材料としてZnO: AQの他にZ
nO:B、 ZnO:Ga+ ZnO:In、 ZnO
:Tρ、 ZnO:Zn等でも同様に低抵抗化させる効
果がある。
In addition to ZnO:AQ, ZnO is used as a zinc oxide-based conductive material.
nO:B, ZnO:Ga+ ZnO:In, ZnO
:Tρ, ZnO:Zn, etc. have the same effect of lowering the resistance.

〔発明の効果〕〔Effect of the invention〕

本発明は、以上説明したように、従来のZnO:Ga、
 O,を母体とする蛍光体に対し、酸化亜鉛又は酸化亜
鉛系導電材料を0.1〜20wt%混合させたので次の
ような効果を有する。
As explained above, the present invention can be applied to conventional ZnO:Ga,
Since 0.1 to 20 wt % of zinc oxide or zinc oxide-based conductive material is mixed with the phosphor based on O, the following effects are obtained.

(1)  本発明の蛍光体は、従来の導電材料を入れな
い蛍光体に比較して低電圧領域で輝度が高いので蛍光表
示管用蛍光体として充分使用することができる。
(1) The phosphor of the present invention has higher brightness in a low voltage region than conventional phosphors that do not contain conductive materials, so it can be used satisfactorily as a phosphor for fluorescent display tubes.

(2)本発明の蛍光体組成中に硫黄S成分を含有してい
ないので、硫化物系ガス等の飛散もなく、フィラメント
状陰極のエミッション特性を劣化させない非硫化物系の
青色発光蛍光体を提供することができる。
(2) Since the phosphor composition of the present invention does not contain a sulfur S component, a non-sulfide-based blue-emitting phosphor that does not scatter sulfide-based gases, etc. and does not deteriorate the emission characteristics of the filament cathode can be used. can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、−殻内な蛍光表示管の平面図であり、第2図
は、同断面図であり、第3図は、導電材料のZnOの粒
径別の混合景と相対輝度の関係を示すグラフ、第4図は
、本発明の従来例の陽極電圧と輝度の関係を示すグラフ
、第5図は、本発明と従来例の発光スペクトル図である
Fig. 1 is a plan view of a fluorescent display tube inside the shell, Fig. 2 is a cross-sectional view of the same, and Fig. 3 is a relation between the mixed view and relative brightness of conductive material ZnO according to particle size. FIG. 4 is a graph showing the relationship between the anode voltage and brightness of the conventional example of the present invention, and FIG. 5 is an emission spectrum diagram of the present invention and the conventional example.

Claims (3)

【特許請求の範囲】[Claims] (1) 組成式がZnO・Ga_2O_3で表わされる
母体を有する蛍光体に対して酸化亜鉛又は酸化亜鉛系導
電材料を0.1〜20wt%の割合で混合することを特
徴とする青色発光蛍光体。
(1) A blue-emitting phosphor characterized in that zinc oxide or a zinc oxide-based conductive material is mixed in a proportion of 0.1 to 20 wt% with respect to a phosphor having a matrix represented by the compositional formula ZnO.Ga_2O_3.
(2) 組成式がZnO・Ga_2O_3で表わされる
母体にリチウム化合物を添加した蛍光体に対し、酸化亜
鉛又は酸化亜鉛系導電材料を0.1〜20wt%の割合
で混合したことを特徴とする青色発光蛍光体。
(2) A blue color characterized by mixing zinc oxide or a zinc oxide-based conductive material at a ratio of 0.1 to 20 wt% to a phosphor whose composition formula is ZnO.Ga_2O_3 and which has a lithium compound added to the matrix. Luminescent phosphor.
(3) 前記リチウム化合物がリン酸リチウム、ハロゲ
ン化リチウム、チタン酸リチウムから選ばれた一種であ
る請求項2記載の青色発光蛍光体。
(3) The blue-emitting phosphor according to claim 2, wherein the lithium compound is one selected from lithium phosphate, lithium halide, and lithium titanate.
JP63333876A 1988-12-28 1988-12-28 Blue light emitting phosphor Expired - Lifetime JPH0747733B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63333876A JPH0747733B2 (en) 1988-12-28 1988-12-28 Blue light emitting phosphor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63333876A JPH0747733B2 (en) 1988-12-28 1988-12-28 Blue light emitting phosphor

Publications (2)

Publication Number Publication Date
JPH02178386A true JPH02178386A (en) 1990-07-11
JPH0747733B2 JPH0747733B2 (en) 1995-05-24

Family

ID=18270940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63333876A Expired - Lifetime JPH0747733B2 (en) 1988-12-28 1988-12-28 Blue light emitting phosphor

