JP4931176B2 - Phosphor, method for manufacturing the same, and light emitting device - Google Patents

Phosphor, method for manufacturing the same, and light emitting device Download PDF

Info

Publication number
JP4931176B2
JP4931176B2 JP2005267160A JP2005267160A JP4931176B2 JP 4931176 B2 JP4931176 B2 JP 4931176B2 JP 2005267160 A JP2005267160 A JP 2005267160A JP 2005267160 A JP2005267160 A JP 2005267160A JP 4931176 B2 JP4931176 B2 JP 4931176B2
Authority
JP
Japan
Prior art keywords
phosphor
atomic
oxide
light
firing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005267160A
Other languages
Japanese (ja)
Other versions
JP2007077283A (en
Inventor
智啓 永田
村上  裕彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2005267160A priority Critical patent/JP4931176B2/en
Publication of JP2007077283A publication Critical patent/JP2007077283A/en
Application granted granted Critical
Publication of JP4931176B2 publication Critical patent/JP4931176B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Luminescent Compositions (AREA)
  • Cathode-Ray Tubes And Fluorescent Screens For Display (AREA)
  • Gas-Filled Discharge Tubes (AREA)

Description

本発明は、蛍光体及びその作製方法並びにこの蛍光体を含む発光素子に関する。   The present invention relates to a phosphor, a manufacturing method thereof, and a light emitting element including the phosphor.

今日、ディスプレイ分野では、ブラウン管(CRT)から薄型のフラットパネルディスプレイ(FPD)に移行しつつあり、液晶ディスプレイ、プラズマディスプレイパネル(PDP)、有機ELディスプレイ、フィールドエミッションディスプレイ(FED)等の、様々なFPDが開発されている。その中でFEDは、CRTと同様の発光原理で、陰極から発生した電子線を陽極の蛍光体に衝突させて発光させるものである。また、PDPは、放電ガスから放出される真空紫外線が蛍光体に照射させて発光させるものである。これらの発光源を担う蛍光体は、発光輝度・色純度・寿命等の特性が優れたものであることが望ましい。従来のCRTや現状のFEDやPDPで主に用いられている蛍光体は、高コストであったり、劇物であったり、蛍光体表面の劣化に起因した発光効率の低下を引き起こすこと、また、赤・緑・青の三色のうち青色は、材料自身が低輝度であること等、未だ解決すべき課題があり、代替材料の開発も盛んに行われている。しかし、未だに満足すべきものは得られていない。   Today, in the display field, a cathode ray tube (CRT) is moving to a thin flat panel display (FPD). FPD has been developed. Among them, the FED emits light by causing an electron beam generated from the cathode to collide with an anode phosphor on the same light emission principle as the CRT. The PDP emits light by irradiating a phosphor with vacuum ultraviolet rays emitted from a discharge gas. It is desirable that the phosphor serving as the light source has excellent characteristics such as light emission luminance, color purity, and lifetime. The phosphors mainly used in the conventional CRT and the current FED and PDP are high cost, are deleterious, cause a decrease in luminous efficiency due to phosphor surface deterioration, Of the three colors of red, green, and blue, blue has problems to be solved such as low brightness of the material itself, and alternative materials are being actively developed. However, there are still no satisfactory ones.

蛍光体としては、例えば、式:M 12 1433(式中のMはCa、Sr及びBaからなる群から選ばれる1種以上であり、MはAl及びGaからなる群から選ばれる1種以上である。)により表される化合物に付活剤としてLn(LnはCe、Pr、Nd、Pm、Sm、Eu、Tb、Dy、Ho、Er、Tm、Yb及びMnからなる群より選ばれる1種以上である。)が含有されているものが知られている(例えば、特許文献1参照)。この蛍光体は、紫外線発光体素子用のものである。
特開2004−300261号公報(特許請求の範囲)
Examples of the phosphor include a formula: M 1 12 M 2 14 O 33 (wherein M 1 is one or more selected from the group consisting of Ca, Sr and Ba, and M 2 is a group consisting of Al and Ga). Ln (Ln is Ce, Pr, Nd, Pm, Sm, Eu, Tb, Dy, Ho, Er, Tm, Yb and Mn) as an activator for the compound represented by the formula (1). In which one or more selected from the group consisting of the above-mentioned groups is contained (for example, see Patent Document 1). This phosphor is for an ultraviolet light emitter element.
JP 2004-300261 A (Claims)

本発明の課題は、上述の従来技術の問題点を解決することにあり、CRT、FEDやPDP等で現在用いられている蛍光体に代わり、安全かつ安価な発光輝度の高い蛍光体及びその作製方法並びにこの蛍光体を含んでなる発光素子を提供することにある。   SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems of the prior art. Instead of the phosphors currently used in CRT, FED, PDP, etc., a safe and inexpensive phosphor with high emission luminance and its production. It is an object to provide a method and a light-emitting device comprising the phosphor.

本発明者らは、蛍光体の開発過程において、構成元素が安全であると共に、クラーク数上位の豊富な元素(Ca:5位、Al:3位、O:1位)で構成されている安価なCa12Al1433で表される化合物を蛍光体の母体材料に用い、付活剤としてユーロピウム(Eu)を含有せしめた場合、紫外線照射により赤色発光し、電子線照射により青色発光をすることを見出し、本発明を完成させるに至った。 In the development process of the phosphor, the present inventors have a safe constitutional element and are composed of abundant elements with higher Clark number (Ca: 5th, Al: 3rd, O: 1th). When a compound represented by Ca 12 Al 14 O 33 is used as a phosphor base material and europium (Eu) is contained as an activator, it emits red light by ultraviolet irradiation and emits blue light by electron beam irradiation. As a result, the present invention has been completed.

