JPH0260707B2 - - Google Patents

Info

Publication number
JPH0260707B2
JPH0260707B2 JP14998286A JP14998286A JPH0260707B2 JP H0260707 B2 JPH0260707 B2 JP H0260707B2 JP 14998286 A JP14998286 A JP 14998286A JP 14998286 A JP14998286 A JP 14998286A JP H0260707 B2 JPH0260707 B2 JP H0260707B2
Authority
JP
Japan
Prior art keywords
phosphor
zno
mol
fluorescent display
phosphors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14998286A
Other languages
Japanese (ja)
Other versions
JPS636082A (en
Inventor
Kyoshi Morimoto
Hitoshi Toki
Yoshitaka Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Futaba Corp
Original Assignee
Futaba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Futaba Corp filed Critical Futaba Corp
Priority to JP14998286A priority Critical patent/JPS636082A/en
Priority to US07/066,072 priority patent/US4791336A/en
Publication of JPS636082A publication Critical patent/JPS636082A/en
Publication of JPH0260707B2 publication Critical patent/JPH0260707B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Luminescent Compositions (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、電子線又は紫外線により励起され
て、紫外域及び可視域の両方に発光スペクトルを
有する新規な蛍光体に係わり、特に硫黄Sの成分
を含まなく、例えば蛍光表示管用の蛍光体として
エミツシヨン特性に優れ、長寿命の酸化物系の電
子線励起蛍光体及び紫外線発生機器に利用できる
蛍光体に関する。 〔従来技術および問題点〕 従来、電子線励起蛍光体には数10KV程度の加
速電圧で発光するブラウン管用蛍光体や、数10V
程度の低い加速電圧で発光する蛍光表示管用蛍光
体があつた。 前記ブラウン管用蛍光体で青色発光蛍光体とし
ては、ZnS:Ag,Al蛍光体やZnS:Ag蛍光体が
公知である。 上記蛍光体を蛍光表示管用として使用するとき
には、導電物質であるIn2O3やSnO2等を前記蛍光
体に混合して抵抗を下げることが一般的に知られ
ている。 前記蛍光体の中にはすべて硫黄S成分が含まれ
ているので、前記蛍光体を総称として硫化物蛍光
体と称している。 この硫化物蛍光体は、蛍光表示管のカラー蛍光
体として多く使用されている。 この硫化物蛍光体を蛍光表示管の陽極導体に被
着して、陰極から放出された電子を射突させて発
光させると、大きなエネルギーを有している電子
が蛍光体層に射突する際に蛍光体の一部を分解し
て、S、SO、SO2等の硫化物系のガスが飛散す
る。この硫化物系のガスがフイラメント状陰極に
付着すると、その表面に被着された電子放出層で
あるアルカリ土類金属の酸化物層と反応し、フイ
ラメント状陰極の表面を毒化して、陰極のエミツ
シヨン特性を劣化させたり、陰極の寿命を短くさ
せたり、さらに、蛍光表示管の輝度を低くする等
の問題点を有していた。 そこで硫化物蛍光体以外のカラー蛍光体が要求
されるようになつた。 そして、硫化物蛍光体以外のカラー蛍光体の一
つにガリウム酸塩系複合酸化物蛍光体が特公昭60
−31236号で公知である。この蛍光体の組成式は、
A(Zn1-x,Mgx)O・Ga2O3(但し、0.6≦A≦1.2
及びO≦x≦0.5である。)で示される。発光色x
=Oだと青色であり、xをOより大きくして長波
側にシフトして緑色に近くなるが、発光しきい値
電圧は高くなる。 また、前記A(Zn1-x,Mgx)O・Ga2O3蛍光体
は、発光輝度が低く改良の余地があつた。例え
ば、A=1、x=OであるZnO・Ga2O3蛍光体に
おいて、陽極電圧を80V、陰極電圧を0.6V印加し
た場合に発光輝度は4ft―L程度であつた。また、
A=1、x=0.3になるようにMgOを混合した
(Zn0.7,Mg0.3)O・Ga2O3蛍光体にすると、発光
波長が長波側に移り、輝度が多少上つても駆動条
件が同じ陽極電圧が80V、陰極電圧が0.6V印加し
た場合は8ft―Lであり、実用上はまだ低く蛍光
表示管用としては使用できないという問題点を有
していた。 〔発明の目的〕 本発明は、前述の公知の蛍光体(Zn1-x
Mgx)O・Ga2O3のx=OのZnO・Ga2O3の蛍光
体に着目し、この蛍光体にCdをドープすること
により低速電子線の励起によつて青色に発光する
ことが可能であり、発光輝度が高く、蛍光表示管
用として使用できるばかりでなく、紫外線も放射
し、紫外線放射源として利用できるガリウム酸塩
系複合酸化物蛍光体を提供することを目的とする
ものである。 〔発明の構成〕 前述の目的を達成するために本発明の蛍光体
は、一般式がZnO・Ga2O3:Cdで表わされるこ
とを特徴とする。また、前記母体のGa2O31mol
に対してZnOが0.5〜4.0mol固溶させることが好
ましく、さらにCdのドープ量は5×10-4〜3×
10-1molであることが好ましい。 〔作 用〕 本発明のZnO・Ga2O3:Cd蛍光体は、電子線
の励起により365nm付近にピークを有し、紫外領
域にスペクトルを有する紫外線を放射するととも
に、前記スペクトルの一部は可視域に延在してい
るので青色系の可視域光も発光する作用がある。 また、前記蛍光体は、導電性を有し、抵抗が低
いので、低速電子線の励起により発光させる作用
がある。 さらに、前記蛍光体中には硫黄S成分を含んで
いないので、この蛍光体を蛍光表示管に使用して
も硫化物系のガスを飛散させる作用がなくなる。 さらにまた、前記蛍光体は低速電子線以外の電