Country Status (1)

Country Link
JP (1) JPH0747733B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5051203A (en) * 1989-11-24 1991-09-24 Futaba Denshi Kogya K.K. Process for producing phosphor
JPH0862602A (en) * 1994-07-26 1996-03-08 Samsung Electron Devices Co Ltd Display device
JPH08302342A (en) * 1995-05-09 1996-11-19 Futaba Corp Phosphor

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52141492A (en) * 1977-05-13 1977-11-25 Dainippon Toryo Co Ltd Fluorescent display tube excited by low speed
JPS56167782A (en) * 1980-05-30 1981-12-23 Nec Corp Luminescent material
JPS59105254A (en) * 1982-12-08 1984-06-18 Futaba Corp Low velocity electron ray phosphor and fluorescent character display tube
JPS59133285A (en) * 1983-01-20 1984-07-31 Nec Corp Phosphor excited by low-speed electron beam
JPS62243679A (en) * 1986-04-17 1987-10-24 Futaba Corp Fluorescent substance for slow electon ray and production thereof
JPS62295989A (en) * 1986-06-16 1987-12-23 Kasei Optonix Co Ltd Luminous composition and low-velocity electron beam-excited fluorescent character display tube using the same
JPH066704A (en) * 1992-06-23 1994-01-14 Matsushita Electric Ind Co Ltd Television receiver

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52141492A (en) * 1977-05-13 1977-11-25 Dainippon Toryo Co Ltd Fluorescent display tube excited by low speed
JPS56167782A (en) * 1980-05-30 1981-12-23 Nec Corp Luminescent material
JPS59105254A (en) * 1982-12-08 1984-06-18 Futaba Corp Low velocity electron ray phosphor and fluorescent character display tube
JPS59133285A (en) * 1983-01-20 1984-07-31 Nec Corp Phosphor excited by low-speed electron beam
JPS62243679A (en) * 1986-04-17 1987-10-24 Futaba Corp Fluorescent substance for slow electon ray and production thereof
JPS62295989A (en) * 1986-06-16 1987-12-23 Kasei Optonix Co Ltd Luminous composition and low-velocity electron beam-excited fluorescent character display tube using the same
JPH066704A (en) * 1992-06-23 1994-01-14 Matsushita Electric Ind Co Ltd Television receiver

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5051203A (en) * 1989-11-24 1991-09-24 Futaba Denshi Kogya K.K. Process for producing phosphor
JPH0862602A (en) * 1994-07-26 1996-03-08 Samsung Electron Devices Co Ltd Display device
JPH08302342A (en) * 1995-05-09 1996-11-19 Futaba Corp Phosphor

Also Published As

Publication number Publication date
JPH0747733B2 (en) 1995-05-24

Similar Documents

Publication Publication Date Title
KR100489575B1 (en) Phosphor for display and field-emission display
JP2809084B2 (en) Field emission fluorescent display
KR20040097910A (en) Fluorescent Material for Low-Speed Electron Beam and Fluorescent Display Tube
JPH02178386A (en) Blue luminous fluorescent substance
KR100533512B1 (en) Phosphor of warm luminous colors and fluorescent display device
JP2002138279A (en) Fluorescent material for display unit, its manufacturing method and field emission type display unit using the same
KR100572796B1 (en) Phosphor, phosphor layer manufacturing method and fluorescent display tube
WO2004031322A1 (en) Fluorescent material for display unit, process for producing the same and color display unit including the same
JP2002080845A (en) Fluorescent substance by low-energy electron beam excitation and fluorescent display tube
JPH066704B2 (en) Electron beam excited phosphor and method for producing the same
JP3982667B2 (en) Slow electron beam excited phosphor and fluorescent display tube
JP3514836B2 (en) Green light emitting phosphor
JP3879298B2 (en) Field emission display
US20060145591A1 (en) Green light emitting phosphor for low voltage/high current density and field emission type display including the same
US7604752B2 (en) Phosphor and fluorescent luminous tube
JP3621224B2 (en) Fluorescent substance and fluorescent display device
JPH0892551A (en) Fluorescent display tube
JP4081582B2 (en) Blue light emitting phosphor
JPS61243646A (en) Fluorescent character display tube
JPH0257827B2 (en)
JPS6234080B2 (en)
JPH06108046A (en) Blue phosphor
JPS6243044A (en) Fluorescent character display tube
JPH08138548A (en) Manufacture of green color emitting phosphor
JP2001131543A (en) Phosphor and fluorescent display tube

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090524

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090524

Year of fee payment: 14