本発明の蛍光体は、Ca12Al1433又はSr12Al1433で表される組成の化合物を母体とし、これにEuを付活剤として、該母体基準で0.1〜4.0原子%の量で添加、含有せしめてなり、Euが母体のカゴ状格子の包接サイトに含有されている式:(Ca 12 Al 14 33 ) 100 :Eu 又は(Sr 12 Al 14 33 ) 100 :Eu (式中、xは0.1〜4.0原子%である)で表される蛍光体であって、紫外線照射により赤色発光し、かつ、電子線照射により青色発光するものであることを特徴とする。 In the phosphor of the present invention, a compound having a composition represented by Ca 12 Al 14 O 33 or Sr 12 Al 14 O 33 is used as a base, and Eu is used as an activator. The compound is added and contained in an amount of 0 atomic%, and Eu is contained in the inclusion site of the host cage lattice : (Ca 12 Al 14 O 33 ) 100 : Eu x or (Sr 12 Al 14 O 33 ) 100 : Eu x (wherein x is 0.1 to 4.0 atomic%), which emits red light when irradiated with ultraviolet rays and emits blue light when irradiated with electron beams. It is characterized by being.

母体であるCa12Al1433又はSr12Al1433は、結晶構造においてカゴ状格子を基本構造としている。この母体中には付活される元素の占有サイトが3種類存在し、それはカゴ状格子を構成する3価のAlサイトと2価のCaサイト(又はSrサイト)、そしてカゴ状格子の包接サイトである。Euは、その価数が+3価で励起されると赤色発光し、+2価で励起されると青色発光することが知られている。そのため、EuがAlサイトとCaサイト(又はSrサイト)との双方に添加されて各々が発光した場合、2色発光とならず、赤色と青色とを足し合わせた紫色の発光をするはずである。 The base Ca 12 Al 14 O 33 or Sr 12 Al 14 O 33 has a cage lattice as a basic structure in the crystal structure. In this matrix, there are three types of occupied sites of the elements to be activated, which are the inclusion of trivalent Al sites and divalent Ca sites (or Sr sites) constituting the cage lattice, and the inclusion of the cage lattice. It is a site. It is known that Eu emits red light when excited with a valence of +3 and emits blue light when excited with a valence of +2. Therefore, when Eu is added to both the Al site and the Ca site (or Sr site) and each emits light, it should not emit two colors, but emit purple light by adding red and blue. .

しかるに、本発明の蛍光体では、紫外線照射により赤色発光し、また、電子線照射により青色発光するという2色発光が生じたことは驚くべきことである。この2色発光のメカニズムは、以下のように説明できる。   However, in the phosphor of the present invention, it is surprising that two-color light emission occurs, that is, red light emission by ultraviolet irradiation and blue light emission by electron beam irradiation. The mechanism of this two-color light emission can be explained as follows.

まず、Euは+2価でカゴ状格子の包接サイトに入っており、紫外線照射では電子を1個放出した+3価の状態にあり、電子が戻る暇も無く励起され続けているため、赤色発光する。しかるに、電子線照射では、Euの周りの電荷は照射によりチャージアップした状態にあり、Euが電子を放出して+3価になることが不可能なため、+2価で青色発光し続けるのである。付活剤が母体のAlサイト及びCaサイトに添加されるのではなく、母体のカゴ状格子の包接サイトに添加されているために、電子線及び紫外線の照射によって得られた励起エネルギーをカゴ状格子内にとどめ易く、高効率の発光が可能となるのである。   First, Eu is +2 and enters the inclusion site of the cage lattice, and when irradiated with ultraviolet light, it is in the +3 state where one electron is emitted, and the electron continues to be excited without time to return. To do. However, in the electron beam irradiation, the charges around Eu are in a state of being charged up by irradiation, and it is impossible for Eu to emit electrons and become +3 valence, and therefore it continues to emit blue light at +2 valence. Since the activator is not added to the matrix Al site and Ca site of the matrix, but is added to the inclusion site of the matrix cage lattice of the matrix, the excitation energy obtained by electron beam and ultraviolet irradiation is stored in the cage. This makes it easy to stay within the lattice and enables highly efficient light emission.

本発明の紫外線により赤色発光し、かつ電子線により青色発光する蛍光体の作製方法は、Ca又はSrを含み、焼成の際に分解してカルシウム酸化物又はストロンチウム酸化物となり得る化合物と、Alを含み、焼成の際に分解してアルミニウム酸化物となり得る化合物とをCa又はSrとAlとの原子当量比で12:14となるように配合し、これにEu元素又はその酸化物を、その元素に換算して、Ca12Al1433又はSr12Al1433基準で、0.1〜4.0原子%混合し、得られた混合物を焼成することにより、Euが母体のカゴ状格子の包接サイトに含有されている式:(Ca12Al1433)100 :Eu 又は(Sr12Al1433)100:Eu(式中、xは0.1〜4.0原子%である)で表され蛍光体を得ることを特徴とする。 A method for producing a phosphor that emits red light by ultraviolet rays and blue light by an electron beam according to the present invention includes a compound containing Ca or Sr, which can be decomposed during firing to become calcium oxide or strontium oxide, and Al. A compound that can be decomposed to form an aluminum oxide during firing so that the atomic equivalent ratio of Ca or Sr to Al is 12:14, and Eu element or oxide thereof is added to the element. In terms of Ca 12 Al 14 O 33 or Sr 12 Al 14 O 33 , 0.1 to 4.0 atomic% is mixed, and the resulting mixture is fired, whereby Eu is a mother-like cage lattice. formula is contained in the inclusion site: (Ca 12 Al 14 O 33 ) 100: Eu x or (Sr 12 Al 14 O 33) 100: Eu x ( wherein, x is 0.1 to 4.0 atomic % Characterized in that to obtain a phosphor you express in some).