子線によつても、また紫外線によつても励起され
て発光させる作用がある。 実施例 1 本発明のZnO・Ga2O3:Cd蛍光体を合成する
には、Ga2O31molに対し、ZnOが0.5〜4.0molの
割合が好ましい範囲なのであるが本実施例では、
ZnOが1molの場合を説明する。具体的には、酸
化ガリウムGa2O3を1.87gと固定し、Zn成分とし
てのZnOを0.81gに固定し、Cd成分としての
CdCO3を各種変化させて蛍光体を合成した。具
体的なCdCO3の量は、前記蛍光体の組成式のCd
のドープ量によつて次の表のように決めた。
[Industrial Application Field] The present invention relates to a new phosphor that is excited by electron beams or ultraviolet rays and has an emission spectrum in both the ultraviolet region and the visible region. The present invention relates to a long-life oxide-based electron beam-excited phosphor that has excellent emission characteristics as a phosphor for display tubes, and a phosphor that can be used in ultraviolet generating equipment. [Prior art and problems] Conventionally, electron beam excited phosphors include cathode ray tube phosphors that emit light at accelerating voltages of several tens of kilovolts, and
There was a phosphor for fluorescent display tubes that emitted light at a low acceleration voltage. ZnS:Ag, Al phosphor and ZnS:Ag phosphor are known as blue-emitting phosphors for cathode ray tubes. When using the above phosphor for a fluorescent display tube, it is generally known that a conductive substance such as In 2 O 3 or SnO 2 is mixed into the phosphor to lower the resistance. Since all of the phosphors contain a sulfur S component, the phosphors are collectively referred to as sulfide phosphors. This sulfide phosphor is often used as a color phosphor in fluorescent display tubes. When this sulfide phosphor is applied to the anode conductor of a fluorescent display tube and the electrons emitted from the cathode are made to collide with it to emit light, the electrons with high energy collide with the phosphor layer. When the phosphor is partially decomposed, sulfide-based gases such as S, SO, and SO 2 are scattered. When this sulfide-based gas adheres to the filament-shaped cathode, it reacts with the alkaline earth metal oxide layer that is the electron-emitting layer deposited on the surface of the filament-shaped cathode, poisoning the surface of the filament-shaped cathode and damaging the cathode. It has problems such as deteriorating the emission characteristics, shortening the life of the cathode, and lowering the brightness of the fluorescent display tube. Therefore, color phosphors other than sulfide phosphors have become required. One of the color phosphors other than sulfide phosphors was a gallate-based complex oxide phosphor.
-31236. The compositional formula of this phosphor is
A(Zn 1-x , Mgx)O・Ga 2 O 3 (However, 0.6≦A≦1.2
and O≦x≦0.5. ). Luminous color x
=O, the color is blue, and by making x larger than O, the color shifts to the longer wavelength side and becomes closer to green, but the emission threshold voltage becomes higher. Further, the A(Zn 1-x , Mgx)O.Ga 2 O 3 phosphor had low luminance and had room for improvement. For example, in a ZnO.Ga 2 O 3 phosphor in which A=1 and x=O, when an anode voltage of 80 V and a cathode voltage of 0.6 V were applied, the luminance was about 4 ft-L. Also,