前記焼成の際に分解してカルシウム酸化物又はストロンチウム酸化物となり得る化合物及び前記焼成の際に分解してアルミニウム酸化物となり得る化合物が、酸化物、水酸化物、炭酸塩、硝酸塩、ハロゲン化物及びシュウ酸塩から選ばれた化合物である。この焼成の際に分解してカルシウム酸化物又はストロンチウム酸化物となり得る化合物が炭酸塩であり、また、焼成の際に分解してアルミニウム酸化物となり得る化合物が酸化物であることが好ましい。   Compounds that can be decomposed during the calcination to become calcium oxide or strontium oxide and compounds that can be decomposed during the calcination to become aluminum oxide include oxides, hydroxides, carbonates, nitrates, halides, and the like. It is a compound selected from oxalates. It is preferable that the compound that can be decomposed during the calcination to become calcium oxide or strontium oxide is a carbonate, and the compound that can be decomposed during the calcination to become aluminum oxide is an oxide.

本発明の発光素子は、前記蛍光体を含んでなることを特徴とする。   The light emitting device of the present invention comprises the phosphor.

本発明によれば、Ca12Al1433又はSr12Al1433で表される化合物を蛍光体の母体材料に用い、これに付活剤としてEuを所定量含有せしめることにより、包接サイトに添加されたEuは、赤色と青色とを足し合わせた紫色の発光ではなく、2色発光、すなわち紫外線照射により輝度の高い赤色発光、かつ、電子線照射により輝度の高い青色発光を生じるという効果を奏する。 According to the present invention, a compound represented by Ca 12 Al 14 O 33 or Sr 12 Al 14 O 33 is used as a phosphor base material, and by containing a predetermined amount of Eu as an activator, inclusion is performed. Eu added to the site is not purple light emission that is the sum of red and blue, but two-color light emission, that is, red light emission with high luminance by ultraviolet irradiation, and blue light emission with high luminance by electron beam irradiation. There is an effect.

本発明の蛍光体によれば、資源の豊富なCaとAlとの複合酸化物を母体とするため、従来用いられているZnS等の劇物と比べて、低環境負荷、低コストを実現できるという効果を奏する。   According to the phosphor of the present invention, since a complex oxide of Ca and Al, which is rich in resources, is used as a base material, it is possible to realize a low environmental load and a low cost compared to a conventionally used deleterious substance such as ZnS. There is an effect.

また、本発明の蛍光体は、通常の焼成による容易なプロセスで作製することができるという効果を奏する。   In addition, the phosphor of the present invention has an effect that it can be produced by an easy process by ordinary firing.

さらに、本発明の優れた発光輝度・色純度を示す蛍光体を含んでなる発光素子は、輝度の高い2色発光を生じるので、FED等のFPDやブラウン管(CRT)ディスプレイへの利用が期待できるという効果を奏する。   Furthermore, since the light emitting device comprising a phosphor exhibiting excellent light emission luminance and color purity of the present invention produces two-color light emission with high luminance, it can be expected to be used for FPD such as FED and cathode ray tube (CRT) displays. There is an effect.

以下、本発明の実施の形態について説明する。   Embodiments of the present invention will be described below.

本発明によれば、Ca12Al1433又はSr12Al1433で表される組成の化合物を母体とし、これにEuを付活剤として所定量添加、含有せしめてなる蛍光体であって、紫外線照射により赤色発光し、電子線照射により青色発光する蛍光体を提供することにより、所期の目的を達成することができる。 According to the present invention, there is provided a phosphor having a compound having a composition represented by Ca 12 Al 14 O 33 or Sr 12 Al 14 O 33 as a base, and adding and containing a predetermined amount of Eu as an activator. By providing a phosphor that emits red light when irradiated with ultraviolet light and emits blue light when irradiated with an electron beam, the intended purpose can be achieved.

本発明で用いる付活剤の添加量は、母体化合物Ca12Al1433基準で、0.001〜10原子%、好ましくは0.1〜4.0原子%である。0.001原子%未満であり、また、10原子%を超えるとると輝度が著しく低下する。 The addition amount of the activator used in the present invention is 0.001 to 10 atomic%, preferably 0.1 to 4.0 atomic%, based on the base compound Ca 12 Al 14 O 33 . If it is less than 0.001 atomic% and more than 10 atomic%, the luminance is remarkably lowered.

以下、本発明の蛍光体の作製方法について説明する。   Hereinafter, a method for producing the phosphor of the present invention will be described.