If we use (Zn 0.7 , Mg 0.3 ) O.Ga 2 O 3 phosphor mixed with MgO so that A = 1 and x = 0.3, the emission wavelength will shift to the longer wavelength side, and even if the brightness increases somewhat, the driving conditions will remain the same. When the same anode voltage was applied to 80 V and cathode voltage was applied to 0.6 V, the voltage was 8 ft-L, which was still too low for practical use and had the problem that it could not be used for fluorescent display tubes. [Object of the invention] The present invention utilizes the above-mentioned known phosphors (Zn 1-x ,
Focusing on a phosphor of ZnO/Ga 2 O 3 where x=O (Mgx) O/Ga 2 O 3 , by doping this phosphor with Cd, it was possible to emit blue light when excited by a slow electron beam. The object of the present invention is to provide a gallate-based complex oxide phosphor that not only has high luminance and can be used for fluorescent display tubes, but also emits ultraviolet rays and can be used as an ultraviolet radiation source. . [Structure of the Invention] In order to achieve the above-mentioned object, the phosphor of the present invention is characterized in that the general formula is represented by ZnO.Ga 2 O 3 :Cd. In addition, 1 mol of the base Ga 2 O 3
It is preferable that 0.5 to 4.0 mol of ZnO is dissolved in the solid solution, and the amount of Cd doped is 5 × 10 -4 to 3 ×
Preferably it is 10 -1 mol. [Function] The ZnO.Ga 2 O 3 :Cd phosphor of the present invention emits ultraviolet light having a peak around 365 nm and a spectrum in the ultraviolet region when excited by an electron beam, and a part of the spectrum is Since it extends into the visible range, it also has the effect of emitting light in the blue visible range. Further, since the phosphor has conductivity and low resistance, it has the effect of emitting light when excited by a slow electron beam. Furthermore, since the phosphor does not contain a sulfur S component, even if this phosphor is used in a fluorescent display tube, it does not have the effect of scattering sulfide gases. Furthermore, the phosphor has the effect of emitting light when excited by electron beams other than low-speed electron beams and also by ultraviolet rays. Example 1 To synthesize the ZnO・Ga 2 O 3 :Cd phosphor of the present invention, the ratio of ZnO to 1 mol of Ga 2 O 3 is preferably in the range of 0.5 to 4.0 mol, but in this example,
The case where ZnO is 1 mol will be explained. Specifically, gallium oxide Ga 2 O 3 was fixed at 1.87 g, ZnO as the Zn component was fixed at 0.81 g, and the Cd component was fixed at 1.87 g.
Phosphors were synthesized by changing CdCO 3 in various ways. The specific amount of CdCO 3 is determined by the Cd in the composition formula of the phosphor.
The doping amount was determined as shown in the following table.

【表】 Ga2O3の代わりにGaの硝酸塩、炭酸塩、硫酸
塩等で空気中で焼成して容易にGa2O3に変わる化
合物でもよい。 また、ZnOやCdCO3の代わりにZnやCdの硝酸
塩、炭酸塩、硫酸塩等で空気中で焼成したときに
容易にZnOやCdOに変わる化合物を酸化物に換算
したときに、前述の割合になるように混合しても
よい。 混合方法は、前記材料をボールミル、ミキサ
ー、乳鉢等を使用して充分混合を行う。 混合物はアルミナボート等を耐熱容器に入れ、
空気中で1300℃で2時間の焼成を行い蛍光体を合
成した。合成した蛍光体は、蛍光体結晶の凝集体
であるので、これを粉砕した後空気中で1000℃で
3時間位焼成させることにより、よりよい結晶状
態の蛍光体が得られる。 次に前表に示すCdのドープ量の異なる条件で
合成された各蛍光体を有機バインダーを用いてペ
ースト化して印刷法でガラス基板上の陽極導体に
被着させて、蛍光体の上方に制御電極及びフイラ
メント状陰極を張架配設して、側面板と前面板か
らなる容器部で覆い、内部を真空状態に排気する
ことにより蛍光表示管を形成させた。 前表に示すようにににCdのドープ量を変えて
0.0005molから0.5molまで7種類の蛍光体がそれ
ぞれ実装された蛍光表示管とこれらと比較する為
に作成した従来のZnO・Ga2O3蛍光体を実装した
蛍光表示管を同時に発光させ、輝度特性を測定し
た。 それらの各種蛍光体を蛍光表示管に対して、陰
極電圧を1.7V、制御電圧を12Vと固定し、陽極電
圧を0〜200Vまで変化させて印加させたときの
発光輝度を示すと第1図のようになる。 このグラフからもわかるように、発光輝度の点
からみるとCdのドープ量が0.0005mol以下では、
Cdの効果があらわれず、Cdのドープ量なしの従
来例であるZnO・Ga2O3蛍光体と変らなくなる。 また、Cdのドープ量が0.2mol以上で、例えば
0.5mol%では、従来のCdのドープなしと同じか、
それより輝度の低くなつている部分もある。 したがつて、Cdの好ましいドープ量は、前記
の結果から5×10-4〜3×10-1molの範囲が適し
ている。 第3図は、本発明のZnO・Ga2O3:Cd蛍光体
でCdを0.1molドープさせたものと比較の為に従
来のZnO・Ga2O3蛍光体を蛍光表示管に実装して
発光させ、その発光色を発光スペクトル図で示し
たものである。このスペクトル図から本発明の蛍
光体のピークの波長は365nm付近にあり、紫外領
域にピークを有しているが、ピーク値より長波側
では400nm付近の波長も含んでいる。したがつ
て、可視領域ではこの蛍光体は青色発光蛍光体で
あることを示している。従来のZnO・Ga2O3蛍光
体と比較するとより短波側にシフトしている。 さらに第4図は、CIEの色度座標であり、前記
ZnO・Ga2O3:CdでCdを0.1molドープさせた蛍
光体は、x=0.171、y=0.105の色度点にプロツ
トされ、色純度80.0%と良好な値である。従来の
ZnO・Ga2O3蛍光体はx=0.170、y=0.130の色
度点にあり、色純度は76.5%である。従つて本発
明のZnO・Ga2O3蛍光体は色純度のよい青色発光
蛍光体として使用できることが明らかである。と
ころで、本発明の蛍光体の輝度特性を得るに、蛍
光表示管に実装してその陽極電圧を0〜200Vま
で変化させて第1図に示す特性を得た。しかしな
がら、一般に蛍光表示管は100V以下の陽極電圧
で駆動される例が多い。したがつていま、蛍光表
示管用の低速電子線励起用の蛍光体として、本発
明の蛍光体が使用可能かどうかを検討すべく陽極
電圧90V、陰極電圧1.7V、制御電極電圧12Vで駆
動し、発光させた。その結果、Cdドープ量が
0.1molが一番輝度が高く、50ft―Lであつた。次
はCdのドープ量が0.02molの蛍光体で47ft―Lの
輝度であつた。その次はCdのドープ量が0.01mol
の蛍光体で20ft―Lの輝度であつた。 従来のZnO・Ga2O3蛍光体は、高速電子線用で
あるので同一条件では1ft―Lと輝度は低かつた。
この結果からも明らかなように、本発明の蛍光体
は蛍光表示管用の低速電子線用蛍光体としても十
分実用可能であることがわかる。 第5図は本発明のZnO・Ga2O3:Cd蛍光体と
比較の為に従来の硫化物系蛍光体として公知の
ZnS:〔Zn〕蛍光体の各々を蛍光表示管に実装し
て陽極電圧90V、制御電圧12V、陰極電圧1.7Vで
5000時間点灯した場合の寿命特性を示す図であ
る。初期輝度を100とした場合にどの位輝度が低
下していくかを輝度酸存率でプロツトしてある。 この図からもわかるように本発明のZnO・
Ga2O3:Cd蛍光体にはS成分を含有していない
ので、フイラメント状陰極を毒化させることがな
い。したがつて、従来の硫化物系蛍光体に比較し
て点灯時間が経過しても輝度残存率が高く、5000
時間経過しても95%と高い値であつた。従来の
ZnS:〔Zn〕蛍光体は5000時間経過後では残存率
が50%以下になつてしまう。 この結果から、本発明のZnO・Ga2O3:Cd蛍
光体は蛍光表示管に使用するとエミツシヨン特性
に優れ、長寿命の蛍光表示管が提供できるという
効果を有する。 実施例 2 上述した実施例では、Ga2O31molに対して混
合するZnOのモル比を1に固定してCdのドープ
量の最適範囲を求めてみたが、次に本発明の
ZnO・Ga2O3蛍光体のZnOの最適値について検討
してみる。 第1図から明らかなように、上述した実施例1
では、Cdのドープ量が0.1molの場合に、最良の
輝度特定が得られている。したがつて、ここで
は、Ga2O31molに対しCdのドープ量を0.1molに
固定し、ZnOの値が0.1〜5molをとるよう各材料
を秤量して7種類の蛍光体を作成した。各材料の
秤量値は、下表の通りである。
[Table] Instead of Ga 2 O 3 , compounds such as Ga nitrates, carbonates, sulfates, etc. that can be easily converted into Ga 2 O 3 by firing in air may be used. In addition, when converting compounds that easily convert into ZnO and CdO when fired in air using nitrates, carbonates, sulfates, etc. of Zn and Cd instead of ZnO and CdCO 3 into oxides, They may be mixed as desired. The mixing method involves thoroughly mixing the above-mentioned materials using a ball mill, mixer, mortar, or the like. Place the mixture in a heat-resistant container such as an alumina boat.