本発明の蛍光体の作製方法は、特に限定されるものではない。例えば、母体を構成するカルシウム(或いはストロンチウム)及び/又はアルミニウムを含む化合物とEu元素又はその酸化物との混合物を焼成することにより作製することができる。この母体を構成する元素を含む化合物としては、酸化物、水酸化物、炭酸塩、硝酸塩、ハロゲン化物、及びシュウ酸塩等のような、焼成温度で分解してカルシウム(又はストロンチウム)/アルミニウム酸化物となり得る化合物を用いることができ、こられの化合物を、母体の所定の組成となるように配合し、混合して用いる。母体のみを先に調製し、次いで、この母体に付活剤を添加して得た混合物を焼成することにより目的とする蛍光体を作製することもできる。   The method for producing the phosphor of the present invention is not particularly limited. For example, it can be produced by firing a mixture of a compound containing calcium (or strontium) and / or aluminum constituting the base and Eu element or its oxide. Compounds containing the elements constituting this matrix include oxides, hydroxides, carbonates, nitrates, halides, oxalates, etc. that decompose at the firing temperature to produce calcium (or strontium) / aluminum oxides. The compound which can become a thing can be used, These compounds are mix | blended and used so that it may become the predetermined | prescribed composition of a base material. It is also possible to prepare the target phosphor by preparing only the matrix first and then firing the mixture obtained by adding the activator to the matrix.

本発明によれば、上記母体を構成する元素を含む化合物とEu元素又はその酸化物とを、目的とする蛍光体の組成に併せて秤量し、既知のボールミル、ジェットミル、V型混合器、攪拌装置等を用いて混合・粉砕し、得られた混合物を、例えば、不活性ガス雰囲気(アルゴン等の希ガスや窒素等の雰囲気)、酸化性ガス雰囲気(空気、酸素、酸素原子含有ガス等の雰囲気)、還元性ガス雰囲気(水素ガス等の水素原子含有ガス等の雰囲気)中、1000〜1500℃(好ましくは、1200〜1300℃)で所定の時間焼成し、目的とする蛍光体を得ることができる。これらの焼成雰囲気のうち、輝度の点からは、窒素ガス雰囲気が最も好ましい。   According to the present invention, the compound containing the element constituting the matrix and the Eu element or oxide thereof are weighed together with the composition of the target phosphor, and a known ball mill, jet mill, V-type mixer, Mixing and pulverizing using a stirrer etc., the resulting mixture, for example, inert gas atmosphere (rare gas such as argon or atmosphere such as nitrogen), oxidizing gas atmosphere (air, oxygen, oxygen atom-containing gas, etc.) And a reducing gas atmosphere (an atmosphere of a hydrogen atom-containing gas such as hydrogen gas) at 1000 to 1500 ° C. (preferably 1200 to 1300 ° C.) for a predetermined time to obtain a target phosphor. be able to. Of these firing atmospheres, a nitrogen gas atmosphere is most preferable from the viewpoint of luminance.

本発明によれば、具体的には、例えば、炭酸カルシウム(CaCO)又は炭酸ストロンチウム(SrCO)と酸化アルミニウム(Al)とを、その混合比がCa又はSrとAlとの原子当量比で12:14となるように配合し、これに、ユーロピウム(Eu)又はその酸化物を、Eu元素に換算して、Ca12Al1433又はSr12Al1433基準で、所定量混合し、かくして得られた混合粉末をボールミル中で粉砕・攪拌した後、これを不活性ガス雰囲気、酸化性ガス雰囲気又は還元性ガス雰囲気中において好ましくは1200〜1300℃(例えば、1200℃)で焼成することにより、所望の蛍光体を得ることができる。 Specifically, according to the present invention, for example, calcium carbonate (CaCO 3 ) or strontium carbonate (SrCO 3 ) and aluminum oxide (Al 2 O 3 ) are mixed at an atomic ratio of Ca or Sr and Al. Equivalent ratio is 12:14, and europium (Eu) or its oxide is converted into Eu element, based on Ca 12 Al 14 O 33 or Sr 12 Al 14 O 33 , After mixing and pulverizing the mixed powder thus obtained in a ball mill, this is preferably 1200 to 1300 ° C. (for example, 1200 ° C.) in an inert gas atmosphere, an oxidizing gas atmosphere or a reducing gas atmosphere. The desired phosphor can be obtained by baking with.

上記したようにして得られる本発明の蛍光体は従来の蛍光体よりも優れた発光輝度を有すると共に、2色発光する。この蛍光体を用いて、公知の製造方法により発光素子を製造できる。この蛍光体を用いるFEDやCRT用発光素子のうち、FED用発光素子を例にとり、以下簡単に説明する。   The phosphor of the present invention obtained as described above has emission luminance superior to that of conventional phosphors and emits two colors. Using this phosphor, a light emitting device can be manufactured by a known manufacturing method. Of the FED and CRT light-emitting elements that use this phosphor, the FED light-emitting element will be briefly described below as an example.