The phosphor was synthesized by baking in air at 1300°C for 2 hours. Since the synthesized phosphor is an aggregate of phosphor crystals, a phosphor in a better crystalline state can be obtained by pulverizing the phosphor and then baking it in air at 1000° C. for about 3 hours. Next, each phosphor synthesized under conditions with different doping amounts of Cd as shown in the previous table is made into a paste using an organic binder and applied to the anode conductor on the glass substrate using a printing method, controlling it above the phosphor. The electrodes and filament cathode were arranged in a stretched structure, covered with a container section consisting of a side plate and a front plate, and the inside was evacuated to a vacuum state to form a fluorescent display tube. By changing the amount of Cd doping as shown in the previous table,
A fluorescent display tube equipped with seven types of phosphors ranging from 0.0005mol to 0.5mol and a fluorescent display tube equipped with a conventional ZnO・Ga 2 O 3 phosphor prepared for comparison were simultaneously made to emit light, and the brightness was measured. Characteristics were measured. Figure 1 shows the luminance of these various phosphors when applied to a fluorescent display tube, with the cathode voltage fixed at 1.7V, the control voltage fixed at 12V, and the anode voltage varied from 0 to 200V. become that way. As can be seen from this graph, from the perspective of luminance, when the amount of Cd doped is 0.0005 mol or less,
The effect of Cd does not appear, and it remains the same as the conventional ZnO・Ga 2 O 3 phosphor without the amount of Cd doped. In addition, if the amount of Cd doped is 0.2 mol or more, for example
At 0.5 mol%, it is the same as conventional Cd without doping,
There are some parts where the brightness is lower than that. Therefore, the preferred doping amount of Cd is in the range of 5×10 −4 to 3×10 −1 mol based on the above results. Figure 3 shows a ZnO/Ga 2 O 3 :Cd phosphor of the present invention doped with 0.1 mol of Cd and a conventional ZnO/Ga 2 O 3 phosphor mounted in a fluorescent display tube for comparison. The light is emitted and the color of the emitted light is shown in an emission spectrum diagram. This spectrum diagram shows that the peak wavelength of the phosphor of the present invention is around 365 nm, and it has a peak in the ultraviolet region, but it also includes wavelengths around 400 nm on the longer wavelength side of the peak value. Therefore, in the visible region, this phosphor is a blue-emitting phosphor. Compared to the conventional ZnO・Ga 2 O 3 phosphor, it is shifted to the shorter wavelength side. Furthermore, Fig. 4 shows the CIE chromaticity coordinates, and the above-mentioned
A phosphor doped with 0.1 mol of Cd using ZnO.Ga 2 O 3 :Cd is plotted at the chromaticity point of x=0.171, y=0.105, and has a good color purity of 80.0%. Traditional
The ZnO.Ga 2 O 3 phosphor has a chromaticity point of x=0.170, y=0.130, and has a color purity of 76.5%. Therefore, it is clear that the ZnO.Ga 2 O 3 phosphor of the present invention can be used as a blue-emitting phosphor with good color purity. By the way, in order to obtain the brightness characteristics of the phosphor of the present invention, it was mounted in a fluorescent display tube and the anode voltage was varied from 0 to 200V to obtain the characteristics shown in FIG. However, in general, fluorescent display tubes are often driven with an anode voltage of 100V or less. Therefore, in order to examine whether the phosphor of the present invention can be used as a phosphor for slow electron beam excitation in a fluorescent display tube, we drove it with an anode voltage of 90 V, a cathode voltage of 1.7 V, and a control electrode voltage of 12 V. Made it emit light. As a result, the Cd doping amount
0.1mol had the highest brightness, at 50ft-L. The next phosphor was a phosphor doped with 0.02 mol of Cd and had a brightness of 47 ft-L. Next, the amount of Cd doped is 0.01mol
The luminance was 20 ft-L using phosphors. Since the conventional ZnO.Ga 2 O 3 phosphor is used for high-speed electron beams, its brightness was low at 1 ft-L under the same conditions.
As is clear from these results, it can be seen that the phosphor of the present invention is fully usable as a phosphor for low-speed electron beams for fluorescent display tubes. Figure 5 shows the ZnO・Ga 2 O 3 :Cd phosphor of the present invention and a conventional sulfide-based phosphor for comparison.
ZnS: Each of the [Zn] phosphors is mounted on a fluorescent display tube with an anode voltage of 90V, a control voltage of 12V, and a cathode voltage of 1.7V.
FIG. 3 is a diagram showing the life characteristics when the light is lit for 5000 hours. The extent to which the brightness decreases when the initial brightness is set to 100 is plotted in terms of brightness retention rate. As can be seen from this figure, the ZnO of the present invention
Since the Ga 2 O 3 :Cd phosphor does not contain an S component, it does not poison the filament cathode. Therefore, compared to conventional sulfide-based phosphors, the luminance retention rate is higher even after the lighting time has elapsed, and 5000
Even after time passed, the value remained high at 95%. Traditional
ZnS: [Zn] phosphor has a survival rate of less than 50% after 5000 hours. From this result, the ZnO.Ga 2 O 3 :Cd phosphor of the present invention has excellent emission characteristics when used in a fluorescent display tube, and has the effect of providing a long-life fluorescent display tube. Example 2 In the above-mentioned example, the molar ratio of ZnO mixed with 1 mol of Ga 2 O 3 was fixed at 1 and the optimum range of the amount of Cd doped was determined.
Let's consider the optimal value of ZnO in ZnO・Ga 2 O 3 phosphor. As is clear from FIG. 1, the above-mentioned Example 1
The best brightness specification was obtained when the Cd doping amount was 0.1 mol. Therefore, here, the doping amount of Cd was fixed at 0.1 mol per 1 mol of Ga 2 O 3 and each material was weighed so that the value of ZnO was 0.1 to 5 mol to create seven types of phosphors. The weighing values of each material are as shown in the table below.