例えば、本発明の蛍光体の粒子を高分子化合物(例えば、セルロース系化合物、ポリビニルアルコール等)からなるバインダーの有機溶媒溶液に分散せしめて、蛍光体ペーストを調製する。この蛍光体ペーストを公知のスクリーン印刷等の塗布方法により導電性膜(例えば、ITO(酸化インジウムスズ))が形成された(この導電性膜をアノード電極とする)前面基板の表面に塗布する。この蛍光体層と、電子源(例えば、カーボンナノチューブ、グラファイトナノチューブ)及びカソード電極を備えた背面基板とを、真空領域を確保するためのスペーサーを挟んで重ねて貼り合わせる。次いで、内部を排気して真空封止し、電子飛行空間を形成させることにより、目的とするFEDモデルを製造することができる。   For example, the phosphor paste of the present invention is prepared by dispersing particles of the phosphor of the present invention in an organic solvent solution of a binder made of a polymer compound (eg, cellulose compound, polyvinyl alcohol, etc.). This phosphor paste is applied to the surface of a front substrate on which a conductive film (for example, ITO (indium tin oxide)) is formed (this conductive film is used as an anode electrode) by a known application method such as screen printing. This phosphor layer and a back substrate provided with an electron source (for example, carbon nanotube, graphite nanotube) and a cathode electrode are laminated and bonded together with a spacer for securing a vacuum region interposed therebetween. Next, the target FED model can be manufactured by evacuating the inside and vacuum-sealing to form an electron flight space.

以下に、本発明の実施例を挙げて具体的に説明するが、本発明はこの実施例によって限定されるものではない。   Hereinafter, the present invention will be described in detail by way of examples, but the present invention is not limited to these examples.

CaCOとAlとをCaとAlとの原子当量比で12:14となるように混合し、これに、酸化ユーロピウム(Eu)を、Euに換算して、Ca12Al1433基準で、0.48原子%((Ca12Al1433)100:Eu0.48)添加し、乾式粉砕・攪拌した粉末を大気中にて1時間30分で1200℃まで昇温し、この温度に4時間保持して焼成した。 CaCO 3 and Al 2 O 3 are mixed so that the atomic equivalent ratio of Ca and Al is 12:14. To this, europium oxide (Eu 2 O 3 ) is converted into Eu, and Ca 12 Al Based on 14 O 33 , 0.48 atomic% ((Ca 12 Al 14 O 33 ) 100 : Eu 0.48 ) was added, and the dry pulverized and stirred powder was raised to 1200 ° C. in the air for 1 hour and 30 minutes. Warm, hold at this temperature for 4 hours and fire.

図1に、上記のように焼成して得た(Ca12Al1433)100:Eu0.48の粉末XRD回折スペクトルを示す。図中、下段に併せて示してある結晶構造データより求めたピークと比べて分かるように非常に単相性の良い試料が作製された。図中、C12A7はCa12Al1433を意味する。 FIG. 1 shows a powder XRD diffraction spectrum of (Ca 12 Al 14 O 33 ) 100 : Eu 0.48 obtained by firing as described above. In the figure, a sample having a very good single phase was prepared as can be seen from the peak obtained from the crystal structure data shown in the lower part of the figure. In the figure, C12A7 means Ca 12 Al 14 O 33.

次に、得られた焼成粉末の蛍光特性評価について説明する。   Next, the fluorescence characteristic evaluation of the obtained fired powder will be described.

測定サンプルの準備として、まず、エタノール20ccを注入したビーカーに上記焼成粉末0.01gを入れ、十分攪拌した。このビーカー中に導電性を持つITOの成膜されたガラス基板を投入し、エタノール混合液を乾燥させた。この手法により堆積した粉末に波長254nmの紫外線、又は加速電圧3kV電子線を照射し、分光光度計により蛍光特性を評価した。   As preparation of a measurement sample, first, 0.01 g of the fired powder was put into a beaker into which 20 cc of ethanol was injected, and sufficiently stirred. A glass substrate on which a conductive ITO film was formed was placed in the beaker, and the ethanol mixture was dried. The powder deposited by this method was irradiated with ultraviolet rays having a wavelength of 254 nm or an electron beam with an acceleration voltage of 3 kV, and the fluorescence characteristics were evaluated with a spectrophotometer.

図2に波長254nmの紫外線を(Ca12Al1433)100:Eu0.48試料に照射したときの発光スペクトルを示す。この発光スペクトルは、波長約615nmにシャープなピークを持ち、色座標は、CIE色度図上ではx=0.636、y=0.361に位置する良質な赤色発光を示した。また、図3に、(Ca12Al1433)100:Eu0.48に加速電圧3kVの電子線を照射したときの発光スペクトルを示す。この発光スペクトルは、波長395nm程度にピークを持ち、色座標は、CIE色度図上ではx=0.186、y=0.054に位置する青色発光を示した。これは、従来のCRT用青色蛍光体であるZnS:Agの色座標x=0.146、y=0.074と同等であり、ZnS:Agに匹敵する色度であることが確認できた。 FIG. 2 shows an emission spectrum when the (Ca 12 Al 14 O 33 ) 100 : Eu 0.48 sample is irradiated with ultraviolet light having a wavelength of 254 nm. This emission spectrum had a sharp peak at a wavelength of about 615 nm, and the color coordinates showed high-quality red emission located at x = 0.636 and y = 0.361 on the CIE chromaticity diagram. FIG. 3 shows an emission spectrum when (Ca 12 Al 14 O 33 ) 100 : Eu 0.48 is irradiated with an electron beam with an acceleration voltage of 3 kV. This emission spectrum had a peak at a wavelength of about 395 nm, and the color coordinates showed blue light emission located at x = 0.186 and y = 0.054 on the CIE chromaticity diagram. This is equivalent to the color coordinates x = 0.146 and y = 0.074 of ZnS: Ag, which is a conventional blue phosphor for CRT, and it was confirmed that the chromaticity was comparable to ZnS: Ag.

実施例1記載の方法に従って、CaCOとAlとをCaとAlとの原子当量比で12:14となるように混合し、これに、酸化ユーロピウム(Eu)を、Ca12Al1433基準で、Euに換算して0〜10原子%の範囲で変動させて添加し、乾式粉砕・攪拌した粉末を大気中にて1時間30分で1200℃まで昇温し、この温度に4時間保持して焼成した。かくして得られた式:(Ca12Al1433)100:Eu(x=0〜10)で表される蛍光体に、波長254nmの紫外線を照射した時の発光輝度(任意単位)に対するEu濃度依存性、及び加速電圧3kV電子線を照射した時の発光輝度(任意単位)に対するEu濃度依存性を評価し、その結果を、それぞれ、図4に示す。この図から明らかなように、紫外線励起と電子線励起とも、付活剤としてのEuの濃度が1.6原子%付近で輝度が最大になることが分かる。なお、図4の下段から明らかなように、電子線励起の場合、Eu濃度が0.48原子%を超えると赤色の発光が混ざりはじめ青色純度が低下するので、輝度の点を考慮すれば、好ましくは0.05〜0.5原子%程度が2色発光を得るためには最適であると思われる。但し、Eu濃度が限りなく0原子%に近くても2色発光はする。 In accordance with the method described in Example 1, CaCO 3 and Al 2 O 3 were mixed so that the atomic equivalent ratio of Ca and Al was 12:14, and europium oxide (Eu 2 O 3 ) was added thereto. Based on 12 Al 14 O 33 standard, converted to Eu and added in a range of 0 to 10 atomic%, the dry pulverized and stirred powder was heated to 1200 ° C. in the air for 1 hour and 30 minutes, It was kept at this temperature for 4 hours and fired. Eu with respect to the emission luminance (arbitrary unit) when the phosphor represented by the formula: (Ca 12 Al 14 O 33 ) 100 : Eu x (x = 0 to 10) is irradiated with ultraviolet light having a wavelength of 254 nm. The concentration dependency and the Eu concentration dependency on the emission luminance (arbitrary unit) when irradiated with an electron beam with an acceleration voltage of 3 kV were evaluated, and the results are shown in FIG. As is apparent from this figure, it can be seen that the luminance is maximized when the concentration of Eu as an activator is around 1.6 atomic% in both ultraviolet excitation and electron beam excitation. As apparent from the lower part of FIG. 4, in the case of electron beam excitation, if the Eu concentration exceeds 0.48 atomic%, red light emission starts to be mixed and the blue purity is lowered. Preferably, about 0.05 to 0.5 atomic% seems optimal for obtaining two-color emission. However, even if the Eu concentration is infinitely close to 0 atomic%, two-color light emission occurs.

実施例1におけるCaCOの代わりにSrCOを用いて同様な条件で作製した式:(Sr12Al1433)100:Eu0.48で表される蛍光体について、実施例1と同様にして蛍光特性を評価したところ、ほぼ同様な結果が得られた(図5)。図中、C12A7は上記の通りであり、S12A7は又はSr12Al1433を意味する。この図から明らかなように、395nm程度及び600nm前後に幅の広いピークを持つこと分かる。 The phosphor represented by the formula: (Sr 12 Al 14 O 33 ) 100 : Eu 0.48 prepared under the same conditions using SrCO 3 instead of CaCO 3 in Example 1 was the same as in Example 1. When the fluorescence characteristics were evaluated, almost the same results were obtained (FIG. 5). In the figure, C12A7 is as defined above, S12A7 is or means Sr 12 Al 14 O 33. As is clear from this figure, it can be seen that there are broad peaks around 395 nm and around 600 nm.

実施例1における焼成時間を1、2、4及び8時間の4種類に代え、実施例1記載の方法に従って、(Ca12Al1433)100:Eu0.48を得た。この場合、大気中1200℃、大気中1300℃、Nガス中1200℃、及びNガス中1300℃の4種類の雰囲気中で焼成すると共に、ロータリーポンプにより排気焼成についても実施した。かくして得られた蛍光体に電子線を加速電圧3kVで照射した時の発光輝度(任意単位)に対する焼成時間依存性を評価し、その結果を図6に示す。図6から明らかなように、焼成時間1〜8時間でほぼ満足できる輝度を有する蛍光体が得られ、特に2〜4時間でより高い輝度を有する蛍光体が得られることが分かる。なお、焼成雰囲気としては、Nガス中の場合により高い輝度を有する蛍光体が得られる傾向があった。 (Ca 12 Al 14 O 33 ) 100 : Eu 0.48 was obtained according to the method described in Example 1 except that the firing time in Example 1 was changed to four types of 1, 2, 4 and 8 hours. In this case, 1200 ° C. in air, 1300 ° C. in air, N 2 1200 ° C. gas, and with calcined in N 2 four atmosphere 1300 ° C. gas was also performed for the exhaust fired by a rotary pump. The phosphor thus obtained was evaluated for the firing time dependency on the emission luminance (arbitrary unit) when the electron beam was irradiated with an acceleration voltage of 3 kV, and the result is shown in FIG. As can be seen from FIG. 6, a phosphor having a substantially satisfactory luminance can be obtained at a firing time of 1 to 8 hours, and in particular, a phosphor having a higher luminance can be obtained at 2 to 4 hours. As the firing atmosphere, there was a tendency to obtain a phosphor having higher luminance in the case of N 2 gas.