〔効 果〕〔effect〕

本発明は、以上述べたように、ZnO・Ga2O3
光体に着目し、これにCdをドープさせることに
より、新規なZnO・Ga2O3:Cd蛍光体が得られ、
次のような効果を有する。 (1) 本発明のZnO・Ga2O3:Cd蛍光体は、Cdを
ドープさせて抵抗を下げたので100V以下の陽
極電圧でも50ft―Lの輝度を有し、蛍光表示管
用の青色蛍光体として充分使用でき、カラー蛍
光表示管の利用拡大に結び付く。 (2) 本発明のZnO・Ga2O3:Cd蛍光体は、硫化
物を含有していない酸化物系蛍光体であるの
で、蛍光表示管に実装して発光させても、硫化
物系ガスの飛散する現象も起らず、エミツシヨ
ン特性を劣化させることが皆無になり、長寿命
の信頼性の高い蛍光体を提供できる効果を有す
る。 (3) 本発明のZnO・Ga2O3:Cd蛍光体は、電子
線の励起により、安全な3650Åの紫外線のみを
放射するので、紫外線を利用する機器に利用す
ることにより、安全な紫外線機器を提供でき
る。
As described above, the present invention focuses on ZnO.Ga 2 O 3 phosphor, and by doping it with Cd, a novel ZnO.Ga 2 O 3 :Cd phosphor can be obtained.
It has the following effects. (1) The ZnO・Ga 2 O 3 :Cd phosphor of the present invention is doped with Cd to lower the resistance, so it has a brightness of 50 ft-L even at an anode voltage of 100 V or less, and is a blue phosphor for fluorescent display tubes. It can be used satisfactorily as a color fluorescent display tube, leading to expanded use of color fluorescent display tubes. (2) Since the ZnO・Ga 2 O 3 :Cd phosphor of the present invention is an oxide-based phosphor that does not contain sulfide, it does not contain sulfide-based gas even if it is mounted in a fluorescent display tube and emitted light. The scattering phenomenon does not occur, and there is no deterioration of the emission characteristics, which has the effect of providing a long-life and highly reliable phosphor. (3) The ZnO/Ga 2 O 3 :Cd phosphor of the present invention emits only safe ultraviolet light of 3650 Å when excited by an electron beam, so it can be used in devices that use ultraviolet light to create safe ultraviolet devices. can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明のZnO・Ga2O3:Cd蛍光体
のCdの含有量を変化させた場合の陽極電圧と輝
度の関係を示すグラフ、第2図は、本発明の
ZnO・Ga2O3:Cd蛍光体のZnOのモル数と相対強
度の関係を示すグラフ、第3図は、本発明の
ZnO・Ga2O3:Cd蛍光体と従来のZnO・Ga2O3
光体の発光スペクトル図、第4図は、本発明の蛍
光体と、従来のZnO・Ga2O3蛍光体のCIEの色度
座標、第5図は、本発明のZnO・Ga2O3:Cd蛍
光体と従来の硫化物蛍光体であるZnS:〔Zn〕蛍
光体を実装して5000時間点灯させた場合の輝度の
残存率を示すグラフである。
FIG. 1 is a graph showing the relationship between anode voltage and brightness when the Cd content of the ZnO・Ga 2 O 3 :Cd phosphor of the present invention is changed, and FIG.
ZnO・Ga 2 O 3 : Figure 3 is a graph showing the relationship between the number of moles of ZnO in a Cd phosphor and the relative intensity.
ZnO・Ga 2 O 3 : Emission spectrum diagram of Cd phosphor and conventional ZnO・Ga 2 O 3 phosphor. Figure 4 shows CIE of the phosphor of the present invention and conventional ZnO・Ga 2 O 3 phosphor. Figure 5 shows the chromaticity coordinates of the ZnO Ga 2 O 3 :Cd phosphor of the present invention and the conventional sulfide phosphor ZnS: [Zn] phosphor mounted and lit for 5000 hours. It is a graph showing the residual rate of brightness.