本発明によれば、Ca12Al1433又はSr12Al1433で表される化合物を蛍光体の母体材料に用い、所定濃度の付活剤としてのEuをカゴ状格子の包接サイトへ含有せしめることにより、2色発光による優れた発光輝度・色純度を示す蛍光体及びこの蛍光体を含んでなる発光素子を提供できるので、本発明は、薄型のFPD(液晶ディスプレイ、PDP、有機ELディスプレイ、FED等)、特にFEDやCRT等のディスプレイ分野で利用可能である。 According to the present invention, a compound represented by Ca 12 Al 14 O 33 or Sr 12 Al 14 O 33 is used as a phosphor base material, and Eu as an activator having a predetermined concentration is used as an inclusion site of a cage lattice. In the present invention, it is possible to provide a phosphor exhibiting excellent emission luminance and color purity by two-color emission and a light-emitting element comprising the phosphor. Therefore, the present invention provides a thin FPD (liquid crystal display, PDP, organic EL display, FED, etc.), particularly in the field of display such as FED and CRT.

上段は、実施例1で得られた(Ca12Al1433)100:Eu0.48のX線回折スペクトル、下段は、既知結晶構造から求めたピーク位置と強度を表すグラフ。The upper graph shows the X-ray diffraction spectrum of (Ca 12 Al 14 O 33 ) 100 : Eu 0.48 obtained in Example 1, and the lower graph shows the peak position and intensity determined from the known crystal structure. 実施例1で得られた(Ca12Al1433)100:Eu0.48に波長254nmの紫外線を照射した時の発光スペクトル。An emission spectrum when (Ca 12 Al 14 O 33 ) 100 : Eu 0.48 obtained in Example 1 is irradiated with ultraviolet light having a wavelength of 254 nm. 実施例1で得られた(Ca12Al1433)100:Eu0.48に電子線を加速電圧3kVで照射した時の発光スペクトル。An emission spectrum when (Ca 12 Al 14 O 33 ) 100 : Eu 0.48 obtained in Example 1 is irradiated with an electron beam at an acceleration voltage of 3 kV. 実施例2で得られた蛍光体についての、発光輝度に対するEu濃度の依存性を示すグラフであり、上段は紫外線照射した場合のグラフ、また、下段は電子線照射した場合のグラフ。It is a graph which shows the dependence of Eu density | concentration with respect to light-emitting luminance about the fluorescent substance obtained in Example 2, the upper stage is a graph at the time of ultraviolet irradiation, and the lower stage is a graph at the time of electron beam irradiation. 実施例3で得られた(Sr12Al1433)100:Eu0.48に電子線を加速電圧3kVで照射した時の発光スペクトル。An emission spectrum when (Sr 12 Al 14 O 33 ) 100 : Eu 0.48 obtained in Example 3 was irradiated with an electron beam at an acceleration voltage of 3 kV. 実施例4で得られた蛍光体の輝度に対する、焼成条件依存性を示すグラフ。6 is a graph showing the dependency of the phosphor obtained in Example 4 on the baking conditions with respect to the luminance.

Claims (4)

Ca12Al1433又はSr12Al1433で表される組成の化合物を母体とし、これにEuを付活剤として、該母体基準で0.1〜4.0原子%の量で添加、含有せしめてなり、Euが母体のカゴ状格子の包接サイトに含有されている式:(Ca 12 Al 14 33 ) 100 :Eu 又は(Sr 12 Al 14 33 ) 100 :Eu (式中、xは0.1〜4.0原子%である)で表される蛍光体であって、紫外線照射により赤色発光し、かつ、電子線照射により青色発光するものであることを特徴とする蛍光体。 A compound having a composition represented by Ca 12 Al 14 O 33 or Sr 12 Al 14 O 33 is used as a base, and Eu is used as an activator, and added in an amount of 0.1 to 4.0 atomic% based on the base. made by the additional inclusion, Eu is contained in inclusion sites cage lattice maternal formula: (Ca 12 Al 14 O 33 ) 100: Eu x or (Sr 12 Al 14 O 33) 100: Eu x ( Wherein x is 0.1 to 4.0 atomic%) , and emits red light when irradiated with ultraviolet rays and emits blue light when irradiated with electron beams. Phosphor to be used. Ca又はSrを含み、焼成の際に分解してカルシウム酸化物又はストロンチウム酸化物となり得る化合物と、Alを含み、焼成の際に分解してアルミニウム酸化物となり得る化合物とをCa又はSrとAlとの原子当量比で12:14となるように配合し、これにEu元素又はその酸化物を、その元素に換算して、Ca12Al1433又はSr12Al1433基準で、0.1〜4.0原子%混合し、得られた混合物を焼成することにより、Euが母体のカゴ状格子の包接サイトに含有されている式:(Ca12Al1433)100 :Eu 又は(Sr12Al1433)100:Eu(式中、xは0.1〜4.0原子%である)で表され蛍光体を得ることを特徴とする紫外線により赤色発光し、かつ電子線により青色発光する蛍光体の作製方法。 A compound containing Ca or Sr, which can be decomposed upon firing to become calcium oxide or strontium oxide, and a compound containing Al, which can be decomposed upon firing to become aluminum oxide, Ca or Sr and Al The elemental equivalent ratio is 12:14, and the Eu element or oxide thereof is converted into the element in terms of Ca 12 Al 14 O 33 or Sr 12 Al 14 O 33 on the basis of 0.1. By mixing 1 to 4.0 atomic% and firing the resulting mixture, Eu is contained in the inclusion site of the host cage lattice : (Ca 12 Al 14 O 33 ) 100 : Eu x or (Sr 12 Al 14 O 33) 100: ( wherein, x is a is 0.1 to 4.0 atomic%) Eu x red light by ultraviolet rays and obtaining a phosphor you express in, And electron beam Phosphor manufacturing method of emitting blue light Ri. 前記焼成の際に分解してカルシウム酸化物又はストロンチウム酸化物となり得る化合物及び前記焼成の際に分解してアルミニウム酸化物となり得る化合物が、酸化物、水酸化物、炭酸塩、硝酸塩、ハロゲン化物及びシュウ酸塩から選ばれた化合物であることを特徴とする請求項2記載の紫外線により赤色発光し、かつ電子線により青色発光する蛍光体の作製方法。   Compounds that can be decomposed during the calcination to become calcium oxide or strontium oxide and compounds that can be decomposed during the calcination to become aluminum oxide include oxides, hydroxides, carbonates, nitrates, halides, and the like. 3. The method for producing a phosphor that emits red light by ultraviolet rays and emits blue light by an electron beam, wherein the phosphor is a compound selected from oxalates. 請求項1記載の蛍光体又は請求項2若しくは3記載の作製方法により作製される蛍光体を含んでなることを特徴とする発光素子。   A light emitting device comprising the phosphor according to claim 1 or the phosphor produced by the production method according to claim 2 or 3.
JP2005267160A 2005-09-14 2005-09-14 Phosphor, method for manufacturing the same, and light emitting device Active JP4931176B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005267160A JP4931176B2 (en) 2005-09-14 2005-09-14 Phosphor, method for manufacturing the same, and light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005267160A JP4931176B2 (en) 2005-09-14 2005-09-14 Phosphor, method for manufacturing the same, and light emitting device

Publications (2)

Publication Number Publication Date
JP2007077283A JP2007077283A (en) 2007-03-29
JP4931176B2 true JP4931176B2 (en) 2012-05-16

Family

ID=37937905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005267160A Active JP4931176B2 (en) 2005-09-14 2005-09-14 Phosphor, method for manufacturing the same, and light emitting device

Country Status (1)

Country Link
JP (1) JP4931176B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4931175B2 (en) * 2005-09-14 2012-05-16 株式会社アルバック Phosphor for electron beam excited light emitting device, method for producing the same, and electron beam excited light emitting device
JP2008150591A (en) * 2006-11-22 2008-07-03 Sumitomo Chemical Co Ltd Composite metal oxide and fluorescent substance containing the same
EP2302662B1 (en) 2008-05-30 2013-03-27 Asahi Glass Company, Limited Fluorescent lamp
TWI432555B (en) * 2011-08-12 2014-04-01 Unity Opto Technology Co Ltd Aluminate phosphor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004300261A (en) * 2003-03-31 2004-10-28 Sumitomo Chem Co Ltd Phosphor
JP4931175B2 (en) * 2005-09-14 2012-05-16 株式会社アルバック Phosphor for electron beam excited light emitting device, method for producing the same, and electron beam excited light emitting device

Also Published As

Publication number Publication date
JP2007077283A (en) 2007-03-29

Similar Documents

Publication Publication Date Title
JP4931175B2 (en) Phosphor for electron beam excited light emitting device, method for producing the same, and electron beam excited light emitting device
JP5065080B2 (en) Plasma display device
KR100858269B1 (en) Method of producing aluminate fluorescent substance, a fluorescent substance and a device containing a fluorescent substance
EP1995295A1 (en) Phosphor for display and field emission display
JP2006335832A (en) Phosphor and light emitting device
JP4931176B2 (en) Phosphor, method for manufacturing the same, and light emitting device
JP4173057B2 (en) Fluorescent substance and fluorescent display device
JP4873910B2 (en) Phosphor for electron beam excited light emitting device, method for producing the same, and electron beam excited light emitting device
JP4873909B2 (en) Phosphor for electron beam excited light emitting device, method for producing the same, and electron beam excited light emitting device
TWI398505B (en) A phosphor and an electron beam to excite the light emitting element
JP5016804B2 (en) Phosphor, method for manufacturing the same, and light emitting device
JP2006335898A (en) Phosphor for low energy electron beam, phosphor paste and fluorescent display device
JP2005340155A (en) Plasma display apparatus
JP4526904B2 (en) Phosphor and plasma display device
JP5386092B2 (en) Method for producing oxide phosphor
JP2006059629A (en) Plasma display device
US20060145591A1 (en) Green light emitting phosphor for low voltage/high current density and field emission type display including the same
JP2007161984A (en) White light phosphor material and method for producing the same
WO2006095732A1 (en) Electron beam excited light-emitting device
KR100270409B1 (en) Ared flurorescent body based lanthanum titanate and its preparing method
JP2001081459A (en) Oxide phosphor
JP2007329027A (en) Field emission display
JP2009114304A (en) Nanoparticle green phosphor for electron beam excitation
JP2003336057A (en) Plasma display device
JP2008140617A (en) Red light-emitting element and field emission display device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080829

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110816

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20110829

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20111102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120125

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120213

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4931176

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150224

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250