Claims (1)

【特許請求の範囲】 1 一般式がZnO・Ga2O3:Cdで表わされ電子
線又は紫外線の励起により紫外域および可視域に
発光スペクトルを有することを特徴とする蛍光
体。 2 前記母体のGa2O31molに対して、ZnOが0.5
〜4.0mol固溶した特許請求の範囲第1項記載の
蛍光体。 3 Cdのドープ量が5×10-4〜3×10-1molであ
る特許請求の範囲第1項記載の蛍光体。
[Claims] 1. A phosphor having the general formula ZnO.Ga 2 O 3 :Cd and having an emission spectrum in the ultraviolet and visible regions when excited by electron beams or ultraviolet rays. 2 ZnO is 0.5 for 1 mol of Ga 2 O 3 of the above-mentioned base material.
The phosphor according to claim 1, in which the phosphor is dissolved in a solid solution of ~4.0 mol. 3. The phosphor according to claim 1, wherein the doping amount of Cd is 5 x 10 -4 to 3 x 10 -1 mol.
JP14998286A 1986-06-26 1986-06-26 Electron beam-excited phosphor Granted JPS636082A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP14998286A JPS636082A (en) 1986-06-26 1986-06-26 Electron beam-excited phosphor
US07/066,072 US4791336A (en) 1986-06-26 1987-06-24 Fluorescent composition and fluorescent luminous device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14998286A JPS636082A (en) 1986-06-26 1986-06-26 Electron beam-excited phosphor

Publications (2)

Publication Number Publication Date
JPS636082A JPS636082A (en) 1988-01-12
JPH0260707B2 true JPH0260707B2 (en) 1990-12-18

Family

ID=15486879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14998286A Granted JPS636082A (en) 1986-06-26 1986-06-26 Electron beam-excited phosphor

Country Status (1)

Country Link
JP (1) JPS636082A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6774592B2 (en) * 2015-09-08 2020-10-28 株式会社Flosfia Deep ultraviolet light emitting element

Also Published As

Publication number Publication date
JPS636082A (en) 1988-01-12

Similar Documents

Publication Publication Date Title
JP2729190B2 (en) Phosphor
US4116864A (en) Fluorescent compositions for low-velocity electron excited fluorescent display devices
US4791336A (en) Fluorescent composition and fluorescent luminous device
JP4173057B2 (en) Fluorescent substance and fluorescent display device
US4208612A (en) Low-velocity electron excited fluorescent display device
JP4931176B2 (en) Phosphor, method for manufacturing the same, and light emitting device
JPH0260707B2 (en)
JP4873910B2 (en) Phosphor for electron beam excited light emitting device, method for producing the same, and electron beam excited light emitting device
JP3514836B2 (en) Green light emitting phosphor
KR100348207B1 (en) Fluorescent Material of Lanthanum Gallate and Method for Producing The Same
JP2002080845A (en) Fluorescent substance by low-energy electron beam excitation and fluorescent display tube
JP5016804B2 (en) Phosphor, method for manufacturing the same, and light emitting device
JPH0747733B2 (en) Blue light emitting phosphor
JPH0662949B2 (en) Phosphor
JPS63135481A (en) Phosphor excited with electron beam
JPH066704B2 (en) Electron beam excited phosphor and method for producing the same
JP3707131B2 (en) Phosphor
JPH09255953A (en) Phosphor and preparation thereof
JPS6351480B2 (en)
KR100270409B1 (en) Ared flurorescent body based lanthanum titanate and its preparing method
JPH0260706B2 (en)
JPH0892551A (en) Fluorescent display tube
JPH0559359A (en) Fluorescent display tube using fluorescent substance for slow electron
KR820002162B1 (en) A zinc oxide-based phosphor composition
JPH10140150A (en) Phosphor and production of phosphor